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Abstract

Simple models have played an important role in the discussion of founda-
tional issues in statistical mechanics. Among them the spin–echo system
is of particular interest since it can be realized experimentally. This has
led to inferences being drawn about approaches to the foundations of sta-
tistical mechanics, particularly with respect to the use of coarse-graining.
We examine these claims with the help of computer simulations.

1 Introduction

Kinetic equations are very useful in statistical mechanics but they are, in general,
approximations to the behaviour of the underlying systems. Therefore, any
conclusions which can be drawn from them are of limited significance for the
resolution of foundational issues. What are needed are ‘exact’ results, or at
least situations in which numerical errors do not affect qualitative behaviour.
This is a severe restriction; most interesting problems in statistical mechanics
concern cooperative systems and, even at equilibrium (see e.g. Baxter, 1982)
there are few of these which can be solved exactly. So, of necessity, useful
examples are of assemblies of non-interacting microsystems and the literature
contains discussions of many ‘toy models’ of this kind, some stochastic and some
deterministic. Simulations for a number of these are available in Lavis (2003);
here we confine our attention to an assembly of magnetic dipoles precessing in a
field. We shall investigate the time-evolution of the Boltzmann entropy, the fine-
grained and coarse-grained versions of the Gibbs entropy and the magnetization.
We reverse the dynamic evolution at an instant of time and demonstrate that
the system returns to a state equivalent to that at the initial time. This is the
spin–echo effect.

1.1 Forms of Entropy

Consider a system, which at time t has a microstate given by the vector x(t) in
the phase-space Γ. Some autonomous dynamics x → φt x, (t ≥ 0) determines a
flow in Γ and the set of points x(t) = φtx(0), parameterized by t ≥ 0, gives a
trajectory. The set of mappings {φt}t≥0 is a semi-group. The system is reversible
if there exists a self-inverse operator I on the points of Γ, such that φtx = x′
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implies that φtI x′ = I x. Then φ−t = (φt)−1 = IφtI and the set {φt} with
t ∈ R or Z is a group.

1.1.1 The Boltzmann Entropy

Macrostates (observable states) are defined by a set Ξ of macroscopic variables.1

Let the set of macrostates be {µ}Ξ. They are so defined that every x ∈ Γ is
in exactly one macrostate denoted by µ(x) and the mapping x → µ(x) is
many-one. Every macrostate µ is associated with its ‘volume’ VΞ(µ) in Γ.2 We
thus have the map x → µ(x) → VΞ(x) ≡ VΞ(µ(x)) from Γ to R

+ or N. The
Boltzmann entropy is defined by

SB(x) = kB ln[VΞ(x)]. (1)

This is a phase function depending on the choice of macroscopic variables Ξ.
Suppose the system consists of N identical microsystems.3 Then ΓN is the

direct product of N copies of Γ1, the phase-space of one microsystem. Let x̊(i)(t)
be the phase vector of the i-th microsystem moving in its Γ1. Now divide Γ1

into a enumerable set of cells γk of equal volume ν such that every point in
Γ1 belongs to exactly one γk. The macroscopic variables Ξ are taken to be the
set {Nk} of coarse-graining variables, where Nk is the number of microsystems
with phase-points in γk. Then a macrostate is the part of ΓN corresponding to
a fixed set of values of {Nk} and

V{Nk}(x) = Ω({Nk(x)})νN , Ω({Nk}) =
N !∏

k(Nk)!
, (2)

SB(x) = kB ln[Ω({Nk(x)})] + kBN ln(ν). (3)

This formula is valid irrespective of whether the microsystems are interacting.
However, if they are, then constraints will apply to the possible values of {Nk}.4

1.1.2 The Gibbs Entropy

The fine-grained Gibbs entropy5 is given by the functional

SFGG[ρN(t)] = −kB

∫
ΓN

ρN(x; t) ln{ρN(x; t)}dΓN . (4)

of the fine-grained probability density function ρN(x; t) on ΓN . For a measure-
preserving system for which ρN(x; t) satisfies Liouville’s equation SFGG[ρN(t)]
remains constant with time, as we shall demonstrate explicitly for the spin
system in Sec. 2. The resolution to this problem suggested by Gibbs (1902, p.
148) (see also Ehrenfest and Ehrenfest-Afanassjewa, 1912) is to coarse-grain the

1These may include some thermodynamic variables (volume, number of particles etc.) but
they will also include other variables, specifying, for example, the number of particles in a set
of subvolumes. Ridderbos (2002) denotes these by the collective name of supra-thermodynamic
variables.

2The term ‘volume’ being taken to mean some appropriate measure on Γ.
3In indication of which we denote the phase-space by ΓN .
4Representing, for example, the condition that the phase point of the whole system must

lie on an energy hypersurface in ΓN .
5The ‘fine-grained’ qualification to the Gibbs entropy and probability density function is

a convenient distinction from the coarse-grained versions defined below.
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phase-space ΓN , in the manner in which macrostates have been obtained in the
Boltzmann approach. We first note that for a system of identical non-interacting
microsystems the probability density function factorizes into a product of single-
microsystem densities.

ρN(x; t) =
N∏

i=1

ρ1(x̊
(i); t). (5)

Then

SFGG[ρN(t)] = −kBN

∫
Γ1

ρ1(x̊; t) ln{ρ1(x̊; t)}dΓ1. (6)

Using the cells γk defined in Sec. 1.1.1 we define the coarse-grained probability
density by

ρ̃1(k; t) =
∫

γk

ρ1(x̊; t)dΓ1 (7)

and the coarse-grained Gibbs entropy by

SCGG[ρ̃N(t)] = −kBN
∑

k

ρ̃1(k; t) ln{ρ̃1(k; t)} + kBN ln(ν). (8)

The second term in (8) is required for consistency with the fine-grained entropy
in the case where the fine-grained density is uniform (with possibly different
values) over each of the cells. Then, from (7), ρ̃1(k; t) = νρ1(x̊k; t), where x̊k is
any point in γk and substituting into (6) gives (8).6

If we begin with any fine-grained density ρN(x; t) and calculate SFGG[ρN(t)],
and then apply coarse-graining and calculate SCGG[ρ̃N(t)],

SFGG[ρN(t)] ≤ SCGG[ρ̃N(t)], (9)

with equality only if the fine-grained density is uniform over the cells of the
coarse-graining. Now we can conceive of two possible ways of tracing the evo-
lution of entropy in the Gibbs coarse-grained picture.

(i) We could begin with some fine-grained density giving entropy SFGG[ρN(0)]
at t = 0 and watch its evolution as time increases. If at time t′ ≥ 0 we
coarse-grain, then

SFGG[ρN(0)] = SFGG[ρN(t′)] ≤ SCGG[ρ̃N(t′)]. (10)

However if we coarse-grain at two instants 0 ≤ t′ < t′′ it is not necessarily
the case that

SCGG[ρ̃N(t′)] ≤ SCGG[ρ̃N(t′′)]. (11)

The coarse-grained entropy will not necessarily show monotonic increase.
However, the graph of the coarse-grained entropy will not depend on the
instants at which coarse-graining is applied.

6Alternatively the final term in (8) could be absorbed if the formula were written in the form
of an integral (rather than summation) over the piecewise constant coarse-grained density.
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(ii) If, instead of the strategy adopted in (i) we coarse-grain at t′ then follow
the evolution of the coarse-grained density and then re-coarse-grain at the
later time t′′, (11) will hold. Course-grained entropy will show monotonic
increase. However, the graph of entropy against time will be affected by
the instances at which coarse-graining is applied.

From (2)–(3), using Stirling’s formula for large N ,7

SB(x) � −kBN
∑

k

Nk(x)
N

ln
(

Nk(x)
N

)
+ kBN ln(ν). (12)

The relationship between (8) and (12) is now easy to see. If on the one hand
a very large assembly of microsystems is taken with initial density in Γ1 of
Nρ1(x; 0) then Nk(t)/N , the proportion of the assembly in cell γk at time t is
ρ̃1(k; t) given by (7) and (12) is asymptotically equivalent to (8). Conversely,
if in the Gibbs formulation the initial density function is chosen to be a set of
N suitably-weighted Dirac delta functions, we recover (12). In summary, we
expect the Boltzmann entropy in the limit of large N and close to the uniform
distribution to converge to the coarse-grained Gibbs entropy.

2 The Model

Consider the simple model in which a magnetic dipole of moment m is fixed at
its centre but is free to rotate in the presence of a constant magnetic field B.
The equation of motion of the dipole will be

ṁ(t) = g m(t) ∧ B, (13)

where g is the gyromagnetic ratio. Released from rest the dipole will precess at
a constant angle to B. In particular, if m is located at the origin of a cartesian
coordinate system with B in the direction of the negative z-axis and if initially
m lies in the x− y plane, its subsequent motion remains in the x− y plane and
is given by

m(t) = (m cos(θ(t)), m sin(θ(t))), (14)

where

θ(t) = φt θ(0) = F2π(θ(0) + ωt), ω = B g, (15)

and8

Fα(x) = α × Non-Integer Part
(x

α

)
. (16)

Suppose that at some time t = τ the magnetic field B is turned off and a field
B′, in the direction of the x–axis is turned on for a time t′ = π/B′g. The effect of
this will be to rotate the dipole through an angle π about the x-axis, translating
its position from θ(τ) = F2π(θ(0) + ωτ) to θ′(τ) = 2π − F2π(θ(0) + ωτ) =

7In fact the approximation is close only when not only N , but all the Nk are large. This
means that it is good only for large N and a distribution of microsystems close to the uniform
distribution over the cells.

8Where, of course, Fα(x ± Fα(y)) = Fα(x ± y), for all real x and y and positive α.
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F2π(2π − θ(0) − ωτ); a reflection in the x-axis. We denote this self-inverse
reflection operator by R; that is R(θ, ω) = (2π − θ, ω). With reflection applied
at t = τ

θ(2τ) = F2π(θ′(τ) + ωτ) = 2π − θ(0). (17)

This reflectional return or echo-effect is what gives the system its name. The
model is also reversible with I(θ, ω) = (θ,−ω). Then

θ(2τ) = φ−τθ(τ) = F2π(θ(τ) − ωτ) = θ(0). (18)

So the system has two mechanisms for making it ‘retrace its steps’. However,
this is not so strange. It would be true for any system with periodic boundary
conditions; and a similar effect occurs when a particle is in one-dimensional
motion at constant speed v confined between elastic walls at x = 0 and x = L.
Then we can ‘unfold’ right-to-left motions of the particle into the region [L, 2L].
The model is now equivalent to the dipole motion with π replaced by L. The
echo transformation x → 2L − x at t = τ is now exactly the same as reversing
the direction of the velocity, with x(2τ) = x(0) and ẋ(2τ) = −ẋ(0). However,
there is a second possible transformation x → L − x. Now x(2τ) = L − x(0)
and ẋ(2τ) = ẋ(0). For an assembly of particles this fulfills the purposes of the
echo transformation just as well.9

As indicated, our interest is in an assembly of microsystems. Consider the
collection m(i), i = 1, 2, . . . , N of such dipoles with angular velocities ω(i) in
the range [ωmin, ωmax] and plot their evolutions in the θ − ω plane. Suppose
that, N = 500, τ = 100, ωmin = 0.75 and ωmax = 1.25 and that the ω(i) are
chosen randomly from a uniform distribution on [ωmin, ωmax] with θ(0) = 0
for all the dipoles. Then we have the situation shown in Fig. 1. At t = 0
each dipole is aligned in the θ = 0 direction and at t = 5 the phase-points
in Γ1 form lines with this effect persisting to about t = 50. After this the
periodic boundary conditions lead to a breakup of the ordered appearance and
a ‘spreading’ of phase-points in Γ1. When the reflectional transformation is
applied at t = τ = 100 the distribution of phase-points at t > τ is the mirror
image in θ = π of its form at 2τ − t and the final configuration is along the
line θ = 2π at t = 2τ . A macroscopic variable which can be used to follow the
evolution of the system is the x component of the magnetization density

σ(t) =
1

mN

N∑
i=1

m(i)(t) · x̂ =
1
N

N∑
i=1

cos
(
θ(i)(t)

)
. (19)

This is shown in Fig. 2. There is a rapid decrease of magnetization density from
its initial value of unity to fluctuations around the perfectly spread value of σ =
0. The average magnitude of these fluctuations will be inversely proportional
to N and in general we expect them to be quite small. Since the angular
velocities have been chosen randomly the assembly is quasi-periodic. It is also
volume-preserving and will, therefore, satisfy the Poincaré (1890) recurrence
theorem. For ‘most’ initial points, if there in no echo reflection, the phase point
(θ, ω) = (θ(1), . . . , θ(N), ω(1), . . . , ω(N)) in the 2N -dimensional phase-space ΓN

nevertheless returns to within a neighbourhood of its initial value.10 This will
9It undoes during the time interval [τ, 2τ ] the spreading which has occurred during the

interval [0, τ ].
10The recurrence time will, of course, be dependent on the size of the neighbourhood.
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Figure 1: An assembly of N = 500 rotating dipoles.
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Figure 2: The evolution of the magnetization density. After t = τ = 100 the
broken line gives the echo.

lead to a large fluctuation in magnetization density. Of course, if the initial
angular velocities are chosen to be commensurate, the system will be periodic
and will return exactly to its initial point with σ = 1.

There would be nothing particularly special about this model, if it were not
for the fact that it has been realized experimentally. Hahn (1950) (see also Hahn,
1953; Rhim et al., 1971; Brewer and Hahn, 1984) applied a magnetic field to
various liquids whose molecules contain hydrogen atoms. By manipulating the
components of the magnetic field he was able to start with the dipole moments
of the proton spins in the x–direction, make them precess around the z–axis and
then reflect the directions of the dipoles in the x–axis to achieve the echo effect
with the dipoles returning to their initial alignment.11 This system has aroused
some interest in relation to questions of reversibility in statistical mechanics
(Blatt, 1959; Mayer and Mayer, 1977; Denbigh and Denbigh, 1985; Ridderbos
and Redhead, 1998; Ridderbos, 2002). This will be discussed in Sec. 3. Here we
shall simply present the results of our calculations.

The cells to be used both for the Boltzmann entropy and the coarse-grained
Gibbs entropy are defined by dividing the single–dipole phase-space Γ1 into
nθ ×nω rectangles with edges parallel to the θ and ω axes and of lengths 	θ =
2π/nθ and 	ω = (ωmax − ωmin)/nω respectively. In Fig. 3, we show the scaled
Boltzmann entropy

S̄B(x(t)) =
SB(x(t)) − (SB)min

(SB)max − (SB)min
, (20)

for the same evolution as Fig. 1, and nθ = nω = 100, where (SB)min =
kBN ln(	 θ	ω) is the entropy were all the spins to be concentrated in one
cell and (SB)max corresponds to the spins being equally distributed over the
cells.12 The continuous and broken lines for t > 100 correspond respectively to

11The variations in the angular velocities were achieved from small variations in the strength
of the magnetic field throughout the sample.

12We do not, of course, imply that these scaling factors correspond to attainable states for
the system, since the distribution of angular velocities is invariant with time.
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Figure 3: The evolution of the Boltzmann entropy of the dipole assembly. After
t = τ = 100 the broken line gives the echo.

the evolutions without and with the echo-effect.
We now calculate the fine-grained Gibbs entropy. Suppose that the initial

probability density function is concentrated and uniform over the rectangle ω ∈
[ωmin, ωmax], θ ∈ [0, θ0], (θ0 < 2π). Then

ρ1(θ, ω; 0) =
H(θ) − H(θ − θ0)
θ0(ωmax − ωmin)

, (21)

where H(θ) is the Heaviside unit function, and

ρ1(θ, ω; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(θ − F2π(ωt)) − H(θ − F2π(θ0 + ωt))
θ0(ωmax − ωmin)

,

F2π(ωt) < F2π(θ0 + ωt),

H(θ − F2π(ωt)) − H(θ − F2π(θ0 + ωt)) + H(θ) − H(θ − 2π)
θ0(ωmax − ωmin)

,

F2π(θ0 + ωt) < F2π(ωt).

(22)

If the echo transformation θ → 2π − θ is applied at the time τ the one-spin
probability density function for t > τ is given, in terms of (22) by ρ1(2π −
θ, ω; 2τ − t). The evolution of this fine-grained probability density function,
with τ = 100, is shown in Fig. 4. Over the time interval [0, τ ] the cross-hatched
region spreads itself in ever-thinner striations over Γ1 and this process would
continue if the echo transformation were not applied.13 The effect of the echo-
transformation is as in Fig. 1; it produces a configuration at t > τ which is the
reflection in θ = π of the configuration at 2τ − t. Substituting from (22) into
(6) gives

SFGG[ρN(t)] = kBN ln{θ0(ωmax − ωmin)}. (23)
13However, we have to be a little cautious about this since we are considering a collection

of non-interacting dipoles. For each dipole the second equation of motion to pair with (15)
is ω(t) = ω(0). Motion is horizontal in Γ1 and, unlike for example a gas of particles mov-
ing according to the baker’s transformation (Lavis, 2003), and contrary to the assertion by
Ridderbos and Redhead (1998, p. 1248) the system is mixing in Γ1 only in a limited sense.
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Figure 5: The evolution of the coarse-grained Gibbs entropy of the dipole as-
sembly. After t = τ = 100 the broken line corresponds to the echo.

This is simply an expression of the well-known result that the fine-grained Gibbs
entropy is invariant with respect to time. The coarse-grained Gibbs entropy
is now calculated using the same coarse-graining as was used to obtain the
macrostates for the Boltzmann entropy. SCGG[ρ̃N(t)] will have a maximum value
when the cross-hatched area in Fig. 4 is spread evenly over the cells. Then
ρ̃1(k; t) = (	θ	ω)/{2π(ωmax−ωmin)}. Substituting into (8) (with ν = 	θ	ω)
gives

(SCGG)max = kBN ln{2π(ωmax − ωmin)}. (24)

We adopt the strategy (i) of Sec. 1.1.2 and coarse-grain the fine-grained density
as time evolves (rather than performing successive re-coarse-grainings). The
results for S̄CGG[ρ̃N(t)] = SCGG[ρ̃N(t)]/(SCGG)max, when nθ = nω = 100, are
shown in Fig. 5.

Ridderbos and Redhead (1998) have shown that the coarse-grained entropy
tends to its maximum value (24) as t → ∞ and our simulations in Fig. 5 support
this result.

3 Discussion

The first discussion of the spin–echo effect in relation to coarse-graining is due
to Blatt (1959). His argument is that “the coarse-graining approach depends
crucially upon the assertion that ‘fine-grained’ measurements are impractica-
ble, and thus [that] the fine-grained entropy is a meaningless concept” (p. 746).
Since a counter-example to this is provided by the spin–echo system which shows
that “macroscopic observers are not restricted to coarse-grained experiments”
he concludes that it “is not permissible to base fundamental arguments in sta-
tistical mechanics on coarse-graining” (p. 749). So what is the weight of this
argument? It is based on ingenious experiments which allow a system of inde-
pendent microsystems to be returned, by macroscopic means, to a phase state
close to the one they were in at an earlier time. Two effects could account for
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‘closeness’ rather than exact return. The first would be be an internal coopera-
tive effect, in this case a spin–spin coupling.14 Blatt (1959, p. 750) remarks that
the decrease in the echo–pulse arising from this is “from [the] present point of
view accidental”. He is content to consider a system of independent microsys-
tems, because in any event the inclusion of cooperative effects would not allow
an escape from the iron hand of Liouville’s theorem; the fine-grained Gibbs
entropy would still be constant. He is interested in the external (spin–lattice)
source of the deviation from exact return. This interventionist alternative to
coarse-graining, which is also the position of Ridderbos and Redhead (1998) and
Ridderbos (2002) will not be discussed here. Rather we return to the original
contention that the demonstration of a system which can be controlled more-
or-less exactly at the microscopic level by macroscopic means is the death-blow
for coarse-graining. Of course, the coarse-graining referred to by Blatt (and
also by Ridderbos and Redhead and Ridderbos) is of the Gibbs–Ehrenfest type
and it is true that Tolman (1938, p. 167) in justifying this argues that “in
making any actual measurement of the [macroscopic variables] of the system
. . . we ordinarily do not achieve the precise knowledge of their values theoret-
ically permitted by classical mechanics”. But if this were the main argument
for coarse-graining of the Gibbs–Erhenfest or Boltzmann kind it would be very
weak. It has always been possible to obtain analytic solutions for assemblies of
non-interacting microsystems and with the advent of fast computing we can, as
we have here, produce data for assemblies of arbitrary size. The fact that such a
system can be realized experimentally and controlled macroscopically may have
been of great importance technically, but it is hardly a milestone in foundational
development. In fact it is not clear that either Gibbs (1902) or Ehrenfest and
Ehrenfest-Afanassjewa (1912) intended to justify the procedure by an appeal
to the limitations of measurement. Gibbs (ibid, p. 148) refers to the cells of
the coarse-graining as being “so small that [the fine-grained probability density
function] may in general be regarded as sensibly constant within any one of
them at the initial moment” and the Ehrenfests (ibid, p. 52) simply observe
that the cells must be “small, but finite”. In the case of the Boltzmann entropy
the situation is somewhat clearer. The size of the cells defines the ‘macro-scale’
as distinct from the ‘micro-scale’ (Lebowitz, 1993). Of course, this demarcation
is to some extent arbitrary, but it is equally so for any macroscopic physical
theory.15 As is pointed out by Grünbaum (1975), Boltzmann’s entropy can be
regarded as a measure of homogeneity and in this context the equilibrium state
corresponds simply to the maximum entropy state, which has the most homo-
geneity. It is precisely and only here, in defining a measure for homogeneity at
equilibrium (Ridderbos, 2002), that the demarcation between the macro- and
micro-scales must be made. And this is unavoidable since no distribution of
discrete points over a continuum is uniform on all scales.

We now consider the case made by Denbigh and Denbigh (1985, p. 49–50 and
140–143)16 for the assertion that the spin–echo system exemplifies circumstances
that are “highly exceptional” in reproducing the kind of reversible situation used
by Loschmidt (1876) in his challenge to Boltzmann. The argument hinges on
a comparison between a gas expanding in a box and the spin–echo system.

14Similar experiments including dipolar coupling were performed by Rhim et al. (1971).
Whilst these are of importance expermentally they do not affect the argument.

15See e.g. the definition of fluid density in Landau and Lifshitz (1959, p. 1).
16The same argument is reproduced in Ridderbos and Redhead (1998, p. 1253–1254).
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This already presents some problems since, as we have shown in Sec. 2, the
states of a particle moving in one dimension between perfectly reflecting barriers
are isomorphic to those of a single spin precessing in a field with the spin–
echo reflection equivalent to velocity inversion. It follows from this that non-
interacting assemblies of each of these are isomorphic.17 A summary of the
situation considered by Denbigh and Denbigh (1985, p. 49–50) is as follows:18

(i) Let A → B be a “macroscopic process” from a thermodynamic state A to
a thermodynamic state B.

(ii) Let S(A) and S(B) be “those sets of exactly specified microstates which
are accessible to the gas” in states A and B.

(iii) Let IS(A) and IS(B) be those sets of macrostates obtained from S(A) and
S(B) by reversing the velocities.

(iv) If x(0) ∈ S(A) and x(τ) ∈ S(B) then Ix(τ) ∈ IS(B) and φτIx(τ) =
Ix(0) ∈ IS(A).

The inference is drawn that, if the system during the evolution x(0) → x(τ)
goes from A to B, there is an allowed evolution Ix(τ) → Ix(0), taking the
system from B to A.19 If thermodynamic entropy increases in one direction
it will decrease in the other. This is the heart of Loschmidt’s paradox. In his
reply to Loschmidt, Boltzmann (1877) pointed out that, whereas the trajectories
from the majority of the points in S(A) will yield an increase in entropy in the
time interval [0, τ ], only a small percentage of the points in IS(B) will yield
trajectories giving a decrease in entropy over [0, τ ]. Denbigh and Denbigh (1985,
p. 50) accept the general validity of this argument, but they believe that the
spin–echo system where velocity inversion I is replaced by reflection R is a
special case. They claim (translating into our notation) that “the situation [in
the spin–echo system] is that the set of the type [RS(B)] contains the same
number of members as the set of type [S(A)]; for every original spin there
is a spin with a reversed velocity of precession”.20 This statement contains
two parts the first contentious and the second obviously true. It is certainly
true that to every spin state there is another with the velocity of precession
reversed (or the position reflected). A similar statement would be true for any
reversible dynamic system. The distinguishing, although possibly not unique,
feature of the spin system is that “these velocities can actually be reversed
simultaneously by applying a magnetic pulse”. But this is a technical feature
which could always be anticipated for a system of non-interacting microsystems.
On the other hand if the first part of the statement (that RS(B) contains the

17It may be that Denbigh and Denbigh are effectively arguing that a two-dimensional gas
of particles in a box B = {(x, y)|0 ≤ x ≤ L, 0 ≤ y ≤ L} where each particle moves at constant
speed in the x-direction without any collisions is itself “highly exceptional”. If so the spin–echo
system is irrelevant, except in so far as it is realized experimentally.

18They begin by referring to a gas of particles in a box where the operation needed to make
the system retrace its steps is velocity reversion.

19There is one benign gap in this argument. It is assumed that the thermodynamic states
for the reversed process are the same as those for the forward process. This is equivalent to
supposing that, if x ∈ S(A), then Ix ∈ S(A). In other words, IS(A) ≡ S(A), IS(B) ≡ S(B).
The truth of these identities, although plausible, will, of course, depend on the meaning (yet
to be discussed) of ‘accessible’.

20See also Ridderbos and Redhead (1998, p. 1254) for a similar assertion.
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same number of members as S(A)) were true this would be in conflict with
Boltzmann’s answer to Loschmidt and it would be necessary to give an argument
why this does not contradict the second law.21 The problem with understanding
this argument is in interpreting the term ‘accessible’.22 Let us suppose that it is
to be interpreted as all those microstates compatible with a given value for the
x component of the magnetization mNσ(t).23 If initially σ(0) = 1, then all the
spins must be aligned with the x-axis; θ(0) =

(
θ(1)(0), . . . , θ(N)(0)

)
= 0 and

the microstates S(A) accessibly to this macrostate A correspond to all possible
values of ω = (ω(1), . . . , ω(N)). Now we have to define the final state B at time
t = τ . We could simply take this to be given by σ(τ) = 0. This would, of
course, imply that ω is constrained by the condition

N∑
i=1

cos
(
ω(i)τ

)
= 0. (25)

This condition will eliminate most of the points in S(A). We have seen in Fig.
2 that a typical evolution of σ(t) starting from alignment in the x direction
involves a rapid decrease followed by oscillations about σ = 0. A more realistic
definition of B is that σ lies in some small range [−ε, ε]. This replaces the
condition (25) by∣∣∣∣∣

N∑
i=1

cos
(
ω(i)τ

)∣∣∣∣∣ ≤ ε. (26)

For sufficiently large τ this condition will include ‘most’ of the points in S(A).24

Now suppose we start at a phase point in S(A) evolving into

θ(i)(τ) = F2π

(
ω(i)τ

)
, i = 1, 2, . . . , N (27)

with ∣∣∣∣∣
N∑

i=1

cos
(
θ(i)(τ)

)∣∣∣∣∣ ≤ ε. (28)

If we now apply the reflection θ(i)(τ) → 2π− θ(i)(τ) the value of the sum on the
left of (27) is unchanged. The new reflected phase point is also in RS(B) ≡ S(B)
and, under the evolution25 φt(2πi−θ, ω), over the further time interval [0, τ ] it
returns to RS(A) ≡ S(A). Most of the points of S(A) satisfy this account, but
the crucial question is whether in passing through S(B) they include all (or even
most) of the points of that set. The answer is clearly ‘no’. To see this simply
take a reflected point (2πi−θ, ω) which does return to S(A) and apply any one
of an infinity of small perturbations to the angular velocity. Most of these will
not return to S(A) in a time τ , or in fact in any time interval much less than
the Poincaré recurrence time.26 This situation is shown in Fig. 6.

In his account of the spin–echo system Sklar (1993, p. 221) comments that
21Such an argument (again repeated by Ridderbos and Redhead (1998)) was provided by

Mayer and Mayer (1977, p. 136).
22Ridderbos and Redhead (1998) use the term ‘available’ rather than ‘accessible’.
23The argument could be suitably modified for variants on this definition, including a

Boltzmann-like account base on macrostates.
24Those excluded will mostly be points where the angular velocities are commensurate and

the motion is periodic.
25With i = (1, 1, . . . , 1).
26And even then we should need to broaden our definition of A around σ = 1.
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Figure 6: The evolution of the magnetization density. After t = 100 the system
is reflected and the angular velocities are subject to small perturbations.

“It is as if we could prepare a gas in such a way that an ensemble
of gases so prepared would initially be uniformly spread throughout
a box. But the overwhelming majority of the gases in the ensemble
would then spontaneously flow to the left-hand half of the box.”

The problematic word in this quote is ‘prepare’. To prepare ‘from scratch’ a
spin system or any other assembly is such a way that it will achieve a particular
macrostate (low entropy, high magnetization, etc.) after a particular interval
of time would involve careful adjustment of the relationships of velocities and
positions for each microsystem; a task worthy of a Maxwell demon. However,
what we have here is a much simpler process. We allow the system to achieve
values which imply a recent memory of the required macrostate and then apply
a reflection. This macroscopic operation by a Loschmidt demon27 is only part
of the process of preparation. The difficult part is left to the system.

The aim of the work of Ridderbos and Redhead (1998) is to use an ex-
amination of the spin–echo system to discredit the use of the Gibbs-Ehrenfest
coarse-graining in favour of an interventionist approach. While it is true that
the status of the coarse-grained Gibbs entropy lacks the clarity of the Boltzmann
entropy it is by no means clear that the criticisms levelled at this approach by
Ridderbos and Redhead (1998) are all valid. In Sec. 1.1.2 we described two
methods for following the evolution of the coarse-grained Gibbs entropy, the
first, involving a coarse-graining of the fine-grained distribution at each instant
of time, and the second a sequence of re-coarse-graining as time progresses.
The former, which is the standard understanding of the procedure (Denbigh
and Denbigh, 1985, p. 55), does not yield a strict monotonic increase of en-
tropy. However, it does allow the system to retrace its steps, either by velocity
reversal or reflection(see Fig. 5). This is in conflict with the remarks of Ridder-
bos and Redhead (1998, p. 1250) that a “reversal of the dynamical evolution
in the coarse-grained case does not cause the distribution to evolve back to its
original form”. They appear to be thinking of the (obvious) impossibility of

27The term Loschmidt demon, seems to have been introduced by Rhim et al. (1971).
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un-coarse-graining a coarse-grained distribution. The occurrence of the echo in
these circumstances would certainly be “completely miraculous” (ibid, p. 1251),
but this is not how coarse-grained evolution should be implemented. In any
event, the more important question, raised by Ridderbos and Redhead (1998,
p. 1251), is whether the spin–echo system is a “counterexample to the second
law of thermodynamics”. The answer to this is surely that it depends on what
you mean by the second law of thermodynamics. If, along with Maxwell and
Boltzmann and probably the majority of physicists (see e.g. Ruelle, 1991, p.
113) entropy increase in an isolated system is taken to be highly probable but
not certain, then the spin–echo model, along with simulations of other simple
models (Lavis, 2003), is a nice example of the workings of the law. However,
if entropy increase is an iron certainty this example is one, and not a special,
example of a violation of the second law. Ridderbos and Redhead (1998, p.
1251) assert that the spin–echo experiments are not a violation of the second
law because “we do not have a situation where a system evolves spontaneously
from a high entropy state to a low entropy state.” Apart from the obvious
conflict with the quote from Sklar given above, this, of course, depends on what
you mean by “spontaneous”. Any experiment or simulation involves preparing
the system in some initial state from which it evolves spontaneously. There is no
conceptual reason why the system cannot be prepared in a state from which the
entropy spontaneously decreases. It just difficult to do because of their relative
paucity. As we have already indicated in our discussion the best way to find
such a state is to let the system find it itself by evolving in the reverse direction.
Then restarting the system in this state it will show a ‘spontaneous’ decrease in
entropy.

4 Conclusions

We have considered the case made for the spin–echo experiments being an ex-
ample of a special system which destroys the argument for using coarse-graining.
We have argued that the reason for the Boltzmann version of coarse-graining
has nothing to do with the inability to do fine-grained dynamic calculations,28

or experiments, but is based on the necessity to have a demarkation between the
micro- and macro-scales. The same arguments apply to Gibbs-Ehrenfest coarse-
graining. The spin–echo experiments are of technical significance, particularly
in respect of the fact that the echoing procedure can be effected by macroscopic
means, but as a theoretical model of an assembly of non-interacting microsys-
tems it is in no way special, as we have shown elsewhere (Lavis, 2003).
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