
Journal of Statistical Physics, Vol. 35, Nos. 5/6, 1984 

Renormalization Group Study of a Three-Dimensional 
Lattice Model with Directional Bonding 

D. A. Lavis t and B. W.  Southern 2 

Received September 8, 1983; revision received December 2, 1983 

We consider a bcc lattice model in which each site is either vacant or occupied 
by a molecule. The molecules have four symmetrically arranged arms directed 
towards four of the eight nearest-neighbor sites. Two molecules form a bond if 
they have bonding arms pointing towards each other and along their line of 
centers. We introduce bonding energies as well as two-, three-, and four- 
molecule interactions. The model is studied using a real-space renormalization 
group method. The form of the pressure-temperature phase diagram is found to 
be very sensitive to small changes in the relative sizes of the energy parameters. 
Adjustment of these parameters allows us to obtain a phase diagram which 
resembles that of the ice-water-steam system. The nature of the transitions 
between the various ordered phases is examined and the critical exponents are 
obtained. 

KEY WORDS: Water; phase transitions; lattice gas; directional bonding; 
renormalization group. 

1. I N T R O D U C T I O N  

It has long been recognized that  m a n y  of the " a n o m a l o u s "  propert ies  of 

water  arise f rom compet i t ion  between open and close-packed forms of 

molecu la r  order  which originates in the abili ty of the water  molecule  to 

form tetrahedral ly  directed hydrogen  bonds.  A bonded- f lu id  model  on a 

bcc lattice was in t roduced  by Bell (I) to s imulate  hydrogen-bond ing  effects 

in water.  In this mode l  each molecule  had  four  preferential  bonding  

directions,  or arms, symmetr ica l ly  p laced and point ing towards four  of the 
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eight nearest-neighbor sites. The asymmetry  of the bond was represented by 
taking two of the bonding arms of a molecule as positive and two as 
negative. A bond was formed when a positive arm of one molecule and a 
negative arm of its neighbor pointed towards each other along their line of 
centers. Each molecule had 12 possible orientations and a lattice site could 
be either vacant or occupied by a molecule. A fully bonded arrangement of 
molecules formed a diamond structure on half the sites of the lattice and if 
the remaining sites where vacant the structure resembled that of Ice Ic. If, 
on the other hand, the remaining sites were occupied by an identical fully 
bonded arrangement of molecules the structure resembled Ice VII. Bell (~) 
used the first-order mean-field method in which the bonded structures 
appeared only as a form of short-range order. Long-range order was 
incorporated in the zeroth-order mean-field calculations of Bell and Salt. (2) 
Fleming and Gibbs (3) used the model to obtain virial coefficients and also 
derived results with a different choice of energy parameters from Bell's 
using a functional integral formulation. The model has also been used by 
Lavis and Christou (4) to calculate the dielectric constant of water and in a 
modified form by Wilson and Bell (s) to consider aqueous solutions of 
nonelectrolytes. 

The Bell model described above is essentially a 13 state model which 
makes it very difficult to treat using other than mean-field methods. In this 
paper  we modify the Bell model by removing the bond asymmetry. A 
molecule now has four equivalent arms and two orientations. A bond is 
formed if the arms of two neighboring molecules point towards each other 
and lie along their line of centers. The lattice is divided into four equivalent 
fcc sublattices A, B, C, and D and a spin variable S is defined at each 
lattice site so that S - - -0  corresponds to a vacant site and S = + 1 , -  1 
correspond to the two molecular orientations. This is done in such a way 
that  a molecule on a A/B/C/D site has bonding arms towards 
D/C/A/B sites if it is in state S = + 1 and towards C/D/B/A sites if it 
is in state S - - - -  1 (see Fig. 1). This model is a generalization of the 
Blume-Emery-Gri f f i ths  (6) model, which is itself a generalization of the 
spin-1 Ising model to include biquadratic and crystal field terms. Exact 
results for our model have been derived by Heilmann and Huckaby.  (7~ 
With certain pair interactions but no three- or four-molecule interactions 
they obtained upper and lower bounds on the region of phase transitions in 
the chemical potent ia l - tempera ture  plane. Their discussion of lower 
bounds is based on the arguments of Peierls (8) and, as we shall see in 
Section 3, their results can also be applied to our choice of parameters. 
Their calculation of upper bounds derives from the results of Ruelle (9~ and 
these are not so easily generalized to cases with interactions involving more 
than two molecules. 
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Fig. 1. The  molecule  with d i rec t ional  bonds  on a site of the bcc lattice. The bond ing  a rms  for 

a molecule  on a B site po in t  e i ther  to the ne ighbor ing  C sites or to the ne ighbor ing  D sites. 

We shall investigate the model using a block-spin real-space renormal- 
ization group (RSRG) method. (l~ In order to preserve the sublattice 
ordering which occurs in the solid phases we use a 16-site cluster (see Fig. 
2) with periodic boundary conditions. The renormalization procedure re- 
duces the four sites of each sublattice in the cluster to a single site. The 
model is a three-dimensional version of the two-dimensional triangular 
bonded lattice model of Bell and Lavis (1]) and our method of treatment is 
similar to that used by Southern and Lavis (]2) for that model. The most 
important difference between the two- and three-dimensional models is that 
the bcc lattice allows a dense fully bonded structure whereas the fully 
occupied two-dimensional model is equivalent to the triangular antiferro- 
magnetic spin-1//2 Ising model for which there is no ordering transition. In 
three dimensions the fully occupied system, at infinite chemical potential, is 
equivalent to the simple-cubic sublattice antiferromagnet. The transition in 
that system, which corresponds to the high-density limit of the ordering 
transition to the dense fully bonded phase, is in the universality class of the 
spin-I//2 ferromagnetic Ising transition which is continuous. In our RSRG 
procedure the fixed point governing this Ising transition controls the whole 
of the transition curve to the dense bonded phase with finite chemical 
potential. That transition is therefore continuous. Meijer et  al. (]3) have 
recently used a cluster variation method for the Bell-Salt model and also 
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Fig. 2. 
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The 16-site cluster used for the RSRG calculation. The heavy lines connect the sites 
of one of the 96 basic tetrahedra in the cluster. 

find the transition from the fluid to close-packed solid phase to be second 
order. This contrasts with the transitions in the water system to high- 
pressure forms of ice which are first order. (14) 

The outline of the paper  is as follows. In Section 2 we introduce the 
details of the model and in Section 3 we discuss its ground states and use 
the method of Heilmann and Huckaby  (7) to determine lower bounds on the 
region of phase transitions. In Section 4 we describe the R S R G  method and 
in Section 5 the phase diagrams, fixed points, and critical exponents are 
given. Our conclusions are presented in Section 6. 

2. THE MODEL 

Consider a bcc lattice of N sites with periodic boundary conditions 
(N = 16 in our R S R G  calculation). The lattice is divided into four equiva- 
lent FCC sublattices A, B, C, and D and decomposed into 6N tetrahedra 
each consisting of one site from each sublattice (see Fig. 2). At each lattice 
site there is a spin variable S which takes the values 0, + 1, - 1 as described 
in Section 1. Only those interactions which can be contained within a basic 
tetrahedron of the lattice are introduced. A molecule on a lattice site has 
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chemical potential /~ and a nearest-neighbor pair of molecules has non- 
bonding interaction e n e r g y -  e I . We also include interaction energy - e 2  
between second-neighbor molecules, an interaction - e  3 between three 
molecules occupying sites of a basic tetrahedron, and an interaction - E  4 
between four molecules which fill a basic tetrahedron. It  is by no means 
obvious how the hydrogen-bonding energy of a pair of water molecules is 
to be defined and distinguished from other interaction energies between the 
molecules. This is made clear by the discussion in Chapter 3 of Ref. 14 
where, for Ice I, four different definitions are given for this quantity leading 
to different estimates for its magnitude. There does however appear  to be 
general agreement that the bonding energy in Ice I is significantly larger 
than that in liquid water (cf. Ref. 14, Tables 3.18 and 4.2). It must be 
concluded from this that the environment of a hydrogen bond affects its 
strength. Whether this is due to the proximity of other hydrogen bonds or a 
function of local density or both is by no means clear. In any event the 
scope within our model for incorporating such effects is rather limited given 
that we are considering a lattice model with at most two hydrogen bonds 
per basic tetrahedron. We have chosen to include the environmental effect 
on the strength of a hydrogen bond purely in terms of the local density. In 
our model each bonded pair belongs to six tetrahedra. If n 2 of these 
tetrahedra are occupied by just the pair of molecules, n 3 are occupied by 
the pair and one other, and n 4 are fully occupied, we assign to the pair a 
bonding energy - (n2w 2 + n3w 3 "q- n4w4)//6 where n 2 + n 3 + n 4 = 6 and w 2, 
w3, w 4 are all greater than zero. In a ground state the bonding energy will 
be - w 2 ,  - w 3 ,  or - w  4 according to whether the system contains N / 2 ,  

3 N / 4 ,  or N molecules. At finite temperatures the energy of any bond will 
in general be a weighted combination of these. 

The Hamiltonian of the system can be expressed in the form 

14 = h(SAi, Ss, ,  Sc,,  SD, ) (1) 
i 

where S~, c~ = A, B, C, D is the spin state of the c~ site in the ith tetrahe- 
dron, h(SAi ,  SBi, Sci ,  SDi) is the contribution to the Hamiltonian from the 
tetrahedron and the sum is over all 6N tetrahedra of the lattice. 

The R S R G  method generates all interactions consistent with the 
symmetry of the model even if they are not present initially. To determine 
the most general form for h we consider the symmetry properties of the 
above model. We define the following operations on the spin states on the 
lattice sites of a tetrahedron: vr 0 is spin inversion at all four sites, ~l the 
interchange of S A with Se, rr 2 the interchange of S c with S D, and ~r 3 the 
interchange of S A with S c and S~ with S D . The corresponding two element 
groups are J k  = [ J ,  ~k] k = 0, 1,2, 3, where ~"  is the identity element. For 
the Blume-Emery-Gr i f f i ths  (6) model the symmetry group of h is the 
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sixteen element group J l  = J o  | J: | J 2  @ f 3  and there are 12 distinct 
polynomials in { S  a , Sa,  S c, So} which have this symmetry. Taking into 
account the vacant state the system has 13 ground states. If h includes 
bonding terms the symmetry group is reduced to J8  = [J ,%~h,%rr2,  
%rr3, %%, vr2%, %%%%]. This reduction in symmetry increases the num- 
ber of distinct polynomials to 14 and the number of ground states to the 15 
listed in Table I. 

T a b l e  I, S p e c t r u m  o f  h 

Name Cj Configuration Degeneracy toj Energy ej 
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Table I. (Continued) 
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The general form for h invariant under the symmetry group JB is 

h (SA, S8, Sc, SD ) 

=" -- ~4 A( S 2 -I- SB 2 -'1- Sc 2 4- SD 2) -- ~ KI( SA 2 -I- SB2)( Sc 2 "4- SD 2) 

1 2 2 2 2 
-- gK2(Sf~S B + SCSD) -- { J l (Sa  + S B ) ( S c  + S D ) 

- �88 B + S c S  D) - 16RI(SAS B - S c S  D)2(SA + S B ) ( S c  + S D) 

-  R2[ sAsB(s - s2)2+ ScSD(S - 2] 
- 1 M , S A S B S c S D ( S  A + S B ) ( S c  + S D ) 

- �88 a SBScSD (SaSB + S c S  D ) 

+ + sa)]-Ls sas s  
- QSASBScSD + ~a , (SA -- SB ) ( S c  - SD )(SA + SB -- Sc  - SD ) 

+ la2(sA - s~ ) ( s c  - sD ) 

x [ S A S B ( S  c + S D) - S c S D ( S  A + S u ) ]  (2) 

The terms with coefficients f~l and f~2 are those with the reduced symmetry 
of JR-  If f~l = fa2 = 0 h has the symmetry group J l .  

In terms of the energies/x, w2, w3, w4, q ,  e2, e3, ~4 the coefficients of (2) 
take the form 

21 = pt, K1 = (q  + �88 /s = e2, Jt = - ~w2, J2 = 0 

R 1 = - l ( w  3 -  w2) , R 2 = 0 ,  m 1= - � 8 8  4 -  w2), m 2 = 0  
(3) 

+ w 2 ) - ,  - 

Q = 0 ,  9 1 = - -  1 W 2 ,  f l  2 = 0 

Although some of the coefficients above are zero for our model, the RSRG 
procedure will generate nonzero values for these quantities and they must 
therefore be taken into account. 

3. GROUND STATES AND LOWER BOUNDS 

The 15 possible ground states of the system C1, C 2 . . . . .  Cl5 are listed 
in Table I, together with their energies eg derived from (2) and (3). For 
particular values of the energy parameters the stable ground state Ci, if it is 
unique, will be the one for which e i < e j ,  for all j 4  = i. If there is a 
degenerate set of states with least energy then these values of the energy 
parameters correspond to a point on the boundary between the degenerate 
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Theorem. 
equation 

states. We wish to determine which ground state is stable for a particular 
choice of the parameters /x,w 2 . . . . .  w4, q . . . .  , e 4 and to find a lower 
bound on the temperature range for which the stable ground-state gives rise 
to an  ordered structure. If the bonding energies w2, w3, and w 4 are all 
positive then the only possible stable ground states are Ct, C2, C 3, C6, C7, 
C 8, C 9, and Cl2. If we further impose the conditions 

(w2 + {:1) > 0 (4a) 

(w2 + '1) > {:2 (4b) 

Then the possible stable ground states are Cl, C 3, C8, C9, and Cl2. Phase 
C l corresponds to the vapor phase (V), phase C 3 to the open solid (Ice Ic 
type) phase (OS), and phase C~2 to the dense solid (Ice VII type) phase 
(DS). The degenerate phases C 8 and C 9 correspond to an intermediate form 
of ordering not present in the water system. If we impose the conditions 

4 W  2 - -  4 W  3 + 2 W  4 > 3{: 2 - 6{: 4 (4c) 
and 

w 2  - -  2 w 3  + 2 w 4  > - -  {:l - -  6 e 3  - -  6{:4 (4d) 

then phases C a and C 9 are never stable ground states. For waterlike 
behavior we also need a region of stability of C3 between those of C~ and 
C~2, which are, respectively, the stable phases for large negative and large 
positive values of the chemical potential. This is achieved if conditions 
(4a)-(4d) are satisfied together with 

2q + 3{: 2 + 12{: 3 + 6{: 4 < 2w 2 - 2w 4 (4e) 

A sufficient condition for any ground state Cj to give rise to an ordered 
structure at finite temperature has been obtained for this model by Hell- 
mann and Huckaby. (7) Although they use their results only for pair 
interactions they apply equally well to the case in which there are three- 
and four-particle interactions. We now quote their result adapted to our 
notation in the form of a theorem, the proof being given in their paper. 

For the ground state ~ ,  ~ is given as the solution of the 

and 

n l / 2 ~ " =  (~oj - 1)/~oj (5a) 
n = 24 

7j  = - ej  + min {ek} (5b) 
k~j  

where the degeneracies o3j and the expressions for the energies ej per 
tetrahedron are listed in Table I. If, for the phase Cy, 7j > 0 the ordered 
phase with the ground state Cj is present in the temperature range T < Tj* 
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where 

kBTj* = y j / l n [ 3 / ~ ]  (5c) 

Since the system is disordered at high temperature this means that the 
transition to the ordered phase with ground state Cj occurs at a temperature 
greater than or equal to Tj*. We are interested in the ground states C1, C 3 
and C12 for which the respective solutions of (5a) are ~1 = 0, ~'3 = 0.8545, 
and ~12 = 0.8436. At any point in the space of energy parameters at most 
one Tj > 0 corresponding to the stable ground state. (The other possibility, 
which will not concern us here, is when the most stable ground states are 
members of a degenerate set for each of which 7j = 0.) Using this theorem 
and the information contained in Table I a lower bound phase diagram in 
the ~ k B T / w  2 - I~/W 2 plane is shown in Fig. 3 for the values of the energy 
parameters w 2 . . . . .  w4,~ ~ . . . . .  e 4 used in our RSRG calculations (see 
Section 5). 

4, RSRG CALCULATIONS 

Beginning with a cluster of 16 sites, four from each sublattice (see Fig. 
2), the renormalization procedure reduces the cluster to four sites with 
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periodic boundary conditions. If S,  = (S~,  S~2, S~3, S~4) is the spin state of 
the four a sites on the initial cluster and S~' is the spin state of the 
renormalized a site (a = A, B, C, D), the renormalization equation takes the 
form 

exp k8 T = g ( { S ~ } )  ~ IIPr(So~[S.) exp 
{s~ 

H((S.})kBT ] 

(6) 

where 3k is the Kronecker 8 function and ~ ( S , ) =  1, 0 , -  1 according as 
(S~l + S~2 + S~3 + S~4) > 0, = 0, < 0, respectively. 

If the set (Ss } in Eq. (6) is varied over its possible values we obtain the 
equations 

X) k+ l )  = x(ok)Zjl/24({x(k))) j~--- 1 . . . . .  15; k-~- 0 , 1 , 2  . . . .  ( I 0 )  

where xj = e x p ( -  ej/k 8 T), ej being the value of h given by (2) in ground 
state Cj as listed in Table I. The quantity x 0 = gl/24, the Zj are homoge- 
neous polynomials of degree 96 and k is the iteration index of the RSRG 
transformation. The recurrence relations (10) determine trajectories in the 
space of couplings or equivalently in the space of the variables (xj} where 
x 0 is given at each stage of the iteration process by (8), which now takes the 

where 

H({S~})  = ~ h( SAi , SB, , Sc, , SD, ) (7a) 
i 

the sum being over all 96 tetrahedra of the initial cluster and 

H'({S" }) = 24h(S~ ,S~ ,S~ ,S~ )  (7b) 

where h is given by (2) and the factor 24 in (7b) arises from the periodic 
boundary conditions given that each site belongs to 24 tetrahedra. The 
function g({S~}) is determined by the condition that 

h(0,0,0,0)  = 0 (8) 

and Pr(S~ IS,)  is a conditional probability function. As in all calculations 
of this type its choice is to some extent arbitrary as long at it obeys the rules 
of probability theory. In our calculations we used a form of double- 
majority rule (is) given by 

I 6~(S~ ), S2o < 2 

p , ~ ' ~ ( s , )  s o = 2  r ( Z [ s ~  ) =  6 k { s  : _  }, 2 
/ 

' 3 ' 2 

(9) 
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form 

x~ k) = 1, k = 0, 1 , . . .  (11) 

We are interested in trajectories which begin at points in the space (xj} for 
which the couplings are given in terms of the energy parameters by 
equations (3) although these conditions will in general no longer hold as the 
trajectory progresses and the additional couplings, which were zero at the 
initial point, are generated. A trajectory which starts at a point {xj} where 
the behavior of the system is not critical will iterate to a sink which 
characterizes that phase. These regions are separated by critical regions 
which form domains of attraction for critical fixed points. Once the fixed 
points have been located the recurrence relations can be linearized about 
them and the eigenvalues h i of the linear equations calculated. The critical 
exponents Yi are related to the eigenvalues by Yi = ln(hi)/ln(b) where b is 
the scale factor which is 41/3 in the present calculation. For a sink all the 
critical exponents are negative (irrelevant). A fixed point controlling a 
critical surface separating two phases will have one positive (relevant) 
exponent. An exponent y~ = d = 3 is a necessary condition for the first- 
order phase transition. (16) 

The partition function Z associated with the initial cluster of 16 sites is 
given by 

Z = Y~ ~jzj (12) 
J 

where the degeneracies ~0j are listed in Table I. After the renormalization 
transformation the partition function Z '  associated with the cluster of four 
sites is 

z ' =  E,o;(x)) 24 03) 
J 

Using (10) we find that the free energies per site are related by 

f =  ~ln(x0) + �88 (14) 

where 

f =  - �89 f ' =  - �88 (15) 

Iterating (14) we find that the free energy per site (in units of k B T) can be 
written 

f(o) = 3 ~ (1/4)~ln(xCoS)) (16) 
s=0 

In practice the infinite series usually converges very quickly and the free 
energy for an initial point {x) ~ ) can be obtained after only a few 
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iterations. The pressure P of the system is given by 

e V o  = - ( 1 7 )  

and the molecular number density P is given by 

o = ( i s )  

where V 0 is the volume per lattice site. The latter is used to determine 
whether a critical surface controlled by a fixed point with one relevant 
exponent Yi = 3 is in fact a surface of first-order phase transitions. 

5. PHASE DIAGRAMS AND CRITICAL BEHAVIOR 

In investigating the model described in this paper we aimed to deter- 
mine the extent to which it is capable of simulating waterlike behavior. The 
liquid phase (L) is characterized as the dense disordered phase. The RSRG 
method employed preserves the ground state of the system and a necessary 
but not sufficient condition for waterlike behavior is that the energy 
parameters satisfy conditions (4) with the bonding energies w 2, w 3, w 4 all 
positive. In order for the model to be a realistic description of the water 
system the V-OS and OS-DS transitions should be first order and the 
OS-DS transition should change to a first-order O S -L  transition beyond 
the meeting point of the three phases (OS), (DS), and (L). Ideally this 
meeting point would be a triple point but, as indicated in Section 1, our 
method gives a continuous D S - L  transition in the same universality class 
as the ferromagnetic spin-1//2 Ising model and so the meeting of the three 
phases will at best be a critical endqine point. It is necessary for the OS-L  
and OS-V transitions to meet at a point which is a triple-point from which 
a first-order L -V  transition proceeds to higher temperatures and terminates 
at a critical end point. With our final choice of values for the energy 
parameters we were able to obtain a phase diagram with all these character- 
istics (Fig. 4) but since, beyond ground state considerations there is no a 
priori method of arriving at these results without trying a number of sets of 
values it is perhaps of interest to describe some of the initial results which 
ultimately led us to the values used here. 

The mean-field calculations of Bell and Salt, (2~ for the similar model 
with asymmetric bonds, used choices of energy parameters with w 2 = w 3 
= w 4 > 0, e I > 0, e2 < 0, e 3 = e 4 = 0. We investigated a number of cases in 
this category. In no example were we able to obtain a first-order L - V  
transition. We also found regions of stability of the partially bounded dense 
phases which correspond to ground states C13 and C14. At high tempera- 
tures the process of phase change between the (OS) and (DS) phases seems 
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Fig. 4. 
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broken lines. 

to occur in two stages, a continuous transition in which the vacant sites 
become occupied by nonbonded molecules followed by a second continu- 
ous transition in which the molecules bond. The zeroth-order mean-field 
method of Bell and Salt (z) includes only three independent long-range 
order parameters. Within this method such continuous transitions if they 
exist would be difficult to detect. The work of Bell, (1) again for the model 
with asymmetric bonds, used choices of energy parameters with w 2 = w 3 
= W 4 > 0,  e 1 > 0 ,  E2 = 0,  s < 0,  E 4 ~--- 0 .  W e  also investigated cases of this 
type and our results were similar to those obtained for the parameters of 
Bell and Salt, (2) namely, the absence of a first-order (L)-(V) transition and 
regions of stability of partially bonded dense phases. 

The reason for both these effects appears to be the fact that the (OS) 
phase persisted to rather high temperatures swamping the first-order (L)-  
(V) transition which would be present in the absence of bonding (w 2 = w 3 
= w 4 = 0) and resulting in entropic advantage for the partially bonded 
dense phases. In order to reduce the temperature range of the (OS) phase 
we set q < 0 and e 4 > 0. At the same time we introduce small negative 
values for e 2 and e 3 although neither of these appear to have significant 
effect upon our results. This choice of parameters had the desired effect in 
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suppressing the partially bonded dense phases and producing a first-order 
(L)-(V) transition. We, however, found that with w 2 = w 3 = w 4, the (DS) -  
(L) phase transition occurred at too high a temperature relative to the range 
of the phase (OS) and a first-order (DS)-(V)  transition occurred with a 
critical end-line point at the meeting of the phases (DS), (L), and (V). As 
indicated in Section 1 experimental evidence suggests that bonding energy 
decreases with density in water. By choosing w 2 > w 3 > w 4 > 0 we were 
able to reduce the temperature at which the (DS)-(L)  transition occurred 
and to obtain phase diagrams with the topological characteristics of the 
phase diagram of the water system. Our final choice for the energy 
parameters was E 1 = - 0 . 5 w  2, ~2 = -0 .0625w2,  % = -0 .055w2,  s = 0"54w2, 
w 3 = 0.9375w2, and w 4 = 0.0625w 2. Figure 4 is the phase diagram for these 
values. The lower-bound phase diagram, Fig. 3, is consistent with the 
results in Fig. 4 although comparison of the temperature scales in these two 
diagrams shows that the lower bounds are very low excluding, in the 
interests of clarity, their presentation on the same figure. Pressure- 
temperature and molecular density-temperature phase diagrams were ob- 
tained using the procedure described in Section 4. They are shown, respec- 
tively, as Figs. 5 and 6. 

Fig. 5. 
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The (DS)-(OS), (L)-(OS), (V)-(OS), and (L)-(V) transitions are all 
controlled by fixed points with one relevant exponent with characteristic 
first-order value d = 3. That  these are indeed first-order transitions is 
confirmed by our calculation of the molecular density (see Fig. 6). The 
continuous (DS)-(L) transition is controlled by a fixed point with one 
relevant exponent 1.238. The critical end-line point labeled A has a fixed 
point with a relevant exponent, also with value 1.238, and a second 
exponent with the value 3. The triple point B is controlled by a fixed point 
which has two relevant first-order exponents. The fixed point which con- 
trols the critical end point C lies in the subspace with no bonding (i.e., that 
of a lattice gas). The transition is in the universality class of the spin-1/2 
Ising model. Its relevant exponents Yl = 1.238 and y 2 = 2.343 lead to values 
i, = 1 / y  1 = 0.807 and 7 = (2): 2 - 3 ) / y  I = 1.361 for correlation length and 
compressibility exponents. These can be compared with recent estimates of 

=0.631 _+ 0.003 and 7 = 1.239 +0.002 by Nickel. (17~ Our rather poor 
values for ferromagnetic exponents are characteristic of renormalization 
procedures designed to preserve sublattice ordering. 

6.  C O N C L U S I O N S  

All R S R G  procedures, such as those used in the present paper, which 
begin with a cluster of N sites each with q degrees of freedom and 
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renormalize to a smaller cluster, have one factor in common. All the q N 
configurations of the original cluster are used to determine the recurrence 
relations. For any reasonably sized cluster and anything more than a 
two-state system q U becomes large and machine computations are neces- 
sary in order to distribute these qN configurations among the monomial 
terms of the recurrence relations. In our system with N = 16, q = 3 the 
large number of configurations led to some storage and computing-time 
difficulties and placed the problem near to the limits of present computer 
technology. This fact shows rather clearly the current intractibility of 
attempting the same cluster method for the Bell (1) model with asymmetric 
bonds (N = 16, q = 13). We are therefore not in a position to determine the 
extent to which the "waterlike" phase diagrams of Bell and Salt, (2~ and our 
failure to obtain a comparable phase diagram for their parameter values, 
are due to their use of asymmetric bonds or an artifact of mean-field 
methods. The fact that Meijer et al., (13) using a cluster variation method for 
symmetric bonds, were able to obtain waterlike behavior with a similar 
choice of parameters to Bell and Salt, (2~ seems to indicate that the results 
are dependent on the use of mean-field methods. Recent Monte Carlo 
calculations of Whitehouse et al. (18) for the asymmetric bond model and 
the same energy parameters as Bell (1) indicate the presence of a first-order 
(DS)-(OS) transition at lower temperatures. Our calculations for Bell's 
parameter values are consistent with these results. The absence of the 
first-order (L)-(V) transition and the presence of regions for which partially 
bonded dense structures are stable is not evident until rather higher 
temperatures. 

Using this conceptually simple lattice model we have been able to 
obtain phase diagrams with the general topological characteristics of the 
water system. The form of these phase diagrams is crucially dependent on 
the presence of directional bonding. This lends support to the contention 
that the special character of water is a consequence of hydrogen bonding. 
The necessity for the bonding energies to be combined with a particular 
arrangement of nonbonding interactions is probably an artifact of the 
lattice structure of the model, although the need to vary the bonding energy 
in proportion to the degree of occupation of neighboring sites is likely to be 
of more general validity. 
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