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J .  Phys. C:  Solid State Phys., 18 (1985) 1387-1399. Printed in Great Britain 

A real-space rescaling treatment of the spectral 
properties of an adatom-contaminated crystal system 

D A Lavis?, B W Southern$ and S G Davison9 
t Department of Mathematics, Chelsea College, 552 King’s Road, London SWlO OUA, 
UK 
$ Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada 
R3T 2N2 
0 Departments of Applied Mathematics and Physics, University of Waterloo. Waterloo, 
Ontario, Canada N2L 3G1 

Received 29 May 1984 

Abstract. An exact real-space rescaling transformation is used to calculate the local Green’s 
functions and the densities of states for a semi-infinite nearest-neighbour tight-binding 
system with an adatom and an impurity atom located at an arbitrary distance from the 
surface. The influence of both the surface and impurity atom characteristics on the adatom 
density of states can be determined in a simple manner. 

1. Introduction 

Recent work (Southern et a1 1983a, b ,  Langlois et a1 1983, Tremblay et a1 1983) has 
demonstrated the effectiveness of the real-space rescaling approach for the study of 
tight-binding systems. The method can be applied to a wide range of problems and 
provides a direct method of calculating local Green’s functions. The basic idea of the 
method is to take equations which describe the system with N degrees of freedom and 
to perform a transformation in which the number of degrees of freedom is reduced. One 
formulation of the method (Southern et a1 1983a, b) yields difference equations for the 
Green’s functions and the transformation is constructed in such a way that it leaves the 
form of these equations invariant when expressed in terms of a set of modified (renor- 
malised) parameters. An equivalent formulation can be constructed in terms of a 
generating function (Langlois et a1 1983, Tremblay and Southern 1983) which under the 
transformation remains invariant apart from an additive term. This latter approach has 
the advantage of exposing rather clearly the close similarity between the method used 
here to calculate the Green’s functions and the real-space renormalisation approach to 
the investigation of critical phenomena (Niemeijer and van Leeuwen 1976). Whichever 
formulation is adopted a set of relationships or recurrence equations are obtained 
between the renormalised energy parameters and the original set. Iteration of these 
equations leads to an effective diagonalisation of the Green’s function matrix and the 
local diagonal Green’s functions are obtained from the limiting values of the renormal- 
ised parameters. If the diagonal Green’s functions are analytically continued into the 
complex z-plane, where z = E + io and E is the energy, the localised states will appear 
as isolated singularities on the real axis and extended states will appear as branch cuts 
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on the real axis (Economou 1983). The transformation is exact and these non-regular 
regions are invariant subspaces. 

This method has been used to study the properties of a translationally invariant 
tight-binding system on a one-dimensional lattice with arbitrary range of interaction 
(Southern et a1 1983b), disordered binary harmonic chains (Langlois et a1 1983), chains 
with impurities (Southern et a1 1983a) and fractal systems (Tremblay and Southern 
1983). In this paper we apply the technique to a semi-infinite linear chain with an adatom 
at the surface and an impurity atom situated at some arbitrary site in the bulk. This 
problem has been considered previously by Ueba (1980) for special values of the 
interactions between the surface atom and the bulk, and between the impurity atom and 
the bulk. Using the conventional methods, he calculated the surface and adatom Green's 
functions and derived the density of states. Our method yields computational procedures 
which are so simple that we are able to consider the model with no special restrictions 
on the interactions. We are able to obtain Green's functions and local densities of states 
at the adatom and at any site of the lattice. In comparing the results of our calculations 
with those of Ueba (1980) we uncovered errors in his paper which are discussed further 
in § 5. The outline of the paper is as follows. In § 2 the general approach is described and 
in § 3 it is applied to the homogeneous chain. Section 4 treats the semi-infinite system 
with an adatom and impurity. In § 5 we present some sample results and in § 6 we state 
our conclusions. 

2. The general nearest-neighbour transformation 

We consider the nearest-neighbour tight-binding Hamiltonian 

where the state l j )  is an atomic-like orbital centred at site j and the sites form a regular 
one-dimensional lattice of N sites with periodic boundary conditions. The parameters 
~ ( j )  and V ( j ,  j + 1)  = V ( j  + 1 , j )  represent the diagonal and off-diagonal elements of 
the Hamiltonian in this basis. The spectral properties of the atom at sitejcan be obtained 
from the diagonal element ( j lG(N ,  H ;  z )  i j )  of the lattice Green's function operator 
G ( N ,  H ;  z )  = (zZ - H ) - '  where Zis the identity operator and z = E + io, E being the 
energy. 

Let 

where the coefficients ~ ( j )  are all real. Then it is not difficult to show (Langlois et a1 
1983) that 

r ( z> i  j g u I u ) ( u l  exp[iir(z)(ui(zz- ~ ) l u ) ]  

J ~ t u e x p [ i i r ( z ) ( u l ( z ~  - H ) I ~ ) I  
G ( N ,  H ;  2) = - (3) 

where 

and t(z) = sgn(Im(z)) = sgn 8 t o  ensure convergence of the integrals. 
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We define the generating function by 

F ( N ,  H ;  z )  = -In Z ( N ,  H ;  z )  ( 5 )  

(6) 

where 

S ( N ,  H ;  z )  = j 3 u  exp[l i t (z)(ui(zl-  ~ ) l u ) ]  

is the analogue of the partition function in statistical mechanics. From equations (3) to 
(6) 

G ( N ,  H ;  z ; j )  (jjG(N, H ;  z )  l j )  = - 2 a F / a ~ (  j) (70) 

and the site average diagonal Green's function is 

1 2 aF G ( N ,  H ;  z ; j )  = -- 
I N a z '  g ( H ;  2) = 

The function 

p ( z ; j )  = - ( s ( z ) / n )  I m G ( N , H ; z ; j )  (8) 

is the analytic continuation into the complex z-plane of the local density of states (LDOS) 
at site j .  It follows from (7) and (8) that 

p ( z ; j )  = (2t(z)/,z) Im aF/a&(j). (9) 

The calculation of the generating function Finvolves integrating over the N degrees 
of freedom u ( j ) ,  j = 1 , 2 ,  . . . , N .  In the real-space rescaling approach, F i s  calculated 
by performing a partial sum over a fraction of these degrees of freedom. The method 
proceeds as follows. We divide the lattice into two sublattices indexed (1) and (2) 
consisting of even- and odd-numbers sites respectively. The Hamiltonian is decomposed 
into 

where 

Writing 

where 

Hz* = , 2 j  + 1)&(2 j  + 1 ) ( 2 j  + 11 
1 
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we have 

( u I ( 2 Z - H )  u ) = ( U : l l ( Z Z - H I l )  u : l )  - ( U : l ~ H 1 z u : 2 )  - ( u : 2 I H z l l u : l )  

+ ( U :  2l(zZ - H*z) U :  2 ) .  (14) 

( U  ( z l - H ) U ) = ( W ~ ( Z Z - H 2 2 )  w ) + ( u ' l ( z Z - H ' ) ~ U ' )  (15) 

(16a) 

Equation (14) can be rearranged into the form: 

where 

I w) = 11: 2)  - (ZZ - H22) -'HZ1 lu: 1)  = c w(;) 121 + 1 

with 
V(2j + 1.2j)U(2j) V(2j + 1,2; +2)U(2j  + 2 )  

2 - E(2j + 1) 2 - E(2j + 1) w(;) = u(2j + 1)  - - 

with 

U'(;) = 42;) 

and 

H '  = HI1 + H12(zZ - H22)-1H21. (18) 

We  now transform the variables in the integral formula ( 6 )  from { U ( ; ) }  to { U ' ( ; ) .  ~ ( j ) } .  
From (16b) and (17b) the Jacobian of the transformation is unity. Performing the 
gaussian integrations for the variables { w ( j ) }  and substituting into (5) we have 

where 

(V(2j, 2; + 1))' (V(2j, 2; - l ) ) *  
2 - E ' ( ; )  = 2 - E(2j) - z - E ( 2 j  + 1) z - E ( 2 j  - 1)  (21a) - 

v'(;,; + 1) = V(2j, 2; + 1)V(2j  + 1,2; +2)/(2 - 42; + 1 ) ) .  (21b) 

Under the transformation represented by equations (19) to (21) there is an effective 
decoupling between the even- and odd-numbered sites of the lattice. The  mapping is to 
an equivalent lattice problem with Hamiltonian H '  which has renormalised couplings 
between the even-numbered sites. Beginning with the couplings do)(;) = E ( ; ) ,  

V c o ) ( j , j  + 1) = V(j, j + 1) and the Hamiltonian H ' O )  = H t h e  equations (18) to (21) can 
be iterated to produce a sequence of couplings bn)(j), V(") ( j , j  + 1)  and Hamiltonians 
H'"), for n = 0, 1 , 2 ,  . . . , where 
Mn) = (~2"j)E'"'(j)(2"jl + 12"j)V'")(j,j + 1) (2"(j + 1) 1 

i 

+ 12"(j + l ) )v(")( ; , ;  + 1)(2";1). (22) 
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The dependence of the generating functions F(2-",V. H'"':  z )  on the initial couplings 
become increasingly complicated as n is increased and more sites of the lattice are subject 
to integration. The  only exception to this is the s i t e j  = 0 for which 

a&"" ( j ) j d & ( O )  = 6,J) (23a) 

ab'("'(;. j + l ) / d e ( o )  = 0 (236) 
for n = 1 .2 .  . . . and we have from (7a)f 

G(2-"N. H'" ' :  2 :  0)  = G('V. H :  2 ;  0)  

The diagonal Green s function is invariant. under the transformation at site j = 0. but 
not at any other site. The strategy adopted in these calculations, given that we wish to 
calculate the diagonal Green's function and LDOS at a particular lattice site. is to label 
the sites in such a way that the site of interest has index j = 0. It follows from equation 
(24) that the local Green's function for our chosen site is invariant under the transfor- 
mation. This means that singular regions. either branch cuts corresponding to extended 
states. o r  isolated singularities corresponding to localised states are invariant under the 
transformation. That the localised states are invariant can also be seen from the fact that 
they are roots of 

det(zZ - H )  = 0. (25) 
Since the Jacobian of the transformation of variables given by (16b) and (17b) is unity 
these roots are invariant under the transformation. 

A necessary condition for the iterative procedure to work is that IV("'( j .  j + 1)1+ 0 
as n - x uniformly on j .  Whether this condition is satisfied can be determined during 
the numerical calculations. Given that it is, then for all S > 0. there exists an no > 0 
such that. for all n > no. lVn)(j, j  + 1)1 < 6 for all j .  It is now easy to show that 

for n > no .  Thus from (7a) and (26): 

G ( N ,  H ;  z ;  0) = lim ( z  - d f l ) ( O ) ) - ]  
n- x 

(27) 

The  diagonal Green's function and DOS at j = 0 can be obtained from the limiting value 
of E ( " )  (0). 

3. The homogeneous case 

In the case of a uniform chain we have ~ ( j )  = E and V ( j ,  j + 1) = V ,  for all j ,  and the 
equations (21) can be written in the form 

j-' = 2j-2 - 1 (28a) 

V '  = v/25 (28b) 
+ Equations (23) and (24) are satisfied for nearest-neighbour interactions only. If the interaction range extends 
beyond nearest neighbours, then a more complicated chain rule applies. Alternatively the procedure outlined 
by Southern et al(1983a, b) can be adopted. 
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where 

c =  (2 - &)/2V 

The mapping 

[ = (1 + r2)/2t (30) 
from the complex <-plane to the complex t-plane, has two branches separated by the 
circle It1 = 1 which is the image of the branch cut < E [ - 1, 11. The inverse mapping 

(31) t = <[ 1 - (1 - < - 2 ) 1 p 2 ]  

takes the <-plane into the closed region bounded by /ti = 1. Using (30) the recurrence 
relations (28) can be expressed in the form 

t '  = t 2  

V '  = Vt/( 1 + t 2 )  

Beginning with the values t(') = t ,  V(') = V and iterating equations (32) we have 
1 t(") 1 -+ 0, 1 V'") I + 0 whenever It(') 1 < 1. 

If /t(')I = 1 then It(")( = 1 for all n .  The image of the branch cut is an invariant subspace 
of the transformation. This is the band of extended states - 1 S < s + 1. The band edges 

= + 1 and < = - 1 correspond to t = + 1 and t = - 1, respectively. The former is a fixed 
point of (32a). The latter maps into that fixed point in one iteration. From (32) 

(33a) = p 

Equation (33b) can be written in the form 

and from (29) 

In the above expressions, each iteration of the transformation eliminates half the 
sites and corresponds to a scale factor of two. Iteration of the transformation n times 
leaves 1/2" of the original sites to be integrated. This is equivalent to a scale factor b = 
2". For a general scaling factor b the equations (33) and (34) become 

(35a) t' = t b  

V(1 - t 2 ) t b - l  

1 - t2* 

V(1 - e )  1 +t2b 

V '  = 

ii..;.). z - &' = 
t 

In the limit n -+ o r b  -+ E, when It1 < 1, we have from (27), 

G(N,H;z;O) = t / V ( l  - t 2 )  = [ ( z  - &)'-4VZ]-'" (36) 
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which is a well-known result (Economou 1983). Using (32) we see that (36) satisfies the 
invariance conditions (24). An interesting alternative derivation of (36) can be obtained 
from (26) which, for the homogeneous system, takes the form: 

Substituting in (37) from (34) and utilising the identity 

whichisusedin asimilarwayinthe computationof the free energy of the one-dimensional 
Ising model (Nauenberg 1975), we have 

N V z ( z )  F(N,H;z)  =-ln - 
2 ( 2rrit 1 

From (29) and (30) 

dt/dz = t2/V(t2 - 1) 

and using (7b)  we recover (36). 

(39) 

Surface 

Eo 6 s  E E E E E E , E E  
ev,+v,-c- v-v-0------- c - v ~ v i + v l ~ v + - - - -  

0 1 2 3  p-2  p-1 p p + l  p.2 
I 

Figure 1. A semi-infinite chain with an adatom and an impurityp sites from the surface. 

4. Semi-infinite chain with adatom and impurity 

A semi-infinite chain with an adatom and an impurity, p sites from the surface, is shown 
in figure 1. From the computational point of view, the simplest way to treat the system 
is to embed it in an infinite system with Hamiltonian given by (1). The adatom now 
occupies the site immediately to the left of the surface atom and the interaction between 
the adatom and the atom on its left is set at zero. If we wish to obtain the spectral 
properties at m lattice spacings from the surface then, according to the method described 
in 0 2, that site must be assigned the labelj = 0. Hence the adatom is a t j  = -m - 1, the 
surface at j = -m and the impurity a t j  = p - m. The parameters in (1) have the values 
~ ( j )  = &and V ( j ,  j + 1) = Vfor alljexcept for: 

E ( - 1  - m) = E, E(-m) = ES E ( p  - m) = E i .  (41a) 
Here E , ,  E~ and ~i are the self-energies of the adatom, surface and impurity atoms 
respectively, and 

V(-2 - m ,  -1 - m )  = 0 V(-1 - m, -m)  = V, V(-m,  -m + 1) = V, 

V(p - m - l , p  - m )  = Vi 

V(p - m,p  - m + 1) = Vi 
P ' l  

P 'O (41b) 
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where the first equation effectively terminates the chain at the adatom and V,, V ,  and 
Vi are the adatom-surface, surface-bulk and impurity-bulk interactions respectively. 
The inhomogeneity is thus confined to the strip of sites K = { j :  - 1 - NO S j S N O }  where 
No = max( 11 + mi, / p  - mi).  Our procedure for evaluating G(N,  H ;  z ;  0) is as follows: 

( a )  Choose the zero of energy such that the host self-energy E = 0 and the energy 
scale such that V = 0.5. The homogeneous chain then has a continuum of states in the 
range - 1 s E s 1. The complex energy f = z = E + iehas Bnon-zero but small to avoid 
the singularities on the real axis. A non-zero Ois also required for the iteration procedure 
to converge. In our calculations we use e = IO-'. 

( b )  Initialise all parameters to ~ ( j )  = 0 and V ( j , j  + 1) = 0.5. Redefine the par- 
ameters within the strip K which have different values as indicated by (41). 

(c) Iterate equations (21)  and test for convergence of the complex parameter ~ ( " ~ ( 0 )  
at each iteration n. 

( d )  The DOS p(z ;  0) at the site m ( j  = 0) is given by ( 8 )  and (27) .  

Outside the region of extended states in the bulk we have Im(G(N, H ,  E ;  0)) = 0 
unless E corresponds to a local mode, when [Re( G(N,  H ;  E ;  O ) ) ] - '  = 0. Alternatively 
we could write 

det(zZ - H )  = det(zZ - H o )  det(Z - GoH1) (42)  
where HO and GO are the Hamiltonian and Green's function, respectively, of the homo- 
geneous system and H1 = H - Ho.  Because the homogeneous system has no localised 
states, the roots of 

det(Z - GoH1) = 0 (43)  
are the localised states, which are invariant under the transformation. For comparatively 
simple systems (Southern et a1 1983a) it is not difficult to find these roots and obtain the 
reduced set of recurrence relations governing their behaviour within the invariant 
subspace of the localised states. For more complicated systems, this strategy vitiates the 
simplicity of the numerical methods proposed in this paper, 

5. Results 

For the homogeneous system where there is no surface or impurity present the local 
Green's function G(N,  H ;  z ;  j )  is equal to the site averageg(H; z )  for allj. The DOS can 
be obtained from the imaginary part of (36)  and there is an inverse square-root singularity 
at the band edges IEl = 1. This singular behaviour can also be deduced using standard 
scaling arguments (Southern et a1 1983b, Niemeijer and van Leeuwen 1976) for the 
generating function F i n  a neighbourhood of the fixed point t = 1 of (32a) which corre- 
sponds to the band edge E = 1. In the presence of a small number of inhomogeneities, 
the site average Green function g ( H ;  z )  remains unchanged but the local Green's 
functions G ( N ,  H ;  z ;  j )  are no longer equal to it .  The LDOS at a site m lattice spacings 
into the bulk is obtained from the limiting value ( n  --i, =) of d") (m)  under the rescaling 
transformation. For a site located deep in the bulk ( m  + =), the limiting value is that 
for the homogeneous system 

E + ( E 2  - 1)'* E < - 1  

E ~ ( = ) =  E + i t ( z ) ( l - E 2 ) "  lEl< 1 (44) i E - ( E 2  - 1 ) ' j 2  E > 1 .  
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For sites near the surface, however, d " ) ( m )  does not iterate to these forms and the 
square-root divergence of the imaginary part of the local Green's function is absent 
except for the special values of the interaction parameters, referred to below. Instead 
it approaches zero as a square root at the band edges. We now discuss the results of 
some sample calculations. 

5.1. No impurity in the bulk ( p  = 0)  

This simple case where we have an adatom and a surface but no impurities in the bulk 

I U1 

3 

L 0.5 1.0 

E 

I 

E 

Figure 2. ( a )  Adatom densities of states pa,  ( b )  surface densities of states p s ,  where = 
-0.5. E* = -0.2, V,  = 0.5. The curves are labelled with their values of V ,  and the localised 
state in each case appears only for V ,  > 0.387. 
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has been discussed in detail by Ueba (1980). However, his expressions contain a minor 
error, which we discovered by comparing his results with those obtained using the 
numerical procedure outlined in 5 4. If the surface-bulk interaction V,  = V = 0.5 the 
correct condition for the existence of a local mode in the adatom density of states (ADOS) 
is V', > ( E ,  7 1)( E, 3 l) ,  where the upper/lower sign refers to the region above/below 
the band edge of bulk states. The appearance of the local mode is preceeded by a 
singularity at the band edge when V', = ( G  7 1 ) ( ~ ,  7 1). For Ueba's choice of E, = 
- 0.5 and G = -0.2 a local mode will appear below the band if IV,l > 0.387. Figure 2(a) 
shows our results for the ADOS pa for different values of V,. As indicated above we used 
8 = lo-* and for this value approximately 30 iterations are required for convergence of 
pa at each value of E. The local mode below the band appears only for the cases V,  = 
0.4,0.5, since only in these cases is the critical value of lV,l exceeded. In the case V,  = 
0.4 the local mode is very close to the band edge and within the band the DOS has a steep 
maximum close to the edge. The local mode shown in figure 2(a) at E = -1.04 is for 
V,  = 0.5. Apart from this minor discrepancy between our results and those of Ueba 
(1980), our numerical calculations for pa are in exact agreement with the corrected 
expressions obtained using the standard approach. The surface atom density of states 
(SDOS) is shown in figure 2(b) for the same parameter values as in figure 2(a). The SDOS 
is modified by the presence of the adatom and vanishes inside the band at E = E,. The 
condition for a local mode to appear in the SDOS outside the band is the same as for the 

E 

E 

Figure 3. (a)  Adatom density of states pa,  ( b )  
surface density of states ,or, (c) impurity density 
of states p , ,  with the impurity at site p = 1, and 

0.5. 
E = =  -0.5, E , =  0.0, E ,  = -0.4 , a  V = V 5 = V 1 = 
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Figure 4. ( a )  Adatom density of states p a ,  ( b )  
surface density of states p s ,  (c) impurity density 
of states p, ,  with the impurity at site p = 4, and 

0.4, V,  = 0.2. The maximum at E = -0.656 in 
figure 4(a) occurs at pa = 13.6 and those in figure 
4(b)a tE  = -0.86and0.250ccuratpr = 67.0and 
39.8 respectively. 

& = -0.5, = -0.2, E ,  = -0.4, V ,  = 0.3, V,  = 
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ADOS and in figure 4(b) for V,  = 0.4 the local mode is again close to the edge with that 
for V,  = 0.5 at E = -1.04. Ueba (1980) did not include the effect of the adatom in 
calculating p, and the appearance of a second local mode in his calculation of the ADOS 
is spurious. 

5.2. Impurity one site f rom surface ( p  = 1 )  

Figures 3(a) to ( c )  show the ADOS pa, the SDOS p, and the impurity atom density of states 
(IDOS) pi respectively, calculated using our rescaling method for E,  = -0.5, E, = 0.0, 

= -0.4 and V ,  = V,  = Vi = V = 0.5, where the impurity is located next to the surface 
atom. The two peaks in pa inside the band can be identified with the adatom and surface 
atom by comparing figures 3(a) and ( b ) .  Again it should be noted that the SDOS shown 
in Ueba (1980) figure 4(b) is for V ,  = 0.0, thereby excluding the effect of the adatom. 

5.3. Impurity displaced four sites f rom the surface ( p  = 4) 

When the impurity is situated deeper in the bulk, the standard techniques to solve the 
problem become algebraically complicated. However, the rescaling procedure is just as 
simple in this case as in §5.1 and 05.2 above. Figures 4 show some sample results for pa, 
ps and p, when the impurity is located four sites from the surface and the parameters in 
(41) have the values E, = -0.5, E, = -0.2, E, = -0.4, V ,  = 0.3, V ,  = 0.4 and V,  = 0.2. 
By comparing figures 4(a) to ( c )  we can determine how the surface and impurity atoms 
affect the adatom electronic properties. 

6. Conclusions 

In summary the procedure outlined in § 4 can be used to study the effects of impurities 
and surface properties on the adatom density of states. Additional impurities can also 
be treated easily and the problem of an adatom adsorbed on to a randomly disordered 
material could be examined using an approach similar to that described by Langlois et 
a1 (1983). The virtues of our method lie both in the fact that it is exact and in its 
computational simplicity. 
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Yore added in proof Recently. Sulston et a1 (1984) have used this model. in conjunction nith the Neuns- 
Anderson (1969) approach. to calculate the chemisorption energies of contaminated metals. such as. H - Cu 
(NI) and H - NI (Cu) 
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