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Abstract. Real-space renormalisation group methods are used to study a two-dimensional 
lattice fluid model on a triangular lattice with application to phospholipid monolayers at 
airiwater and oiliwater interfaces. The phase diagram and pressure-area isotherms are 
calculated for various strengths of the couplings between neighbouring molecules. The 
choice of an overall attractive interaction energy between nearest-neighbours yields, in a 
certain temperature range, two phase transitions along the isotherms. These are interpreted 
to be a first-order vapour-liquid transition and a continuous transition between two types of 
liquid phase. With an overall repulsive interaction the first-order transition is absent. The 
nature of the continuous liquid-liquid transition is examined in detail. 

1. Introduction 

In recent years much work has been devoted to an examination of the phase properties 
of natural membranes. It has also been recognised that lipids isolated from membranes 
display phase properties similar in many respects to those of the parent membrane. This 
has led to a study of lipid monolayer and multilayer systems as models for membranes. 
In general it is found that phase transitions of pure lipid systems are somewhat sharper 
than those associated with real membranes. This is not surprising since it may be expected 
that in membranes the cooperative effects of the interactions between lipids will be 
disturbed by the wide distribution of chain lengths, the presence of double bonds or 
branching in the chains and the interactions with the non-lipid species. Monolayers 
provide a particularly effective means of investigating lipid phase properties as the 
number density can be easily controlled and accurately measured at a given surface 
pressure. In this introduction we shall not attempt a complete survey of previous 
experimental and theoretical work but shall simply draw attention to some references 
which seem relevant to the present paper. A more detailed discussion can be found in 
a recent review by Bell et a1 (1981). 

Monolayers of amphipathic molecules at airiwater interfaces, where each molecule 
has a headgroup with an affinity to water and an attached carbon chain, have been 
known for many years to display interesting phase properties (Adam and Jessop 1926, 
Nutting and Harkins 1939, Adam 1941, Harkins 1943,1952). On certain pressure-area 
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A 

Figure 1. Schematic representation of the pressure-area isotherm behaviour of lipid mono- 
layers at the aidwater interface: LC is the liquid condensed phase, LE is the liquid expanded 
phase and v is the vapour phase. 

isotherms a first-order vapour-liquid transition, with a discontinuity in density, is 
observed with a second type of transition occurring at lower areas as shown schematically 
in figure 1. This second transition is continuous in the sense that there is no density gap 
and it appears on the isotherm as an apparently abrupt change of slope. The phases on 
either side of this continuous transition are often termed liquid-expanded (LE) and 
liquid-condensed (LC). At lower temperatures it frequently happens that only the 
vapour-liquid transition can be seen on the isotherm. According to Phillips and Chap- 
man (1968) these phenomena are found, for certain chain lengths, in phospholipid 
monolayers at the aidwater interface. For phospholipid monolayers at the oiliwater 
interface there are no vapour-liquid transitions but the continuous LE-LC transitions still 
occur (Taylor etal 1973, Tan et a1 1976, Pethica et a1 1976). 

There has been a considerable amount of theoretical work on lattice models, attempt- 
ing to explain the above behaviour. These theories divide into two main groups. The 
first group is based on the idea that each carbon chain disorders from the all-trans 
conformation, in which it is perpendicular to the interface and the carbon atoms are 
coplanar, to a random conformation. This transition is cooperative and the internally 
disordered chains occupy a larger area. Theories based on this idea (Nagle 1973,1975, 
1976, MarEelja 1974, Scott 1974, 1975) predict that the LE-LC transition is first order. 
The second group of theories regard the LE-LC transition as occurring as a result of 
molecules in their all-trans configuration assuming a form of long-range orientational 
order. The earliest calculation of this kind is due to Kirkwood (1943). He assumed that 
the headgroups formed a regular two-dimensional lattice parallel to the interfacial plane 
with the carbon chains all in the all-trans conformation perpendicular to the plane. His 
mean-field theory predicted a continuous transition but did not provide a means of 
obtaining isotherm behaviour. In order to do this it is necessary to introduce vacant sites 
on the lattice. Bell et a1 (1978) (hereafter referred to as BMT) used the simplest form of 
lattice model which incorporates both vacancies and orientational effects, by treating 
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the monolayer as a dilute spin4 Ising model. Mean-field calculations for their model 
predict both first-order liquid-vapour and continuous LE-LC transitions. 

The present paper examines the model of BMT using real-space renormalisation 
group (RSRG) methods, Mean-field methods always yield classical values for critical 
exponents at continuous transitions, while RSRG methods, although also approximate, 
are able to give exponents in better agreement with known exact results for certain 
exactly soluble models (for a review see Niemeijer and van Leeuwen 1976). Although 
BMT, as indicated above, regarded their model as a diluted spin4 Ising model, this is 
equivalent to the representation of the model as a spin-1 Ising model with the spin 
variable S = k1 corresponding to the orientational state of the molecule and S = 0 
corresponding to a vacant site. This is the formalism which we adopt. While monolayers 
are observed experimentally in a limited range of absolute temperature, models can be 
studied at all temperatures down to 0 K. BMT considered only the temperature range 
appropriate to monolayers but, particularly for repulsive intermolecular interactions, 
there are low-temperature phenomena which are interesting for their own sake. We 
include these in our results. 

We describe the model and method of calculation in § 2. In § 3 the results for the 
phase diagrams and isotherm behaviour are presented and our conclusions are given in 
0 4. 

2. Themodel 

We consider a triangular lattice divided into three equivalent sublattices A ,  B and C. 
Each lattice site is either vacant or occupied by a headgroup. We suppose that a molecule 

Figure 2. The four possible states of a pair of neighbouring molecules labelled with their 
values of the variable S,. A pair of molecules both in the same state interacts with an energy 
- ( E  + e) and a pair of molecules in different states interacts with an energy - ( E  - e). 
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with its headgroup on a lattice site is in one of two states. These two states are coplanar 
and are distinguished by the conformations of the carbon chains (figure 2). It can be 
seen that these states transform into each other under a rotation of 180" about an axis 
through the headgroup and perpendicular to the interface. They can therefore be 
regarded as two orientational states of the molecule. At each lattice site we have a 
variable Si which can take the value 0, ? 1 corresponding respectively to the site being 
vacant or occupied by a molecule in one of its two orientational states. A pair of 
molecules on adjacent sites has an energy - ( E  + 0) if they are both in the same state 
and - ( E  - 0) if they are in different states (Bcorresponds to the parameterJof BMT). 
The mean density of molecules is controlled by using the grand canonical distribution 
with chemical potential p as an independent variable. In terms of the variables Si the 
Hamiltonian of the system is given by 

H = I C H A  A (la) 

with 

ffA = -sp(s', + s:, + s$) - ie(s,s, + sds, + sdA) 

where the summation is over all elementary triangles of the lattice and Sa(@ = A, B, C) 
denotes the state of the molecule on the site on sublattice cuin triangle A ,  

We use a block-spin transformation similar to that employed by Schick et a1 (1977) 
in their study of the spin-; Ising model and Schick and Griffiths (1977) for the three-state 
Potts model. An initial cluster of nine sites is chosen such that three sites belong to each 

Figure 3. The nine-site cluster of sites with periodic boundary conditions. The spin-state at 
the site d of the renormalised lattice is determined by the spin-states at the three cusites 
( a . = A , B , C ) .  
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of the three sublattices and periodic boundary conditions are imposed (see figure 3). 
Application of the renormalisation group transformation reduces the nine-site cluster 
to a cluster of three sites, one belonging to each of the three sublattices. This corresponds 
to an increase in length scale by a factor fi. The spin state on the renormalised a’ site 
( a  = A, B, C) is determined by the spin-states on the three asites in the nine-site cluster 
using a weight function. Our results are presented for one particular choice of weight 
function. If two or three spins on the a sublattice are in the same state then the 
renormalised spin at d is assigned to this state. If the three spins are all different then 
the renormalised spin has a probability of one-third of being in any one of the three spin 
states. In any RSRG calculation all couplings which are generated by the recurrence 
relations must be included even if they are not present in the initial Hamiltonian. The 
Hamiltonian given by equations ( l ) ,  is invariant under spin inversion and divisible into 
terms containing the spins on the elementary triangles of the lattice. The recurrence 
relations will generate all distinct even degree symmetric polynomials in the spins SA, SB 
and Sc. These consist of the three terms given in equation ( lb)  plus the two three-spin 
terms SASBSC (SA +SB + Se) and SiSgS$, and we have altogether a five-dimensional 
space of coupling constants (Southern and Lavis 1980). A special case of the spin-1 Ising 
model is the three-state Potts model with symmetry group Y3 on the three spin states. 
The Hamiltonian for this model on a triangular lattice corresponds to the Hamiltonian 
of the spin-1 Ising model with particular linear relationships between the coupling 
constants (Young and Lavis 1979). We are in this case left with aspace of two independent 
coupling constants. The weight function we have chosen is that utilised by Schick and 
Griffiths (1977) to treat the three-state Potts model and the two-parameter subspace of 
the model is therefore invariant under the operation of our recurrence relations. 

The phase diagram is determined by iterating the recurrence relations for the coup- 
ling constants (see Southern and Lavis 1979 for a more detailed discussion). A trajectory 
which begins at a point where the behaviour is not critical will iterate to a sink which 
characterises the phase. These regions are separated by the critical regions which form 
domains of attraction for the critical fixed points. Once these fixed points have been 
located the recurrence relations can be linearised about the fixed points and the eigen- 
values Ai of the linear equations can be calculated. The critical exponents y ,  are related 
to the eigenvalues by Ai =byt, where b is the scale factor which is equal to in the 
present calculation. 

3. Isotherm behaviour 

As in the work of BMT we confine our attention to the case 8 > 0, and in this case there 
are four possible stable ground states labelled C1, CZ, C3 and Cq in figure 4. The state C1 
is the ground state corresponding to the vapour phase V, the state CZ is the ground state 
corresponding to the liquid condensed phase LC in which each site is occupied by a 
molecule in the same orientation and the state C4 is the ground state corresponding to 
the phase HC in which the molecules, all in the same orientation, form a honeycomb 
arrangement on two of the three sublattices. The state C3isonein which every elementary 
triangle contains exactly one molecule in either configuration. This phase does not 
exhibit long-range order at any non-zero temperature. In terms of the renormalisation 
procedure this means that the fixed point associated with the phase is not a sink. The 
diagram which would correspond to figure 4 for a temperature fractionally above zero 
would have the whole of the region occupied by C3 in figure 4 as part of the stability 
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Figure 4. The zero temperature phase diagram for 0 > 0 in terms of the variables E = ~ i 0 a n d  
p = @0. 

region of C1. In addition to these low-temperature phases there also exists a high- 
temperature disordered phase which is the liquid-expanded (LE) phase. 

A numerical study of the trajectory flows allows the construction of the phase diagram 
in the temperature-chemical-potential plane for any initialchoiceof E = de. Themethod 
by which, in RSRG calculations, the free energy f per lattice site (in units of kBT) and its 
derivatives are derived is described by Niemeijer and van Leeuwen (1976) (see also 
Southern and Lavis 1980). In the case of the present model (using the grand canonical 
distribution) the pressure P of the system is given by 

PA0 = -kBTf (2) 

where A0 is the area per lattice site. The area A per molecule is given by 

A = (aP/ay)T'. (3) 

Isotherms at fixed values of the reduced temperature kBTi6 can therefore be obtained 
in the plane of reduced pressure PAd6 against reduced area A/Ao for various values of 
e. 

For large positive Ea continuous transition exists between the LC and LE phases. The 
transition terminates at a critical end-line point. This end-line point is the meeting point 
of the continuous LE-LC transition and two first-order transitions, one between the 
vapour and the LC phase at low temperatures and one between the vapour and the LE 
phase at higher temperatures. The vapour-LE transition terminates at a critical end- 
point. We are therefore able to obtain, for decreasing temperature, isotherms which 
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Figure 5. For E = 4.5 (a)  is the phase diagram in the kBT/@, $0 plane. The first-order 
transitions are indicated by broken lines and the higher-order transition by a continuous 
line. (b)  gives the isotherms, labelled with their values of kBT/@, in the pressure-area plane. 
The higher-order transitions are marked by dots and the first-order transitions are rep- 
resented by chain curves. 
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exhibit: (i) no transitions; (ii) only a first-order vapour-LE transition; (iii) both a first- 
order vapour-LE transition and a continuous LE-LC transition; and (iv) only a first-order 
vapour-Lc transition. As the value of E is lowered the critical end-point temperature 
decreases and we have a range of temperatures for which isotherms have only an LE-LC 
transition (figure 5a). At E = 3.0 the critical end-point and the critical end-line point 
coalesce to give a tricritical point. In the range -1.0 G E G 3.0 the behaviour of the 
system is similar to that of the ferromagnetic Blume-Cape1 model (Blume 1966, Cape1 
1966) with at most one phase transition occurring on any isotherm; either a first-order 
vapour-Lc transition, at low temperatures, or a continuous LE-LC transition at higher 
temperatures. As E approaches - 1.0 the tricritical point approaches zero temperature 
and below this value there are no first-order transitions. However, at low temperatures 
the honeycomb (HC) phase corresponding to the ground-state C4 is now present (figure 
6(a)). There is a continuous transition between the HC and LC phases and the three 
phases LE, LC and HC meet at a multicritical point at zero temperature. 

We shall not examine all these cases in detail since we are primarily concerned with 
the LC-LE transition which occur for all values of E .  As indicated above, figures 5(a) and 
6(a) are representative examples of phase diagrams in the reduced-temperature- 
chemical-potential plane, being respectively for the values E = 4.5 and -4.0. The rel- 
evant exponents for the fixed points which control the transitions in these two cases are 
listed in table 1. The phase diagram in figure 5(a) exhibits behaviour similar to that 
expected for lipid monolayers at the airiwater interface. Figure 6(a) shows a phase 
diagram more appropriate to lipid monolayers at the oiliwater interface. Figures 5(b) 
and 6(b) show isotherms in the pressure-area plane for the same two cases. These latter 
figures differ not only in that, unlike 5(b), figure 6(b) has no first-order transitions, but 
also because, for E <  -1.0, crossings occur between the isotherms. This means that 
there is a region in which the coefficient of thermal expansion is negative. This phenom- 
enon arises from the existence of the low-density HC phase. There does not appear to be 
any experimental evidence for the existence of this additional phase in lipid monolayers 
at an oiliwater interface in the temperature range of observations, although isotherm 
crossing does occur in certain monolayer systems where molecules have extended 
configurations (Bell and Dunne 1978,1979). 

In the range of temperatures for which the LE-LC transition occurs the isotherms do 
not clearly exhibit this transition as a discontinuity of slopein contrast to theexperimental 
results (figure 1) and those results obtained in the mean-field calculations of BMT. In 
order to understand this behaviour it is useful to examine the situation using scaling 
theory. The slope of the isotherms in the pressure-area plane can be expressed in the 
form 

(dP/dA) T = - ~ / A K T  (4) 

Table 1. Fixed points and relevant critical exponents 

Type Phases involved 

First-order point v-LC 

Critical point LE-LC 
First-order point V-LE 

Critical point LC-HC 
Critical end-point V-LE 

Multicritical point LE-LC-HC 
Critical end-line point V-LE-LC 

Relevant exponents 

2.0 
2.0 
0.638 
0.956 
1.761,0.697 
2.0,0.638 
0.738,0.469 
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Figure 6 .  For E = -4.0 (a) is the phase diagram in the kBTi8, plane. Higher-order 
transitions are indicated by continuous lines. ( b )  gives the isotherms, labelled with their 
values of kBTi8, in the pressure-area plane. The higher-order transitions are marked by 
dots. 
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where K~ is the compressibility. In the neighbourhood of a phase boundary controlled 
by a fixed point with one relevant exponent y the compressibility takes the form 

K~ = + B(Ap,l(d-2y)’y ( 5 )  
where do) is the non-singular contribution to the compressibility, B is an amplitude 
factor, Ap is the difference of the chemical potential from its critical value and d is the 
spatial dimension (see e.g. Hankey and Stanley 1972 for a discussion of the scaling 
theory arguments which lead to this result). It has been shown by Nienhuis and Nauen- 
berg (1975) that a necessary condition for a first-order phase transition at a boundary 
with relevant exponent y is that y = d. An extension of this argument leads to the result 
that at a continuous transition a necessary condition for a finite discontinuity in 
the compressibility corresponding to a discontinuity in slope on the isotherm is that 
y = di2. This value of the exponent is that which is obtained by mean-field methods and 
we can in consequence understand the discontinuity in slope obtained by BMT at the 
LE-LC transition. In general the exponents are not expected to take their classical values, 
particularly in low-dimensional systems where fluctuations play a significant role, except 
when the intermolecular forces are of very long range. If y > di2 the compressibility 
diverges at the transition (unless B = 0) and the slope of the isotherm is zero. On the 
other hand if y < d/2 the compressibility is dominated by its non-singular part and the 
isotherms will not necessarily indicate the presence of the transition by an anomaly of 
slope. In this latter case any difference of slope which occurs on an isotherm in a 
neighbourhood of the phase transition will arise from the influence of the change of 
phase on the non-singular part of the compressibility. There is some indication of an 
effect of this kind in figure 5(b). In our calculations two factors are responsible for the 
absence of any very strong indications of a transition: (i) the exponent obtained is y = 
0.638 and thus we cannot obtain a divergent contribution to the compressibility: (ii) the 
fixed point governing the LE-LC transition lies in the pure spin-i subspace of our model 
and with our choice of weight function the subspace is invariant under the operation of 
the recurrence relations. The relevant scaling field in terms of which the singular con- 
tribution to the compressibility can be expressed is given in terms of the left eigenvector 
associated with the relevant exponent (Niemeijer and van Leeuwen 1976). In our case, 
since the spin-l subspace is invariant this vector lies in this subspace and consequently 
has no chemical potential component. This means that the amplitude factor B in equation 
( 5 )  is identically zero. This latter difficulty can be eliminated by using a weight function 
for which the spin-l subspace is no longer invariant. We have investigated such changes 
of the weight function but in no case have we been able to obtain an exponent greater 
than di2. 

4. Discussion 

We have examined the behaviour of the simple orientational model of BMT using RSRG 
methods. Although the phase diagrams show the same general behaviour as observed 
by mean-field methods, the isotherm behaviour is significantly different at the continuous 
LE-LC transition. Our results indicate that the discontinuity in slope obtained by BMT 
is an artifact of mean-field methods. As we indicated in the introduction, lattice models 
seeking to reproduce the phase transition behaviour of phospholipid monolayers tend 
to fall into one of two groups: those which attempt an explanation for the phase 
transitions in terms of chain disorder from the all-trans conformation and those for 
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which the explanation is attempted in terms of orientational ordering of the molecules 
which remain in the all-trans conformation. Our model is of course in the latter group. 
Its inadequacies are evident from our calculations, while models based purely on chain 
disorder have incorrectly predicted the LE-LC transition to be first order. It is clear that 
a more realistic model must contain elements from both these approaches. In real 
systems many of the carbon chains are likely to be extended along the interface at large 
areas and these may change to an upright configuration concurrently with the orienta- 
tional ordering process. Unfortunately increasing the realism of the theory limits the 
methods which can be used to study it. A model with extended states or more than two 
orientational states for a lipid may exhibit a continuous transition with an exponent 
y > d/2, corresponding to a divergent compressibility, and a point on the isotherm at 
which the slope is zero. However, we do not in general expect a discontinuity in slope 
unless the intermolecular forces are very long-ranged. The comparison of the BMT 
results with those of the present paper points to the desirability of more detailed 
experimental information in the immediate neighbourhood of the LE-LC transition. In 
making this remark we are of course well aware of the difficulties involved in monolayer 
experiments and of the very considerable achievement represented by the accuracy of 
the experimental isotherms to which we have referred. 
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