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A(s,@ 
A d s )  
- = l Jp( r ,z )27r r  cos (27rsz cos 0)J0(2mr sin 0) dr dz 

ppal, pPl, and po are respectively the electron density of the hy- 
drocarbon core, the polar region, and the solvent. One gets 

with v’ = (va + d)/(a  + d) and a’ = (a + d)/v’. 
This is similar to the expression obtained for a sphere; one finds 

two terms in the expression of the scattered amplitude: the first 
one corresponds to an ellipsoid whose electron density is (ppar - 
pPl), the second one to an ellipsoid with density (pPl - po).  

Guinier and Fournet had given the expression of the form 
function of ellipsoids of revolution with axes (R, R, y R ) ,  electron 
density p and volume V 

P(s )  = ( p  - p0)21“So~’2d2(2nRsg(0)) cos 0 d0 (A2) 

where $(u) is the form function of a sphere and g(0) = (cos2 0 
+ v2 sin2 

Using this last equation, one obtains eq 3. Two cases must be 
considered: oblate or prolate ellipsoids. 

(a )  Oblate Ellipsoids. The revolution axis is the minor one. 
We use as parameter the smaller dimensiona of the hydrocarbon 
core, noted 1 . When the half-axes become lpar, lpar/v and lpar/v 
for the paraffinic core (with a volume Vpar = 4/37r(ipa:/v2) and 
lpar + d ,  lpar/v + d and lpar/v + d for the whole particle (with a 
volume Vpol = 4/37r(ipar/v + d)2(ipar + 6)). 

In this case, v < 1. 
The form factor of these ellipsoids is then given by 

~ ( s )  = Jr’2[Vpar(ppar - Ppol)d(gl(0)2rlpas) + ~ppoi(pp01- 

~o)+(g2(0)2~(lpar + d)s)12 COS 0 do (A31 

with gl(0) = (cos2 0 + v2 sin2 0)’12, g2(0) = (cos2 8 + d2 sin2 
and v’ = v[(lpar + d)/(lpar + vd)]. 

(b) Prolate Ellipsoids. They are obtained by a rotation around 
the major axis. This time, their parameters are (Ipar, lpar, vipar) 
for the paraffinic part, (Ipar + d, lpar + d, vi + d) for the total q.r particle with a volume VPl = 4/37r(lpar + d) (vipr + d), and v > 
1. 

The expression of P(s)  (A3) can be used with v’ = (vlpar + 
d ) / l p a r  + d. 
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The Green function for an infinite chain of atoms is calculated within the framework of the many-neighbor approximation. 
The Dyson equation is then used to derive the surface Green function of a semiinfinite chain, where the end atom is perturbed 
due to the presence of the surface. Results are presented and discussed for the surface density of states, and the conditions 
governing the existence of surface states are investigated. 

1. Introduction 
The initial calculations of the electronic properties of l-di- 

mensional solids in the many-neighbor approximation (MNA) 
were restricted to infinite systems.’-3 The M N A  is a molecu- 
lar-orbital approach in which the nth nearest-neighbor (NN)  
interaction is written in the form p, = ppFL,  where p is the NN 
interaction energy and IpI < 1. The main effect on the bulk-band 
structure of including higher order interactions is to cause a 
broadening of the allowed bands with increasing p.  

Since surface states (SS) of semiinfinite (or finite) crystals 
emerge from the band edges, it is clear that they too will be 
affected by the presence of M N  interactions. However, the large 
number of surface boundary conditions, encountered as a result 
of the M N  interactions, makes the study of such localized states 
via the molecular-orbital method an intractable problem. For- 
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tunately, a Green function (GF) technique? involving the use of 
the Dyson e q ~ a t i o n , ~  is available, which enables the numerous 
boundary conditions to be accommodated with comparative ease. 

In the present paper, the G F  Go for an infinite crystal is cal- 
culated in section 2. Go is then used in the Dyson equation to 
obtain the surface GF G, for a semiinfinite crystal with a surface 
perturbation (section 3). The existence conditions for the SS are 
also given in section 3, and the numerical results for the surface 
density of states (SDOS) are presented and discussed in section 
4. Concluding remarks are made in section 5 .  

2. Infinite Crystal 

spectrum is given by’ 
For an infinite, 1-dimensional crystal, in the MNA, the energy 
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m n - l  X ( k )  = (COS ka - p)(l - 2p COS ka + p2)-' (1) 

where X ( k )  = [ E ( k )  - e ] / 2 / 3  is the reduced energy, E ( k )  being 
the energy eigenvalue with wavenumber k,  e the 1-electron energy 
at  each atom, and a the lattice constant. The corresponding G F  
for a cyclic crystal of N atoms may be written as 

In the limit, as N - a, the sum in (2) can be replaced by a 
contour integral5 around the unit circle in the complex plane of 
the variable t = elko, Le., (2) becomes 

where 

ff = ( 2 x p  + l)-'(Xp2 + p + x) (6) 

Since (5) shows that 

t l t 2  = 1 (7) 

the poles a t  t l  and t 2  are complex inverse points with respect to 
the unit circle. When 

(8) 

t12 lie on the unit circle, and (8) defines the band of extended states 
of an infinite crystal,' which corresponds to a branch cut of 
Go(n,m) in the complex X plane. A small positive imaginary part 
is included in X ,  so that Go(n,m) is defined uniquely for all X .  

The contour integral (3) can then be evaluated from the residues 
at  the poles t = 0 and t = t 2  of the integrand, which lie within 
the unit circle, to give 

(9) 

(1 + p)-I d x d (1 - p)-l  

Go(n,m) = 2 7 ~ 6 , ~  + {t21bml 

where 

= - iq [ ( l  - p)-l -x]-1/2[(1 + p)-I + . x - I / ~  (10) 

Because the atomic chain is infinite and homogeneous, the G F  
is translationally invariant, and can be written as 

Go(n,m) = go(n - m) (11) 

The G F  is real, when Xis real, except within the band of extended 
states given by (8), where the DOS expression is5 

Do(X,p) = -T-I Im go(0) (12) 

i.e., 

Do(X,p) = ~ - ' 7 [ ( 1  - p)-I  -x]-Il2[(1 + p)-I + (13) 

As in the NN situation, the DOS exhibits the same square root 
Van Hove singularity at the band edges. This can be understood 
in terms of the real-space rescaling analysis of Lavis et a1.,6 since 
the fixed point controlling the band edges lies in the subspace p 
= 0, which is the same as that for the NN model. 

3. Surface Green Function 
A semiinfinite, 1 -dimensional crystal can be formed from an 

infinite one by passing a cleavage line between the atoms on sites 
m = 0 and -1. In second-quantized form, the scattering potential 
in the MNA is 

(6) Lavis, D. A.; Davison, S. G.; Southern, B. W., to be published. 

where 

P n  = Ppn-l ,  IPI < 1 (15) 

is the resonance integral between nth NN atoms. 
The creation of a surface at  the end of a semiinfinite crystal 

perturbs the electronic environment in the region. The pertur- 
bation can be taken into account by changing the site energy from 
e to eo for the surface atom at  n = 0, and altering the values of 
the M N  interactions with the surface atom from Pn to Y,,, where, 
by analogy with (1 5), 

yn = yu-1, IfJI < 1 (16) 

In this case, the surface perturbation potential can be written 
as 

m 

Vp = lo)(eo - ~ ) ( o I  + C(7n - Pn)(lo)(nI + In)(oI) (17) 
n= 1 

Combining (14) and (17) leads to the total surface perturbation 
potential, which can be expressed as 

v, = 

vc + vp = (€0 - e)lo)(ol - C CPn+m(I-n)(ml + Im)(-nl) - 
m = l n = l  

?Pn(l-n)(OI + lo)(-nl) + C ( Y n -  Pn)(lo)(nl + In)(ol) (18) 
n= 1 n=l  

m m  

The Greenian operator for the perturbed semiinfinite crystal 

(19) 

Substituting (18) in (19), noting that G,(m,n) = 0, if m and n 
refer to sites on opposite sides of the cleavage line: and introducing 
the matrix notation 

is given by Dyson's equation5 in the form 

Gs = Go + GoV,G, 

gsb)  = (nlGsl0) (20) 

eventually leads to the surface G F  equation for the surface atom 
at  n = 0, viz., 

(21) Sgs(0) + e T l b ) ~ ,  - g0(0)(22 + 1) = 0 

Tj(0) = ( t j  - O ) - ' ;  j = 1, 2; 8 = p ,  u (22) 

where 

s = 1 - (€0 - e)go(O) + e[2PTl(P) - r7-,(41 

2 ,  = CPP"gs(m) 

m (24) 

z2 = C (Yam-' - Pp"-I)g,(m) 

(23) 
m 

m=l  

m=l  

After some lengthy algebra, (1 8) and (1 9) give the expression 

gAm) = t2"fll + (EO - e)gs(O) - Tl(P)[ZI + PgsWl + 
[YT2(") - PT,(p)lg,(O) + 2 2 1  + [rX(4Jm-' + 

PX(P)Pm-'1gs(O) (25) 

where 

which by (5), (6), and (1 1) becomes 

; o = p , u  (27) 1 ( P  - - PO) 

1 + O2 - 20a 
X(0) = 27 

Thus, (27) shows that X ( p )  = 0 in (25). 
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Figure 1. Surface state existence curves for eo = -0.5 and labeled with 
their values of p. Broken (solid) lines correspond to condition for surface 
state above (below) the band. Large dots with p values in parentheses 
correspond to curves plotted in Figures 2-4. 

Multiplying (25) first by /3pm and then by (y61-l - Pp"'), and 
summing the results separately over the range 1 < m < m, leads 
to two other linear equations in g,(O), Z,, and Zz, Le., 

Ag,(O) + P'Zl - P2(& + 1) = 0 

Bgs(0) + QiZl + Qz(% + 1) = 1 

A = PZC - PypX(a)(l - pa)-' 

c = PTl(P) - y T 2 ( d  + PTZb) - (to  - e )  

(28) 

(29) 

where 

B = Q 1 T 1 - ' ( p ) C -  yh(u)[y(l - P(1 -pa) - ' ]  - 

(30) 

Pi = 1 + Ti(p)Pz, Pz = lpPTi(p) 

Qi = U , ( ~ ) [ y T i ( u )  - PTi(p)l, Qz = 1 - QiTi-'(p) 

Equations 21, 28, and 29 can now be solved by Cramer's rule to 
give the surface G F  

I S  I 
(31) 

where 

Proceeding further, the SS energies X ,  are given by the zeros 
of A in (31). We shall, without loss of generality, fix the zero 
and scale of energy be setting e = 0 and P = 0.5, so the existence 
conditions then become 

where the upper (lower) sign refers to a SS above (below) the 
band. When p = a = 0, (33) reduces to the localized state 
condition of Lavis et aL7 
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Figure 2. Surface density of states curve for p = 0.25, eo = -0.5, y = 
0.75. and u = 0.25 showing surface state below the band. 
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Figure 3. Surface density of states curve for p = 0.5, co = -0.5, y = 
0.885, and u = 0.6 showing surface state below the band and singularity 
at upper band edge. 

4. Results and Discussion 
The inequality, eq 33, gives a lower bound on y for the existence 

of SS. The lower bound curves are drawn in Figure 1 for co = 
-0.5, as functions of u, and labeled with their values of p. The 
broken (solid) lines correspond to the condition for a SS to lie 
above (below) the band. Thus, for a particular value of p,  the 
ya plane is divided into various existence regions bounded by the 

(7) Lavis, D. A.; Southern, B. W.; Davison, S. G. J. Phys. C. 1985, 18, 
1387. 
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Figure 4. Surface density of states curve for p = 0.75, eo = -0.5, y = 
0.5, and u = 0.9 showing surface states above and below the band. 

curves corresponding to that value of p .  
From (12) and (31), the SDOS can be computed numerically. 

The results obtained are shown in Figures 2-4 for the parametric 
values corresponding to the three large dots identified in Figure 

1 by the p values shown in parentheses. Figure 2 depicts the SDOS 
curve for the first dot a t  p = 0.25, eo = -0.5, y = 0.15, and u = 
0.25. The SS below the lower band edge is located by including 
a small imaginary part in the energy E in this range. The S- 
function singularity then becomes a narrow Gaussian curve. The 
graph of Figure 3 shows the SDOS for the second dot at p = 0.5, 
eo = -0.5, y = 0.885, and u = 0.6. Here the SS below the lower 
band edge is accompanied by a singularity at the upper band edge. 
In the case of Figure 4, for the third dot a t  p = 0.75, eo = -0.5, 
y = 0.5, and u = 0.9, a SS occurs on both sides of the band. 
Comparing Figures 2-4, an increase in the bandwidth is observed, 
together with a shift to higher values of X ( E ) .  Moreover, the 
emergence of the SS from the upper band edge distorts the band 
SDOS in this region. 

5. Conclusion 
The SDOS of a semiinfinite monoatomic chain of atoms has 

been studied, within the context of the MNA, by using the Dyson 
equation approach. A detailed analysis of the SS existence 
conditions was undertaken and related to the structure of the 
SDOS curves. As is apparent from the results and discussion 
presented in the previous section, the inclusion of higher order 
interactions has a marked effect on the SDOS. Finally, it should 
be noted that, while the treatment described here has been con- 
cerned with 1-dimensional crystals, the findings are also valid for 
long-chain polyenes. 
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Photophysical evidence is presented indicating that in aqueous solutions of ionic surfactants, under appropriate conditions 
of the nature of the surfactant, surfactant concentration, and ionic strength, fast intermicellar exchange of micelle-solubilized 
pyrene or cetylpyridinium ion can occur on a time scale of 0.3-10 ws.  Furthermore it is shown that this process is not the 
result of micellar collisions as it is known to be the case in water-in-oil microemulsions. On the basis of the results, it is 
proposed that the observed intermicellar migration is due to fragmentation of the micelles into submicellar aggregates or 
fragments. One of the fragments carrying the solubilizate subsequently associates with a micelle (coagulation). Successive 
fragmentation/coagulation reactions result in solubilizate migration. This mechanism permits us to explain all of our experimental 
results. The relationship between the results of the present investigation and of previous chemical relaxation studies is discussed. 

Introduction 
Time-resolved fluorescence quenching of micelle-solubilized 

fluorescent probes by appropriate quenchers has found wide ap- 
plications during the past decade' in determining the dynamic 
behavior and characteristic parameters of aqueous mi~elles,2*~ 
alcohol swollen  micelle^,^.^ micro emulsion^,^ etc. A typical 
fluorescent probe, systematically employed for such studies, is 
pyrene (P) because of its very low solubility in water and its 
exceptionally small fluorescence decay rate constant k0.6 On the 

NRC 'Demokritos". 
*ICs (CRM-EAHP) and G r b  Micro6mulsion. 

other hand, the numerous quenchers available can be classified 
into two main categories according to the relationship between 
their residence time in a micelle and the unquenched fluorescence 

(1) Singer, L. A. In "Solution Behavior of Surfactants", Mittal, K. L., 
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and references therein. 

89, 2709. 
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