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Scaling approach to two-magnon excitations in quantum spin chains
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A scaling approach to two-magnon excitations in general S quantum spin chains is presented.
The local densities of two-magnon excitations can be obtained directly without solving the one-
magnon problem beforehand. Special features of the excitation spectrum are related to the com-
plete integrability of the model.

I. INTRODUCTION

The study of excitations in generalized Heisenberg spin
chains with general spin S has received considerable at-
tention recently. ' The complete excitation spectrum
consists of both bound states and resonant states within
the continuum of scattering states. In the case of a fer-
romagnetic ground state, the one-magnon and two-
magnon problems can be solved exactly. For special
models, the m-magnon problem can also be solved for ar-
bitrary values of m using the Bethe ansatz or the quan-
tum inverse scattering method. ' '" These special models
are referred to as completely integrable, whereas the gen-
eral spin S model is not integrable. The work of Chu-
bukov and Khveshenko' was concerned with finding the
conditions under which the two-magnon excitations of
the general model have the same structure as in the in-
tegrable models. They suggest that this may be a method
for identifying integrable cases. Haldane' ' had conjec-
tured earlier that the bound and resonant type of m-
magnon states form p =min(m, 2S) branches in the gen-
eral model but that all branches are real and continuous
across p Brillouin zones in an extended zone scheme for
the integrable models. In the nonintegrable models, the
branches enter the continuum and gaps occur at the
Brillouin-zone boundaries.

In the present work we describe a method to calculate
two-magnon excitations in ferromagnets using real-space
rescaling methods. The pure one-magnon problem as
well as the one-magnon problem with impurities has been
described previously. ' ' Our approach to the two-
magnon problem maps it onto an erat'ective tight-binding
Hamiltonian. General properties are easily extracted for
the most general isotropic spin Hamiltonian for spin S.
The special cases which correspond to completely integr-
able models are identified with special properties of the
two-magnon excitations, in agreement with the results of
Chubukov and Khveschenko. In addition, our results
suggest that certain values of the couplings of the general
model correspond to systems with limited integrability.

In the next section we describe the general S model and
consider the two-magnon excitation spectrum for the fer-
romagnetic system. The scaling method is described in

Sec. III along with our results. Finally, we summarize
our findings in Sec. IV.

II. THE MODEL

2S

AJ
= —g J'"'[j(j+1)/2—S(S+1)]".

n=1
(2)

It is convenient to define the eigenvalues with respect to
the state of maximum j and ratios of these quantities as
follows:

a (S)=A,2s
—

A,2s,

a (S)
gm(S)=

,(S)

where rn =0, 1, . . . , 2S. Note that go(S)=0 and g, (S)
=1 for all values of the J'"' in (1). The values of the J'"'
which give the Schrodinger exchange operator for a pair
of spins correspond to

We consider the following Hamiltonian for a chain of
spin S quantum spins

N 2S

y J(n)(S 'S )n

i =1n =1

The interactions are restricted to nearest neighbors, but
further neighbors can also be included as well as various
types of anisotropies without difhculty. The Hamiltonian
in (1) is the most general form for spin S with SU(2) sym-
metry. The model with only the n=1 term is the usual
Heisenberg model. Schrodinger' has determined the
values of the J'"' which yield the spin-exchange operator
for general S which has SU(2S+ 1) symmetry. This spe-
cial model is completely integrable. ' Another special
case which is completely integrable corresponds to the
values of the J'"' of Takhtajan' and Babujian. "

These special cases are most easily described by consid-
ering an isolated pair of nearest-neighbor spins. The total
angular momentum j of the pair can take the values
j=0,1, . . . , 2S, and the energy eigenvalue of the pair in
state j is

39 12 160 1989 The American Physical Society



39 SCALING APPROACH TO TWO-MAGNON EXCITATIONS IN. . . 12 161

1 —( —1)
g (S)= (4a)

The two-magnon spectru~ depends only on a, and a2,
which from (2) and (3) is given by

g (S)=2S[g(2S+1)—g(2S+1—m)], (4b)

for m =0, 1, . . . , 2S. The values of the J'"' of Takhtajan
and Babujian correspond to 2S

a,(S)= g J'"'[S'"—(S'—4S+1)"] .
n =1

(10)

The one-magnon eigenstates are plane waves with excita-
tion energy

E, =a, (S)(1 cosKa —),
where using (2) and (3) we have

2S
a, (S)= g J'"'S"[S"—(S—2)"] .

n=1

(6a)

(6b)

For stability of the ground state with respect to one-
magnon excitations we require a|(S) to be positive or
zero. Parkinson has recently studied an S=1 model
with pure biquadratic exchange v&ich has a& =0.

The two-magnon excitations are solutions of the
Schrodinger equation which can be written in the basis of
two-spin deviation states ~l, m ) =SI+S+~0), (1&m). Us-
ing center of mass and relative coordinates for the sites I
and m, the normalized amplitudes Cl in this basis can
be expressed as' '

C iKa(l +m) j2c
l, m e C ll —m I

In this mixed orthonormal basis ~K, r ), K represents the
total momentum of the pair and r =

~
l —m

~
is their rela-

tive separation in units of the lattice spacing a. The
equations for the relative amplitudes c, take the following
form:

(E Fp)cp Vpc i

(E sl )cl = Vocp+ Vc2

(E—s)c, = V(c„&+c„+&)(r & 1),
where E is measured relative to the ground-state energy
Eo and

2Sa2(S)
op=a&(S)(1 —cosKa)+ (1+cosKa),4S —1

(2S —1)a2(S)
s, =a,(S)+

4S —1

s =2a, (S),
—2&S (2S —1)az(S)

Vp = cos(Ka /2 ),

(9)

V= —a, (S)cos(Ka/2) .

where g is the derivative of the logarithm of the gamma
function.

In the following, we assume that the ground state of (1)
corresponds to the ferromagnetic state ~0) with all spins
aligned along the negative z direction. The ground-state
energy per site is

2S~ J(n)S2n
0 2S

The above equations are equivalent to those that are en-
countered in tight binding systems with defects. In the
present case, the relative coordinate describes the separa-
tion of one-magnon excitations which interact on the
same site or when on nearest-neighbor sites. The prob-
lem can be solved using real-space rescaling methods.

However even before solving (8) it is apparent from (9)
that special cases arise. For example, if VO=O, then the
amplitude co is completely decoupled from the others.
This is true for S =

—,
' where co is an unphysical amplitude

corresponding to two deviations on the same site. This is
also the case for all S ~ 1 when +2=0. Now co is a physi-
cal amplitude, and the solution E =a,o has the same form
as the one-magnon excitations in (6a) and represents a
propagating quadrupolar wave. The equations for the
remaining amplitudes reduce to the S =

—,
' case with a, re-

placing the usual exchange constant J'". Hence in this
case, the two-magnon bound states have the same struc-
ture as in the S=—,

' integrable model. Note that a2=0
corresponds to the value of g2 in (4a). This special prop-
erty of the two-magnon excitations does not specify the
remaining values of the g (m & 2) and hence occurs on a
hypersurface of the couplings J'"' when S)—', .

A second special case occurs when a2/a& takes the
value of gz in (4b). At Ka =m., we have both V and Vo
equal to zero and co=a& =c.. That is, all two-magnon ex-
citations are degenerate at the first Brillouin-zone bound-
ary and there are no gaps. As above, this property occurs
on a hypersurface of the couplings J'"' for S ~ —', . For
S=1 the hypersurface collapses to a point. For general
values of g2 there is a gap at Ka =n given by ~ep E]~.

A third special situation arises when a&=0 as in the
model studied by Parkinson. In this case only the ampli-
tudes co and c& are coupled and a propagating two-
magnon solution E =co+ c., is stable for a2 & 0.

III. SCALING METHOD

In a previous series of papers' ' we have described a
rescaling method for excitations iri tight-binding systems.
The basic idea is to construct a transformation on the
system of equations which leaves their form invariant but
renormalizes the various parameters appearing in them.
The spectral properties of the system can then be deter-
mined by iterating the transformation. In the present
problem, we can obtain a transformation for a general
scaling factor b as follows. The index 0 is used as a refer-
ence point and the amplitudes (r =1, . . . , b —1,
b + 1, . . . , ) are eliminated from the equations. The
transformation is
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VoV
Vo= (E —e1)Ub 2

—VUb

el ) Ub —3 VUb —4 Ub —2
c', =a+ V +

el ) Ub —2 VUb —3 Ub —1

2
VoUb —2

Eo= Eo+ (E—,) Ub
—VUb

2 VUb
E. =E+

Ub —1

VI V

bazoo the parameters in (ll) approach the following
values:

V2

o co =co+( oo )

E—e, —VQ

e', —+BI"'=e+2VQ,

e'~e'"'=e+2VQ,

V,' V,'-' =O,
V' V'-'=0,

where

where Ub =sin(b +1)8/sin8 and cos8=(E —e)/2V.
It is easily verified that for b =1 all parameters remain

unchanged. The transformation for b =2 corresponds to
the usual decimation procedure where every other ampli-
tude is eliminated and has been used previously to calcu-
late the local Green's functions for defects in an infinite
chain. Analytic results for the two-magnon response
functions can be obtained by taking the limit b —+ ~. As-
suming the two-magnon excitation energy E to have a
small positive imaginary part, we find that in the limit

Q=h+(b. ' —1)' ' 6&+1;
=b, —(b2 —1)'", b & —1;
=b, +i(1—6 )' ~b,

~

& 1 .
(13)

and h=(E —e)/2V. Hence, solutions of (g) which have
co&0 are given by E=eo"'. In general, this relation
leads to a cubic equation for E. However, in the special
cases mentioned in the preceding section, the cubic
reduces to either a quadratic or linear equation.
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FICx. 1. The imaginary parts of the two-magnon response
functions G«and G» are represented by gray scales in the
E/a&-Ka plane. The spin value is S= 1 and g2 =0.

FIG. 2. The imaginary parts of the two-magnon response
functions G«and G» are represented by gray scales in the
E/u&-Ea plane. The spin value is S = 1 and g2 =g + =3.
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We define the two-magnon Green's functions as fol-
lows:

Ea =m with no gap, as shown in Fig. 2. The energies of
these branches are

G„(E,E)= (E,r E,s) .1
(14)

E u5 +5[1—u (1 —5 )]'i=1+2' i 1 0

The imaginary part of Goo =1/E —eo" ' gives the density
of states for two magnons on the same site. A similar
transformation to that in (11) can be used to obtain an an-
alytic expression for G» by using the amplitude c, in (8)
as a reference point.

For u&&0, the ferromagnetic ground state is stable
provided az~O. The behavior is special for gz=0 and
g2=g, =(4S —1)/(2S —1) corresponding to the integr-
able cases. For gz=0, the poles of Goo correspond to a
propagating quadrupolar wave which has the same ener-
gy as the one-magnon excitation. G» has a contribution
from the continuum and a bound state below with

CX)
E= (1—costa),

2

which is the solution for S =
—,
' with a, replacing J'".

The imaginary parts of Goo and G» are represented in
Fig. 1 for S=1 and gz =0 using a gray scale plot. At the
other integrable point, gz=g~, both Goo and G» have
contributions from the continuum and two bound states
which lie entirely outside the continuum and meet at

where 5=cos(Ka/2) and u =1/4S . This expression
agrees with that obtained by Chubukov and Khveshen-
ko. '

In the range 0&gz &2, there is only one bound state
below the continuum with the one above first appearing
at E =0 when gz =2. Figure 3 shows a typical spectrum
for S=1 and gz=1. For all values of 0&gz &g„ the
imaginary part of G» has a node within the continuum
extending across the entire zone and is located at E =co.
For 2 & gz &g, there is one bound state below, which ex-
tends across the entire zone, and another one above
entering the continuum when

gg gz

2S
1gz

A typical spectrum for S=1 and gz =2.5 is shown in Fig.
4. When gz &g, the situation is reversed with the lower
bound state entering the continuum when 5= —5*. For
S =1, our results are in complete agreement with Chiu-
Tsao et al.
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FIG. 3. The imaginary parts of the two-magnon response
functions Goo and G» are represented by gray scales in the
E/al-Ka plane. The spin value is S = 1 and g2 =g+ /3 = 1.

FIG. 4. The imaginary parts of the two-magnon response
functions Goo and G» are represented by gray scales in the
E/a&-Ka plane. The spin value is S = 1 and g2 =Sg ~ /6 =2.5.
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Aleck et al. have studied antiferromagnetic models
based on projection operators which have limited integra-
bility. The ferromagnetic version of these models which
project-into the j=2S state of a neighboring pair of spins
has a& &0 and g =1 for m =1,2, . . . , 2S. We do not
find any special behavior of the two-magnon spectrum
when g2 =1.

IV. SUMMARY

We have presented a real-space rescaling approach to
two-magnon excitations in general S quantum spin
chains. The method can be used to calculate the two-
magnon response functions directly, without the need to
solve the one-magnon problem beforehand. For nearest-
neighbor interactions, we have used a general scaling fac-
tor b to obtain analytic results for the two-magnon
response functions. We have confirmed the earlier results
of Chubukov and Khveshenko' and Haldane' ' that the
two-magnon bound-state branches are real and continu-
ous across the Brillouin-zone boundary when the general
spin S model is completely integrable. The method is
easily extended to the case of further-neighbor interac-
tions or alternating bond systems.

The approach outlined in Sec. III can be used to study
I-magnon excitations in the general S model. For

three-magnon excitations ' the resulting equations will
involve g (S), m =1,2, 3 and special features are expect-
ed to be present when the g have values corresponding
to the integrable cases. These special features occur on a
hypersurface of the couplings J'"' in the two-magnon
case when S ~

—,'. For the three-magnon case, this hyper-
surface will be reduced to a point if S=—', . For S + 2,
there should be special cases where both the two-magnon
and three-magnon excitations have the same structure as
in the integrable cases but not the excitations involving
four or more magnons. These cases would correspond to
situations with limited integrability. We are currently
studying these possibilities.
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