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Received 10 November 1986 

Abstract. We study a two-dimensional king model on a triangular lattice which is divided 
into two sublattices. One consists of a honeycomb of sites and the other of the remaining 
interstitial sites. The interaction energies within the honeycomb and between the honeycomb 
and the interstitial sites differ from each other. The method used consists of a combination 
of transfer matrix techniques and the phenomenological renormalisation procedure. Results 
are presented for the critical temperature and exponents in zero field and the phase diagram 
in the temperature-field plane is obtained. 

1. Introduction 

The use of transfer matrix methods in the statistical mechanics of lattice systems is well 
known, both as a means of obtaining the exact solution of the two-dimensional Ising 
model (Onsager 1944) and for obtaining approximate solutions for more complex sys- 
tems (Ree and Chesnut 1966, Runnels and Combs 1966, Bellemans and Nigam 1967, 
Lavis 1976). In the latter context a one-dimensionally infinite lattice, with periodic 
boundary conditions, is used as an approximation to a two-dimensionally infinite system, 
Although such a system, with short-range forces, will not exhibit phase transitions, 
maxima in thermodynamic response functions and in the correlation length can be 
observed and are used to give the approximate locations of the phase transitions that 
would occur in the corresponding two-dimensionally infinite system. 

The phenomenological renormalisation method is based on the finite-size scaling 
method of Fisher (1971) and Fisher and Barber (1972). It utilises the transfer matrix 
formalism in combination with renormalisation group procedures and was introduced 
by Nightingale (1976). It has now been used by many workers (Sneddon 1978, 1979, 
Derrida and Vannimenus 1980, Nightingale and Blote 1980, Wood and Goldfinch 1980, 
Kinzel and Schick 1981, Goldfinch and Wood 1982, Droz and Malaspinas 1983) to obtain 
numerical estimates of second-order critical-point parameters. It has also been applied 
to situations where it is known that the phase transition is of first order (Blote et a1 1981, 
Roomany and Wyld 1981). Wood and Osbaldestin (1982, 1983) have argued that an 
inherent characteristic of the method is that it locates phase transitions without having 
the ability to distinguish between surfaces of critical points (second-order transitions) 
and coexistence surfaces (first-order transitions). This has led them to develop the 
method into a general procedure for obtaining an approximate form for full equilibrium 
phase diagrams, including the locations of points of multi-phase coexistence. We shall 
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use both traditional transfer matrix methods and phenomenological renormalisation 
techniques in our investigation of the triangular ferrimagnetic Ising model, which was 
introduced by Bell (1974a, b) and investigated by Lavis and Quinn (1983) using a finite- 
cluster renormalisation group method. One characteristic property of ferrimagnets is 
the shape of the inverse zero-field susceptibility curve above the critical temperature. 
Unlike in the case of a ferromagnet, this is normally concave towards the temperature 
axis and the intercept of its high-temperature asymptote and the axis is at a point below 
the critical temperature. Another property of many ferrimagnets is the occurrence of a 
compensation temperature. This is a point on the zero-field axis, below the critical 
temperature, at which the magnetisation falls to zero because of the cancellation of 
sublattice magnetisations. This point lies at the end of a line of first-order transitions in 
the temperature-field plane. Both the mean-field methods of Bell (1974a, b) and the 
cluster renormalisation methods of Lavis and Quinn (1983) indicate that the model 
under discussion is able to produce these ferrimagnetic properties. Our present results 
support this. They also appear to give more accurate values for critical properties. 

In 0 2 the model is introduced, in 0 3 the methods of investigation are described, in 
0 4 our results are presented and in 0 5 our conclusions are given. 

2. The model 

A triangular lattice is divided into a honeycomb sublattice b and a sublattice a consisting 
of the interstitial sites. The sites of sublattices a and b are occupied by ions of magnetic 
moments E, and &b respectively. The nearest-neighbour exchange energies are -Jbb  and 
- J a b  for b-b and a-b pairs respectively. The Hamiltonian X is then given by 

X = C X A  
A 

where 

and the sum in (la) is over all the elementary triangles of the lattice, each one consisting 
of an a site and two b sites, b l  and b2. The spin variables Sa, s b l  and S b 2  can take the 
values f 1. The six possible ground states of the system have been described in detail by 
Lavis and Quinn (1983). They are d'): ferromagnetic ordering with spin orientation f 1; 
FI('): ferromagneticordering on sublattice b with spin orientation f 1 and spin orientation 
T 1 on sublattice a; d'): antiferromagnetic ordering on sublattice b with the spins on 
sublattice a in state 2 1. 

On the zero-field axis the Hamiltonian is invariant under spin inversion and the 
ground states will be denoted by F, FI and AF respectively. In our analysis we shall 
consider onlyJab S 0 and, in the case of non-zero field, we shall also restrict our attention 
to J b b  > 0. We use the parameters 

e = /Jabl/(lJabl -t IJbbl) P a )  

and 
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and the reduced temperature and field variables 

= kT/(IJab/ + / J b b / )  

and 

Ei = &bH/(IJabI + lJbbI) 

respectively, where k is Boltzmann's constant. 

3. Methods 

3.1. The transfer matrix method 

The sites {R} of the triangular lattice are given, in terms of the Cartesian unit vectors f 
and 3,  by 

R = Ro[p.E + q( f  + 31 /2 j ) /2 ]  ( 3 )  

where Ro is the lattice spacing, p = 1,2, . . . , Nand q = 1 , 2 ,  . . . , n and periodic bound- 
ary conditions are applied in both directions. Because of the sublattice structure, both 
n and N must be integer multiples of three. The sites of the lattice with particular fixed 
values of p and q are called the pth column and qth row respectively. 

Let X ( p J ' +  be the contribution to the Hamiltonian from the interaction between 
columnsp andp + 1 ,  including half the energy of the interactions with the external field. 
If the spin states of a lattice column are labelled j = 1 , 2 ,  . . . ,2" then the Boltzmann 
factor exp(-X(P,P+')/kT) is an element of the transfer matrix V("), and the partition 
function Z(") is given by 

where AV), i = 1 , 2 ,  . . . ,2" ,  are the eigenvalues of V("), arranged in descending order 
of magnitude. All the elements of V(") are strictly positive and it follows from Perron's 
theorem (see, e.g., Gantmacher 1959) that Ap) is real and positive with Ap) > /A$") I ,  i = 
2 , 3 ,  . . . ,2". In the limit of large N the dimensionless free energy qp), per lattice site, 
is given by 

qy) = - ( I /nN) ln Z(") = - ( l / n )  In Ay) 

[(") = c In( IA y) /At) I) 

q?) = - ( I /n )  lnlA(,")I (7) 

( 5 )  

(6)  

and the inverse correlation length ((") is given (Domb 1960) by 

where c is a function only of the lattice spacing Ron By analogy with ( 5 )  we define 

and it follows that 

(8) ((n) = cn(q(n) 2 - qy9. 
In the two-dimensionally infinite version of our model (n  --* a) the occurrence of a 

phase transition would be associated with degeneracy in ihe largest eigenvalue of the 
transfer matrix. This event, which from (6)  is equivalent to a zero in the inverse cor- 
relation length p), is usually associated with the Occurrence of a second-order transition. 
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Kac (1968) has, however, argued that asymptotic degeneracy is a general mathematical 
mechanism for phase transitions and represents the appearance of two stable phases. It 
may, therefore, be indicative of either a second- or first-order transition. For finite n,  
thermodynamic functions have no singularities. We can, however, obtain estimates for 
phase transitions in the infinite system by locating minima in p )  as a function of T at 
constant A, for our system with finite n,  expecting our estimates to become increasingly 
accurate as n is increased. In the temperature-field plane the minima in p )  form a line 
of points denoted by Sf!("). From (8) it will be seen that Sf!(") corresponds to the line of 
closest approach of the values of the functions qy) and q t )  at constant field. In the spirit 
of mean-field theory and of the argument of Kac (1968), referred to above, we could 
interpret q)(;I) as the free energy of a metastable phase. 

3.2. The phenomenological renormalisation method 

The essence of the finite-size scaling method (see, e.g., Barber 1983) is the extrapolation 
of results for finite systems to obtain estimates for the critical properties of infinite 
systems. For relatively complex systems, like the one under consideration, the size of 
the matrices involved makes this procedure difficult to implement beyond quite small 
values of n. The alternative method, due to Nightingale (1976), is based on the sup- 
position that we can define a mapping ( f', Z?) + ( p, A'), in the temperature-field plane, 
that satisfies the relationship 

nf (" ) (T ,  Z?) = n'c(n ' ) (p ,  A') (9) 

where n' < n. Equation (9) is not alone sufficient to define the mapping, except if fi = 
0, when, on symmetry grounds, we must have A' = 0. The zero-field axis is, therefore, 
an invariant subspace of the transformation. Let (To, 0) be a fixed point and define t = 
T - To. We now express (9) in the form 

g(fl') (rbxr, l ? b x ~ )  = bg(")(t ,  I?) (10) 

where b = n/n' and we have defined the exponents xT and x H  according to the formulae 

( I l a )  

A' = AbXH.  ( I lb )  

t' = tbXr  

Equation (10) is very similar to the scaling equation 

g ( t b Y r ,  f i b y ~ )  = b ( ( z ,  Z?) 

for the inverse correlation length ( of the two-dimensionally infinite system, where t = 
- Tc, Tc being the critical temperature of the infinite system. Nightingale's method is 

based on the hypothesis that (10) is an approximation to (12), which becomes increasingly 
accurate as n,  n' + s. with b remaining finite. This assumes the convergence of the 
limiting procedures To(b, n)  + Tc, x d b ,  n) + y T ,  ~ ~ ( 6 ,  n)  += y H  and 5;(")+ f(") = 5;. 
Numerical calculations for the two-dimensional Ising model (Nightingale 1976) provide 
strong support for this conjecture. They show that, although the rate of convergence is 
affected by the relationship between n and n ' ,  it is achieved for a variety of choices, with 
the optimum strategy being 

n' = n - p o  (13) 
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where p o  is the periodicity of the system (Po = 1 for the simple ferromagnetic Ising 
model, p o  = 3 for our system). 

An important aspect of phenomenological renormalisation is that it is able to yield 
numerical estimates x T  and x H  for the values of the critical exponents y T  and y H .  This 
contrasts with scaling theory, of which (12) is apart ,  which gives the scaling law relation- 
ships between exponents (see, e.g. , Hankey and Stanley 1972), but no numerical values 
for the individual exponents. Following Wood and Osbaldestin (1982) we define the 
function 

l p ( z - ,  H> = n'C("')(T, I-i> - nC(")(T, E?). 

@"'( i;, 0) = 0 

(14) 

It will then be seen that a solution f = fo of the equation 

(15) 
will correspond to the fixed point (To ,  0) of the mapping defined by (9), when n' is given 
by (13). Having found To,  which is taken to be our estimate of the critical temperature 
Tc7 the exponent xris given, from (lo), by 

x T  = ln[(a~(n)/aT),/(ai;("')/ai;)o]/ln(n/n') + 1 (16) 

where the subscript 0 indicates that the derivatives are evaluated at the fixed point, A 
similar procedure can be adopted for the evaluation of x H ,  except that , since ((") and C(n')  
are even functions of A, we must use the second derivative of (10). This gives 

x H  = ln[(a2~(R)/~R2)o/(a2f("') /~l?2)o]/2 In(n/n') + 1. (17) 

For the model of interest in this paper, first-order transitions are expected in regions 
of the temperature-field plane away from the zero-field axis. The method used to 
determine their approximate location follows the work of Wood and Osbaldestin (1982). 
They have argued that the solution curve (e(") of the equation 

lp( i;, fi) = 0 (18) 

in the temperature-field plane converges, as n increases, on any phase equilibrium curve 
and that, for any finite n, (e(") bounds a region containing all the phase equilibrium 
curves. At a point on (e(") we define the exponent 

x(a) = ln(VC(") &/VC("') &)/ln(n/n') + 1 (19) 

where the gradient is taken with respect to (l?, 0 and d = (cos a, sin a). In general this 
exponent is a function both of a, the angle of directional differentiation with respect to 
the field axis, and of f and A. Since from (14) 

(20) VV(") = n'Vf("') - nVf(") 

it follows that, if d is tangential to (e("), thenx(a) = 0. This marginal exponent along the 
curve is to be expected since each point of (e(") is a fixed point of the renormalisation 
transformation. 

The only case in which x(a) does not vary with a is when the vectors VC(") and VC("') 
are parallel and, from (20), in the normal direction to (e("). According to the argument 
of Kinzel and Schick (1981) this is the case that yields the value closest to the relevant 
exponent for the phase boundary of the system when n + CQ. 
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4. Results 

4.1. H = 0 

The root To of equation (15) is our approximation to the critical temperature Tc. Both 
To and Tc are functions of e and the sign of J b b ,  but not of r or of the sign of J a b .  We have 
calculated To as a function of 0 for n = 6 and n’ = 3 and the results are presented in 
figure 1. Since we have taken J a b  S 0 the transition is to the phase with ground state FI 
in all cases shown except When&, < 0 and 0 < 8 < 0.5 when the transition is to the phase 
with ground state AF. Our calculations can be compared with exact results in a number 
of special cases (see Lavis and Quinn 1983). For e = 0.5, &b > 0, Tc = 2/ln(3) = 1.821, 
the value for the ferromagnetic isotropic Ising model, and our result is To = 1.822. 
For 8 = 0 the critical temperature is that of the Ising honeycomb model, Tc = 
2/ln(2 + d 3 )  = 1.519, compared with our result To = 1.511. The exact critical tem- 
perature for 8 = 1.0 can be obtained by using a de-decoration transformation to map 
the model on to the isotropic ferromagnet. This yields 

1 + 3lI2 + [2(31/2)]1/2 - l  

T~ = 2[1n( 2 ) ]  = 2.405 (21) 

compared with the result To = 2.395 obtained here. 

I 

0 0.5 
e 

.o 

Figure 1. The critical temperature as a function of 8. The full curve represents a transition 
to a phase with ferrimagnetic ground state m and the chain curve a transition to a transition 
to a phase with antiferromagnetic ground state AF. 
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For fi = 0 the model is isomorphic to the corresponding ferromagnetic model 
obtained by changing the sign of J a b .  This latter model is in the universality class of the 
isotropic ferromagnet ( J a b  = J b b  > 0) and thus for the thermal exponent we must have 
y, = 1.0. Our calculated estimate xTfor yTshows a small variation with 8, the minimum 
value being 0.984 at 8 = 0 and 1.0 and the maximum being 1.0035 at 8 = 0.5. This 
latter value is the same as that derived by Kinzel and Schick (1981) for the equivalent 
ferromagnetic model. As may be expected, exact agreement between the results for 
ferromagnetic and ferrimagnetic models does not occur in the case of the magnetic 
exponent. As indicated in § 1, an important feature of ferrimagnetic systems is the 
occurrence of a compensation temperature below the critical temperature at which spin 
cancellation leads to a zero magnetisation. In our model this compensation temperature 
is a function of r and 8 and is denoted by T*(r ,  8). We now denote by r * ( 8 )  the value 
of r ,  for some 8, at which the critical and compensation temperatures coincide. Exact 
results (see Lavis and Quinn 1983) indicate that, for our model, the magnetic exponent 
y H  should take its ferromagnetic Ising value of 1.875. However, when r = r* ,  leading 
amplitudes in the thermodynamic functions are zero and the critical exponents differ 
from their ferromagnetic values. We ,have investigated the value of x H  for both ferro- 
magnetic and ferrimagnetic cases. In the former case this exponent exhibits only a small 
variation with respect to 8 and none with respect to r .  Our results agree with the 
value 1.8738 obtained by Kinzel and Schick (1981) for the case where 8 = 0.5. For the 
ferrimagnetic model there is a variation of x H  both with respect to 8 and r .  This variation 
is shown in figure 2, where graphs are presented for 8 = 0.0, 0.5 and 1.0. Minima in 
these curves occur for 8 = 0.5 and 1.0 at r = 2.0 and 1.73 respectively. These values 
can be compared with the exact results (see Lavis and Quinn 1983) r*(0 .5)  = 2.0 and 
r*(1.0) = 1.728; which are the values of r for which the critical exponents deviate from 
their Ising ferromagnetic values. 

2 01 

1.0 1 5  2 0  2.5 
8" 

Figure 2. The variation of the estimated magnetic exponent x H  with respect to r .  Curves are 
labelled with their values of 0. 
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4.2. H # 0 
As indicated in 5 2, we use both transfer matrix and phenomenological renormalisation 
methods to obtain the phase diagram. Results are presented in figure 3 for the case where 
t9 = 1 .O and r = 1.9. The broken curve in figure 3 corresponds to the curve of minima 
of t@)( T, l?) with respect to Tand the full curve corresponds to the curve (e@), obtained 
from (18). 2(6) can be regarded as an approximation to the first-order transition between 
the ferrimagnetic phases FI(+) and FI(-) and the intersection of and (e@) at T = 0.747, 
fi = 2.763 is taken as an estimate for the end-point of the curve. Since 5;@) is monotonic 
on the zero-field axis, 2@) does not meet this axis but approaches it closely after attaining 
a maximum temperature value of T = 1.646. This can be compared with the exact value 
T*(1.9,1.0) = 1.658 for the compensation temperature, which can be derived from 
formulae given by Lavis and Quinn (1983). The exponent x(a) ,  given by (19), was 
calculated at various points on (e@). On the lower branch of the curve the exponent 
showed a strong dependence on a, corresponding to a large angle between the vectors 
Vg(3) and VC@) (e.g. 0.50 rad at l? = 0.75). The same was true on the upper branch of 
the curve from the critical point to about fi = 0.5. On the remaining part of the upper 
branch of the curve the a-dependence of the exponent was modest other than for 
directions near to the tangent lines to (e@). Two cases in this category are shown in figure 
4. The corresponding angles between Vf(3) and V(@) are (A) 0.0086 rad and (B) 
0.0087 rad. The fact that in case A the exponent is close to 2.0 is significant since the 
value expected for the relevant exponent along a first-order transition curve is d = 2. 

Figure 3. The phase diagram in the temperature-field plane for 6 = 1.0 and r = 1.9. The full 
curve corresponds to the curve %e(6) and the broken curve corresponds to the curve S@). 
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Figure 4. The variation of the exponent x(&)  with 
respect to (Y at points (A): H = 1.0, T = 1.6083; 
(B) H = 2.76, = 0.7586; (C) H = 2.7628, T = 
0.7471; (D) H = 2.76, T = 0.7465 on the curve 
w, 

1 
I < 

Case C in figure 4 corresponds to the calculated end-point of the line of first-order 
transitions. Here the angle between V5(3) and Vc@) is large (0.380 rad). This point lies 
on (e@) between the points corresponding to cases B and D, where the a-dependence of 
the exponent is more modest. It may be supposed that the behaviour of the exponent in 
case C, as contrasted to cases B and D, is related to the existence of two relevant 
exponents at the end-point in the corresponding two-dimensionally infinite system. 

5. Conclusions 

We have investigated a two-dimensional ferrimagnetic Ising model using a combination 
of transfer matrix and phenomenological renormalisation methods. On the zero-field 
axis the critical temperature has been calculated as a function of the parameter 8. The 
maximum error shown for the three cases for which the exact result is known is 0.53%. 
The maximum error for the thermal exponent y ,  at the critical point is 3.5%. Exact 
calculations show that the critical exponents differ from their ferromagnetic values when 
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the critical and compensation temperatures coincide. We have demonstrated that our 
estimate x H  for the magnetic exponent y H  attains a minimum at this value of r. It 
is reasonable to suppose that, as n increases, this minimum will steepen to a point 
discontinuity. To predict the known value of /3 (see Lavis and Quinn 1983) the dis- 
continuity value would need to be 0.875 as compared with the approximate value of 0.5 
obtained here. 

The qualitative features of our phase diagram are consistent with the known prop- 
erties of the system and the error in our estimate of the compensation temperature is 
less than 0.1%. The critical exponent for the phase transition curve is close to its first- 
order value. Exponents in a neighbourhood of the critical end-point are more difficult 
to interpret. 
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