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In this paper we examine the nature of two-magnon excitations in the alternating-bond ferrimag-
netic spin chain for general values S and S of the two species of spin. Both a direct analytic ap-
proach as well as a method based on a scaling transformation are used to study the bound-state
branches and their relationship to the two-magnon continuum.

I. INTRODUCTION

In the past few years exotic arrays of metal ions exhib-
iting unusual magnetic behavior have been
discovered. ' Some of these systems can be described in
terms of isotropic exchange interactions which alternate
in strength along a chain. The chains are composed of
two sublattices which have unequal spin magnitudes S
and S'. These ferrimagnetic chains usually have antifer-
romagnetic interactions which favor antiparallel arrange-
ments of spins on nearest-neighbor sites. Although many
exact results for the excitations in uniform-spin chains
have been obtained, the nature of excitations in ferrimag-
netic chains has not been widely studied. The spectrum
of the uniform-spin S=

—,
' chain is known from the Bethe

ansatz. ' However, for larger values of S, the isotropic
Heisenberg chain is not solvable by this method. Takhta-
jan and Babujian have independently constructed a gen-
eralization of the integrable S=—,

' Heisenberg model for
general values of S which is solvable by the Bethe ansatz.
The general model is a polynomial in the scalar product
of neighboring spins which includes all powers up to 2S.

In a previous paper we have studied the excitations of
an alternating-bond system in which all spins have the
same magnitude S=

—,'. Here we will extend this study to
S)—,

' as well as the case where both the interactions and
the spin magnitudes alternate along the chain. We con-
sider only the case where the ground state is ferromagnet
ic corresponding to the state of maximum total spin and
we obtain exact results for the two-magnon excitations.
The motivation for our study is to try to identify systems
which may be completely integrable. Such systems are of
interest because exact results for the corresponding anti-
ferromagnetic systems can then be obtained. Haldane
and Chubukov and Khveshenko' have observed that
completely integrable systems have certain special
features in their m-magnon spectra. Haldane observed
that, in the uniform-spin S integrable models, the bound-
state branches are all real and continuous across
p = tnin( m, 2S ) Brillouin zones in an extended zone
scheme. Hence special features of the two-magnon spec-
trum might be a way of identifying integrable models in-

volving alternating spins.
We carry out our calculations using two complementa-

ry methods. The two-magnon problem can be described
as an interaction between one-magnon states and the
solution can be expressed in terms of the one-magnon en-
ergies and eigenvalues. This is convenient for studying
the bound states in the spectrum. We also use a scaling
approach to calculate local densities of states directly.
This latter approach is more convenient for the study of
scattering states.

In Sec. II we describe the model and write down the
equations for the two-magnon states. In Sec. III we solve
for the bound states and study the dependence on both
bond and spin alternation. Section IV describes our re-
sults for the continuum states obtained using a scaling
approach. Section V summarizes our findings.

II. THE MODEL

We begin by introducing a very general Hamiltonian
which describes an infinite alternating quantum spin
chain with rotationally invariant interactions restricted
to nearest neighbors. This can be expressed in terms of
the alternating-spin operators Sz„and Sz„+, as follows:

+Jr"(~2n+i ~en+2)'j

where the total number of sites N is even and we have as-
sumed, without loss of generality, that S'~S. The cou-
plings J'& ', Jzp' represent the interactions which alternate
in strength along the chain. For uniform spins and
bonds, the above Hamiltonian includes the spin S integr-
able models ' as special cases.

The Hamiltonian (1) can be described in terms of the
set of couplings J,'p' or, equivalently, in terms of parame-
ters related to the eigenvalues of the operator (S.S'). If

(m =0, 1,2, . . . , 2S') denotes the eigenvalues in des-
cending order with A= 1, then we have

=SS' —m (S+S')+—,'m(m —1),
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and we define

0 m

g"= y J'~'A~ (i =1,2) .

l@2) = g (az„z l2n, 2m )+az„z +, l2n, 2m+1)
n~m

+a,„,, l2n —1,2m )

+Qzn + 1,2m + 112n + 1,2m + 1 ) ) (10)

lg, ) = g (az„l2n )+az„+, l2n+1) ) . (4)

The Schrodinger equation H
l g) ) =E,

l g) ) results in
equations relating the amplitudes a„which can be con-
veniently expressed using the G", . The equations for the
spin-wave amplitudes are given by

[E,—$(GI"+6 I
' )]az„

We shall use the G" to describe the Hamiltonian. The
advantage of using the G" rather than the J ' is that the
m-magnon problem only involves the first m of the form-
er combinations. In the following we assume that the
ground state of (1) corresponds to the ferromagnetic state
l0) with all spins aligned along the negative z direction.
The constraints on the J,.' ' for this to be the case corre-
spond to having the G" non-negative.

The one-magnon or spin-waves states
l P) ) can be ex-

panded in the basis of the single spin deviation states as
follows:

where the ket lr, s) with r (s represents the state with
single deviations on the rth and sth spins relative to the
ground state while the ket lr, r ) represents the state with
two spin deviations on the same (rth) site. The equations
which determine the various amplitudes are obtained by
substituting into the Schrodinger equation H l1tiz )
=Ez i/2). For the case m ) n this procedure yields

(0—g)az„z = —&SS'[GI"(az„z +, +az„+, 2 )

+G1 (Q2, 2 —1+Q2 —1, 2 )l(2)

naz„. 2. = — ss'[G', "(Q,„„.+Q,„...+, )

+GI"(az, z +Q2 —1,2 —1)]

Q zQznm+1 SS [G 1 (Q2n, 2m +Q2n + 1, 2m +1 )

+ 1 ( 2 —12 +1+ 2, 2 +2)1(2)

(++K)az +),z +1

SS'[G'1"(a2„2 +1+Qz„+12 )

= —&$$'(GI Q2 ++)G1 Q2 —1)
(5)

[E,—S'(G', "+G', ')]az„+, where

+Gl (Q2 +22 +1+ 2 +12 +1))(2)

= —&SS'(G',"az„+G() 'az„+, ), 0=E2 —2B (12)

where the one-magnon energy E, is measured relative to
the ground-state energy Eo= —(X/2)(go" +go '). The
solution of these equations are plane waves with different
amplitudes on the even and odd sites. The dispersion re-
lation can be written as

Eg=B+ j"—(g'+4W+ W -)'",
2

where

B —
—,
' (S+S')(G") +G' '

)

g=($ —S')(G(,"+G' ')

and

g + QSSzG (1) +ik+ QSSzG(2) +ik

The index p=+1 labels the two branches which by con-
vention are referred to as "optic" for the upper branch
and "acoustic" for the lower branch and the dimension-
less wave vector k lies in the range 0 to m/2. In general
there is a nonzero gap between the two branches at the
Brillouin-zone boundary ( k =m. /2). It can be easily
shown that this gap vanishes only in the uniform case
where S=S' and G'1" =G' '

The two-magnon states
l $2) can be written as

and E2 is measured with respect to E0. We shall refer to
the equations above as the "noninteracting" equations
since they only involve amp1itudes with spin deviations
separated by at least two spin sites. The equations in-
volving excitations on the same or neighboring sites will
be referred to as the "interacting" equations. These have
the following form:

(E2 OS ) 2, 2 +S' 2, 2 +1 @S' 2 —1,2
(1) (2)

p (1) g (2)
2n +1,2n +1 ~ 2n —1,2n —1

(1) — (2) (2)(EZ —
W

'
)a2n 12n

——~'S a2n —1, 2n —1 @S Q2n2n,
(1)SS'G1' (Q2„1 2„+1+Q2„22„),

(2) ~(1)(Ez & ) zn, zn+1 ~S 2n+1, 2n+1 ~S' 2n2n,
(Qzn, 2n+2+Q2n —1,2n +1

~(1)(Ez OS')Qzn+), zn+1 ~S 2n, 2n+1 ~S Q2n+1, 2n+2

g (2)
+2n +2,2n +2 ~ 2n, 2n

with
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2imk2tnk ) 2=ae ea2n, 2m

2imki(2n —&) i=Pe

818

(15)

(()+G"')((2S' —1)(G ) +Os= S+S'—&

a2n —),2m

2ink i(2m 2+&)krn

a2n, 2m+'

(() ~G(2) )]+(2S—1)(G2
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(2)r(s —s') G(+ S+S'—&

(16)

+(2S—1)(2S'——1)G2

p( P2E~P~ )"2—E +Ek
(i)(;) + 2S' —1)G2

~(2S—1)S
~(S—S )G(~'s S+S'

1) (.) (i)
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with 0 related to the energy eigenvalue Ez'q ' as in (12)
and A +—

, and A z
—given by (9) with k, and kz, respective-

ly, replacing k. For given values of k i and kz (or
equivalently K and q), there are four energies which form
three distinct energy continua for real wave vectors.
These continua arise because of the gap in the one-
magnon dispersion curve and a given continuum can be

I

identified as being either "acoustic-acoustic, " "optic-
optic, " or "mixed-mode, " depending on which pair of
spin-wave branches are involved. Alternatively '" we
can use the two-magnon dispersion relation (16) to solve
for q with fixed values of E and energy E2. Both K and
Ez (or equivalently 0) are real but q can be complex. The
expression for q as a function of E and 0 is

I [0 —4SS'(6',"sinK) ]ID —4SS'(6() 'sinK) j —(Qg'sinK) )'/
cos(2q ) = +

4SS'G(11)G(2)sln2K 4SS'G G

There are in general four distinct complex values of q for
a given spectral point (K,Ez). For each value of q there
is a corresponding eigenvector and hence any linear com-
bination of these four eigenvectors is a solution of the
noninteracting two-magnon problem. However, only cer-
tain combinations will also satisfy the interacting equa-
tions as well.

The complete solution to the two-magnon equations
can be obtained by writing each amplitude as a linear
combination of the components of the four degenerate
eigenvectors (one for each value of q) and then determin-
ing what particular combination (if any) satisfies the com-
plete set of interacting equations. For points (K,Ez) in-
side the energy continua there will always be a nontrivial
solution for the wave function. These solutions inside the
continua are referred to as "scattering states" and wi11 be
discussed later in the paper. However, for points (K,Ez)
outside of the energy continua there will always be four
complex values of q occurring in pairs with equal and op-
posite imaginary parts. For an infinite chain, only decay-
ing solutions are acceptable and hence each amplitude
can be written as a combination of at most two eigenvec-
tors. A nonvanishing solution for the wave function only
exists for certain values of E2 and K. Such solutions are
referred to as "bound states. "

The procedure to locate the bound-state solutions is as
follows. If q and q denote the two surviving values of q
for any point (K,Ez) outside the continua, then general
expressions for the amplitudes can be written as

az„z„=e '" (Coa+Doa)
K( n+ m ) C iq(2m 2n) +D — iq(2m 2n)

a2n, 2m oe ee
iK( n +m —1 /2)( Cp iq(zm —zn—+ 1 )a2„1 2m

—e

+Dp —iq(zm —Zn+ 1)
)

iK( n + m + 1 /2)( C
—iq(zm zn + 1)—

a2n, 2m +1
—iq(2m —2n+1) iye

+i z +) =e (Co~+Do~)
ilC(n+m+ 1)( Cg

—iq(zm —zn )
2n +1,2m +1 —e

—~q(zm —zn )
)

where m )n and where p, ay, 5 and a, p, y, 6 are the
components of the "noninteracting" eigenvectors corre-

sponding to q and q, respectively. Substituting these ex-
pressions into the interacting equations results in a 4 X4
matrix eigenvalue and hence a nonvanishing solution
occurs at the point (K,Ez) only if the secular deter-
minant for this equation vanishes. In our work we
searched for bound-state solutions by fixing the value of
K and varying the energy throughout the regions outside
of the continua. These results are described in the next
section.

g =S/S',
(i) —G(i) /G(i)

2 1

a —G(2) /G(1)
1 1

(20)

to describe our results. The ratio g indicates the degree
of spin alternation, r" indicates the form of interaction
between neighbors, and a indicates the degree of bond al-
ternation. The uniform-spin S chain has both g and a
equal to unity and r'"=r' '. For special values of these
ratios, the equations for the bound states reduce to simple
forms for which analytic expressions for the energies can
be obtained. We examine these special cases first and
then examine the more general situations.

Case 1. g=1, r"=0. This case corresponds to a sys-
tem with uniform spins, alternating bonds, and
G2" =G2 '=0. This special case with both r'" and r' '

equal zero is a member of a family of systems which in-
cludes a spin-S Hamiltonian which has the form of an
alternating-bond Schrodinger exchange operator. ' ' It
can be easily seen from the interacting equations (13) that
in this case the amplitudes with two spin deviations on
the same site decouple from all other amplitudes. For
S=—,

' these amplitudes are unphysical and can be ig-
nored. For larger values of S they describe physical
bound states. The set of equations involving spin devia-
tions on different sites are formally identical to the equa-
tions for the S=—,

' alternating-bond Heisenberg chain
with all energies scaled by a factor of 2S. The two-

III. BOUND STATES

Using the procedure described at the end of Sec. II it is
possible to obtain the complete set of bound-state solu-
tions for a system with alternating bonds or alternating
spins or both. As we are able to vary the parameters
S S G 1 G 1 G 2 G 2 there are many different sys-
tems that we can examine. We will use the following ra-
tios:
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+2Gz"GI 'cos2K]' (21)

Both Eb and E&+ lie completely inside of an energy con-
tinuum (acoustic-acoustic and mixed-mode, respectively)
but because of the decoupling these are true bound states
and not resonant states. The above dispersion relation is

I

magnon spectrum of this latter system has been studied
previously by Bell, Loly, and Southern. The spectrum
consists of three separate continua referred to as
acoustic-acoustic, optic-optic, and mixed-mode as well as
four bound-state branches. Two of these are associated
with the acoustic-acoustic continuum, whereas the others
are each associated with the mixed and optic-optic con-
tinua, respectively. The branches below the acoustic-
acoustic continuum have a gap between them at the
Brillouin-zone boundary and the upper branch enters the
continuum to become a resonance at smaller K. The
equations involving two spin deviations on the same site
are easily solved for two additional bound-state branches
and they have the following form:

E+=SIG())+G( )+I(G(,'))~+(G( ')

precisely that of the one-magnon excitations in an
alternating-bond spin S chain. Hence the complete spec-
trum consists of the three continua and six bound-state
branches as shown in Fig. 1 for S= 1 and a =0.5. If the
spin alternates as well, the different parts of the spectrum
are coupled and the two additional bound states become
resonances inside the continua.

Case 2. r"'=r' '= ~. This case describes a system
with alternating spins, alternating bonds, but with
G ]

= G
&

=0. As an example, this case describes a
S= 1 system with alternating purely biquadratic ex-
change interactions. All three continua collapse to zero
energy since the one-magnon energies are all zero. We
can see from Eq. (18) that the relative wave vector q is
imaginary with infinite amplitude. As a result all ampli-
tudes, except those with spin deviations on the same or
adjacent sites, must vanish due to an exponentially decay-
ing factor. This simplification leads to equations which
can be easily solved for the bound-state energies. We find
there to be a twofold degenerate bound state at E =0 for
all K (i.e., inside the collapsed continua) while there are
two additional bound states with energies given by

E+= 2S+2S' —1 (G(1)+G(2))+ (G(1)+G(2))2 4(2S —1)(2S'—1)
1

SS'cos'E G(1)G(2)
2 (S+S'—1) (2S+2S' —1)

1/2

(22)

If either spin is —,', then one of these bound states has zero

energy and the other is unphysical. For uniform-spin S
chains, the bound states in (22) have no gap at the
Brillouin-zone boundary and form one continuous branch
in an extended zone scheme. The pure biquadratic ex-
change model for S=1 is one member of this family and
corresponds to a integrable system. ' '

Case 3. g=1, r'"=0, r' '= ao. If we consider chains
with uniform spin only (rI= 1) then the two previous
cases can be interpreted as limiting cases of an
alternating-bond system in which we are free to vary the
ratios r"=G~z'/G()') from 0 (former case) to infinity
(latter case). Hence we would anticipate any intermedi-
ate values of the r" to correspond to a system intermedi-
ate between the two extremes. If either G&" or G'& ' is
zero, then the one-magnon energies are 0 or 2B indepen-
dent of the wave vector. Hence the width of the two-
magnon continua collapse to zero and have energies
equal to 0, 2B, or 4B. For the choice G'& '=Gz" =0,
there is a decoupling of the amplitudes describing two-
spin deviations separated by zero, one, and two sites from
the rest. The amplitudes for separations greater than two
sites only have nontrivial solutions at energies corre-
sponding to the collapsed continua. The amplitudes for
separations less than three sites have six bound-state con-
tributions. Two of these have the same energy as the
acoustic-acoustic (E=O) continuum and one has the
same energy as the mixed (E=2B) continuum but they
remain decoupled from them. Each of the other three
bound states can be associated with having originated
from each of three continua. Analytic expressions for the
bound-state dispersion curves can be obtained as solu-
tions of a cubic equation but will not be presented here.

1

The results for S=1 are shown in Fig. 2. In this case the
form of H for S=1 would be purely biquadratic ex-
change alternating with Schrodinger exchange along the
chain.

Case 4. g=1, r'"=r' '=1. Each of the cases above
represent special limits in which analytic expressions for
the two-magnon energies can be found. For S=1 uni-
form chains, the first two cases correspond to Hamiltoni-
ans which are members of a family of completely integr-
able systems. When the ratios in (20) are different from
these values, the spectrum of bound-state branches is
more complicated. ' In general, the bound states either
become resonances for all K or they can enter or emerge
from the continua at intermediate values of K. As an ex-
ample, consider the general S alternating-bond Heisen-
berg chain (r"=1). For S=—,

' the Hamiltonian is an
alternating-bond exchange operator and corresponds to
case 1. The amplitudes for two deviations on the same
site are unphysical and are decoupled from the rest. For
larger values of S, these amplitudes are physical. As ther" are increased from zero, the two additional bound-
state branches described in case 1 interact with the con-
tinua. In the limit when r"=1, one lies entirely in the
gap between the mixed and optic continua while the oth-
er becomes a resonant state inside the acoustic continu-
um. Figure 3 shows the bound-state branches for S=1
and a =0.5. The resonant states will be discussed further
in the Sec. IV.

Case 5. rI&1, a =1. A final case that we consider is a
system with uniform bonds but alternating spin such that
S'=

—,
' and S)S'. Amplitudes with two spin deviations

on an even spin site are unphysical and they decouple
completely from the rest. The remaining equations are
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M'=M —V M 'V —V M 'V

MO=MO —V M 'V

V'=V M 'V

V'=V M 'V

(24)

The spectral properties of the system can be easily ob-
tained by iterating this transformation until the matrices
V and V approach zero. A small imaginary part must

P Pl

be added to the two-magnon excitation energy E2 for
convergence.

The local densities of states for two excitations separat-
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ed by any distance can be obtained from the inverse of
the limiting form of Mo. If we fix the value of K and plot
these spectral functions against Ez, then contributions
from both bound states and scattering states are easily
identified. In the regions of energy outside the two-
magnon continua, the procedure requires only five or six
iterations for convergence. Inside these regions, the con-
vergence depends upon the magnitude of the imaginary
part in the energy. We have used an imaginary part
equal to 10 and convergence requires typically 20 to 25
iterations. In Fig. 5 we show the local densities of states
for case 4 in Sec. III which describes a uniform-spin S= 1

Heisenberg chain with bonds that alternate in strength
(a =0.5). The results for spin deviations on the same and
neighboring sites for IC=~/4 are presented. There are
two of the latter kind corresponding to having the devia-
tions at the ends of the two types of bonds. The bound
states discussed in Sec. III are clearly visible in all three
response functions as 5-function contributions. The reso-
nant states show up as sharp peaks within the continua.
Only the acoustic-acoustic continuum can be identified as
having a resonant state. As K increases towards the
Brillouin-zone boundary, this peak narrows and ap-
proaches the lower edge of the continuum finally emerg-
ing as a true bound state.

Finally in Fig. 6 we show the response functions for
case 5 of Sec. III which corresponds to a system with al-
ternating spins. The spins have magnitudes S=1 and
S'= —' respectively, and the total wave vector K has the
value m/4. Again, only the acoustic-acoustic continuum
has a resonant mode and its behavior across the zone is
similar to the alternating-bond case. Hence, for the
Heisenberg Hamiltonian, both the alternating-bond and
alternating-spin chains have similar bound state and reso-
nant structure in their two-magnon spectra. However,
the alternating-spin chain seems to have some special
bound-state features when the spin magnitudes differ by
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FIG. 6. Densities of states for (a) two deviations on the same
S=1 site and (b) two deviations on neighboring sites for the
S= 1, S' = —' alternating-spin Heisenberg chain at K =m/4. The

2
(&)energy is the dimensionless quantity E/G&

2'

V. SUMMARY

We have obtained exact results for the two-magnon ex-
citation spectrum for the general case of an alternating-
bond and alternating-spin chain. In special cases analytic
results for the bound-state branches were found. In more
general cases, a numerical procedure based on real-space
rescaling methods was used. This procedure provides a
ver direct way of obtaining information about both the
bound-state and resonant-state contributions to the spec-
tral properties.

The motivation for our study was to try to identify sys-
tems which may be completely integrable. These systems
have been shown ' to have special features in their two-
magnon spectra. Although we have not been able to
identify any new cases with these features, we did observe
that in the case of alternating Heisenberg spin chains that
a bound-state branch forms a connection between two of
the continua when the spin magnitudes differ by —,'. We
are currently studying this case using the Bethe ansatz *
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to ascertain if it corresponds to an integrable system.
The antiferromagnetic version of such a model would be
quite interesting and its low-energy excitation spectrum
could then be obtained. These results could then be used
to calculate the thermodynamic properties of bimetallic
chains. '
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