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The nature of multimagnon excitations in alternating spin/bond ferromagnetic chains are studied using a
combination of scaling methods and the recursion method. Two-magnon excitations for a Heisenberg chain
with either alternating spin magnitudes, S and S�, or alternating nearest-neighbor couplings, J1 and J2 can be
studied using real-space rescaling techniques. These results are then used to investigate three-magnon excita-
tions using the recursion method. �S0163-1829�98�02038-6�

I. INTRODUCTION

In recent years various quasi-one-dimensional magnetic
systems have been synthesized. These systems include
chains in which metal ions alternate regularly with organic
radicals,1 ordered bimetallic chains,2 and donor-acceptor
electron-transfer salts.3 Much of the interest has been fo-
cused on systems with antiferromagnetic ground states4 and
the nature of their excitation spectra. Many of these materials
can be described in terms of isotropic Heisenberg exchange
interactions which may alternate in strength and sign along
the chain. The chains are often composed of two sublattices
which have unequal spin magnitudes S and S� and magnetic
measurements5 indicate that these materials can be antiferro-
magnets, ferrimagnets or ferromagnets. In a previous paper,6

we have studied the nature of one- and two-magnon excita-
tions in an alternating bond/spin ferromagnetic chain for the
case of general isotropic near-neighbor interactions. Both a
direct analytic method and second method based on a scaling
transformation were used to study the relationship of bound
state branches to the scattering state continua. In the present
work we extend our study to three-magnon excitations in
alternating systems which can be described by an isotropic
Heisenberg exchange interaction between near neighbors.
Although the one- and two-magnon problems can be reduced
to single-particle problems,7,8 this is not possible for three-
magnon excitations. The general m-magnon problem in the
case of the uniform bond spin S� 1

2 chain has been solved
exactly using the Bethe ansatz9,10 but this method cannot
generally be used for higher spin or for alternating systems
except in very special cases.11–15 We use the recursion
method16 to transform the three-magnon equations into a
tridiagonal form which then provides a continued fraction
representation for the calculation of the density of states. The
spin and/or bond alternation is responsible for gaps in the
three-magnon continuum and this fact makes the termination
of the continued fraction more complicated than for uniform
chains. However, knowledge of the one- and two-magnon
spectra can be used to predict the location of the gap edges
and this is all that is needed to implement the termination
procedure.

In Sec. II we describe the model and discuss the two-

magnon excitations. In Sec. III we derive the three-magnon
equations in a basis of three-spin deviations, and in Sec. IV
we describe the recursion method and the termination proce-
dure for the resulting continued fraction representation of the
Green’s function. Section V describes our results and Sec. VI
summarizes our findings.

II. THE MODEL

We consider a chain composed of two nonidentical sub-
lattices, each being uniform and homogeneous. The Hamil-
tonian for these two nonidentical one-dimensional sublattices
with alternating spin magnitudes, S and S�, and alternating
nearest-neighbor interactions can be expressed as

Ĥ�� �
n�1

N/2

�J1�S� 2n� •S� 2n�1��J2�S� 2n�1•S� 2n�2� �� , �1�

where the total number of sites of the chain N is even and
J1 ,J2 represent the interactions which alternate in strength
along the chain. S� 2n� and S� 2n�1 are quantum spin operators at
the even and odd sites, respectively, and they satisfy the
usual commutation relations. We impose periodic boundary
conditions to ensure translational invariance within sublat-
tices and thus the total wave vector K is a good quantum
number and restricted to the range �K���/2a where a is the
lattice spacing which will be set equal to unity in what fol-
lows. Both the total spin S� tot

2 and the component in the z
direction Stot

z are constants of motion. The ferromagnetic
state in which all spins are aligned along some arbitrary di-
rection is an exact eigenstate of Ĥ with eigenvalue E0�
�(N/2)SS�(J1�J2). We denote this state which has a z
component of total spin Stot

z �(N/2)(S�S�) by �0� and we
take this to be our reference state.

The excitations relative to this reference state can be clas-
sified according to the total amount of reduction in the z
component of the total spin, Stot

z �(N/2)(S�S�)�m, and
such a state is called a m-magnon excitation. The general
problem is to solve the Schrödinger equation

Ĥ�	m��Em�K ��	m� �2�
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for the excitation energies Em(K) of the m-magnon state as a
function of total wave vector K .

A. One-magnon excitations

A general one-magnon state can be written as

�	1�� �
n�1

N/2

�a2n�2n��a2n�1�2n�1�� , �3�

where the ket �n� represents the state with the z component
of the nth spin reduced by one unit relative to the reference
state. The Schrödinger equation Ĥ�	1��E1�	1� results in
equations relating the neigboring amplitudes ar

�E1�S�J1�J2��a2n���SS��J1a2n�1�J2a2n�1�,

�E1�S��J1�J2��a2n�1���SS��J1a2n�J2a2n�2�,
�4�

where E1 is measured relative to the reference state energy
E0 . The eigenvalue E1 can be written as

EK

�B�

1

2

��2�4��K�2, �5�

where

�K��SS��J1eiK�J2e� iK �, �6�

B�
1

2
�S�S���J1�J2�, �7�

and

���S�S���J1�J2�. �8�

The solutions for these excitations are characterized by real
wave vectors. The index 
��1 labels the two branches
which by convention are referred to as ‘‘optic’’ for the upper
branch and ‘‘acoustic’’ for the lower branch and the dimen-
sionless wave vector K lies in the range 0 –�/2. In general,
there is a nonzero gap between the two branches at the
Brillouin-zone boundary (K��/2)

Egap�2�B2�4SS�J1J2. �9�

This gap vanishes only in the uniform case where S�S� and
J1�J2 . Hence, an important difference between uniform
and nonuniform ferromagnetic chains is the presence of gaps
in the excitation spectrum. Note that the gap discussed here
has nothing to do with the Haldane gap17,18 between the
ground and excited states which also appears in some alter-
nating chains.

B. Two-magnon excitations

The two-magnon states �	2� can be written as

�	2�� �
n�m

�a2n,2m�2n,2m��a2n,2m�1�2n,2m�1�

�a2n�1,2m�2n�1,2m��a2n�1,2m�1�2n�1,2m�1�� ,

�10�

where the ket �r ,s� with r �s represents the state with single
deviations on the r th and sth spins relative to the reference
state �0�, while the ket �r ,r � represents the state with two
spin deviations on the same (r th) site. As in the one-magnon
problem, we consider the two-magnon Schrödinger equation
Ĥ�	2��E2�	2�, where E2 is the two-magnon excitation en-
ergy measured relative to the reference state energy E0 . The
equations relating the various amplitudes are obtained by
applying the Hamiltonian �1� to the general form of the wave
function �10� and then equating the coefficients of each basis
ket. The resulting equations can be artificially grouped into
two sets. One set involves amplitudes with spin deviations
separated by at least two sites (m�n) that we will refer as
the ‘‘noninteracting equations.’’ The other set will be called
the ‘‘interacting equations’’ and will involve amplitudes with
spin deviations on the same or neighboring sites. It can easily
be shown6,19,20 that the energy eigenvalues are simply the
sum of the energy of two noninteracting magnons

E2�k1 ,k2��EK ,q

1 ,
2�Ek1


1�Ek2


2, �11�

where k1 and k2 are the wave vectors of the individual mag-
nons, 
1 and 
2 label the branches of the single magnon
dispersion curves. The total wave vector K�k1�k2 and the
relative wave vector q�(k1�k2)/2 can also be used to label
the energies. Translational invariance requires K to be real
but k1 and k2 can be complex.

For real values of k1 and k2 , or equivalently, for real
values of K and q, there are three energy regions which form
three different energy continua due to the gap in the one
magnon dispersion curve. Depending on the values used for

1 and 
2 , they can be identified as ‘‘acoustic-acoustic,’’
(
1�
2��1) ‘‘optic-optic,’’ (
1�
2��1) or ‘‘mixed-
mode’’ (
1��
2��1).

The knowledge of the solution of the one-magnon prob-
lem allows us to determine the regions in the E2(K) versus
K plane where scattering state solutions corresponding to
two free magnons are found. These continua correspond to
solutions in which both individual wave vectors k1 and k2
are real. However, by considering the possibility of solutions
with q complex, we also find the existence of ‘‘bound state’’
solutions outside of these regions. These solutions can be
found numerically by solving a 4�4 eigenvalue problem or
using a real space rescaling procedure.6,19 The energy re-
gions where the scattering states are located are determined
by the one-magnon spectrum and the bound states are found
outside these continua. Similarly, the complete two-magnon
spectrum, scattering plus bound states, will determine the
location of the continua for the three-magnon problem.

III. THREE-MAGNON EXCITATIONS

A general three-magnon state can be written as

�	3�� �
i� j �k

ai jk � i jk �, �12�

where we define an orthonormal set of three spin deviation
states

� i , j ,k��Ci jkSi
�Sj

�Sk
��0� �13�
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with Ci jk being the coefficients normalizing these states and
satisfying

C2 i ,2j ,2k��
1

�8S�3
, i j k,

1

�8S�2�2S��1 �
, two of i , j ,k equal,

1

�24S��2S��1 ��S��1 �
, i � j �k,

�14�

C2 i ,2j ,2k�1��
1

�8S�2S
, i j ,

1

�8SS��2S��1 �
, i � j .

�15�

In order to obtain the coefficients with two odd indices
and one even index or with three odd indices, we need only
to exchange S with S�.

We consider the effect of the Hamiltonian on the com-
plete set of states in the m�3 basis in the same way as was
done for m�1 and m�2. The translational invariance prop-

erty of the Hamiltonian can be taken into account by first
transforming the states � i , j ,k� into center of mass and rela-
tive coordinates

� i , j ,k��� j ;x,y�, �16�

where

x� j � i�0,

y�k� j �0. �17�

There are two groups of kets � j ;x,y� for any pair of values
(x,y) corresponding to each sublattice or equivalently to odd
or even values of j . We define the Fourier transforms with
respect to the center of mass of each group as follows:

�e,K;x,y���2

N �
r �0

N/2�1

e�ıK�2r �x/3�y/3��2r ;x,y�,

�o,K;x,y���2

N �
s�0

N/2�1

e�ıK�2s�1�x/3�y/3��2s�1;x,y� ,

�18�

where e and o stand for the ‘‘even’’ and ‘‘odd’’ sublattice,
respectively.

The effect of the Hamiltonian on these states can be sum-
marized by the following two equations:

�E3��x,y
K ,e��e,K;x,y���x,y

e �e,K;x,y�1���x,y
e �e,K;x�1,y���x,y

e �e,K;x�1,y���x,y
e �e,K;x,y�1�

��x,y
e �o,K;x�1,y�1���x,y

e �o,K;x�1,y�1��0, �19�

�E3��x,y
K ,o��o,K;x,y���x,y

o �o,K;x,y�1���x,y
o �o,K;x�1,y���x,y

o �o,K;x�1,y���x,y
o �o,K;x,y�1�

��x,y
o �e,K;x�1,y�1���x,y

o �e,K;x�1,y�1��0, �20�

where the first equation represents the action of the Hamil-
tonian on an ‘‘even’’ ket and the second equation corre-
sponds to an ‘‘odd’’ ket. In this representation, the even and
odd kets can be visualized as a semi-infinite lattice of points
in the first quadrant of the xy plane. Three distinct groups of
kets can be identified according to whether they lie in the
‘‘bulk’’ (x,y�2), on a ‘‘surface’’ (x�2,y�1 or x�1,y
�2) or on both surfaces (x,y�1).

When the Hamiltonian acts on a ket in the bulk �both
x,y�2), we have a set of equations that we shall refer to as
‘‘noninteracting’’ and the coefficients in Eq. �19� have the
form shown in Table I. The notation used for the coefficients
in this table and for those that will follow, allow for a
straightforward transfer of an equation for an even ket �with
general form �19�� to an equation for an odd ket �with gen-
eral form �20��. The coefficients are defined as follows:

��S�J1�J2�, �21�

���S��J1�J2�,

�0��3��6�3� ,

�1�2�����2J1 ,

�2���2���J1�J2 ,

�4�2����,

�5�2�����J2 ,

w0���J1�3S�S��1 �,

TABLE I. Coefficients when the Hamiltonian is applied to an
even ket with both x,y�2.

Noninteracting coefficients
x,y �x,y

K ,e �x,y
e �x,y

e �x,y
e �x,y

e �x,y
e �x,y

e

2 l ,2m �6 w w̄* w w̄* w̄* w

2 l ,2m�1 �4 w̄ w̄* w w* w̄* w

2 l �1,2m �4 w w* w̄ w̄* w̄* w

2 l �1,2m�1 �4� w̄ w* w̄ w* w̄* w
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w2���J1�S�2S��1 �,

w4���J1��2S�1 ��2S��1 �,

w���J1�SS�,

and ��eiK /3. The presence of a prime on a coefficient indi-
cates that S should be replaced by S� and vice versa, whereas
the presence of a bar indicates that J1 should be replaced by
J2 and vice versa in relation to the corresponding coefficient
without the bar or the prime. As usual, an asterisk (*) indi-
cates that the complex conjugate of the coefficient should
have been taken. For example, the coefficient �4� �appearing
in Table I� is equal to 2���� once the proper replacements
of S and S� are made in the definition of �4 . Similarly, w̄
���J2�SS� once J1 is replaced by J2 in the definition for
w. The coefficients corresponding to the action of the Hamil-
tonian on the odd kets are easily obtained by taking the even
coefficients and then adding or removing their primes or bars
depending whether they are present or not. This is a direct
result of the fact that one sublattice has the same equations as
the other, only with the spins S,S� and bonds J1 ,J2 ex-
changed. As an example, the coefficients obtained when the
Hamiltonian acts on the odd ket �o,K;2 l ,2m� are
(�6� ,w̄�,w�*,w̄�,w�*,w�*,w̄�), where we have applied these
rules to the first row of coefficients in Table I.

The second group of equations corresponds to the case
where either x or y is �1 while the other is �2 and we will
refer to this group as the two-bound one-free magnon group.
The coefficients are given in Table II. The final group of
equations is obtained when the Hamiltonian is applied to a
ket �e,K;x,y� with both x,y�1, i.e., for the case of three
magnons on the same site or on nearest-neighbor sites. We
will refer to this group as the three-bound magnon group.
Table III gives the coefficients.

These three groups of equations are of course coupled and
the complete solution of the three-magnon problem involves
finding the solutions of all of these groups together. There
are two types of scattering state solutions to the complete set
of equations. The first type has energy eigenvalues that can
be written as the sum of the energy of three noninteracting
magnons

E3�K ��Ek1


1�Ek2


2�Ek3


3, �22�

where k1 ,k2 ,k3 are all real and K�k1�k2�k3 . Figure 1�a�
shows the one-magnon excitation energies obtained from Eq.
�5� for the case S�2S��1 and J1�2J2�1 and Fig. 1�b�
shows the corresponding three-free continua. The gaps are a
consequence of the presence of the energy gap between the
optic and acoustic branches of the one-magnon dispersion
curve for all values of the wave vector. The lowest con-
tinuum is due to the combination of three acoustic �A�
branches (
1�
2�
3��1) and is labeled as ‘‘AAA’’;
the highest continuum is due to the combination of three
optic �O� branches (
1�
2�
3��1) and is labeled as
‘‘OOO.’’ The other two continua are mixed combinations

TABLE II. Coefficients when the Hamiltonian is applied to an
even ket. One of the values of x and y is �1 while the other is �2.

Two-bound and one-free magnon coefficients
x,y �x,y

K ,e �x,y
e �x,y

e �x,y
e �x,y

e �x,y
e �x,y

e

0,2m �3 w w̄2* w̄* w2

0,2m�1 �4 w̄ w̄2* w* w2

2 l ,0 �3 w2 w̄* w w̄2*
2 l �1,0 �4 w2 w* w̄ w̄2*
1,2m �5 w w* w̄2 w̄* w̄2�* w

1,2m�1 �5� w̄ w* w̄2
w* w̄2�* w

2 l ,1 �̄5 w̄ w̄* w w2* w̄* w2�

2 l �1,1 �̄5� w̄ w* w̄ w2* w̄* w2�

TABLE III. Coefficients when the Hamiltonian is applied to an
even ket with both x,y�1.

Three-bound magnon coefficients
x,y �x,y

K ,e �x,y
e �x,y

e �x,y
e �x,y

e �x,y
e �x,y

e

0,0 �0 w0 w̄0*
0,1 �1 w̄ w̄2* w0* w4

1,0 �̄1
w2 w* w̄0 w̄4*

1,1 �2 w̄ w* w̄2 w2* w̄2�* w2�

FIG. 1. �a� One magnon excitation branches �solid curves� and
�b� the corresponding three-free magnon scattering state continua
�shaded regions� for an alternating ferromagnetic chain with S
�2S��1 and J1�2J2�1. The energy is in units of J1 and the total
wave vector K is in units of �/2.
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and are labeled as ‘‘AAO’’ and ‘‘AOO.’’ As the differences
between S and S� or J1 and J2 become larger, the gaps
between the continua increase in magnitude and width.

The second type of continuum solution has eigenvalues
that can be written as

E3�K ��E2�k1 ,k2��Ek3


3. �23�

The term E2(k1 ,k2) corresponds to the energy of two bound
magnons at the real wave vector k1�k2 and hence these
solutions have complex values of k1 and k2 but a real value
of k3 . Still, these eigenstates correspond to scattering states
in which one magnon is free and two are bound. They form
continua which overlap with the three-free magnon scatter-
ing state continua described above. Figure 2�a� shows the
two-magnon excitation spectrum for the same case (S
�2S��1,J1�2J2�1) obtained using the methods de-
scribed by Medved, Southern, and Lavis6 and Fig. 2�b�
shows the corresponding two-bound one-free magnon con-
tinua. Figure 3 shows the superposition of the three-free and
two-bound one-free scattering state continua. In this example
case, there are two gaps at small values of K , three gaps at
intermediate values of K and one gap for values of K near
the Brillouin-zone boundary. At any fixed value of the total
wave vector K , the combined continua exhibit a varying
number of gaps. The number of gaps depends on the specific

values of S,S�,J1 , and J2 . However, the energies of the gap
edges are completely determined by the corresponding one-
and two-magnon spectra.

In addition to these scattering state solutions, there are
also three-magnon bound state energies which are discrete
and are found outside the continua. It is only in certain spe-
cial integrable cases8 that the groups completely decouple
from one another and the bound states then have special
features. In the two-magnon subspace,6 the problem of solv-
ing the combined set of equations �scattering plus bound
states� can be reduced to a numeric implementation of a 4
�4 matrix eigenvalue problem. A similar approach to re-
solving the three-magnon problem is not possible, as we
would have to find the eigenvalues of an infinite matrix. In
the next section, we will present a different approach which
will give us a direct method of identifying bound states for
the three-magnon problem.

IV. RECURSION METHOD

The recursion method16,21,22 can be used to obtain spectral
information about any Hamiltonian. The basic idea is to
transform the Hamiltonian to a tridiagonal form so that a
continued fraction representation of the local Green’s func-
tion can be obtained. The local Green’s function is defined
by

Gj�E�ı���� j ��E�Ĥ�ı���1� j � �24�

FIG. 2. �a� Two-bound magnon state branches �solid dots� with
the two magnon scattering state continua �shaded regions� and �b�
the two-bound one-free magnon scattering state continua �solid re-
gions� for an alternating ferromagnetic chain with S�2S��1 and
J1�2J2�1. The energy is in units of J1 and the total wave vector
K is in units of �/2.

FIG. 3. Three-magnon scattering state continua for an alternat-
ing ferromagnetic chain with S�2S��1 and J1�2J2�1. The re-
sults of the three-free �shaded regions� and two-bound one-free con-
tinua �solid regions� are superimposed. The energy is in units of J1

and the total wave vector K is in units of �/2.
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where � is a small positive imaginary part in the energy E
and � j � is an arbitrary ket in the three-magnon basis. We will
start with the basis kets ��e,K;x,y�,�o,K;x,y�� and con-
struct a new basis, ���n��, in which the Hamiltonian assumes
a tridiagonal form. The complete orthonormal set of states
���n�� satisfies a three-term recursion relation

Ĥ��n��an��n��bn�1��n�1��bn��n�1�, �25�

where an ,bn�Re. Hence the new matrix representation of
the Hamiltonian in this basis is

Ĥ�� a0 b1

b1 a1 b2 0

b2 a2 b3

0 �
� �26�

and the Green’s function for the initial ket ���0�� is given
by the continued fraction16

G0�E��
1

E�a0�
b1

2

E�a1�
b2

2

E�a2�
b3

2

�

. �27�

In carrying out the procedure described above, we choose
an initial ket �or linear combination of kets� in the three-
magnon basis and generate the coefficients an ,bn�1 up to
some maximum value of n�nmax . The asymptotic behavior
of these coefficients as function of n depends upon the scat-
tering state spectrum. If at a particular value of total wave
vector K , there are no gaps, then the coefficients will ap-
proach constant values asymptotically. However, if there are
one or more gaps present, then the asymptotic behavior is
oscillatory.22 In practice, we need only to calculate the coef-
ficients up to some suitable value of nmax and terminate the
continued fraction using our knowledge of the scattering
state spectrum as follows:

G0�E��
1

E�a0�
b1

2

�

E�anmax
�bnmax�1

2 G0
��E�

, �28�

where G0
�(E) is the terminator which represents the

asymptotic terms. In the case of no gaps in the scattering
state continuum, the coefficients an and bn converge to con-
stant values,

an�a

bn�1�b� for n�nmax �29�

and the terminator of the continued fraction satisfies

G0
��E��

1

E�a�
b2

E�a�
b2

�

�
1

E�a�b2G0
��E�

. �30�

Solving for G0
� , we have

G0
��E��

E�a���E�a�2�4b2

2b2
. �31�

This is known as the square-root terminator and the choice of
the positive or negative square root depends on whether E is
less than or greater than a. The terminator determines the
analytic properties of G0 . For example, G0 is complex in the
region of E where the argument of the square root is negative
and this corresponds to the scattering state continuum. How-
ever, G0 can also have isolated poles outside this energy
region due to the other terms in the continued fraction and
these energies are the bound states.

In the case of the square-root terminator, G0
�(E) is com-

plex when

Emin�a�2b�E�a�2b�Emax . �32�

Hence the asymptotic values of an and bn(a and b, respec-
tively� are related to the minimum energy Emin and maxi-
mum energy Emax of the continuum by

a�
1

2
�Emin�Emax�,

b�
1

4
�Emax�Emin�. �33�

If, at a particular value of K , the three-magnon continuum
has no gaps, we can terminate the continued fraction using
Eqs. �31� and �33�. However, the coefficients (an ,bn�1) of
the continued fraction exhibit undamped oscillations if gaps
are present. Turchi et al.22 generalized the termination pro-
cedure for the calculation of the tail of the continued fraction
when the continuum has multiple gaps. In the present work,
the spin/bond alternation leads to several gaps in the three-
magnon continuum depending on the spin magnitudes. For
given values of S, S�, J1 and J2 , we use the one-magnon
results to determine the three-free continua in the energy
(E3) versus wave vector (K) plane. We then use the two-
bound magnon energies and the one-magnon excitation en-
ergy to determine the two-bound one-free continua in this
plane. These continua are then superimposed to determine
the number of gaps in the energy continua and the gap edges
at any value of the total wave vector K so that the appropri-
ate terminator can be used to study the density of states for
the three-magnon problem.

V. RESULTS

Bell et al.20 studied the two-magnon spectrum of the al-
ternating bond S� 1

2 Heisenberg chain and found a total of
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four two-magnon bound state branches compared to the uni-
form chain which only has one branch. Medved et al.6 stud-
ied higher spin models and found that an additional bound
state branch appears when the spin magnitude is increased to
S�1. Here we extend these studies to the three-magnon ex-
citations in alternating bond or spin chains. The uniform S
� 1

2 Heisenberg chain9,10 has a single three-magnon bound
state branch below the continuum throughout the first Bril-
louin zone �K��� but additional bound states8 can appear
near the Brillouin-zone boundary for higher values of S.
When an alternation of the spins or the bonds is introduced,

a folded Brillouin zone restricted to �K���/2 becomes the
natural one, as it corresponds to two sites per primitive cell.
In the folded representation, the uniform S� 1

2 chain has a
single bound state branch which folds back at K��/2 and
overlaps with the folded continuum. When alternation is in-
troduced, the ‘‘acoustic’’ branch of the three-magnon bound
state will remain with a gap between it and the ‘‘optic’’
branch at the new Brillouin-zone boundary. This ‘‘optic’’
branch may or may not lie entirely within the continuum. If
it is below the continuum, it should only be present near the
Brillouin-zone boundary and should become a resonant state
when it enters the continuum region at smaller K unless it
emerges again inside a continuum gap.

We first present some results for the case S�S�� 1
2 with

bond alternation. As the ratio J2 /J1 is decreased from unity,
a gap first appears in the continuum near K��/2 followed
by two additional gaps near K�0. Eventually these gaps
extend across the entire zone and four distinct continua are
formed. We have used the recursion method described above
to calculate a local Green’s function corresponding to one of
the kets ��e,K;x,y�,�o,K;x,y�� as a function of energy. The
three magnon bound states are identified from the imaginary
part of the Green’s function. The bound state branch below
the lowest continuum develops a gap at the zone boundary
and the upper branch only exists for a small region of K
before it becomes a resonance inside the continuum. As the
ratio of J2 /J1 decreases further, additional bound state
branches are found in the two lowest gaps. However, we do
not find any bound states in the highest gap. Figure 4 shows
the spectrum for 2J2�J1 . The lowest gap contains two
bound state branches with a small gap between them at K
�0 and the second gap has a single branch near K��/2.
These branches are in addition to the usual two branches
below the lowest continuum which have a small gap at K
��/2.

Exact results can be obtained in the case where either J1
or J2 is zero for all values of S and S�. We will discuss this
case next as it provides a useful reference for comparing our
results with both J1 and J2 nonzero. This limit will also help
understand why there are no bound states in the highest gap
for the case S�S�� 1

2 .
In the J2→0 limit, the Hamiltonian �1� becomes

Ĥ� �
n�1

N/2

Ĥ2n
b , �34�

FIG. 4. The three-magnon continua and the three-magnon bound
states �open circles� of the uniform spin S�S��

1
2 chain with alter-

nating bonds (J1�2J2�1). The energy is in units of J1 and the
total wave vector K is in units of �/2.

TABLE IV. Three-magnon excitations for chains of isolated blocks in units of J1 and where ��J1(S
�S�). The degeneracy of the levels due to the three-free �3f�, two-bound one-free �2b1f�, and three-bound
�3b� states has been indicated.

Three-magnon excitation energies in the J2→0 limit
S,S� 0 � 2��J1 2� 3��3J1 3��J1 3�

Degeneracy 3f, 2b1f, 3b 3f, 2b1f, 3b 2b1f, 3b 3f, 2b1f 3b 2b1f 3f

1/2, 1/2 0,0,� 1,1,� � ,� 2,� 3
1, 1/2 0,0,0 1.5,1.5,� � ,� 3,3 4.5
3/2, 1/2 0,0,0 2,2,2 3,� 4,4 5 6
1, 1 0,0,0 2,2,2 3,� 4,4 5 6
3/2, 1 0,0,0 2.5,2.5,2.5 4,4 5,5 6.5 7.5
3/2, 3/2 0,0,0 3,3,3 5,5 6,6 6 8 9
2, 3/2 0,0,0 3.5,3.5,3.5 6,6 7,7 7.5 9.5 10.5
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where

Ĥ2n
b ��J1S� 2n� •S� 2n�1 �35�

and the energy can be expressed in terms of the total spin J
of each noninteracting block. When the system is in our ref-
erence state �0� , all the blocks have a total spin J�S�S�
and the total energy is E0��J1SS�(N/2). One-magnon ex-
citations correspond to having a single deviation in any block
and the energy transitions for the one-magnon excitations are

�EJ,Jz��J→J�1,Jz��J�1�J1�S�S��,

�EJ,Jz��J→J,Jz��J�1�0, �36�

which agree with Eq. �5� when evaluated for J2�0. The
two-magnon excitations can have either two single devia-
tions in different blocks �2f� or in the same block �2b�. When
in different blocks, the energy is simply the sum of two
single excitations and correspond to the excitations for two-
free magnons. Two deviations in the same block involve a
transition Jz��J→Jz��J�2. A state with Jz��J�2

could correspond to states with total spin equal to J, J�1
or J�2, and the excitation energies are given by

�E2b�� 0

J1�S�S�� if S�S�� 3
2 ,

2J1�S�S���J1 if S�S��2.
�37�

Combining the transitions for two deviations in different
blocks or in the same block, we obtain the following two-
magnon states:

�E��
0 2 f ,2b,

J1�S�S�� 2 f ,�2b if S�S�� 3
2 �,

2J1�S�S���J1 �2b if S�S��2 �,

2J1�S�S�� 2 f .

�38�

Similarly, the three-magnon states are the result of com-
bining three deviations that could be in three separate blocks
�3f�, two in one block and the other in a different block
�2b1f�, or the three in the same block �3b�. These three cases
can be summarized as follows:

FIG. 5. The three-magnon continua for the S�2S��1 uniform
bond chain. The open circles represent the three magnon bound
states. The energy is in units of J1 and the total wave vector K is in
units of �/2.

FIG. 6. The three-magnon continua for the S�2S��1, J1

�4J2�1 chain. The open circles represent the three magnon bound
states. The energy is in units of J1 and the total wave vector K is in
units of �/2.
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�E��
0 3 f ,2b1 f ,�3b if S�S�� 3

2 �

J1�S�S�� 3 f ,2b1 f ,�3b if S�S��2 �

2J1�S�S���J1 �2b1 f if S�S��2 �,�3b if S�S�� 5
2 �

2J1�S�S�� 3 f ,�2b1 f if S�S�� 3
2 �

3J1�S�S���3J1 �3b if S�S��3 �

3J1�S�S���J1 �2b1 f if S�S��2 �

3J1�S�S�� 3 f .

�39�

In Table IV, we have tabulated the three-magnon excitation
energies derived from the J2→0 limit for different S,S�
chains indicating whether the excitation corresponds to three
deviations in separate blocks �3f�, two in one block �2b1f� or
all three in the same block �3b�. The first observation is that
the number of levels �not considering degeneracy� increases
from a minimum of 4 to a maximum of 7 as the total spin
(S�S�) of the chain increases. Also, these energy levels
separate as the total spin gets larger and this increases the
possibility that gaps will appear even in the case of homoge-
neous bonds.

The degeneracy of each three-magnon level in the J2
→0 limit allows us to predict where three-magnon bound
states can be found when J2 is nonzero. Using the levels
which correspond to three deviations in the same block �3b�

or two in the same block �2b1f� as indicators, we expect to
find three-magnon bound states below the continua associ-
ated with the levels 0, � , 2��J1 , 2� , 3��3J1 , and
3��J1 , where ��J1(S�S�). Of course, all three types of
the levels are bound when J2�0. However, the bound states
should split from the rest of the levels once J2 is different
from zero. For the special case of S�S�� 1

2 , bound state
branches should only appear below the lowest continuum
and in the first gap if we use the indicators above. This
prediction agrees with the results shown in Fig. 4 except for
the appearance of an additional bound state branch in the
first gap at small K and another branch in the second gap
near the Brillouin-zone boundary. If we associate these ad-
ditional branches with the 3f states, then bound states only
seem to appear below the three-free continua which have a
contribution from at least one acoustic free magnon state.
The ‘‘OOO’’ three-free continuum does not seem to have an
associated bound state branch. If one of the spin magnitudes
is increased to unity, we might expect an additional bound
state branch below the lowest continuum. However, if such a
state appears it will only be easily visible near the Brillouin-
zone boundary. As the total spin S�S� increases further,
additional bound states in the gaps should be present. It is
clear that the 2��J1 and 3��J1 levels will only appear
for chains with S�S��2 and the 3��3J1 level for chains
with S�S��3. Hence we do not expect to observe any
bound states in the highest gap for the cases S�S�� 1

2 and
S�2S��1.

We will now briefly discuss some results for the alternat-
ing S�2S��1 chain. The J2�0 limit predicts that wider
gaps appear due to the fact that the levels separate as the total
spin of a block increases, even in the case of no bond alter-
nation. As can be seen in Fig. 5 one gap is present for small
values of K as a consequence of the spin alternation. As J2
decreases, more gaps start to appear and widen as shown in
Fig. 6. Using the recursion method, we find bound states
below the lower edge of the three-magnon continuum and in
the first two gaps as expected from the J2→0 analysis. In
general, the results for a S�2S��1 alternating bond chain
look quite similar to the S�S�� 1

2 alternating bond chain.
As a final example we consider the S�S��1 alternating

bond chain with 4J2�J1 . Figure 7 indicates that additional
continua and gaps appear due to the larger value of the total
spin. In this case we find bound state branches below the
lowest continuum as well as in the first and fourth gaps. The
procedure described here can be easily carried out for any
values of S, S�, J1 , and J2 .

FIG. 7. The three-magnon continua for the S�S��1, J1

�4J2�1 chain. The open circles represent the three magnon bound
states. The energy is in units of J1 and the total wave vector K is in
units of �/2.
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VI. SUMMARY

In this paper we have described a simple method for
studying the spectrum of three-magnon excitations in alter-
nating spin or bond chains. The method can be used for both
integrable and nonintegrable models. The recursion method
is used to calculate a local Green’s function in the three-
magnon basis for fixed values of the spin and bond magni-
tudes and the total wave vector K . The energy values of the
continuum edges at fixed K can be obtained from the knowl-
edge of the corresponding one and two magnon excitation
spectrum. This information is then used to terminate the con-
tinued fraction representation of the Green’s function using
the approach described by Turchi et al.22

In general, we find the usual bound state branch below the
lower edge of the three magnon continuum for every case
studied. Comparison of our results to the known analytical
results of Bethe9,10 for the S�S��1/2 chain with homoge-

neous bonds indicate complete agreement. We extended the
study of Bell et al.20 of the alternating bond S�1/2 two-
magnon spectrum to the three-magnon problem. When a
bond alternation is introduced, gaps immediately appear and
additional bound states are found. As J2 decreases, the con-
tinua start to collapse into very predictable levels.

In conclusion, we have presented a direct and relatively
simple procedure to search for bound states in alternating
spin/bond chains. The recursion method was used very effec-
tively to achieve this purpose and the generalization to an
m-magnon problem would be straightforward.
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