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Abstract

We describe a method for obtaining an analytic form for a class of sym-

metric semi-in�nite banded matrices, which are, apart from a �nite number

of terms, of the Toeplitz type. The results are applied to the determination

of the spectrum of two-magnon excitations in Heisenberg spin chains with

next-nearest-neighbour interactions.

1 Introduction

A Toeplitz matrix A has elements A`;j with the property A`;j = a(` � j). In the
case of semi-in�nite matrices (`; j = 0; 1; : : :) necessary and su�cient conditions
have long been known [1, 2] for the existence of an inverse and for �nite matrices
the inverse can be computed numerically using the Trench algorithm [3]. The eigen-
values and eigen-vectors for the �nite symmetric tridiagonal case were obtained by
Streater [4]. These results provide an expression for the inverse matrix, which has
also been obtained more recently by Hu and O'Connell [5] from a calculation of
the determinant and cofactors of the matrix. The method of Hu and O'Connell
has been generalised to matrices of bandwidth greater than three by Simons [6].
Similar results have been obtained by Lavis and Southern [7] using a transfer matrix
rescaling method which has been utilized for excitations in tight-binding systems
[8, 9] and quantum spin chains [10, 11, 12]. In this paper we apply the approach of
Lavis and Southern to the problem of inverting a semi-in�nite symmetric banded
matrix which is, apart from a �nite number of terms, of Toeplitz form.

We consider the semi-in�nite symmetric banded matrices A of the form1

h`jAjji =

�
a(`; j) if jj � `j � n,
0 if jj � `j > n,

`; j = 0; 1; : : : ; (1)

where

a(`; j) = a(j`� jj); when ` > � or j > � (or both). (2)

Without loss of generality let a(n) = 1.

1For any matrix XXX we denote the row and column vectors formed by its `-th row and j-th

column by h`jXXX and XXXjji respectively and the `; j-th element by h`jXXXjji
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In section 2 we derive the general form for the inverse of A. In section 3 explicit
results are given for bandwidths three and �ve. The bandwidth �ve (n = 2) results
are used in section 4 to obtain the two-magnon spectrum of a generalised spin-S
Heisenberg chain and our conclusions are presented in section 5.

2 Method

Given that B is the inverse of A

nX
m=�n

a(`; `+m)b(`+m; j) = �`;j ; (3)

where b(`; j) = h`jBjji if `; j � 0 and zero otherwise, and we have similarly extended
the de�nition (1) so that a(`; j) = 0 if ` or j is negative. We de�ne the 2n-
dimensional vectors

b`(j) =

0
BB@
b(`� n+ 1; j)
b(`� n+ 2; j)

...
b(`+ n; j)

1
CCA ; (4)

and the 2n� 2n matrices

T` =

0
BBBBBBB@

�
a(`; `� n+ 1)
a(`; `+ n)

�
a(`; `� n+ 2)
a(`; `+ n)

� � � �
a(`; `+ n� 1)
a(`; `+ n)

�1

1 0 � � � � � � 0
0 1 � � � � � � 0
...

...
...

...
...

0 � � � � � � 0 0
0 0 � � � 1 0

1
CCCCCCCA
; (5)

Q` =

0
BBBBBBB@

a(`; `� n)
a(`; `+ n)

0 � � � � � � � � � � � � 0

0 1 � � � � � � � � � � � � 0
0 0 1 � � � � � � � � � 0
...

...
...

...
...

...
...

0 � � � � � � � � � � � � 1 0
0 0 � � � � � � � � � 0 1

1
CCCCCCCA
: (6)

Then equation (3) can be expressed in the form

T`b`(j) = Q`b`�1(j)�
�`;jIj1i

a(j; j + n)
: (7)

Iterating (7) gives

b`(j) = ���(`; 0)b
�1(j)�

���(`; j)j1i

a(j; j + n)
; (8)

where

���(`;m) =

8<
:

T
�1
` Q` � � �T

�1
m+1Qm+1T

�1
m ; if ` > m,

T
�1
m ; if ` = m,

000; if ` < m.

(9)

From equations (2), (5) and (6) we see that, when ` > � , (9) gives

���(`;m) =

�
T
��`���(�;m); � � m,

T
m�1�`; m > � ,

(10)
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where

T =

0
BBBBBB@

�a(n� 1) �a(n� 2) � � � �a(n� 1) �1
1 0 � � � � � � 0
0 1 � � � � � � 0
...

...
...

...
...

0 � � � � � � 0 0
0 0 � � � 1 0

1
CCCCCCA
: (11)

In a previous paper [7] two of the authors have showed that

hpjTm
jqi = uq(m� p+ 1); p; q = 1; : : : ; 2n; (12)

where

uq(�) =

2n�qX
r=0

a(jn� q � rj)

nX
k=1

sinf(n+ �� r � 1)�kg

F 0(�k)
(13)

and ��1;��2; : : : ;��n are the roots of

0 = F (�) � cos(n�) + 1
2
a(0) +

n�1X
r=1

a(r) cos(r�); (14)

with

uq(�) =

�
�u1(�� 1); for q = 2n,
�a(jn� qj)u1(�� 1) + uq+1(�� 1); for 1 � q < 2n,

(15)

u1(�) = �u2n(�+ 1) = �

nX
k=1

sinf(n+ �)�kg

F 0(�k)
: (16)

Then, from (10) and (12),

hpj���(`;m)jqi =

8><
>:

2nX
r=1

ur(� � p� `+ 1)hrj���(�;m)jqi; ` > � � m,

uq(m� p� `); ` � m > � .

(17)

The vector b
�1(j) has n zero entries and, from (8),

b(`; j) =

nX
m=1

hnj���(`; 0)jn+mib(m� 1; j)�
hnj���(`; j)j1i

a(j; j + n)
: (18)

Thus all the elements in the j-th column of B can be expressed as a linear combi-
nation of the elements h0jBjji; h1jBjji; : : : ; hn � 1jBjji. Replacing ` in (18) by ��
for some positive integer � and � = 1; 2; : : : ; n yields the set of equations.

b(��; j) =

nX
m=1

hnj���(��; 0)jn+mib(m� 1; j)�
hnj���(��; j)j1i

a(j; j + n)
; � = 1; 2; : : : ; n:

(19)

We now de�ne the n� n matrix

U� =

0
BB@
hnj���(�; 0)jn+ 1i hnj���(�; 0)jn+ 2i � � � hnj���(�; 0)j2ni
hnj���(2�; 0)jn+ 1i hnj���(2�; 0)jn+ 2i � � � hnj���(2�; 0)j2ni

...
...

...
...

hnj���(n�; 0)jn+ 1i hnj���(n�; 0)jn+ 2i � � � hnj���(n�; 0)j2ni

1
CCA (20)
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and, from (19),

b(`; j) =

nX
�=1

h`+ 1jU�1� j�ib(��; j) +
1

a(j; j + n)

nX
�=1

h`+ 1jU�1� j�ihnj���(��; j)j1i;

` = 0; 1; : : : ; n� 1: (21)

We now consider the limit � ! 1. Since the form for uq(�) given by (13) is
invariant under the change of sign of the solutions �1; : : : ; �n of (14), we can, by if
necessary taking a small imaginary part in a(0), suppose that each �k has a positive
imaginary part. Then

uq(�� ��) '

2n�qX
r=0

a(jn� q � rj)

nX
k=1

expf(n+ �� �� � r � 1)i�kg

2iF 0(�k)

� exp

�
��max

k
[=(�k)]

�
: (22)

Giving

h`+ 1jU�1� jki � exp

�
���max

k
[=(�k)]

�
;

hnj���(k�; j)j1i � exp

�
��max

k
[=(�k)]

�
:

(23)

If the inverse of the matrix A exists then b(��; j) is bounded in the limit � ! 1

for all � and j with

b(`; j) =
1

a(j; j + n)
lim
�!1

nX
�=1

h`+ 1jU�1� j�ihnj���(��; j)j1i;

` = 0; 1; : : : ; n� 1: (24)

For ` � n, b(`; j) is given by substituting from (24) into (18).

3 Explicit formulae

3.1 The case n = 1

In this case U� is a 1� 1 matrix and, from (18), (20) and (24),

b(0; j) =
1

a(j; j + 1)
lim
�!1

h1j���(�; j)j1i

h1j���(�; 0)j2i
; (25)

b(`; j) = h1j���(`; 0)j2ib(0; j)�
h1j���(`; j)j1i

a(j; j + 1)
: (26)

From (16),

u1(�) = �u2(�+ 1) = U�(cos(�)); 2 cos(�) = �a(0); (27)

where

U�(cos(�)) =
sinf(�+ 1)�g

sin(�)
(28)
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is the Chebyshev polynomial of the second kind and, from (17),

h1j���(`;m)jqi =

8>>>>>>>>><
>>>>>>>>>:

sinf(� � `+ 1)�gh1j���(�;m)jqi � sinf(� � `)�gh2j���(�;m)jqi

sin(�)
;

` > � � m, q = 1; 2,
sinf(m� `)�g

sin(�)
; ` � m > � , q = 1,

�

sinf(m� `� 1)�g

sin(�)
; ` � m > � , q = 2.

(29)

Thus, from (25),

b(0; j) =

8>>><
>>>:

expfi�gh1j���(�; j)j1i � h2j���(�; j)j1i
a(j; j + 1)fexpfi�gh1j���(�; 0)j2i � h2j���(�; 0)j2ig

; � � j,

expfi(j � �)�g
a(j; j + 1)fexpfi�gh1j���(�; 0)j2i � h2j���(�; 0)j2ig

; j > � .

(30)

With � = 0, A is a tridiagonal semi-in�nite Toeplitz matrix with a(`; ` � 1) = 1,
a(`; `) = a(0), except when ` = 0. In this case equations (30) and (26) give

b(`; j) =

(
f(`; j); ` � j

f(`; j) +
sinf(`� j)�g

sin(�)
; ` > j,

(31)

where

f(`; j) = �

exp(ij�)[sinf`�ga(0; 0) + sinf(`� 1)�g]

sin(�)fexp(i�) + a(0; 0)g
: (32)

3.2 The case n = 2

In this case U� is a 2� 2 matrix and, from (20) and (24),

b(0; j) =
1

a(j; j + 2)
lim
�!1

�(2; 2; 2�; �; 4; 1; j)

�(2; 2; 2�; �; 4; 3; 0)
; (33)

b(1; j) = �

1

a(j; j + 2)
lim
�!1

�(2; 2; 2�; �; 3; 1; j)

�(2; 2; 2�; �; 4; 3; 0)
; (34)

where

�(`;m;x; y; p; q; j) = h`j���(x; 0)jpihmj���(y; j)jqi � hmj���(y; 0)jpih`j���(x; j)jqi: (35)

From (18),

b(`; j) = h2j���(`; 0)j3ib(0; j) + h2j���(`; 0)j4ib(1; j)�
h2j���(`; j)j1i

a(j; j + 2)
: (36)

Equation (14) is now a quadratic in the variable z = cos(�) with roots z(+) and z(�)

given by

z(�) = z(�Z) = 1
4
f�a(1)�Zg; (37)

where

Z =
p
[a(1)]2 + 8� 4a(0): (38)

We de�ne

V(`) =
U`(z

(+))�U`(z
(�))

2fz(+) � z(�)g
(39)
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where, from (28),

V(�`) = �V(`� 2) (40)

and, from (14){(16),

u1(`) = V(`+ 1);

u2(`) = �2f1 + 2z(+)z(�)gV(`) + 2fz(+) + z(�)gV(`� 1)�V(`� 2);

u3(`) = 2fz(+) + z(�)gV(`)�V(`� 1);
u4(`) = �V(`):

9>>=
>>; (41)

We de�ne

W�(x; y) = V(x + 2� � � � 2)V(y + � � � � 2)

�V(x+ � � � � 2)V(y + 2� � � � 2): (42)

Then, from (17) and (35), when � � j,

�(2; 2; 2�; �; p; q; j) = C01(p; q; j)W�(0; 1) + C02(p; q; j)W�(0; 2)

+C03(p; q; j)W�(0; 3) + C12(p; q; j)W�(1; 2)

+C13(p; q; j)W�(1; 3) + C23(p; q; j)W�(2; 3); (43)

where

C01(p; q; j) = �a(0)�(1; 2; �; � ; p; q; j)� a(1)�(1; 3; �; � ; p; q; j)
��(1; 4; �; � ; p; q; j);

C02(p; q; j) = �a(1)�(1; 2; �; � ; p; q; j)� �(1; 3; �; � ; p; q; j);
C03(p; q; j) = ��(1; 2; �; � ; p; q; j);
C12(p; q; j) = (a(0)� a(1)2)�(2; 3; �; � ; p; q; j)� a(1)�(2; 4; �; � ; p; q; j)

��(3; 4; �; � ; p; q; j);
C13(p; q; j) = �a(1)�(2; 3; �; � ; p; q; j)� �(2; 4; �; � ; p; q; j);
C23(p; q; j) = ��(2; 3; �; � ; p; q; j):

9>>>>>>>>>>=
>>>>>>>>>>;

(44)

When j > � the form of �(2; 2; 2�; �; p; q; j) di�ers according to the value of q.
However, from (33) and (34), we need only the cases q = 1 and q = 3 which are
given by

�(2; 2; 2�; �; p; 1; j) = A01(p)W�(0; 1 + j � �) +A11(p)W�(1; 1 + j � �)

+A21(p)W�(2; 1 + j � �) + A31(p)W�(3; 1 + j � �); (45)

where

A01(p) = h1j���(�; 0)jpi;
A11(p) = �a(0)h2j���(�; 0)jpi � a(1)h3j���(�; 0)jpi � h4j���(�; 0)jpi;
A21(p) = �a(1)h2j���(�; 0)jpi � h3j���(�; 0)jpi;
A31(p) = h2j���(�; 0)jpi

9>>=
>>; (46)

and

�(2; 2; 2�; �; p; 3; j) = B02(p)W�(0; 2 + j � �) +B03(p)W�(0; 3 + j � �)

+B12(p)W�(1; 2 + j � �) +B13(p)W�(1; 3 + j � �)

+B22(p)W�(2; 2 + j � �) +B23(p)W�(2; 3 + j � �)

+B32(p)W�(3; 2 + j � �) +B33(p)W�(3; 3 + j � �); (47)

where

B02(p) = �a(1)h1j���(�; 0)jpi;
B03(p) = �h1j���(�; 0)jpi;
B12(p) = a(0)a(1)h2j���(�; 0)jpi+ a(1)2h3j���(�; 0)jpi+ a(1)h4j���(�; 0)jpi;
B13(p) = a(0)h2j���(�; 0)jpi+ a(1)h3j���(�; 0)jpi+ h4j���(�; 0)jpi;
B22(p) = a(1)2h2j���(�; 0)jpi+ a(1)h3j���(�; 0)jpi;
B23(p) = a(1)h2j���(�; 0)jpi+ h3j���(�; 0)jpi;
B32(p) = a(1)h2j���(�; 0)jpi;
B33(p) = h2j���(�; 0)jpi:

9>>>>>>>>>>=
>>>>>>>>>>;

(48)
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It is not di�cult to show that

lim
�!1

W�(x; y)

W�(0; 1)
=

[�(Z)]y [�(�Z)]x � [�(Z)]x[�(�Z)]y

�(Z)� �(�Z)
; (49)

where

�(�Z) =M[z(�Z)] (50)

and

M[z] � The root of larger magnitude offq2 + 2zq + 1 = 0g: (51)

The possibility of the roots being degenerate in magnitude is, as indicated above,
removed by the introduction of a small imaginary part in a(0) and thus in z(�Z).

4 Two-magnon excitations

The multi-magnon spectra of generalized spin-S Heisenberg chains with nearest-
neighbour interactions have recently been studied using scaling [10] and recursion
[11] methods. The approach involves expressing the m-magnon Schr�odinger equa-
tion in tight-binding form. The two- and three-magnon excitations are then ob-
tained using scaling and recursion procedures respectively. The former method can
be seen to be an application of the technique used in this paper to invert a semi-
in�nite symmetric banded matrix. Cyr et al. applied the recursion method to obtain
the three-magnon spectrum of the next-nearest-neighbour model with Hamiltonian

Ĥ = �

NX
i=1

fJ1 ~Si � ~Si+1 + J2 ~Si � ~Si+2 + J3 ~Si�1 � ( ~Si � ~Si+1)g; (52)

where ~Si is the quantum spin located at site i of a uniform chain with lattice spacing
a0 and periodic boundary conditions. They described brie
y the use of the scaling
method to obtain the two-magnon spectrum indicating that more detail would be
provided in another publication. These details can now be given in terms of the
analysis of the n = 2 case given in the preceding section.

The ferromagnetic state with all N spins parallel is an exact eigenstate of (52)
with energy E0 = �NS2(J1 + J2). We shall study the excitation spectrum of (52)
relative to the ferromagnetic state.

The one magnon excitation energy is given by

E1 = 2SfJ1 + 2SJ3 sin(ka0)gf1� cos(ka0)g+ 2SJ2f1� cos(2ka0)g; (53)

where k is a wave-vector in the range ��=a0 � k � �=a0. Assuming that J1 > 0
the condition that E1 � 0 is that

1 + 2� + sign(�)
p
4�2 + 
2 � 0; if � 6= 0,


 � 1; if � = 0,
(54)

where � = J2=J1 and 
 = 2SjJ3j=J1.
The two-magnon problem is soluble in any dimension, since it is equivalent to

a defect problem on a d-dimensional lattice. In d = 1 Majumdar [13] considered
the Hamiltonian in (52) with J3 = 0 and S = 1

2
and Bahurmuz and Loly [14]

investigated the same problem with S = 1
2
and S = 1. The two-magnon excitations

are solutions of the Schr�odinger equation which can be written in terms of the the
basis of two-spin deviation states

ji; ji = S+
i S

+
j j0i; i � j; (55)
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where j0i represents the ferromagnetic state with all spins aligned in the negative z-
direction. Using the translational invariance of the Hamiltonian, a transformation
can be performed to a mixed orthonormal basis jK; `i, where K represents the
total wave-vector of the pair and ` = jj � ij is the relative separation of the spin
deviations. In this mixed basis and in the limit N ! 1 the Hamiltonian has the
tight-binding form

Ĥ =

1X
`=0

fjK; `i"`hK; `j+ jK; `iV`hK; `+ 1j+ jK; `iV 0` hK; `+ 2jg; (56)

where

"0 = 4S(J1 + J2);
"1 = (4S � 1)J1 + 2SJ2f2� cos(K)g+ 2S(1� S)J3 sin(K);
"2 = 4SJ1 + (4S � 1)J2;
"` = " = 4SJ1 + 4SJ2; ` � 3;

V0 = �2
p
S(2S � 1)J1 cos(K=2) + 4SJ3

p
S(2S � 1) sin(K=2);

V1 = �2SJ1 cos(K=2) + 2S(2S � 1)J3 sin(K=2);
V` = V = �2SJ1 cos(K=2) + 4S2J3 sin(K=2); ` � 2;

V 00 = �2
p
S(2S � 1)J2 cos(K)� 2SJ3

p
S(2S � 1) sin(K);

V 0` = V 0 = �2SJ2 cos(K)� 2S2J3 sin(K); ` � 1:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(57)

The Green's function operator Ĝ(E) is de�ned [15], for energy E, by

Ĝ(E)fEÎ � Ĥg = Î: (58)

In terms of the tight-binding picture the local density of states at site ` is given by

�`(E) = � lim
�!0+

=fG`(E + i�)g

�
: (59)

For the two-magnon picture �`(E) is the density of the scattering state continuum
for two magnons located at sites with a separation of `a. Comparing equations (1)
and (2) with (56) and (57) we see that the matrix A with elements

a(`; j) = �hK; `j
fEÎ � Ĥg

V 0
jK; ji (60)

is of the banded symmetric form with n = 2, � = 2 and

a(`; `) =

�
�` � E ; ` � 2,

a(0) = �E ; ` > 2,

a(`; `+ 1) = a(`+ 1; `) =

�
�`; ` � 1,

a(1) = �; ` > 1,

a(`; `+ 2) = a(`+ 2; `) =

�
�00; ` = 0,
1; ` > 0,

9>>>>>>>>>>=
>>>>>>>>>>;

(61)

where

E = E � "
V 0

; �` =
"` � "
V 0

; ` = 0; 1; 2;

� = V
V 0

; �` =
V`
V 0

; ` = 0; 1; �00 =
V 00
V 0

9>>=
>>; (62)

and from (37)

z(�) = z(�Z(E)) = 1
4
f�� �Z(E)g; (63)
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with

Z(E) =
p
�2 + 8 + 4E : (64)

With these de�nitions for the elements of A the matrix elements of the Green's
function are given in terms of the inverse matrix B by

hK; `jĜ(E)jK; ji = �

b(`; j)

V 0
: (65)

In particular the two leading diagonal Green's functions are

G`(E) = hK; `jĜ(E)jK; `i =
1

V 0
G(`)(E)

(E � �`)G
(`)(E) + F(`)(E)

; ` = 0; 1; (66)

where

F(`)(E) = f
(`)
01 (E) + f

(`)
02 (E)A(E) + f

(`)
03 (E)f[A(E)]

2
�B(E)g+ f

(`)
12 (E)B(E)

+f
(`)
13 (E)A(E)B(E) + f

(`)
23 (E)[B(E)]

2; (67)

G
(`)(E) = g

(`)
01 (E) + g

(`)
02 (E)A(E) + g

(`)
03 (E)f[A(E)]

2
�B(E)g+ g

(`)
12 (E)B(E)

+g
(`)
13 (E)A(E)B(E) + g

(`)
23 (E)[B(E)]

2; (68)

A(E) = �(Z(E)) + �(�Z(E));

B(E) = �(Z(E))�(�Z(E)):

9=
; (69)

f
(0)
01 (E) = �020 ; f

(0)
02 (E) = �00�0; f

(0)
03 (E) = 0;

f
(0)
12 (E) = �020 (E � �1)� �0�

0

0(� � 2�1)� �20�2;

f
(0)
13 (E) = ��0�

0

0; f
(0)
23 (E) = ��20 ;

9>>>>>=
>>>>>;

(70)

f
(1)
01 (E) = �020 � �2(E � �0);

f
(1)
02 (E) = (�1 � �)(E � �0) + �0�

0

0; f
(1)
03 (E) = �(E � �0);

f
(1)
12 (E) = �1(�1 � �)(E � �0)� �0(�0�2 � 2�1�

0

0 + ��00);

f
(1)
13 (E) = ��1(E � �0)� �0�

0

0; f
(1)
23 (E) = ��20 ;

9>>>>>>>>>=
>>>>>>>>>;

(71)

g
(0)
01 (E) = �2; g

(0)
02 (E) = �1 � �; g

(0)
03 (E) = �1;

g
(0)
12 (E) = �2(E � �1) + �1(�1 � �);

g
(0)
13 (E) = ��1; g

(0)
23 (E) = E � �1;

9>>>>>=
>>>>>;

(72)

g
(1)
01 (E) = 0; g

(1)
02 (E) = 0; g

(1)
03 (E) = 0;

g
(1)
12 (E) = �2(E � �0) + �020 ;

g
(1)
13 (E) = 0; g

(1)
23 (E) = E � �0;

9>>>>>=
>>>>>;

(73)

Two-magnon excitation spectra for the cases (a) S = 1=2, � = 0, 
 = 3=4, and (b)
S = 1, � = 0, 
 = 1=2 are given in Cyr et al. [12] Figures 1 and 2 respectively. The
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Figure 1: The density of states �1(E) for the case S = 1=2, � = 0, 
 = 3=4,
K = �=2. The energy is measured in units of 2SJ1.

lower and upper band edges of the scattering state continuum are given respectively
by the least and greatest of the three quantities

E
(�)

b = "+ 2(V 0 � V ); Et = "� 2V 0 �
V 2

4V 0
: (74)

This gives continuum band-edges in units of E=2SJ1 for the two cases as (a) 0.8964
and 2.7708, and (b) 0.7929 and 2.6250 respectively. In case (a) the condition S = 1=2

gives from equations (67) and (70) F(0)(E) = 0 and thus G0(E) = 1=(E � "0). In
terms of the matrix calculation the leading row and column of A contains only
zeros apart from a(0; 0) = (" � E)=V 0 giving G0(E) = �f(a(0; 0)V 0g�1. In the
two-magnon picture �0(E) is the density of the scattering state continuum for two
magnons (spin deviations) on the same site. This is, of course, impossible for
S = 1=2. In Figure 1 the density of states, �1(E), for two magnons on neighbouring
sites is shown for the case S = 1=2, � = 0, 
 = 3=4 K = �=2. The narrow peak
below the broad continuum region is a bound state. If the energy is taken to be
purely real this becomes a delta function as does also the singularity at the upper
end of the continuum. To broaden these regions to make them more easily seen
the energy was given an imaginary part of 10�4i. In Figure 2 �0(E) is shown for
the case S = 1, � = 0, 
 = 1=2 K = �=2. For S = 1 this is a physical situation
where two spin deviations can exist on the same site. Again the bound state delta
function below the continuum is broadened into a lorenzian by using an imaginary
part 10�4i in the energy. This also has the e�ect of softening the step-function
decrease to zero at the upper end of the continuum.

5 Conclusions

In this paper we extend the work of Lavis and Southern [7] to the case of semi-
in�nite symmetric banded matrices, which are Toeplitz for all but a �nite number
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Figure 2: The density of states �0(E) for the case S = 1, � = 0, 
 = 1=2, K = �=2.
The energy is measured in units of 2SJ1.

of elements. As in [7] the only explicit matrix inversion that is required in of an
n � n matrix when the bandwidth is 2n + 1. Our procedure provides the analytic
details required for the two-magnon calculations presented by Cyr, Southern and
Lavis [12]. The method will also provide a straightforward procedure which can be
used in a range of physical problems for which inversion of this type of matrix is
required.
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