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Abstract

The zero-�eld eight-vertex model is equivalent to a square lattice Ising

model, with a four-spin coupling and second neighbour coupling but no nearest

neighbour coupling. When the four-spin coupling is zero the model reduces to

two decoupled nearest neighbour Ising models. The standard formula for the

free energy of the Ising model is, therefore, implicit in Baxter's expression for

the free energy of the zero-�eld eight-vertex model. The detailed derivation

of this result has not appeared in print. As a footnote to Baxter's work this

paper provides the necessary analysis.

1 Introduction

The name vertex model is used to denote a lattice model in which the microstates

are represented by putting an arrow on each line connecting a pair of nearest-

neighbour sites. Such models can be constructed on any lattice, but those for the

plain square lattice have received the greatest attention. The most general model

of this type is the sixteen-vertex model, where the di�erent vertex types correspond

to all possible directions of the arrows on the four edges meeting at a vertex. This

model, which can be shown [1] to be equivalent to an Ising model with two, three

and four-site interactions and with an external �eld, is unsolved. The eight-vertex

model corresponds to the case where the vertex types are restricted to those with

an even number of arrows pointing in and out. The vertices in this case, with their

corresponding energies, are:
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The six-vertex model, where the vertices 7 and 8 are eliminated by setting e7 =

e8 =1, is the situation when the same number of arrows point in and out. This re-

striction is called the ice rule. The ground-state entropy of this model was obtained

�To appear: Rep. Math. Phys. 37 (1996) 147-155.

1



by Lieb [2], who also derived the free energy [3, 4, 5]. The conditions

e1 = e2; e3 = e4; e5 = e6; e7 = e8 (1)

correspond to to the situation when the vertex energies are unaltered when all the

arrows are reversed. By analogy with a ferroelectric model this is referred to as the

zero-�eld case. Now the model has four independent Boltzmann factors

exp(�e1=kbT ) = exp(�e2=kbT ) = a;

exp(�e3=kbT ) = exp(�e4=kbT ) = b;

exp(�e5=kbT ) = exp(�e6=kbT ) = c;

exp(�e7=kbT ) = exp(�e8=kbT ) = d:

(2)

In section 2 the spin formulation of the zero-�eld eight-vertex model is described

and in section 3 Baxter's derivation of the free energy is summarized. The reduction

of that formula to that of the free energy of the Ising model is presented in section

4. Since this work is dependent on the properties of elliptic functions the relevant

formulae are given in an appendix together with the derivation of some crucial nome

series.

2 The equivalent spin model

Given a particular arrow con�guration of the eight-vertex model, con�guration

graphs are drawn consisting of lines on all bonds with arrows pointing to the left

or downwards. The restriction of vertex types to those of the eight-vertex model

means that an even number of lines are incident at each vertex; the con�guration

graphs are polygons. If an Ising (s = 1
2
) spin is placed at the centre of each face then

the spin sites form another plane square lattice, which is the dual of the original

lattice. If the spins contained within each polygon graph are aligned in the same

direction, which is di�erent from that of the neighbouring regions, then to every

vertex con�guration there are two spin con�gurations. One of the two equivalent

relationships between vertices, bonds and spins is
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With a four-spin coupling�K4, a bottom-left top-right coupling�K�K0, a bottom-
right top-left coupling �K+K0 and a trivial coupling�K0 we have the identi�cation

a = exp (K0 + 2K +K4) ; b = exp (K0 � 2K +K4) ;

c = exp (K0 + 2K0 �K4) ; d = exp (K0 � 2K0 �K4)
(3)

between vertex and spin Boltzmann factors [6]. Because of the two spin con�gura-

tions corresponding to each vertex con�guration the spin partition function is twice

the partition function of the zero-�eld eight-vertex model.

WhenK > K
0 andK4 � 0 the spin model is ferromagnetic and a � b; c;d. Using

the weak-graph transformation [7], it can be shown that, when these conditions

apply, the zero-�eld eight-vertex model has a transition surface

a = b+ c+ d: (4)

In terms of the spin couplings this takes the form

�(K;K0;K4) = 1; (5)
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where

�(K;K0;K4) = tanh(2K4) cosh
2(2K)

+ sinh2(2K) + sinh2(2K0)[tanh(2K4)� 1]: (6)

When K 0 = K4 = 0 (5) and (6) give the well-known formula sinh(2Kc) = 1 for the

critical coupling of the simple Ising model. When K0 = 0 the system is isotropic; the

critical curve in the K{K4 plane cuts the K axis at Kc. When K ! 0, K4 ! 1,

showing that there is no phase transition in a spin- 1
2
model with a purely four-spin

interaction. The critical exponents � and �, given by

� = 2� �

� � arccosftanh(2K4)g
; � =

�

16[� � arccosftanh(2K4)g]
; (7)

[8] vary as functions of the four-spin coupling. This result is consistent with scaling

theory only if K4 is a marginal coupling. That this is indeed the case follows from

the work of Kadano� and Wegner [6] who established that K4 scales as 1=r
2 � 1=rd.

(The scaling dimension of K4 is the physical dimension, so the scaling exponent is

zero.)

3 The free energy of the eight-vertex model

An exact expression for the free energy of the zero-�eld eight-vertex model was

derived by Baxter [8, 9, 10] from the largest eigenvalue of the appropriate transfer

matrix. The �rst step of Baxter's analysis was to obtain conditions under which

transfer matrices with di�erent values of a, b, c and d commute. This procedure is

most easily represented in terms of a set of new variables w1, w2, w3 and w4 which

satisfy the conditions

w1 � w2 � w3 � jw4j (8)

The case a > b; c;d has the spin representation described above and the critical

temperature Tc, with K = J=kbT , K
0 = J

0
=kbT , K4 = J4=kbT , is given as the

solution of (4) or (5). Now the variables w1, w2, w3 and w4 are de�ned by

w1 =
1
2
(a+ b); w2 =

8<
:

1
2
(a� b); T < Tc,

1
2
(c+ d); T > Tc,

w3 =

8<
:

1
2
(c+ d); T < Tc,

1
2
(a� b); T > Tc,

w4 =
1
2
(c� d):

(9)

and the critical temperature is given by w2 = w3. Baxter [8, 9, 10] expressed the

transfer matrix in terms of Pauli matrices and showed that two transfer matrices,

corresponding to two di�erent sets of wi values, commute when the ratios (w2
j �

w
2
k)=(w

2
l �w2

m), where (j; k; l;m) is any permutation of (1; 2; 3; 4), are the same for

both sets of wi. In fact it is not di�cult to see that only two ratios of this form can

be chosen independently. Let
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1 �w

2
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2
3 �w

2
4

=
1 + �

1� �
: (10)

From (8) and (10)

� � 1; �1 � � � 1: (11)

Transfer matrices with the same values of � and � commute. For �xed values of �

and � there remains one degree of freedom in the ratios of the values of w1; : : : ;w4.
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Using the Jacobian elliptic functions cn(�j�), sn(�j�) and dn(�j�) (see Gradshteyn and

Ryzhik [11] and the appendix below), let

w1 : w2 : w3 : w4 =
cn(Uj`)
cn(�j`) :

dn(Uj`)
dn(�j`) : 1 :

sn(Uj`)
sn(�j`) ; (12)

with �, U and ` real numbers and 0 � ` � 1. It can now be shown using the

formulae (A5) that all the ratios (w2
j � w

2
k)=(w

2
l � w

2
m) are functions of � and `,

but not of U and that

� =
1

dn(2�j`) ; � = � cn(2�j`)
dn(2�j`) ; (13)

with the inverse relations

sn2(�j`) = �+ �

�+ 1
; `

2 =
�
2 � 1

�2 � �2
: (14)

So when � and ` are �xed, transfer matrices with di�erent values of U commute.

In terms of these variables the dimensionless free energy � per lattice site, is given

[8, 9, 10] by

�(w1;w2;w3;w4) =� ln(w1 +w2)�
1X
n=1

(x2n � q
n)

2
(xn + x

�n � z
n � z

�n)

nxn(1� q2n)(1 + x2n)
;

(15)

where

x = expf���=K(`0)g; q = expf�2�K(`)=K(`0)g; z = expf��U=K(`0)g:
(16)

The variable q is the nome of `0 de�ned by (A9).

4 The free energy of the Ising model

From (3), (6), (9) and (10)

� =

�
�(K;K 0;K4) T < Tc,

1=�(K;K 0;K4) T > Tc,
(17)

� =

�
tanh(2K4) T < Tc,

tanh(2K4)=�(K;K
0
;K4) T > Tc.

(18)

The transition surface corresponds to � = 1. We now consider the case where

K
0 = K4 = 0, when, from (3), (9), (12), (13) and (18),

w4 = 0; U = 0;

� = 0; � = 1
2
K(`):

(19)

From (6), (14) and (17)

`
0 =

�
sinh2(2K); T < Tc,

sinh�2(2K); T > Tc,
(20)

and from (16) and (19)

z = 1; x = q
1

4 = expf��K(`)=2K(`0)g: (21)

Using the transformation

k1 =
2
p
`0

1 + `0
; k

0

1 =
1� `

0

1 + `0
; (22)
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it follows, from (A15) and (A16), that

K(k1) = (1 + `
0)K(`0); K(k01) =

1
2
(1 + `

0)K(`): (23)

From (21)

x = expf��K(k01)=K(k1)g (24)

is the nome of k1. From (3), (9), (15), (21) and (24)

�(K) =

8>>>>><
>>>>>:

�2K �
1X
n=1

hn(x); T < Tc, (K > Kc),

� ln[cosh(2K) + 1]�
1X
n=1

hn(x); T > Tc, (K < Kc),

(25)

where

hn(x) =
x
2n(1� x

2n)
2
(1� x

n)
2

n(1� x8n)(1 + x2n)
: (26)

Since

u

J
=

@�

@K
; (27)

it follows from (20), (25) and (A10) that

u

J
=

8>>>>><
>>>>>:

�2 + B(K)

K
2(k1)

1X
n=1

x
dhn(x)

dx
; T < Tc,

� 2 sinh(2K)

1 + cosh(2K)
+

B(K)

K
2(k1)

1X
n=1

x
dhn(x)

dx
; T > Tc,

(28)

where

B(K) =
�
2 cosh3(2K)

sinh(2K)[sinh2(2K)� 1]
(29)

From (26)

x
dhn(x)

dx
=

x
n

1 + x2n
+

2x2n

(1 + x2n)
2
� 8x3n

(1 + x2n)
3

�x
n(1 + x

2n)

1 + x4n
� 4x4n

(1 + x4n)
2
+
4x3n(1 + x

2n)

(1 + x2n)
3

(30)

and hence, from equations (A12){(A14), (A17){(A19),

1X
n=1

x
dhn(x)

dx
=
k
0

1K
2(k1)

�2

�q
2(1 + k01)� 1

�
� 2k01

2
K

3(k1)

�3
: (31)

Since, from (20) and (22),

k1 = 2 sinh(2K)sech2(2K); (32)

k
0

1 = �
�
1� sinh2(2K)

cosh2(2K)

�
; T 7 Tc; (33)
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by substituting from (32) and (33) into (31) and then into (28) we obtain, after

substitution from (A4) for the integral form of K(k1),

u = �J coth(2K)

2
41 + 2

�
f2 tanh2(2K)� 1g

Z 1

2
�

0

d q
1� k21 sin

2
 

3
5 ; (34)

which is the formula for the internal energy of the Ising model on the plane square

lattice at all temperatures [5]. Using (32) it is now straightforward to show that

�(K) = ln[cosh(2K)] +
1

�

Z 1

2
�

0

ln

�
1
2

�
1 +

q
1� k21 sin

2
 

��
d (35)

satis�es (27) and (34). The expression (35) is one of the many equivalent forms [5]

for the free energy of the plane square lattice Ising model.

Appendix

An advanced treatment of elliptic functions is given by Baxter [8] and a compre-

hensive list of formulae is given by Gradshteyn and Ryzhik [11]. Complete elliptic

integrals of the �rst and second kind are denoted by K(m) and E(m) respectively.

They satisfy the formulae

K(0) = E(0) = 1
2
�; E(1) = 1; (A1)

E(m)K(m0) + E(m0)H(m)�K(m)K(m0) = 1
2
�; (A2)

dK(m)

dm
=
E(m)�m

02
K(m)

mm02
;

dK(m0)

dm
=
m

2
K(m0)� E(m0)

mm02
(A3)

and we shall also need the integral form

K(m) =

Z 1

2
�

0

d p
1�m2 sin2  

: (A4)

The Jacobian elliptic functions sn(ujm), cn(ujm) and dn(jm) are related by

cn(ujm) =
p
1� sn2(ujm); dn(ujm) =

p
1�m2sn2(ujm): (A5)

The elliptic functions are doubly-periodic ([11], p.909). For real u, sn(ujm) and

cn(ujm) have period 4K(m) and dn(ujm) has period 2K(m). For present purposes

it is the elliptic function dn(ujm) which is of particular importance. We shall need

the following results

Z 2K(m)

0

du dn2(ujm) = 2E(m); (A6)

Z 2K(m)

0

du

Z 2K(m)

0

dv dn(ujm)dn(u� vjm)dn(vjm) = 2m02
K

2(m) + 1
2
�
2
;

(A7)Z 2K(m)

0

du dn(ujm)dn(u+ 1
2
{K(m0)jm) = 1

2

p
1 +mf� + 2(1�m)K(m)g:

(A8)

Formula (A6) is straightforward to prove using (A5), the substitution x = sn(ujm)

and the de�nition of an elliptic integral of the second kind. The results (A7) and
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(A8) are more di�cult to prove and need the use of the formulae for dn(u� vjm),

([11], p.916). The nome x of m is de�ned by

x = expf��K(m0)=K(m)g: (A9)

From (A2) and (A3),

dx

dm
=

x�
2

2K2(m)mm02
: (A10)

In terms of x,

dn(ujm) =
�

2K(m)
+

2�

K(m)

1X
n=1

x
n

1 + x2n
cos

�
n�u

K(m)

�
; (A11)

([11], p.911). Substituting u = 0 into (A11) and using dn(0jm) = 1 gives

1X
n=1

x
n

1 + x2n
=
K(m)

2�
� 1

4
: (A12)

By substituting from (A11) into (A6) and noting that the cosines in (A11) are

orthogonal over the range of this integral, it follows that

1X
n=1

x
2n

(1 + x2n)
2
=
E(m)K(m)

2�2
� 1

8
: (A13)

In a similar way, by substituting from (A11) into (A7),

1X
n=1

x
3n

(1 + x3n)
3
=
m
02
K

3(m)

4�3
+
K(m)

16�
� 1

16
: (A14)

We now use a modi�ed version

m1 =
1�m

0

1 +m0
; m

0

1 =

q
1�m2

1 =
2
p
m0

1 +m0
(A15)

of the Landen transformation, for which

K(m1) =
1
2
(1 +m

0)K(m); E(m1) =
E(m) +m

0
K(m)

1 +m0
: (A16)

([11], p.908). It follows from (A9) that x2 is the nome of m1. Replacing m by m1

in (A11), setting u = 1
2
{K(m0

1) and using dn( 1
2
{K(m0

1)jm1) =
p
1 +m1, gives

1X
n=1

x
n(1 + x

2n)

1 + x4n
=

K(m1)
p
1 +m1

�
� 1

2
;

=

r
1 +m0

2

K(m)

�
� 1

2
(A17)

and replacing m by m1 in (A13) gives

1X
n=1

x
4n

(1 + x4n)
2

=
E(m1)K(m1)

2�2
� 1

8
;

=
1

4�2
K(m)fE(m) +m

0
K(m)g � 1

8
: (A18)

Final, by replacing m by m1 in (A8), substituting from (A11) and performing the

integration, it can be shown that

1X
n=1

x
3n(1 + x

2n)

(1 + x4n)
2

=
1

4�2
K(m1)

p
1 +m1f� + 2(1�m1)K(m1)g �

1

4

=
1

4�2
K(m)

r
1 +m0

2
f� + 2m0

K(m)g � 1

4
: (A19)
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