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Abstract. The Bell-Lavis model of a two-dimensional bonded lattice fluid is investigated by 
real space renormalisation group methods. All the fixed points in a restricted parameter 
subspace are obtained, but their stability is analysed in the full parameter space of the 
system. Within the subspace melting is predicted to occur via a second-order transition in 
the same universality class as the 3-state ferromagnetic Potts model. This contrasts with the 
predictions of mean-field theory. There is however a weakly relevant eigenvalue whose 
corresponding eigenvector is in a direction out of the subspace, so the fixed point may not be 
a critical point for the full model. A second result of interest is that the fixed point, found by 
Schick and Griffiths for the 3-state antiferromagnetic Potts model on a triangular lattice, 
also describes the transition in the more general case of an antiferromagnetic spin-one Ising 
model (the Blume-Emery-Griffiths model) on the same lattice. Some interesting symmetry 
properties of the subspace are also discussed. 

1. Introduction 

Bell and Lavis (1970) (hereafter referred to as BL) introduced a triangular lattice model 
for the fluid phases of the water system, in which hydrogen bonding was represented by 
attributing to each molecule preferential bonding directions. Using a closed-form 
approximation they were able to reproduce a first-order phase transition with the 
characteristic density maximum along isobars in the liquid phase. Using the same 
approximation method Lavis (1 973) extended the model to include a long-range 
ordered ice-like phase. This phase was attained via a first-order transition in which the 
solid phase was less dense than the liquid phase. The properties of the thermodynamic 
response functions along the liquid-vapour transition curve were investigated by Lavis 
(1975). These exhibited water-like properties. 

In the present paper we begin a study of this model by real space renormalisation 
group (RSRG) methods (for a review see Niemeijer and van Leeuwen 1976). One 
motivation for attempting this problem with renormalisation group (RG) methods is the 
recent realisation that various types of sublattice ordering in Ising models can involve 
transitions which are in different universality classes from the ferromagnetic transition 
(Alexander 1975, Domany eta1 1977, Krinsky and Mukamel 1977). As we shall show 
in Q 3, long-range order in the BL model, which corresponds to the ice phase, also 
involves a type of sublattice ordering in the Ising representation of the model. The 
question arises, then, as to whether the fluid-solid transition in the BL model (which as 
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we shall see is possibly of second order) falls into one of the already established 
universality classes or is in a new class. An interesting feature of the model is that it does 
not have the usual inversion symmetry when the signs of all the spins are changed. This 
again raises the possibility of new universality classes. 

The BL model has a rich and complicated phase diagram and reduces to several other 
interesting models in limiting cases, For example, for certain values of the parameters, 
the BL model reduces to the 3-state Potts model (Potts 1952) which is rather similar to 
the spin-one Ising model except that all three possible spin states are equivalent. The 
ferromagnetic transition in this model is predicted by Landau theory to be first order, 
whereas it is known exactly (Baxter 1973) to be continuous. The 3-state Potts model 
with sublattice ordering on a triangular lattice has already been studied by Schick and 
Griffiths (1977) (hereafter referred to as SG). Another special case of the BL model is a 
modified 3-state Patts model which includes the term in the spin Hamiltonian which 
breaks the inversion ( S  - - S )  symmetry. Since this term is the main new feature of the 
model and because the full model is very complicated we restrict our attention here to 
this special subspace. 

The antiferromagnetic groundstate of this subspace is the same as the ordered 
ground state (solid phase) of the BL model so we expect our results to be of some 
relevance to the full model. In the restricted parameter space the full fixed point 
structure is determined and thus in this subspace the phase diagram can be constructed. 
The stability of these fixed points is analysed, leading to predictions for the critical 
exponents. This we are able to do in the full parameter space of the BL model. 
Consequently we are able to estimate whether the fixed points which we find really 
correspond to critical points of the BL model. 

Within our 3-parameter subspace the fixed point which describes the antifer- 
romagnetic transition lies in an invariant plane of the transformation, where the 
symmetry is again that of the 3-state Potts model. As a result the antiferromagnetic 
transition, which corresponds to the melting transition in this subspace of the BL model, 
is second order, in contrast to mean-field theory (Lavis 1973) which predicts a 
first-order change, and is in the same universality class as the ferromagnetic transition in 
the 3-state Potts model (see S G ) .  However we find a weakly relevant eigenvalue which 
takes one out of the subspace so this fixed point may not correspond to an ordinary 
critical point of the full BL model. The order of a transition may depend on spatial 
dimensionality and we suspect that second-order melting found in this study is a 
consequence of the low dimensionality of the BL model. In three dimensions, for 
example, the 3-state Potts model probably has a first-order transition (Aharony et a1 
1977, Mukamel et a1 1976) in agreement with mean-field theory but in contrast to 
Baxter’s exact prediction for the same model in two dimensions. 

We introduce the model and discuss the restricted (extended Potts) subspace in § 2. 
In § 3 Landau theory and the symmetry properties are considered and the RG trans- 
formation is constructed in § 4, where results for fixed points and exponents are also 
given. Our conclusions are summarised in § 5. 

2. Themodel 

2.1. General form 

The BL model is an extension of the simpler lattice fluid models to the case where the 
molecules have some ‘structure’. A triangular lattice is assumed and a molecule is 
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represented by three arrows (bonding arms) radiating from a point, the angles between 
the arrows being 120" (see figure l ( a ) ) .  Each lattice site is either vacant or has a 
molecule, centred at the site, with the arrows directed towards three of the six 
nearest-neighbour sites. There are therefore two possible orientations for a molecule 
which are shown in figures l ( a )  and ( b ) .  

/ C )  [ dl 

Figure 1. ( a )  and ( 6 )  denote the two possible orientations of the molecule on a triangular 
lattice in  the BL model. They will be designated as states S = 1 and S = -1, respectively, of a 
spin-one Ising model. The state S = 0 corresponds to there being no molecule on the site. 
( c )  represents a configuration of two neighbouring molecules which form a bond while ( d )  
shows one of the non-bonding arrangements. Configurations (c )  and ( d )  have energies 
- ( E  + w )  and - E  respectively. 

Molecules on adjacent sites can either form a bond, if they have arrows which meet 
as in figure l ( c ) ,  or not, as in figure l ( d ) .  These two configurations have energies 
- ( E  + w )  and - E  respectively. The mean density of molecules is fixed most con- 
veniently for the present calculation by using the grand canonical distribution with 
chemical potential as an independent variable. 

For RSRG calculations it  is useful to rewrite the Hamiltonian in spin language. Each 
site can be in one of three possible states: no molecule, a molecule with the orientation 
of figure l ( a )  or a molecule with the orientation of figure 1(b ) .  With these we associated 
the spin states S = 0, S = 1 and S = - 1 respectively of a spin-one Ising model. We also 
need to define three sublattices A, B and C, on the triangular lattice, whose locations are 
indicated in figure 2 .  Bonding between adjacent sites on A and B sublattices can occur 
only if SA = - 1 and SB = 1 .  For bonding between B and C sublattices we need SB = - 1 
and Sc = 1 and for bonding between C and A sublattices we need Sc = - 1 and SA = 1 .  
Noting that the projection operators which pick out the states S = i 1 are $(S'* S ) ,  the 

Figure 2. The convention adoped for labelling the three sublattices A, B and C. 
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Hamiltonian 2 may be written in the form 

1 ( S f A S f B  + s f B s f C  +sfcsfA)-bw 1 [(SfA -siA)(sfB + S I B )  
l I 

‘ ( s f B  - S i B ) ( s f C  + s , C ) + ( s f C  -siC)(sfA +Si*)] (1 1 
where i denotes a particular triangle and S I a ( a  = A ,  B or C) denotes the spin of the site 
on sublattice a in triangle i. The mean density of molecules is (S’) so a chemical 
potential term - pS2 is added for each site giving in all an additional term 

the factor of arising because each site is shared between six triangles. We define 
H = --@X where P = l / k B T  and rearranging the terms in equation (1) we have 
H = H 1  + H 2 ,  where 

The interactions E, and P are related to the original parameters by 
j= -i 

K = P ( E  +iw) 
A =  - p p  

P = Spw. 

4 P  w 

- 

Although P = - 2J for the BL model, this relationship no longer holds after a RG 

transformation so we need to make use of different symbols for these two quantities. H 1  
corresponds to the Blume-Emery-Griffiths (197 1) model which has been studied by 
mean field (Blume et a1 1971, Lajzerowicz and Sivardiere 1975) and RSRG methods 
(Berker and Wortis 1976). A new feature of the present model is that the spin-spin 
coupling 7 is antiferromagnetic, since bonding occurs only if the molecules have 
different orientations, which is important for the triangular lattice discussed here. The 
crucial role of the sign of the interaction for the triangular lattice can be gauged from the 
fact that a spin-; Ising antiferromagnet has no transition on a triangular lattice 
(Wannier 1950). In fact the BL model is isomorphic to the spin - +  Ising antiferromagnet 
in the high-density limit (A + - C O )  (see Bell and Lavis 1970, appendix) since the S = 0 
states are suppressed, H2 is zero and the K and 

The most interesting feature of the model is, however, the appearance of H2, which 
does not have the usual inversion ( S o  -S) symmetry. I t  is clear why the model in its 
original form does not have this symmetry since changing the orientations of each 
member of a pair of bonded molecules always breaks the bond. H2 is non-vanishing 
only when the spins around the triangle are in different states. The energy is $P if the A, 

terms in H I  are constants. 
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B and C spins are in states +, 0 and - respectively, or any even permutation of this and 
i t  is -$P for an odd permutation. 

In the RSRG calculation which follows i t  will be necessary to include all interactions 
compatible with the symmetry of the model which can be fitted into an elementary 
triangle. We  therefore add to the Hamiltonian a term H3 given by 

H 3 = L C  S ~ A S ~ B S ~ C  + M  1 ( S ~ A S ~ B S ~ C + S ~ R S , C S ~ A + S ~ C S ~ A S ~ B ) .  (6) 

We will generalise the term 'Blume-Emery-Griffiths model' to include systems with 
Hamiltonian H 1  + H3,  since H3 is generated from H ,  by RG transformations (whereas 
Hz is not). 

2.2. The Potts and extended Potts subspaces 

The full Hamiltonian H I  + H z  + H3 has an extremely complex phase diagram so we shall 
consider, in this paper, a restricted subspace involving only three instead of six 
parameters. The  stability of the fixed points will, however, be analysed in the full space 
of six parameters. 

Suppose initially we set P = 0 and assume the following relationships between the  
remaining five parameters: 

J = f K  

M = &(M - 3 K )  

L =  - i ( M - 3 K ) .  

It is now straighforward to show that the three states +, 0 and -, which henceforth will 
be denoted by a, b and c respectively, are completely equivalent. The  Hamiltonian can 
be expressed in the form 

(8) 

where p I A  ( I  = a, b and c) is a projection variable which takes the value one if the spin i A  
is in state 1 and zero otherwise. The Hamiltonian described by equation (8) is a 
straightforward generalisation of the usual 3-state Potts model and a RG treatment of it 
has been given by SG. The  range of parameters which satisfies equations (7 ) ,  together 
with the condition P = 0, will therefore be called the Ports subspace. 

H2, written in spin notation in equation (4), can be re-expressed in terms of the Potts 
variables as 

H -1 1 1  
1 - ZK 11 ( p i ~ p i ~  +ptBpiC + t P i C p f ~  -3piAPi~piC) + t M  11 p i ~ p i ~ p i c ,  

r i  i l  

1 

where eImn is the Levi-Civita tensor which has the value one  if 1, m and n are a ,  b and c o r  
an even permutation of this, the value minus one  for an odd permutation and the value 
zero otherwise. The range of parameters which satisfy equation (71, but with P # 0, will 
be called the extended Potts subspace. The  corresponding Hamiltonian HEp is given by 

(10) HEp = Hp + H?, 
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with HP and H2 given by equations (8) and (9) respectively. The rest of this paper is 
devoted to a discussion of HEp. 

3. Symmetry properties and Landau theory 

One of the most important criteria for choosing a RG transformation is that it preserves, 
as far as possible, the symmetries of the Hamiltonian. SG have discussed the symmetry 
properties of H p  and our treatment of the more general case P # 0 follows largely their 
approach. 

First of all we observe that if we replace P by - P  and invert the spins on all the 
lattice sites the Hamiltonian is invariant. The phase diagram must therefore be 
symmetric about the plane P = 0. Our transformation will satisfy this condition so P = 0 
will be an invariant plane. 

In the plane P = 0 the Hamiltonian is invariant under relabelling of the states a, b, c 
simultaneously on all lattice sites. (Notice that the configurations in figures 3(c) and 
3 ( d )  have the same energy for P = 0.) The corresponding group is the permutation 
group of three objects, S 3 ,  which is isomorphic to the point group C3u. In the plane 
P = 0 the Hamiltonian is also invariant under any permutation of the sublattice labels, 
which also corresponds to the group S 3 .  The full symmetry group, which we denote by 
Go, is therefore the direct product S3(states) 0 S3(sublattices). We have summarised 
the relevant symmetry information in table 1. 

The line M = 0 is a special line in the plane P = 0 because the configurations shown 
in figure 3(a )  have the same energy as those shown in figures 3(c) and 3 ( d ) .  There is, 
therefore, a new symmetry element T ( S G )  where T involves making the replacement 
a + b + c + a on sublattice B, a + c + b + a on sublattice C and leaving the spins on 
sublattice A unchanged. The enlarged symmetry group is called GI (see table 1). 

The transformation of SG ensures that P = 0, M = 0 is an invariant line and, since our 
transformation reduces to theirs for P = 0, ours will also have this property. I t  will be 
seen below that this line will correspond to the intersection of three invariant planes in 
the extended Potts space with P # 0. 

If P f 0 an odd permutation of the states changes the sign of H 2  as does also an odd 
permutation of sublattice labels. On the other hand a combination of these operations 
leaves H2 and hence HEP unchanged. The symmetry operations are therefore 
combinations of an even permutation of states together with an even permutation of 

Table 1. Symmetry properties of subspace (K, M ,  P )  
~~ 

Region of parameter Symmetry 
subspace 

P Z  * M ,  P f O  Ho: Elements are combinations of an even permutation of 
states together with an even permutation of sublattice labels 
plus combinations of an odd permutation of states together with 
an odd permutation of sublattice labels. 

Go: Symmetry of Potts model Go = S3(states) @ S3(sub- 

G I :  Elements are those of Go together with T (see text) and r 2  
plus all products of T and T* with elements of Go. 

Planes P = 0 and 
P =  * t M  lattices). 

Line P = M = 0 
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sublattice labels plus combinations of an odd permutation of states together with an odd 
permutation of sublattice labels. The corresponding group is denoted by Ho (table 1). 

The plane M = P is special because in this plane the configurations of figure 3 (a )  and 
3(c) have the same energy. If we now redefine the states according to the SG symmetry 
element T (i.e. a + b -+ c += a on sublattice B, a + c -+ b -+ a on sublattice C, the states on 
sublattice A remaining unchanged) the possible configurations and their energies are 
shown in figure 4 (for M = P ) .  Denoting by a prime the values of the parameters in the 
plane M = P, we see that if K'  = K - i M  and M' = P' = - :M the states in figure 4 are in 

D e g e w r a c y  = 3 * a  3 3 
E r e r g y  M / 2  K / 2  P/2  - P / 2  

Figure 3. Possible states of a single triangle and their energies in  the extended Potts 
subspace. The sublattices are labelled in ( a ) .  The degeneracies refer to the number of 
distinct arrangements which for ( a )  have all states the same, for ( b )  have two states the same 
and one different, for ( c j  have the states on sublattices A, B, C a n  even permutation of a, b. c 
and for i d )  an odd permutation of a ,  b, c. 

Degenepacy : 3 18  3 3 

E n e r g y  [- m/2)= - M  K / 2  -M/2 0 0 

I C )  ( b )  1 C J  I dl 

Figure 4. As figure 3 except that now P = M and we have performed the relabelling 
a + b + c + a  on sublattice B, a + c + b + a  on sublattice C while leaving unchanged the 
states on sublattice A. We have also subtracted i M  from the energy of each configuration. 
The states are now in one-to-one correspondence with those of figure 3 with P = 0. 

one-to-one correspondence with the states in the Potts subspace (figure 3 with P = 0) 
apart from an overall shift in energy. It follows that the plane M = P also has the Potts 
symmetry and for every point (K ,  M,  0) in the plane P = 0 there is a point ( K ' ,  M' ,  P') ,  
given by 

( I l a )  

(116) 

(IlC) 

in the plane P' = M'  which has the same free energy apart from an additive constant. 
Similarly, for M = - P, configurations given by figures 3(a) and 3(d) have the same 

energy, so we conclude that there is Potts symmetry in this plane also and we have a 
mapping which is the same as that given by equations (1 1) except that now equation 
(1 1 (c)) becomes P' = $M. 

Since the planes M = * P  have a Potts symmetry, which is higher than the symmetry 
of an arbitrary point in the parameter space, it is desirable that the transformation 

K ' = K - '  2M 

M ' =  -1 2M 

p ' =  -1 2M 
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leaves these planes invariant and preserves the mapping of equations (11). The  
transformation described in Q 4 has this property. 

SG have discussed the order paramerters for the case P = 0 and have shown that, for  
the ferromagnetic phase, the order parameter is two-dimensional with components 

(12) $1 = 3-”*(d’1~+ $19 f $IC) ,  $2 = 3-1’2(d’2~+ $ 2 9  + $2C), 

where 
3 (4 1 1 1 / 2  h = ~ n ,  -7, ha = 7 3  ( n ,  - U : )  

and 
1 

nk = ( p a )  

for  [ = a ,  b, c and cy = A ,  B, C. They have also shown that the  antiferromagnetic order 
parameter is four-dimensional with components 

41 = (2 /3 ) ’ ” ($ i~ - j$ i~ -5$ ,1c )  d2 = (2/3)’ ” ( $ 2 ~  - : $ 2 ~  -t&rc) 
(14)  

The  symmetry group for P = 0 is, as noted above, S3(states) @ S3(sublatticesl 
and ($1, $,) transforms according to  the representation E(states) 8 A l(sub- 
lattices), whereas (&, #2, d3, d4) transforms according to the representation 
E(states) 9 E(sublattices), where A 1  and E are respectively the identity and doubly- 
degenerate representations of S3 (C3c) .  

When P # 0 the symmetry is lowered from Go to Ho (table 1). The  ferromagnetic 
order parameter remains unchanged and  the antiferromagnetic order parameter given 
by equations (14) splits into two doublets E’= (OT, 6 ; )  and E - =  ( e l ,  0 , )  which are 
order parameters for the paramagnetic-antiferromagnetic transitions when P > 0 and 
P <  0 respectively. We  find that 

($29 - (cr2C). #4 = 2-1 12 
#3 = 2-”2(1L19-$lC) 

6: =2-”2(~1+d4)=l (naA+nbB +n : - l )  ( 1 5 a )  

0; = 2 - ’ / ’  ~ # 2 + # 3 ) = ~ 2 - 1 ’ 2 ( ~ ~ + ~ ~ + ~ ~ - n ~ - ~ ~  -n : )  115b) 

e ;  = 2 - ” 2 ( ~ 1 - # 4 ) = t ( n ~ + n ~ + n b C - i )  (15c)  

(42-43)= 12-”’(n‘Acn; + n g - f l i - n i  -n: )  i15d) 

The molecule arrangement which corresponds to ordering of 0; is shown in figure 5 .  It 
is just the low-density solid phase of the BL model. Although we have made a number of 
simplifications of the original model by working in a three-parameter subspace we see 
nevertheless that the ordered antiferromagnetic phase with P > 0 is a phase of the actual 
model. 

In the planes M = * P the symmetry is that of the Potts model. W e  find that for 
M = P the four order parameters $,, G 2 ,  e;,  6 ;  transform like a four dimensional 
representation analogous to (bl, 42, cbj, c $ ~ ) .  For M = - P it is the set of parameters G I ,  
$ 2 ,  e;, 0; which form the four dimensional representation. In a similar way we see for 
M = P that ( O ; ,  0;) transforms like the ferromagnetic order parameter ($1, $*). W e  
shall show in 8 4 that the fixed points which govern the paramagnetic-antiferromagnetic 
transition with P f 0 lie in the symmetry planes M = i P. It follows that this transition 
lies in the same universality class as ferromagnetic ordering in the 3-state Potts model. 
For this transition Landau theory predicts a first-order transition (see S G )  in contradic- 
tion to Baxter’s (1973) exact result that the transition is continuous. 

6 ,  = 
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Figure 5.  The low-density ice phase of the BL model. This corresponds to sublattices A, B 
and C being in states (a ,  b. c )  (i.e.S = (1. 0, -1)) or any even permutation of this. 

4. The RG transformation and results. 

Since the restricted subspace in which we are working is just a slight extension of the 
Potts model investigated by SG it is natural t o  use the same transformation scheme as 
they do. In order to preserve the sublattice structure three cells are used and the block 
spin for a given sublattice is related to the single spins on that sublattice only. The  
structure of the three interpenetrating three-spin cells is shown in figure 6. Periodic 
boundary conditions are applied so that the ratio of the number of nearest-neighbour 
pairs to the number of sites is correct both for the original spins and for the block spins. 
This ensures that the ground state is correctly predicted. If at least two of the spins in a 
cell are in the same state then the block spin is assigned that state. For configurations 
with the spins all in different states the block spin is assigned to each of the three states 
with weight one third. 

Figure 6. The assignment of spins to cells. 
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and 

Zahc(x, y ,  q )  = Zacb(x, y ,  q - ' ) .  

Equations ( 1 7 a - d )  have the following easily established symmetry properties: 

Z a a a ( X ,  1, l ) = Z a b c ( x ,  1, 1) 

Z a a a ( X ,  y ,  q )  = Z a a a ( X ,  y ,  q-'1 

Z a a b ( X ,  y ,  q )  = Zaah(x, y, 9 - 7  

Z a a a ( X ,  y ,  y 1 = Z a c b ( X >  y, Y) 

~ a a b ( ~ ,  y ,  1) = y 9 ~ a a b ( X / y i / 2 ,  i /yi '2, i / y1 /2 )  

Zahc(x, y ,  1) = yyZach(X/y1'2, l / y " 2 ,  l /y1 '2) .  

Z a a a ( X ,  y, 1) = y 9 z abc ( X / p 2 ,  l / y 1 ' 2 ,  l / Y 1 ' 2 )  

Equations ( 1 8 6 , ~ )  and (17d) imply that the ( K ,  M, P) phase diagram is symmetric 
about P = 0, so P = 0 is an invariant plane. This together with equation (18a) shows 
that M = P = 0 is an invariant line. It follows from equation (18d) that M = P is an 
invariant plane, while equations (18e-g) indicate that the mapping defined by equations 
(11) is preserved by the transformation. 

The recursion relations have fifteen fixed points, all of which lie in the three invariant 
planes P = 0, * M. Of these four are sinks for the four possible phases, paramagnetic 
(p), ferromagnetic (f )  and antiferromagnetic with P > 0 and P < 0 (af' and af-), three are 
discontinuity fixed points (Nienhuis and Nauenberg, 1975) at zero temperature which 
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control the first-order phase transitions between the three ordered phases and one is a 
higher order discontinuity fixed point at zero temperature, where all three ordered 
phases meet. This latter is at M = P = 0 ,  K --* - cc and is the discontinuity fixed point 
referred to by SG. The locations of the remaining seven fixed points are given in table 2. 
AF'(AF-) is the fixed point for the p-aft (p-af-) transition and controls behaviour on 
the critical surface between these two phases. F describes the p-f transition both for 
P = 0 and P # 0 and is discussed in S G .  The p-f critical surface intersects the p-af' 
(p-af-) critical surface along a bicritical line whose critical behaviour is controlled by the 
fixed point B' (B-). The p-af' and p-af- critical surfaces intersect along a bicritical line 
controlled by AF, which in the P = 0 plane is the antiferromagnetic fixed point studied 
by SG (where appropriate we use their notation for fixed points). In the enlarged space, 
with P # 0, AF now appears however as a bicritical point. Finally all three ordered 
phases and the paramagnetic phase come together at B, which in SG was a bicritical 
point. Now it is a higher order multicritical point which alternatively can be considered 
as the intersection of the three bicritical lines. 

The phase boundaries in the planes P = 0 and M = P are shown respectively in 
figures 7 and 8. The ferromagnetic phase is bounded by the line P = M = 0, the planes 
P = * M (for M > 01 and a surface spanned between the line BB'S (figure 8) and the 
corresponding line on the plane M = -P. The critical surface separating the paramag- 
netic phase from the various ordered phases is shown, projected on to a plane 
perpendicular to the K axis, in figure 9. For given P and M the paramagnetic phase 
occurs for K larger than the critical value K,(P, M ) .  

Once the fixed points have been located the recursion relations can be linearised 
about the fixed points and the stability matrix (R,?), defined by 

Y 

obtained. Here Q, = K ,  M or P and SQ, = Q, - Q:, where Q: is the value at the fixed 
point. The eigenvalues A t  are written b',,  where b is the scale change, 31'2 in the present 
example, and the y ,  for various fixed points are listed in table 2. A critical fixed point 

-3 -2 -1 0 1 
K 

Figure 7. Phase diagram in the plane P = 0. The region to the right of the line EBU is 
paramagnetic, above EBD is ferromagnetic and below DBU is the surface of coexistence of 
the antiferromagnetic phases with P>O and P <  0. 
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. s  M 

-3- -- 
- 3  - 2  -1 3 

K 

Figure 8. Phase diagram in the plane P = M. The region to the right of the line SBR I S  

paramagnetic, below DBR is antiferromagnetic with P <  0 and above DBS is the surface of 
coexistence of the ferromagnetic phase and the antiferromagnetic phase with P > O .  The 
phase diagrams of figures 7 and 8 are related by the mapping given by equations (1 1). 

M 
1, 
\ 

3. \ Ferromagnetic ,,' 

2 .  I \  \ /' 

1 -  

3- 

-2 A~tifer~amagrPtiC Ant ferromagnetic 

- 3' 
iP(:) 'AF ' P ) G J  

__ - __------ 
P 

- 3  - 2  -1 0 2 3 L 

Figure 9. A projection of the surface separating the paramagnetic phase from the various 
ordered phases on to the M-P plane 

should have just one relevant (i.e. positive) exponent, y1 say. The coefficient of the 
corresponding eigenvector is then proportional to T - T, and y1 is the inverse of the 
correlation length exponent v, (see e.g. Ma, 1976 p 143). 

For F, B and AF we denote by a superscript 'P'  in table 2 the exponent y e  
corresponding to the eigenvector in the direction of the P axis. We see that the P 
direction is irrelevant for F (i.e. y p  < 0) so the SG fixed point describes the ferromagnetic 
ordering even for P # 0. On the other hand the P direction is strongly relevant for AF 
and as a result the antiferromagnetic transitions with P>O ( < O )  are described by 
different fixed points AF' (AF-). 

Because of the exact mapping, given by equations (1 l), the fixed points F, AF' and 
AF- have the same exponents, which are those of the 3-state Potts model. Similarly B', 
B- and AF have the same exponents. However the exponents for F and AF are 



A two-dimensional bonded lattice model 241 

Table 2. Properties of non-trivial fixed points in subspace ( K ,  iM, P) 

Region of Designation Location ( K * ,  M * ,  P*) Exponents within Exponents outside 
parameter subspace subspace 
space 

B 

multi-critical) 

F (critical) 10.32, 1.44, 0 )  (1.04, -1.79, -1,58'1+ r1.61.0.29, -1.161 

Line '$4 = P = 0 (higher-order (-2.72,O. 0 )  (1,99,0.87, 1.99'): (1.99, -0.64, -1.38) 

(1.11, -1.90, 1.87'): (-0.17, -0.58. -2.10) Plane P = 0 AF 1,bicritical) 1-1.68, -2.39, 0) 

AF- (critical) (-0.40, -0.72, -0.72) (1.04, -1.79. -1.58) (0.33. -0.99, -2.14) 
B' (bicritical) (-0.48, 1.19, 1.19) (1.11, -1.90, 1.87, (1.90, 0.28, -0.87) Plane P = M 

Plane P = -M AF' (critical) 
B- (bicritical) 

As for plane P = M hut with sign of P* changed. 

+ The superscript P denotes the eigenvalues whoses eigenvector is in the P direction 

different (although numerically the difference is rather small) as is to be expected from 
the symmetry arguments of SG and 9: 3. 

Finally we have derived the recursion relations in the six-dimensional parameter 
space of the full BL model. The formulae are too complicated to be given here so we 
quote, in the last column of table 2, simply the exponents, at the fixed points of the 
subspace, corresponding to eigenvectors in directions out of the subspace. We observe 
that with P = 0, AF  has only one relevant eigenvalue in the full space. It therefore 
represents a critical point describing antiferromagnetic ordering in the S = 1 Ising 
model (Blume-Emery-Griffiths model) on a triangular lattice. This fixed point, first 
found by SG, is therefore applicable to a wider range of problems than the one which 
they considered. Fixed points AF' and AF- have a second weakly relevant eigenvalue 
which takes one out of the subspace. If this result is correct i t  implies that AF' and AF- 
do not describe critical points in the full  parameter space and melting in the BL model is 
described by another fixed point. It should be pointed out, however, that RSRG methods 
seem relatively unreliable for subleading exponents, particularly with rather loosely 
connected clusters such as we have here. In fact a closely analogous treatment of the 
spin $ Ising antiferromagnet on a triangular lattice by Schick, Walker and Wortis (1977) 
leads to predictions of the number of relevant exponents at the so-called Baxter-Wu 
fixed point which disagree with the virtually exact results of Barber (1976). 
Consequently it is possible that the second relevant exponent at AF' and AF- is an 
artefact of the approximation, in which case melting in the BL model would be 
second -order and described by the 3-state ferromagnetic Potts model. This discussion 
also puts into question, however, the above conclusions regarding the stability of the 
fixed point AF  in the full S = 1 Blume-Emery-Griffiths parameter space. 

5. Conclusions 

We have discussed the BL model using RSRG methods within a subspace of three 
parameters ( K ,  M,  P ) .  Within this subspace there are three planes which have Potts 
symmetry and all the fixed points lie on these planes. There is a simple mapping 
(equations (1 1)) between a point on one plane and a corresponding point on another 
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plane which has the same free energy. If the second relevant exponent at fixed points 
AF' and AF-, which leads out of the subspace, is an artefact of the approximation, 
melting in the BL model is second-order and corresponds to the paramagnetic- 
ferromagnetic transition on the 3-state Potts model. The antiferromagnetic fixed point 
AF found by SG actually applies to a wider class of models than they discuss. The nature 
of the phase transitions in the BL model should be more fully understood when the fixed 
points and their exponents have been determined in the full parameter space. This is a 
problem which we intend to pursue. 

Addendum 

After this paper was submitted for publication we became aware of related work by 
Adler, Aharony and Oitmaa (1978) and Mahan and Girvin (1978). Adler et a1 
investigated the BEG model on the triangular lattice using a RSRG method similar to that 
of Niemeijer and van Leeuwen (1976) but did not consider antiferromagnetic ordering 
which is the main subject of the present study. Mahan and Girvin do consider the 
possibility of antiferromagnetic order on the triangular lattice and use a RSRG scheme 
similar to the one discussed here. Unfortunately they do not give their results for the 
fixed point describing the second-order antiferromagnetic transition in the BEG model, 
which we have argued should correspond to the fixed point AF. 
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