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1 Introduction

The history of thermometry dates at least from the seventeenth century [1], but the
advent of thermodynamics proper can probably be set at the publication by Carnot
of his Réflexions sur la puissance motrice du feu, et sur les machines propres à
développer cette puissance. This work became well-known with its subsequent more
analytic reformulation by Clapeyron [2] and inspired the work of Clausius and
Kelvin. In the case of each of these the development of thermodynamic concepts
was allied to a realization that heat has its origin in the motion of the constituent
particles of the system [3], and in the course of the next fifty years the foundations
were laid, by Maxwell and Boltzmann (among others), of kinetic theory leading
to statistical mechanics. So at least part of the role of statistical mechanics is to
provide the explanatory basis for thermodynamics. However, there are difficulties
with this, which were known to Maxwell and Boltzmann, and for which there are
as yet no universally agreed resolution.

The temporal nature of events in the physical world can be divided into three
types, distinguished by thinking of watching them on a film run in both directions.
Some happenings appear possible (if eccentric) in both directions; others, like the
pieces of a cup rising from the floor and reconstituting themselves into a whole cup
strike one as impossible. That leaves a third group of events for which the temporal
ordering is less clear. Suppose we have a cup of coffee into which we pour milk. We
expect that the milk, starting in one region of the cup, will diffuse into the coffee
to form an apparently homogeneous mixture rather than the reverse process. Since
there are no obvious forces leading to this outcome it needs an explanation. This is
provided by classical thermodynamics which orders equilibrium states according to
whether one is adiabatically accessible from the other. The ordering of accessibility
of equilibrium states is defined in thermodynamics in terms of the entropy. For two
equilibrium states X and Y , X is adiabatically accessible from Y only if S(X) ≥
S(Y ). For the coffee the final state will have larger entropy than the initial state
(the increase being the entropy of mixing) and classical thermodynamics, in line
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with common-sense, will assert that the impossibility of the unmixing of the milk
and coffee. So what is the problem? More precisely:

(i) What are the problems in using classical mechanics to produce a micro-
scopic account of thermodynamics?

(ii) Do the mechanical systems which lead to thermodynamic behaviour
have any special features?

(iii) What are the competing programmes for solving this problem?

We shall describe below the structure of the dynamic models used to represent
thermodynamic systems. It is sufficient here to observe that they are normally (a)
reversible and (b) volume-preserving. These two distinct properties each conflict
with the thermodynamic need for entropy to monotonically increase. The problem
posed by having a reversible mechanical system was first noted by Maxwell [4], but
brought to Boltzmann’s attention in two papers published by Loschmidt [5, 6]. The
difficulties posed by volume-preservation are a little more complicated. The most
well-known is that the recurrence theorem of Poincaré [7] applies [8, p. 214]. Poincaré
[9] drew attention to the problem that this posed for kinetic theory, although this
was not considered by Boltzmann [10] until it was restated by Zermelo [11]. Less
well-known is the problem of the meaning of equilibrium. The ‘equilibrium state’ of
a dynamic system is an attractor (stable equilibrium point, stable limit cycle, strange
attractor etc.). But volume-preserving systems do not have attractors [8, p. 210];
so the concept of (mechanical) equilibrium does not apply to volume-preserving
systems. This means that, whatever mechanical description we try to give for
thermodynamic equilibrium, it will not be related to the system being in dynamic
equilibrium and there will be a need to define equilibrium.

Before outlining the different (and conflicting) attempts to resolve these prob-
lems it is of interest to give some quotes which indicate where the difficulties lie.

The behaviour of thermodynamic systems, as embodied in the sec-
ond law of thermodynamics, does not and cannot have an explana-
tion in terms of the microscopic laws of physics as currently formulated.
(Mackey [12].)

Either there is no temporal asymmetry at any stage, or it is there from
the beginning. (Price [13, p. 43].)

Irreversibility is either true on all levels or on none; it cannot emerge
as if out of nothing, on going from one level to another. (Prigogine and
Stengers [14, p. 285].)

Much of the history that Sklar recounts consists of physicists attempting
to continue the programme of deriving the thermodynamic laws from the
underlying dynamics even in the face of these objections. What seems
odd is the fairly manifest futility of these attempts. (Maudlin [15], in
his review of Physics and Chance by Sklar [16].)

Sklar [16] in his detailed survey of the foundations of statistical mechanics shows
that there is a variety of approaches which can be taken. However, if the dynamic
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model is restricted in the way described below, they would seem to be of three main
types:

The Weakened Second Law (Typical System) Approach
A vigorous defense of this view has been presented in a sequence of papers by
Lebowitz [17, 18, 19]. It can be summed up by the assertion that: “Having results for
typical microstates rather than averages is not just a mathematical nicety but at the
heart of understanding the microscopic origin of observed macroscopic behaviour.
We neither have nor do we need ensembles when we carry out observations . . . What
we do need and can expect is typical behaviour” [17, p. 38]. At the core of this
approach is the willingness to accept the consequences of reversibility and recurrence
and to modify the weight of the thermodynamic second law to a high probability
rather than a certainty. In his reply to Loschmidt [5], Boltzmann [20] argues for
this point of view and a similar point is made by Maxwell in his review of Tait’s
Thermodynamics. He asserts that the “truth of the second law”, as a statistical
theorem, was “of the nature of a strong probability . . . not an absolute certainty”
like dynamic laws, [4, p. 141]. More recently Griffths [21], Ruelle [22] and Bricmont
[23] have supported this approach.

The Baysian (Subjectivist) Approach
Jaynes [24, p. 416]1 asserts that statistical mechanics “is not a physical theory, but a
form of statistical inference”. His maximum entropy method is based on a ‘rational
belief’ interpretation of probability which allows the problems posed by reversibility
and recurrence to be resolved in a way not open to those who want to produce an
‘objective’ theory. His aim “is not to ‘explain irreversibility’ [in thermodynamics],
but to describe and predict the observed facts” [24, p. 416] and he is led to ask the
“modest question: ‘Given the partial information that we do, in fact, have, what
are the best predictions we can make of observable phenomena?’ ” [24, p. 416].
Whether one is inclined to accept the validity of this approach depends, to a large
extent, on being prepared to regard statistical mechanics as simply a procedure
for prediction, with the consequent information-related nature of thermodynamic
quantities. In particular it means that: “Even at the purely phenomenological level,
entropy is an anthropomorphic concept” [24, p. 86].

The Unstable System (Ensemble) Approach
The use of ensembles in statistical mechanics can be traced to the work of Gibbs
[26]. However, the reason for their use is not always clear except that they ‘work’.
According to Tolman [27, p. 1] the “principles of statistical mechanics are to be
regarded as permitting us to make reasonable predictions . . . expected to hold on
average . . .”. In more recent times the use of ensembles has acquired, in the view
of their proponents, a more intrinsic role. According to Mackey [28, p. 984]: “A
thermodynamic system is [my italics] a system that has, at any given time, states
distributed throughout phase space . . ., and the distribution of these states is char-
acterized by a density . . .”. The density referred to is the ensemble density and thus
the ensemble becomes the way that a thermodynamic system is defined. According
to Prigogine [29, p. 8] “it is at the level of ensembles that temporal evolution can be
predicted”. As we shall see the reason for making this assertion is that the subject

1For convenience references to Jaynes’ work are to his collected papers [24]. For an essay review
of this collection see [25].
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of statistical mechanics is taken to be unstable systems, for which, according to the
the Brussels–Austin School [29, 30, 31, 32, 33], it is necessary to develop a ‘com-
plementary’ form of dynamics based on the evolution of a measure density, which
is reducible to a trajectory description only when the system is stable.

In the development of statistical mechanics it is customary to argue that the under-
lying mechanical system has some further special properties beyond those described
in the next section. The purpose of these extra restrictions is, of course, to provide
a more or less plausible means of overcoming the problems cited above. As to what
these extra special features are there is, however, some divergences of view, which
roughly divide into three positions, characterized by the following quotes:

(a) “The specific character of the systems studied in statistical mechanics
consists mainly in the enormous number of degrees of freedom which
these systems possess.” (Khinchin [34, p. 9].)

(b) The significant feature of a statistical mechanical system is that its “ini-
tial state is incompletely specified”. (Tolman [27, p. 1].)

(c) Statistical mechanics is needed when the system is unstable and therefore
chaotic. “For a stable system we can use a description in terms of
trajectories. We can also use a probabilistic description but this leads
to a description in terms of trajectories. The statistical description is
reducible. On the other hand for chaotic systems the only description
which includes the approach to equilibrium is statistical.” (Prigogine
[29, p. 60, my translation].)

Of these three propositions the contention that statistical mechanics is about sys-
tems with a large number of particles (degrees of freedom) is that with the longest
pedigree. It is frequently asserted at the beginning of undergraduate texts [35, p.
140] and the thermodynamic limit, where the number of degrees of freedom N →∞,
is fundamental to many of the exact results in statistical mechanics. A connection
between (a) and (b) is often made by the argument that it is the fact that N is
large which implies that we are unable to have complete knowledge of the system.
While this is true it would go too far for Jaynes. The mere fact that we have in-
complete knowledge of the system is sufficient justification for statistical mechanics
irrespective of whether N = 10 or 1023.2 If nevertheless we are interested in arguing
that statistical mechanics is a scientific theory (not just a procedure for inference)
for incompletely specified systems, then we shall want to know why the system is
incompletely specified? One possible answer is given by (c). Incomplete knowledge
is an intrinsic consequence of instability leading to chaos. In fact, as is clear from
the passage from Les lois du chaos cited above, and in other places [36, p. 23], this
approach by Prigogine and the Brussels–Austin group takes a more radical position
in asserting that in chaotic systems single trajectories do not exist.

Many of the fundamental disagreements about the foundations of statistical me-
chanics can be related to three questions: (i) What does thermodynamics assert?

2For him probabilities, in statistical mechanics and elsewhere, “do not describe reality – only
our information about reality” [24, p. 268], the reason for our ignorance about the system is
irrelevant.
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(ii) What is the meaning of probability? (iii) What kind of mechanics should be
used? Their answers to (i) represent the main division between the typical system
and ensemble approaches and (ii) represents the main division between the subjec-
tivist approach on the one hand and the typical system and ensemble approaches
on the other [37]. The question of the nature of the mechanics used has two levels.
The first is more-or-less benign in the sense that it would be common to all three
approaches. The second represents the ‘heavier duty’ properties (ergodic, mixing,
chaotic etc.) which are judged to be important by the Brussels–Austin Group,
irrelevant by Jaynes’ group and of limited significance for the analysis of typical
systems.3

1.1 The Dynamics

We now describe briefly the dynamic system assumed to be used for statistical
mechanics. We have a microstructure represented by an N -dimensional vector x in
a phase space ΓN . Some dynamics x → φt x, (t ≥ 0) determines a flow in ΓN and
the set of points x(t) = φtx(0), parameterized by t ≥ 0, gives a trajectory.4 There
is a measure on ΓN given by an L(1) density ρ(x; t). We suppose that the system is
(a) classical, (b) finite, (c) deterministic,5 (d) autonomous. A consequence of (d) is
that the operators {φt}t≥0 form a semi-group. Let the time-evolution of the system
be determined by the equation of motion ẋ(t) = F (x). Then a constant of motion
f(x; t), and a measure density ρ(x; t), which yields an invariant measure on ΓN ,
satisfy

∂f

∂t
+ F · ∇(f) = 0 and

∂ρ

∂t
+ ∇ · (ρF ) = 0, (1)

respectively, the latter being Liouville’s equation. The two remaining properties of
interest will now be defined:

(e) The system is reversible if there exists an operator J on the points of
ΓN , such that φtx = x′ implies J−1φtJ x′ = x. Then φ−t = J−1φtJ
and the set {φt}t∈< is a group.6

(f) Measure is preserved by the flow if ρ satisfies Liouville’s equation. This
is a restriction on ρ not the system. A system is volume-preserving if
Liouville’s equation is satisfied by ρ = 1; then ∇ · F = 0. This is a
restriction on the system.

Not all reversible systems are volume-preserving and not all volume-preserving sys-
tems are reversible. For a volume-preserving system the equations (1) take the same
form; so an invariant measure density is a constant of motion.7

3Lebowitz seems to waver a little on the need for ergodicity.
4We are primary interest in the case where both t and ΓN are continuous and our discussion

will be expressed in this form. However, it is often necessary for investigative purposes to use
examples where one or both of these is discrete [38].

5Although stochastic examples can often be heuristically useful [38].
6For an ‘ordinary’ dynamic system, the variables x are divided into conjugate configuration q

and momentum p variables with J(q, p) = (q,−p).
7An autonomous reversible Hamiltonian system is a special case of a volume-preserving system.

The Hamiltonian is a constant of motion and energy hyper-surfaces are invariant sets in ΓN .
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Let Σ ⊂ ΓN be invariant with respect to the φt and let ρ(x; t) be normalized
over Σ. The functional

SG(ρ; t) = −kB

∫

Σ

ρ(x; t) ln{ρ(x; t)} dNx, (2)

where kB is Boltzmann’s constant, is the Gibbs entropy.8 If ρ(x; t) satisfies Liou-
ville’s equation then SG(ρ; t) is constant (with respect to time).9

We now define some of the more specialized properties of dynamic systems,
which have been regarded as significant for statistical mechanics. Let Σ ⊂ ΓN be
invariant with respect to φt and 〈f〉σ denote the integral of f over σ ⊆ Σ. Then
the system is:

Ergodic if Σ has no non-trivial invariant subsets. Then the following results can
be established:

(i) The time-independent solution ρ?(x) to Liouville’s equation, is unique
to within normalization and an additive u such that 〈u〉Σ = 0. We shall,
as a convenient name,10 call ρ?(x), with 〈ρ?〉Σ = 1, the equilibrium
density function.

(ii) The infinite time average along a trajectory of a phase function f(x) is
equal to its phase average 〈fρ?〉Σ.

(iii) With σ ⊂ Σ of non-zero measure, lim
τ→∞

T (σ; τ)
τ

= 〈ρ?〉σ = M?(σ), where

T (σ; τ) is the time during the interval [0, τ ] in which the trajectory is
in σ. This must, of course, be infinite as τ → ∞ for the limit to be
non-zero.11

The simple harmonic oscillator is ergodic.

Mixing if the following condition holds. Let α, γ ⊂ Σ and let M? be an invariant
equilibrium measure on Σ. If, in the infinite time limit, the part of the mapping of
γ which is in α is, in measure, proportional to the size of γ relative to the whole
of Σ then the system is mixing. A mixing flow is ergodic (but not the converse)
and the equilibrium measure used in the definition is unique. The simple harmonic
oscillator is not mixing.

Kolmogorov (a K-system) if it admits of a K-partition of Σ.12 K-systems are
mixing. In 1963 Sinai proved that a system of more than two hard spheres in a
cube with perfectly reflecting walls is a K-system [41].

8At the moment this is just a convenient name without any physical baggage.
9This result is not dependent on the system being volume-preserving.

10Without implying any specific meaning for the word ‘equilibrium’.
11It follows from the Poincaré recurrence theorem the trajectory must keep returning to points

arbitrarily close to x /∈ σ. It must therefore pass through σ an infinite number of times.
12The rather technical definition of this is given in [39, p. 32] and [40, p. 80].
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Bernoulli if there is a Bernoulli-partition Bn of Σ. This is defined in the following
way. Let Bn be a partition of Σ into n subsets. Label the members of Bn with
the integers [0, 1, . . . , n−1] and, for any trajectory and some ∆t, record the infinite
sequence of numbers S = {. . . , s−2, s−1, s0, s1, s2, . . .}, where the trajectory is in
the set bsk

labelled sk at time k∆t. The partition is Bernoulli if all sequences S are
uncorrelated and no two distinct trajectories have the same sequence. A Bernoulli
system is a K-system. The most celebrated example of a Bernoulli system is the
baker’s transformation (see below).

Exact if, for all σ ⊂ Σ, of non-zero measure, lim
t→∞

M?(φtσ) = 1. Such a system
cannot be reversible but it will be ergodic and mixing with a unique equilibrium
measure ρ?(x), and any invariant measure density ρ(x; t) satisfies

lim
t→∞

ρ(x; t) = ρ?(x). (3)

The missing member in this taxonomy is chaotic. This is rarely defined, even in
books for which ‘chaos’ features in the title [8, 40]. A possible definition could
be given in terms of the Lyapunov exponents of the flow [8, p. 129–138]. Roughly
speaking a positive or negative Lyapunov exponent corresponds respectively to a
dilation or contraction of volume, with the flow, in that direction. A system is
chaotic if it has at least one positive Lyapunov exponent and the sum of the expo-
nents is not positive. For any system to have an attractor (probably strange in a
chaotic system) the sum of its Lyapunov exponents must be negative. As we have
already noted volume-preserving flows (including Hamiltonian systems) do not have
attractors and the sum of their Lyapunov exponents is zero. K-systems are chaotic;
some mixing systems which are not K-systems are also chaotic.

2 The Weakened Second Law Approach

This approach is based on an explicit initial distinction between the micro and
macro levels. Consider a system, which at time t has microstate given by x(t) ∈ ΓN .
Macrostates (observable states) are defined by a set Ξ of macroscopic variables.13

Let the set of macrostates be {µ}Ξ. They are so defined that every x ∈ ΓN is in
exactly one macrostate denoted by µ(x) and the mapping x → µ(x) is many-one.
Every macrostate µ is associated with its ‘volume’ V(µ) = Vµ in ΓN .14 We thus
have the map x → µ(x) → Vµ(x) from ΓN to <+ or the positive integers. The
Boltzmann entropy is defined by

SB(x) = kB ln[Vµ(x)]. (4)

This is a phase function depending on the choice of macroscopic variables Ξ. How do
we expect that it will behave? The point of view of this approach can be expressed
as follows:

13These may include some thermodynamic variables (volume, number of particles etc.) but
they can also include other variables, specifying, for example, the number of particles in a set
of subvolumes. Ridderbos [42] denotes these by the collective name of supra-thermodynamic
variables.

14In the case where ΓN is continuous the volume of µ will normally be its Lebesque measure;
when ΓN is discrete the volume will be the number of points in µ.
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If the system starts at a phase point with low entropy then we expect
the entropy to increase. As it increases there will be fluctuations, which
could be large. When the entropy gets near to its maximum value then
it will still fluctuate with possibly large fluctuations to small entropy
values, but we don’t expect these to occur very often.

This, of course, runs counter to the strict form of the second law, which does not
allow any decreases in entropy of an isolated system. Before discussing this we
consider the simple example of a gas of particles moving under the action of the
baker’s transformation. 15 This transformation is as shown in Fig. 1, where a unit
square is stretched to twice its width and then cut in half with the right-hand half
used to restore the upper half of the unit square. As a mapping φ on the cartesian
coordinates (x, y) of the unit square it is given by

φ:

φ−1
:

Figure 1: The baker’s transformation and its inverse.

φ(x, y) =

{
(2x, 1

2y), mod1, 0 ≤ x ≤ 1
2 ,

(2x, 1
2 (y + 1)), mod1, 1

2 ≤ x ≤ 1.
(5)

One way of writing this transformation is to express x and y as binary strings:

x = 0 · x1x2x3 . . . , y = 0 · y1y2y3 . . . , (6)

where xj and yj take the values 0 or 1. Then the transformation can be represented
by writing the digits for the initial point as . . . y5y4y3y2y1|x1x2x3x4x5 . . . and φ and
φ−1 correspond respectively to moving the vertical bar one step to the right and
left.16 It can be shown [40, p. 54–56] that the baker’s transformation is volume-
preserving and thus that the Poincaré recurrence theorem applies. Now suppose
that a trajectory starts at a randomly chosen point in the small square 0 ≤ x < 2−m,
0 ≤ y < 2−m. This simply means that in the binary string there are m entries of
zero on each side of the bar. The trajectory will return to the square when, after

15A collection of other examples can be found in [38].
16φ−1 = Jφ J where J(x, y) = (y, x).
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Figure 2: A gas of N = 50 particles moving under the baker’s transformation.
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Figure 3: The evolution of the Boltzmann entropy for a gas of N = 50 particles
moving under the baker’s transformation.

some translations of the bar, this again happens. The mean first recurrence time
is 22m steps [38] and it is not difficult to show that the baker’s transformation is
Bernoulli [38].

But as indicated above, we are actually interested in the application of the
baker’s transformation to a ‘gas’ of N points (a baker’s gas). We start all the points
in some small subset of the unit square and watch them evolve. Suppose the square
is divided into 22m equal square cells and all the particles begin in the bottom left-
hand cell. Fig. 2 shows the evolution for a gas of N = 50 particles with m = 4 (256
cells). Now we suppose that the macrostates correspond to identifying the number
of particles Nij in each of the cells i, j = 1, 2, . . . , 2m. Then

V({Nij}) =
N !∏

i,j Nij !
, (7)

and Fig. 3 shows the evolution of the Boltzmann entropy. The entropy will return
to its initial value if all the particles arrive in the same cell. The mean time for this
to occur is 22m(N−1) [38]. For m = 4, N = 50 this approximates to 10118 steps.

The problem with this approach to irreversibility and equilibrium is the absence
of rigorous results. The best that can be done is to investigate simple models
using both simulations and model-specific calculations. Based on this the following
conclusions can be suggested:

• Experiments with stochastic models show that thermodynamic-type be-
haviour needs there to be some smoothness in the entropy changes which
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occur as the trajectory passes from one macrostate to the next. This im-
plies some restrictions of accessibility between macrostates. This is nor-
mally achieved by the dynamics and a reasonable choice of macrostate
structure.

• Given a macrostate µ of volume V(µ), let v(±)(µ) be the proportions
in terms of total volume of the macrostates accessible from µ which
have volumes [larger or equal]/[smaller] than V(µ). In models where
the calculation can be made we have shown [38] that v(±)(µ) converge
monotonically above/below to 1

2 as V tends towards the macrostate of
largest volume Vmax.17 This suggests that when V(µ) ¿ Vmax a typical
trajectory will pass into a macrostate of larger volume. Entropy will
typically increase. When V(µ) .= Vmax a typical trajectory will pass
into macrostates of larger or smaller volume with almost equal proba-
bilities. Entropy will fluctuate. Large fluctuations downwards from the
maximum volume/entropy will be rare. To achieve a large reduction
of entropy find a trajectory which has recently come from a state of
low entropy and reverse it. This will, if it can be done exactly, achieve
untypical behaviour.

3 The Baysian Approach

The argument from this standpoint which leads to an increasing entropy is given
by Jaynes [24, p. 27]. The basis of Jaynes’ method is to to ask what is the best
probability distribution to use for the system given the information that we have.
For Jaynes the key to the problem is the idea of uncertainty. Given an appropriate
measure of uncertainty, if we choose the probability distribution which maximizes
the uncertainty relative to the available information then this will be the best prob-
ability distribution because it assumes as little as possible. He shows the unique
measure of uncertainty, which satisfies some reasonable mathematical properties, is
Shannon’s information entropy which, for the dynamic system described in Sect. 1.1,
is (to within a constant) the Gibbs entropy (2). Entropy is a measure of uncertainty
or lack of information. As time passes our information about the system becomes
out-of-date. There is a loss of information, which is an increase in uncertainty (en-
tropy). The way that this is realized is discussed in detail by Lavis and Milligan
[25] and in the author’s contribution to the previous symposium in this series [37].
A brief summary is as follows. Suppose we have the time-dependent observables
{Ωj(t)} related to phase functions {ωj(x; t)} by Ωj(t) = 〈ωj(t)ρ(t)〉. Measurements
are made of these observables at the time t0 with the results {Ωj(t0)}. The prob-
ability density function ρ(x; t0) = ρ0(x; t0) is the one which maximizes SG(ρ; t0)
subject to the constraints Ωj(t0) = 〈ωj(t0)ρ(t0)〉. The probability density func-
tion evolves according to Liouville’s equation (1) and at a later time t is given by
ρ0(x; t). According to our state of knowledge our best predictions for the observ-
ables at time t are now given by Ωj(t) = 〈ωj(t)ρ0(t)〉. Using these predicted values
as new constraints we derive a new ρ(x; t) which maximizes SG(ρ; t). It is clear
that SG(ρ; t0) = SG(ρ0; t0) = SG(ρ0; t) ≤ SG(ρ; t). This approach highlights, even

17Of course, if µ is the unique macrostate of largest volume v(+)(µ) = 0, v(−)(µ) = 1.
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more clearly that does Jaynes’ equilibrium treatment, the fact that entropy is to
be regarded, not as an objective property of the system but as dependent upon our
knowledge of the system. It is also somewhat more limited that the usual state-
ment of the second law in that it does not establish that entropy is monotonically
increasing, but merely that it is larger at any time when it is recalculated.

4 The Unstable System Approach

For a reversible volume-preserving system, as described in Sect. 1.1, let Σ ⊂ ΓN

be invariant under the flow φt. Reversibility implies that the operators {φt}t∈<
form a group and volume-preservation means that the Frobenius-Perron operators
{Ut}t∈<, given by

Utρ(x; 0) = ρ(φ−t(x); 0) = ρ(x; t), (8)

are unitary and also form a group with their inverses given by the corresponding
Koopman operators [40].

In the ensemble approach equilibrium is defined to be the state described by a
time-independent solution ρ?(x) of Liouville’s equation.18 As was indicated in Sect.
1.1, for an ergodic system ρ?(x) exists and is unique. But for any arbitrary solution
ρ(x; t) of Liouville’s equation to satisfy (3) and converge to the unique equilibrium
solution the system must be exact [40]. However, an exact system is not reversible,
and this is the fundamental problem for which the Brussels–Austin group propose
a solution. The evolution of their work from the late-sixties to the present has been
described in detail by Edens [43]. He divides the work into periods, the early years
(1969–1985) and the later years (1988-present). In the former three strands can
be distinguished: (a) subdynamics, [30]; (b) Λ–transformations, [31, 36, 44]; (c)
entropy as a selector of initial conditions, [45]. In our brief treatment of this work
we shall concentrate of the later part of this period.

Let $(x; γ; t) be the probability of a transition from x ∈ Σ to a point in γ ⊂ Σ
in time t and define the family of operators {Wt}t∈<+ by

Wtf(x) =
∫

Σ

f(x′)$(x; dNx′; t), ∀ f ∈ L(2). (9)

It can be shown [31] that, if $(x; γ; t) is a Markov process, then {Wt}t∈<+ is a semi-
group which preserves positivity and under which the uniform density is invariant.19

The next step is to find a non-unitary operator Λ so that

ΛUt = W †
t Λ, and for which, we define ρ̊(x; t) = Λρ(x; t). (10)

Then it follows from (8) and (10) that

W †
t ρ̊(x; 0) = ρ̊(x; t). (11)

Now it is necessary to determine the class of systems for which Λ exists, preserves
positivity, the equilibrium density and the measure of any γ ⊂ Σ. We also want

18Hence the title ‘equilibrium density function’ coined on page 7.
19Since the systems under consideration are at least ergodic the uniform density either is, or

induces, the unique equilbrium density.

12



||W †
t ρ̊−ρ?||2 to decrease strictly monotonically to zero as t → +∞. However, when

this is true there is another subgroup {W ′
t}t∈<− which shows the convergence when

t → −∞. So the problem is in two parts, first to find the non-unitary operator Λ and
then to give some principle which distinguishes between the realization which shows
‘thermodynamic behaviour’ as t → +∞ and that for which this occurs as t → −∞.
One possible approach, for a K-system, is to course-grain onto a K-partition [44].
This means that Λ is a projection and does not have an inverse. The two repre-
sentations are not complementary and there is a loss of information. The density
ρ(x; t) cannot be reconstructed from the course-grained ρ̊(x; t). An alternative pro-
cedure for K-systems can be developed [46, 47] in which Λ is invertible. However,
“reconstruction is not possible for arbitrarily large time except if one assumes infi-
nite accuracy in the observation of the physically evolving states” [46, p. 425]. The
question of distinguishing between thermodynamic and non-thermodynamic time
evolution is treated by Courbage [47]. The details are technical, but the idea is to
use entropy as a measure of the information needed to construct the initial state
of the system. Non-thermodynamic behaviour needs the provision of an infinite
amount of information. This idea has a more than superficial similarity to the
trick, in the weakened second law approach, of achieving large Boltzmann entropy
decreases in computer experiments by reversing the trajectory.

5 Conclusions

We have discussed three approaches20 to statistical mechanics which imply radically
different meaning for irreversibility and equilibrium.

In the weakened second law approach the entropy is a phase function along a
trajectory given by a combination of the dynamics and macrostate structure of the
system. In consequence it fluctuates, but the dynamics and macrostate structure
combine to ensure that the fluctuations are typically small when the entropy is close
to its maximum. This entropy maximum is identified with the system being in its
macrostate of maximum volume which is defined to be the equilibrium state. A
steep entropy increase occurs only when the system starts far from equilibrium in
a macrostate of small volume.

In the baysian approach entropy is a measure of uncertainty about the system. At
any time it is calculated by finding the probability distribution which best represents
our information about the system. Equilibrium is simply the state in which our
information is time-independent. If the information changes with time, and we make
no attempt to update it, it will necessarily become out-of-date, that is decrease, and
thus entropy will be larger when it is recalculated using this information. This is
an approach which is mathematically faultless, however, you must be prepared to
accept the anthropomorphic nature of entropy.

The unstable system approach takes as its starting point the supposition that
thermodynamic behaviour is an ensemble property. Classically this would have im-
plied that we were dealing, not with a single system, but an average over a collection
(ensemble) of systems. This would seem not to be the intention of Prigogine and

20There are other approaches (for a survey see e.g. Sklar [16]) which space does not allow us to
consider. In particular the deus ex machina approach in which irreversibility arises from outside
interference is quite popular.
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his group. Their aim is to develop a new form of dynamics which contains both
the usual dynamic description based on trajectories and a thermodynamic descrip-
tion based on ensembles. These will be “complementary descriptions analogous to
the ‘complementarity’ encountered in quantum mechanics” [33]. The ensemble de-
scription will be reducible to the trajectory description only when the system is
not chaotic. This project serves to support the contention of Mackey (quoted on
page 3) that a new form of mechanics is needed to produces a statistical mechanics
which yields monotonic entropy increase. However, the conceptual content of the
assertion that the sole description of a chaotic system is in terms of a distribution
is less clear. The reference to an analogy with quantum mechanics might lead one
to suppose that some kind of ‘no-hidden-variable’ demonstration is necessary [48].
The only form of this which is provided is the demonstration [49] that even when
ρ(x; t) is localized in a region, however small, ρ̊(x; t) will be spread over all the
accessible set Σ ⊂ ΓN . This seems to be less that a proof of the non-existence of
trajectories.
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