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Abstract. An exact real-space rescaling transformation is used to calculate the Green 
functions and densities of states for a one-dimensional binary system with long-range 
exponentially decaying interactions between the atoms. The model is applied to both 
diatomic and s-p hybrid crystals. 

1. Introduction 

Recent work (Southern et a1 1983a, b, Langlois et a1 1983, Tremblay and Southern 1983, 
Lavis et a1 1985) has demonstrated the effectiveness of the real-space rescaling approach 
for the study of tight-binding systems. The procedure can be applied to a wide range of 
problems and provides a direct method of calculating Green functions (GFS). The basic 
idea is to take equations which describe a system with N degrees of freedom and to 
perform a transformation in which the number of degrees of freedom is reduced. A set 
of relationships, or recurrence equations, is obtained between the renormalised energy 
parameters and the original set. Iteration of these equations leads to an effective diag- 
onalisation of the GF matrix and the diagonal GFS are obtained from the limiting values 
of the renormalised parameters. If the diagonal CFS are analytically continued into the 
complex z plane, where z = E + io and E is the energy, the localised states will appear 
as isolated singularities on the real axis and extended states will appear as branch cuts 
on the real axis (Economou 1983). 

In this work we shall be primarily concerned with a binary system of alternating 
A and B atoms on a one-dimensional lattice with long-range exponentially decaying 
interactions, although the method can be usedfor more general situations. We first apply 
a transformation which decomposes the system into two non-interacting homogeneous 
monatomic systems. At this stage it is possible, in some special cases, to relate the 
properties of the system to those of a monatomic system using a two-valued mapping. 
We shall use this to extract analytic formulae for band edges and, in some cases, for 
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densities of states (DOS). In general the interactions in the new decoupled systems are 
of a more complicated form, but we shall show that this form is invariant under the 
rescaling procedure of Southern er a1 (1983b). This allows us to obtain the spectral 
properties of the original system. The outline of the paper is as follows. In 0 2 we consider 
a monatomic system in the many-neighbour approximation (MNA) as introduced by 
Davison and Taylor (1969) and describe the rescaling treatment of this model which is 
needed for the development of a mapping to the diatomic system later in the paper. In 
0 3 we describe the general diatomic model, implement the one-step transformation to 
decoupled systems of A and B atoms, and develop the scaling equations. In 9 4 we apply 
the model to crystals of A and B atoms with s orbitals and alternating s and p orbitals, 
as developed by Davison (1972). In 0 5 an application to the s-p hybrid model of Davison 
and Foo (1976) is considered and our conclusions are presented in 0 6. 

2. The general monatomic chain 

We consider the generalised monatomic tight-binding system with Hamiltonian 
X 

H~ = / s ) ~ ~ ( s l  + ( I S ) U ( . ) ( S  + nl + 1s + n)Un)(sl) . (1) 
s = - x  7 n = l  1 

The spectral properties of the atom at site s can be obtained from the diagonal element 
(slC0ls) of the lattice GF operator CO = ( z l -  H0)-I,  where l i s  the identity operator and 
z = E + i6, E being the energy. The matrix elements Go(s, m) = (s/Go/m) of Go are 
given by 

X 

( z  - E ~ ) G ~ ( s ,  m) - 2 U'l)(Go(s + n ,  m) + co(s - n ,  m)) = d, .m.  (2) 
, 1 = I  

Since the chain is homogeneous we can, without loss of generality, set m = 0 and rewrite 
equations (2) in the form 

I 

co(s, 01 - 

x,, = U ( " ) / ( z  - E o )  

ffs = 4.o/(z - E o ) .  

X, , (G~(S  + n ,  0 )  + ~ ~ ( 3  - n ,  0 ) )  = a, (3) 

(40) 

(4b) 

n = l  

where 

We now apply a rescaling transformation to equation (3) which decouples alternate sites 
of the lattice. The transformation is applied iteratively with the even-numbered sites 
retained and relabelled at each stage of the procedure in order to map the system into 
an identical system with half as many sites. This rescaling method is described in detail 
by Southern et a1 (1983b). They have derived the formulae for the rescaled energy 
parameters which, in terms of our notation, can be expressed in the form 
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where a:, = a: and 
2 . - 1  

Y,(a, b )  = 2 ( - 1 ) J + ' a J b k - ,  
J = 1  

X 

O,(a, b )  = ( - l ) J + ' a , b a + ,  s 3 0. 
J = 1  

Successive application of equations (5) yields a sequence x i k ) ,  a$k), k = 0 ,  1, 2 ,  . . . of 
parameter values beginning at some xio) = x, , aio) = as, given by equations (4). If 

lim xkkl = O n =  1 , 2 , .  . . 
k- x 

a condition which can be checked during numerical implementation, it follows that 

Go(O, 0) = lim a t )  
k- = 

The DOS can be obtained in the usual way from the imaginary part of Go(O, 0). This 
scaling procedure is independent of the form of the interaction energies {U(")}. It is, 
however, clear that for any practical application of the procedure we need to reduce the 
infinite set of parameters to a finite set. This can be accomplished by either (a) taking a 
model with non-zero interactions extending to only a finite number of neighbouring sites 
or (b) retaining interactions to any range but introducing some relationship between the 
interactions. An example of the first of these options is the work of Southern et a1 
(1983b) ,  where interactions extending either only as far as nearest neighbours (NN) or 
next NN are considered. 

An MNA for a monatomic chain was introduced by Davison and Taylor (1969) .  The 
basis of their model is to take 

(8) U'") = u p " -  1 

for some parameters U and p ,  where Ipl < 1. The application of the rescaling method to 
this model will be seen as an example of option (b), described above. From equation 
(4a) 

x, = x p n - 1  ( 9 )  

x = U / ( z  - E o ) .  (10) 

where 

For scaling purposes we also write 

cy, = p p " ' - '  S Z O  

although the initial value of p is zero. The series in equation (5) are now geometric and 
we obtain the scaling equations 

p '  = p2 

x' = [ 2 x p ( l  + p 2 )  + x 2 ( 1  + 3p2)]/A 

ah = [ao(l  + p 2 )  + 2xp]/A 
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P’  = M P  - ~ ) ( l +  p 2 )  + ~ P P  + 3 p 2 ) 1 / ~  

A = (1 + p z )  - 2x2. 

( 1 2 4  

(13) 

where 

In the ( x ,  p )  plane p = 0 is an invariant line of the transformation (12). It corresponds 
to the NN problem solved by Southern er a1 (1983b) in which p’ = P = 0. Equations 
(12a, b )  possess a fixed point p = 0, x = 1 which is approached along an invariant line 
x = (1 - p)/2. This line is reached from initial values which satisfy the equations 

x = (k 1 - p)/2. 

-(1 + p)/2 < x < (1 - p)/2 

(14) 

(15) 

If the initial value of x is such that 

then x iterates monotonically to zero, and ah in equation (12c) converges to a limiting 
real value. If, on the other hand, the initial value of x neither satisfies equation (15) nor 
lies on the lines (14) thenx’ behaves chaotically under iteration and &!does not converge. 

The lines given by equations (14) are the band edges derived by Davison and Taylor 
(1969). They can also be obtained by using the change of variable given by 

x = - p  + x , ( l  - p?)/( l  - 2px1) 

x ;  = X y ( l  - 2 x 3  

(16) 

(17) 

when equation (12a) takes the form 

which is the scaling equation for the NN problem. Since the band edges for this problem 
lie at x1 = +1 we can obtain equations (14) by substituting these values in equation (16). 
The diagonal GF G 1(0, 0) for the MNA has beenobtained recently, using Fourier transform 
methods (Davison et a1 1986). It takes the form 

Gl(0,O) = - a0 { p  + [x-1 - 2(1 - p)-l]-”2[x-l + 2(1 + p)-1]-1’*}* 
( x  + P )  

Numerical implementation of the scaling equations yields results identical to those 
obtained from equation (18). The NN case of equation (18) with p = 0 has been derived 
analytically from the scaling procedure by Lavis er a1 (1985). 

3. The diatomic chain 

We consider the diatomic chain shown in figure 1 with Hamiltonian 
x 

x 

I 

+ (IB; s)VLi(B; s + nJ + /B; s + n)V!i(B; S I )  
n = l  
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\i VA A / \  V A A P  > 
{ VBBQ /\ V B B  4 \i 

Figure 1. The diatomic lattice. Full circles, A atoms with self-energy E ~ ;  open circles, B 
atoms with self-energy E ~ .  Interaction energies are indicated and the sites are labelled in 
pairs. Each pair represents a single atom for the s-p hybrid model. 

X 

+ (IA; s)Vgi(B; s + n1 + IB; s + n)Vgi(A; si) 

(IB; s)V$,(A; s + nl + /A; s + n)Vti(B;  si)] 

n = O  
X 

+ 
n = l  

where 

v ~ A  = v A B p n  

v ~ L  = v B A p n  - 

In this case we have four sets of equations for the elements GcD(s, m) = (C; s/G,ID; m) 
(C, D = A, B) of the GF operator G2 = (zZ - H2)- ' ,  To these sets of equations we apply 
an initial transformation equivalent to a block diagonalisation of the matrix into a block 
associated with the A sites and a block associated with the B sites. The result of this 
procedure is that we obtain the independent sets of equations 

n = 0 ,  I ,  2 , .  . . 
V(n) AA = VAApn-' V;L = vBBpn-' n = 1 , 2 , .  . . . 

2 

G ~ ~ ( s ,  01 - X , ( G ~ ~ ( S  + n, 01 + G ~ ~ ( s  - n,  0 ) )  = &iC) 
n = l  

C = A , B  (21) 
where 

x ,  =xpn-1 + y(n - l ) ~ " - ~  

&jC) = pcpl+l + yc(lsl - l)plsI-2 

x = [VAA(z - EB) + VBB(z - EA) + VABVBA + PWI/Z 

Y = (PVABVBA - VAAVd/Z 

s # 0 ,  C = A, B (226) 

(230) 

(23b) 

= ( z  - &B)/Z (23c) 

(234  

P A  = - vBB/z (23e) 

P B  = -VAA/Z (23f 1 
W = (ViB + V L  - 2VAAVBB)/(1 - p2) (24a) 

z = ( Z - & A ) ( Z - & B ) -  w. (24b) 

&(B) = 
0 ( z  - EA)/Z 
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The parameters yA and yB are zero, but have been included because, under the scaling 
procedure now to be introduced, they will, in general, become non-zero. At  this point 
we could solve for Gcc(s ,  01, given by equations ( 2 1 ) ,  using Fcurier transform methods. 
This is possible because of the exponential form of the interactions given by equations 
(20 ) .  However, we shall use the rescaling procedure described in 0 2 ,  since it is not 
restricted to interactions of this form, although it is simpler in this case. 

The two sets of equations (21) are each of the form of equations ( 3 )  and we apply the 
rescaling procedure given by equation ( 5 ) .  In this case the interactions are given by 
equations ( 2 2 ) ,  which are a more general form of MNA than that represented by the 
corresponding equations (9) and (11 ) .  This means that the scaling equations will be more 
general than those given by equations (12) and take the form 

p i  = p2 

x ’  = [ 2 ( x p  + y ) ( l  + p 2 ) 3  + x 2 ( 1  + 3 p 2 ) ( 1  + p2)’ 

where 

R = ( 1  + p 2 ) 3  - h 2 ( 1  + p2)’  + 4 x y p ( l  + p 2 )  + 2y2(1  - p 2 ) .  (26) 

From equation (25a)  we see that p again iterates to zero and the problem is controlled 
by the fixed points of the next-” problem, which are discussed in 9 5. We can recover 
the results for the MNA on a monatomic chain by setting V A B  = VBA = 0, in which case 
we have two independent chains. Although this special case provides a useful check on 
our numerical procedure, the scaling equations (25 )  do not immediately reduce to 
equations (12 )  because of our initial transformation. They do, however, for the chain of 
A atoms if we also set V B B  = 0 and similarly for the B atoms if we set VAA = 0. 

The procedure described in this section can be applied with arbitrary choices for the 
energyparameters E ~ ,  VAA, V B B ,  VAB, V B A .  In thefollowingsectionsweshallconsider 
some particular applications of the model. In some of these, direct analytic information 
can be derived by obtaining relationships with the monatomic M N A .  

4. s-orbital and s-p-orbital models 

In order to facilitate the discussion of the initial transformation of our model we chose 
to label the sites in pairs and to define the MNA based on pairs of sites. In this section a 
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single-site labelling is preferable. We therefore define a new many-neighbour parameter 
r by 

p = v 2  (27a) 
with 

In this section we consider two models: case (a) where each atom has only an s orbital; 
case (b) where each A atom has an s orbital and each B atom has a p orbital. This means 
that 

for some parameter V ,  where 

for case (a) 

-1 for case (b) . 

With this choice of parameters and VAA and V B B  taking the same sign for case (a) and 
different signs for case (b), the rescaling method of § 3 allows us to compute the partial 

have been considered by Davison (1972). In these circumstances it will be seen, from 
equation (23b) ,  that the initial value of y is zero and, since the initial values of yA and 
yB are in any case zero, these three parameters will remain zero under iteration. This 
means that the rescaling equations will be of the form of those for the monatomic chain, 
given by equations (12 ) .  with p = q’ and P = PA and P,, ( Y ~  = ah*) and miB’. The dif- 
ference between this situation and that of the monatomic chain is in the initial conditions. 
From equations (23 )  and (27)-(30) these can be expressed in the form 

where 

and 

x u  = (1 + a$)( (*  - Q,Z) - 2. (33)  
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Unlike the monatomic MNA, where x- l  is a reduced energy parameter given by equation 
(lo), we now have x given by equation (31a). For fixed r ] ,  the mapping from x to the 
energy parameter 5; has two branches 

(34) 1 l i 2  
+ x-1(1  + a$)-’(2x + U + 3q2) 

when x # 0. When x = 0 and U = 1 (case (a)) we have 

f =  - (1 + 3q2)/[27(l + ~ 1 ~ ) ] .  (35) 
The line x = 0 is an invariant line in the ( x ,  q) plane. It contains the attractive fixed point 
x = r]  = 0 and corresponds to the special case of a non-interacting system. 

In the ( x ,  r ] )  plane the band edges are given, from equations (14), by the expression 
x = (51 - q2)/2 and substituting in equation (34) we have two bands with edges 
(Cy),  fy’) and (t!!), f!?) given by 

These band edges were obtained by Davison (1972), except that he omitted the modulus 
signs which occur in equations (36a) and (366) when U = -1 and U = 1 respectively. 
This led him to believe that in case (b) ( U  = -1) the band edges 5;:) crossed at 5 = 0, 
leading to an overlap of bands. In fact the bands touch at the point ( =  0, 77 = 
[l - (1 + cp2)1’2]/cp where the band edges have a discontinuity of slope. 

For case (a) the width of the band becomes zero when r ]  = 3 r ] * ( c p ) ,  where q* is the 
one real root of 

2 r ] 3 / c p l  + q 2  + 2771cp/ - 1 = o (37a) 
in the range (-1, 1). Substituting back into equations (36), with U = 1, we find that the 
points of zero band width occur at f = ? 5 ; * ( c p ) ,  where 

f *  = (1 + 3 ~ ” ~ ) / [ 2 r ] * ( 1  + r ] * * ) ] .  

2qV3 - 3112 - 2cpV + 1 = o 

(37b) 

(38a) 

For case (b) the cubic equation 

has two real roots ql(cp) and q2( cp) in the range (-1,l) and the band width of each band 
is zero at both q l  and q 2  where 

5; = C i ( c p )  = 5 [cp2  - 2(1 - q y ] ’ / *  i =  1,2.  (38b) 

The reason for which it is possible to obtain points of zero band width using a mapping 
from the ( x ,  q) plane, where the band is always of non-zero width, is clear if we substitute 
from equations (37) and (38) into equation (31a), when it is seen that both the numerator 
and denominator are zero. 

In general it is not possible to obtain the diagonal GF for the system by transforming 
equation (18) in the same way as we have transformed (14) to obtain the band edges. 
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The reason for this is that, in equations (31), the initial values of PA and PB are non-zero 
leading to a non-equivalence between this model and the homogeneous monatomic 
chain. In the special case q = 0, however, this non-equivalence is removed and the 
scaling equations reduce to the NN case given by equations (12) with p = 0, a” = 

and a!(?) and a?) given by equations (31b) and (31c), successively for a”, we obtain for 
both cases (a) and (b) 

&(A) , , P = PA, PB. If in equations (18) we substitute p = 0, x given by equation (31a) 

The partial DOS D,(E) at a C site, for C = A,  B, is given by 

D,(E) = - lim Im[G,,(O, 0; z ) ]  
8-O+ 

where z = E + io. When q = 0 the band-edge equations (36) take the simple form 

For case (a) ( a  = 1) both partial DOS have square-root singularities at the band edges fz)  and at the band edges there is one zero and one square-root singularity for each 
partial DOS. For case (b) ( a  = -1) the roles of fy )  and @ are reversed. Curves for 
partial DOS, derived from these formulae, are given by Parent et a1 (1980). For q non- 
zero the scaling procedure is used to obtain partial DOS. We find that the band-edge 
properties are unchanged by the introduction of q.  

Band-edge curves for the s-orbital model (case (a)) for cp = 1 are given by Davison 
(1972). For this case equations (37) give the numerical values q*( l )  = 0.376, f*(l)  = 
1.659. In figure 2 we present curves for the partial DOS of the s-orbital model plotted 
against f = (2E - - &B)/2V for q = 0.6, cp = 1. The band edges are (f!?, [?I)  = 
(-1.883, -1.402). (Cy), cy’) = (0.118, 5.158). Each partial DOS has a square-root 
singularity at the upper band edge. As q is decreased through q* the band edges of the 
lower band are reversed and at q = 0 we have the results of Parent er a1 (1980) where 
the square-root singularities of both partial DOS occur at the pair of outer band edges. 
In figure 3 we present another example of the s-orbital model with q = 0.6, cp = 1, v, = V ,  V B B  = 0.W. Here the initial value of y ,  given by equation (23b), is no longer 
zero and the analytic derivation of the band edges, given above, no longer applies. The 
situation is somewhat similar to that of the s-p hybrid crystal discussed in 0 5. The 
parameter y for q = 0 becomes a next-” interaction, which generates internal band 
singularities. When q # 0 these effects persist. 

In figure 4 we present the partial DOS for the s-p-orbital model (case (b)) when q = 
0.6, cp = 1. Inthiscasethebandstouchat q = -0.414and,fromequations(38), ql ( l )  = 
-0.745, q2(1) = 0.4 with cl( l )  = k2.344, c2(l) = 21.839. Each partial DOS has a 
square-root singularity at the inner band edge. 
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2 0  

1 5  

1 0  - 
‘U 
Q 

0 5  

0 
I I I , /  

- 3 0  -io - 1 0  0 1.0 20 3 0  4‘0 5’0 t 

5 = 1 2 E - c , -  E ” I / Z V  

Figure 2. Partial densities of states for the s-orbital model of a diatomic crystal, plotted 
against < (2E - E , ) / ~ V .  The parameter values are q = 0.6 ( p  = 0.36), V,, = V,, = 
V = 1.0, VAA = V,, = 1.0, Q: = 1.0. The partial densities of states for A and B atoms are 
represented by full and broken curves respectively. 

5 :  ( 2  E-  E A  ’ E g  1/21/ 

Figure 3. The same as in figure 2 except that cAA = 1.0. v,, = 0.5. 
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1 00 

0 15 

‘U 
0 5 0  

0 25 

0 
-2.5 -1.5 -0.5 0.5 1 5  2.5 

5 = 1 2 E - E L - E g ) / 2 V  

Figure 4. Partial densities of states for the s-p-orbital model of a diatomic crystal, plotted 
against < = ( 2 E  = 0.6 ( p  = 0.36), VAB = - 1.0, 
VBA = V =  1.0, V,, = 1.0, VBB = - 1.0, rp = 1.0.Theconventionforrepresentingcurvesis 
the same as in figures 2 and 3. 

- E ~ ) / _ ~ V .  The parameter values are 

5. An s-p hybrid model 

For the ionic crystal, described in § 4 ,  the s and p orbitals are located at alternate sites. 
In an s-p hybrid crystal like silicon or germanium both orbitals are located on the same 
site. In this case, therefore, we construe the A and B sites of figure 1 as s and p orbitals 
respectively and a pair as representing a single atom. The model of 8 3 is applicable to 
that situation in all its generality. For ease of discussion, however, we shall concentrate 
on the special case = ER = €0, VAA = VBB = Vwhich was investigated by Davison and 
Foo (1976) .  When p = 0, it follows from equation (22a)  that x and y become the NN and 
next-” interactions ( x  = xl, y = x 2 )  and the scaling equations reduce to 

x’ = (x2 + 2 y ) / ( l  - 2x2 + 2y2) 

y’ = -y2 / (1  - 2x2 + 2y2)  

/3; = (pcx - L u p y ) / ( l  - 2x2 + 2y2) 

(42a)  

(42b)  

C = A , B  (42c)  

( 4 2 4  

0 = (mc.“’ + 2XPC)/(l - 2x2 + 2y2) 

C = A,  B. 

The next-” problem has been considered by Southern et a1 (1983b)  and the DOS has 
been calculated by Bahurmuz and Loly (1981) .  In the ( x ,  y )  plane the line 

2y + 2x  = 1 (43a)  
and the curve 

(4y  + 1 ) 2  = 1 - 2 x 2  (43b)  
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are invariant under the transformation (42) and the line 

2 y - 2 x = 1  (43c) 
maps into equation (43a) in one iteration. The band of extended states is given by 
xr1  s x - l s  x ; ’ ,  where 

The band edge x = xu contains the fixed point x = 4, y = 0, which is the ordinary band- 
edge fixed point encountered in our discussion of the monatomic system, and the fixed 
point x = #, y = - Q which is a special point located at the meeting of the two different 
analytic forms for xu in equation (44b). The correspondingpointsx = - t ,  y = 0 andx = 
- 3 ,  y = - Q, which lie onxL,  are mapped into the fixed points in one iteration. We now 
define the variables 

and obtain the band edges of the s-p hybrid (for p = 0) using the mapping given by 
equations (23a) and (23b). These equations can be re-expressed in the form 

For fixed 8, the mapping from the ( x ,  y) plane to the (j‘, v) plane is two-valued. We 
restrict ourselves to the case of non-negative 5 and v. On physical grounds, it is also 
reasonable to restrict gfurther to the range E > 1. We find that the topology of the band 
edges differs substantially according as 5 > 2 or 2 > E > 1. Figure 5(a) represents a 
typical case (E = 3.0) for 5 > 2.  We have two distinct bands which touch at the point A 
given by ( Y ,  f) = ( E ,  -2). On the upper edge of the lower band the point C is given by 
( v ,  5 )  = (2, - E ) .  On the lower edge of the lower band the points B’ and B are given by 

B’: ( V ,  c)  = (2E, - E’ - 2,t - 4)/(2 + 5) 
B: ( V ,  [) = (2E, - ;”’ + 2 5  - 4)/(E - 2). 

(47a) 

(47b) 

Between these points the analytic form of the band edge is 

y = - f g v  - g / v  - u / g .  

The point B is an image of the fixed point x = 3, y = 4 and B’ is an image of x = - 3,  
y = - b .  The broken lines within the band correspond to internal singularities of the 
partial DOS. 

= 3.0, 
v = 2 .1 ,  is shown. The partial DOS for the s and p orbitals coincide whenever, as in this 
case, V,, = VBB, The band edges in figure 5(a) where obtained by Davison and Foo 

In figure 6(a) the DOS corresponding to the lower band of figure 5(a), when 
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(1976), except that they failed to obtain the portion of the band enclosed between the 
broken lines and the curve B’B. They, therefore, deduced that the band contracted to 
zero width at C. 

The band structure for a typical case with 1 < 5 < 2 ( 5  = 1.5) is given in figure 5(b) .  
Here there is only one band for v < 2 and the point A,  where the band splits, is given by 
( v ,  5;) = (2, - E ) .  The point B’ is again given by equation (47a) and B by 

B: ( v ,  f) = (25 ,25  - f Z  - 4) / (2  - 5) .  (49) 

> 1’0 
V 

Figure 5. Band edges for the s-p hybrid crystal with ( a )  5 = 3.0, ( b )  5 = 1.5. The broken 
lines represent internal singularities in the bands. 

The band edge between B’ and B is given by equation (48).  In this case we have up to 
three internal singularities in the band for fixed v .  The point C, where the internal 
singularities cross, is ( v ,  5;) = ( 5 ,  - 2 ) .  B and B’ are both images of the point x = - 1, 
y = - Q. The partial DOS for this case, with 5 = 1.5, v = 1.3 is shown in figure 6(b) .  

Although the presence of a non-zero value of p affects the location of the band edges 
the same qualitative behaviour is observed. We do, however, obtain a more complicated 
form of DOS when V A A  # VBB.  The partial DOS for the s and p orbitals no longer coincide 
and when V A A  > VBB,  more internal singularities occur in the partial DOS for the p 
orbital. An example of this is given in figure 7 ,  with p = 0.5, v = 2.0, E = 1.5, V A A  = V ,  

VBB = 0.5 V. 
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Figure 6. Density of dates  for the s-p hybrid model, plotted against 5 = ( E  - E, , ) /V ,  The 
parameter values are p = q = 0 and in (a )  V,, = 3.0, VBA = 2.1 (where only the band of 
lower energy is shown) and in ( b )  VAB = 1.5,  V,, = 1.3. In this case the partial densities of 
states for the 5 and p orbitals coincide. 

5 .  ( € - E 3 ) /  v 
Figure 7. Partial densities of states for the s-p hybrid crystal, plotted against C = 
( E  - E(J /V ,  with parameter values p = 0, p = 0.5, V,, = V = 1.0, V,, = 0.5, VAB = 1.5, 
I/,, = 2.0. The full and broken curves correspond respectively to the partial densities of 
states for the s and p orbitals. 
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We have considered a generalised diatomic tight-binding system in the MNA, to which 
we apply a transformation, which decouples it into two monatomic systems with more 
complicated interactions. In some special cases this allows us to obtain analytic results 
directly from those for the simple monatomic MNA. In general it is possible, at this stage, 
to use traditional Fourier transform methods to complete the calculations (Bahurmuz 
and Loly 1981, Shen 1985). This procedure is relatively tedious for anything more than 
the NN problem and we have used an alternative rescaling method, which allows us to 
obtain partial DOS in a simple way. Our method also has the advantage of affording us 
some physical insights into the problem. We find, for example. that under iteration the 
many-neighbour parameter p scales to zero. This shows that the physical behaviour of the 
systems considered is primarily determined by the finite-range problems. Our method is 
applied to both diatomic crystals and an s-p hybrid system. 
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