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A model for adsorbed monolayers of orientable molecules 
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Institut Laue-Langevin 156X Centre de Tri, 38042 Grenoble Cedex, France 

Received 1 May 1979 

Abstract. Real-space renormalisation group methods are used to study a two-dimensional 
lattice fluid model on a triangular lattice with application to adsorbed monolayers of orien- 
table molecules. The phase diagram is obtained for various strengths of the couplings between 
the molecules. There are four different phases which correspond to the gas, liquid and 
commensurate solid phases of the model. Two types of solid phase are considered: the first 
is a close-packed solid phase in which all molecules have the same orientation relative to the 
substrate and the second is an open honeycomb structure in which the molecules have 
opposing orientations. The fixed points and critical exponents which describe the transitions 
between these different phases are obtained. In all cases the melting transition is found to be 
second order. The results may have some application to monolayers of methane or ammonia, 
adsorbed onto a graphite substrate. 

1. Introduction 

The study of two-dimensional models is important because of the increasing experi- 
mental investigation of physically and chemically adsorbed systems. Adsorbed mono- 
layers on an ideal substrate may exhibit transitions between ‘two-dimensional (2D) gas’, 
‘2D liquid’ and ‘2D solid phases’ as the substrate coverage is varied (Thomy and Duval 
1970). Rare-gas monolayers on graphite have been extensively studied using a variety 
of experimental methods and transitions from commensurate structures to structures 
which are incommensurate with the substrate have also been observed (see McTague 
et all979 for a recent survey). In the case of the ‘commensurable solids’, lattice gas models 
have been employed to describe the melting transition (Schick et a1 1977, Berker et a1 
1978). The adsorbed molecules are assumed to be well localised on preferred adsorption 
sites on the substrate and in the case of graphite these sites form a triangular lattice. 
Since two molecules adsorbed onto nearest-neighbour sites experience an unfavourable 
potential because of size effects, the registered solid phase in the rare-gas systems cor- 
responds to a preferential occupation of one of the three sublattices of the adsorption site 
lattice. In contrast, the liquid phase has, on average, equivalent occupation of all three 
sublattices. In any real system, the solid phase will consist of three different types of 
domain within which one of the three sublattices is preferentially occupied. These 

t Present address : Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2. 
$ On leave from: Mathematics Department, Chelsea College, University of London, Manresa Road, London 
SW3 6LX, UK. 

0022-3719/79/235333 + 11 $01.00 @ 1979 The Institute of Physics 5333 



5334 B W Southern and D A Lavis 

domains will be separated by narrow walls. We, however, shall only consider the be- 
haviour which is characteristic of a single domain. 

An extension of the simpler lattice fluid models to the case where the molecules 
have some ‘structure’ is considered in the present paper. A related model on a triangular 
lattice was first introduced (Bell and Lavis 1970) to simulate the strongly directional 
nature of hydrogen bonding in water and aqueous solutions. In the present model each 
molecule is assumed to be triangular in shape and to have a restricted number of pre- 
ferred orientations with respect to the underlying triangular lattice of adsorption sites. 
The model is a slight generalisation of the Blume-Emery-Griffiths (1971) model which 
has been used to study both 3He4He mixtures as well as the competition between dipole 
and quadrupole ordering in magnets. As a result of the orientational degree of freedom, 
the model can exhibit two different types of commensurable solid phase. One of these is 
a close-packed (ferromagnetic) solid in which all molecules have the same orientation 
relative to the substrate and which appears at densities near monolayer completion. At 
intermediate coverages, an open honeycomb (antiferromagnetic) solid phase can occur 
in which two thirds of the sites are preferentially occupied by molecules with opposing 
orientations. 

The model is investigated using a real-space renormalisation group (RSKG) method 
(for a review see Niemeijer and van Leeuwen 1976). The phase diagram is determined for 
various choices of the coupling constants as a function of the chemical potential p and 
also as a function of the molecular density p,  since the experiments on adsorbed systems 
are generally performed at constant coverage. The model is introduced in $ 2  and the 
renormalisation group transformation is briefly described. In $ 3  the results for the phase 
diagram are presented together with the fixed points and critical exponents which 
describe the various transitions. Our conclusions are summarised in $ 4. 

2. The model 

Each molecule is taken to be triangular in shape and is restricted to point towards any 
of the six nearest-neighbour sites on a triangular lattice. Hence there are two distinct 
orientations for a molecule at each adsorption site and these are identified with the spin 
states S = 1 of a spin - 1 Ising model as shown in figure 1. A vacant site is represented 

Figure 1. Allowed orientations of a pair of molecules on adjacent sites with the spin states 
7 = k 1 indicated. Configurations (a) and (b) have energy - ( E  $. e), ( L )  has energy 
- ( E  - 8 + 11 1 and (d) has energy -(E - ( I ) .  
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by the state S = 0 and the molecular density is therefore given by p = (Sf). A pair of 
molecules on adjacent sites has an energy -(E + 0) if they are both in the same orienta- 
tional state (figure l a  and b). However, if they have opposite orientations, then there are 
two possible energies as indicated in figure 1(r) and (4. Molecules with vertices pointing 
towards each other have an energy - ( E  - 0 + w) whereas molecules with vertices 
pointing away from each other have an energy -(E - 0). The parameter w reflects the 
difference in separation of the vertices for the pair of molecules in these two cases. 

Figure 2. A portion of the triangular lattice showing the convention adopted for labelling 
the three sublattices A, B and C.  

In order to take proper account of sublattice orderings, the triangular lattice is 
divided into three equivalent sublattices A, B and C as indicated in figure 2. The mean 
density of molecules is fixed by using the grand canonical distribution with the chemical 
potential p as an independent variable. In terms of the spin - 1 variables, the Hamiltonian 
of the system is given by (Young and Lavis 1979) 

H = E H A  
A 

with 

where the summation is over all elementary triangles of the lattice and S,(a = A, B, C )  
denotes the spin of the site on sublattice a in triangle A. Apart from the final term in ( 1 )  
this Hamiltonian has the same form as the Blume-Emery-Grifiths model. The special 
feature of the present model is exhibited by the final term which removes the degeneracy 
associated with cyclic and anticyclic ordering of the states S = + 1,  0 ,  - 1 around an 
elementary triangle. The model first introduced by Bell and Lavis (1970) corresponds to 
the case 8 = 0. 

We use the block spin transformation employed by Schick er nl(1977) in their study 
of the spin - $ Ising model. An initial cluster of nine sites is chosen such that three sites 
belong to each of the three sublattices and periodic boundary conditions are imposed. 
Application of the renormalisation group transformation reduces the nine-site cluster 
to a cluster of three sites, each one belonging to one of the three sublattices, and cor- 
responds to an increase in length scale by a factor of d3. In any RSRL calculation all 
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terms which are generated by the recurrence relations must be included, even if they are 
not present in the initial Hamiltonian. In our case, two additional terms are generated 
involving all three spins of the elementary triangles (see Young and Lavis 1979, Southern 
and Lavis 1980 for details) and we have altogether a six-dimensional space of couplings. 

With a suitable choice of relationships between the coupling constants, the full six- 
dimensional space reduces to a three-dimensional subspace which has the symmetry of 
an extended three-state Potts model (Young and Lavis 1979). In order to preserve this 
symmetry we adopt the block spin weight function used by Schick and Grifiths (1977) 
and Young and Lavis (1979). The conditions for the initial Hamiltonian in equation (1) 
to lie in this subspace are p = - 3(8 + E) and w = 38 - E and we shall see later that the 
fixed points in this extended Potts subspace describe the critical behaviour at special 
points on the phase diagram. 

The phase diagram is determined by iterating the recurrence relations for the coupling 
constant (see Southern and Lavis 1980 for a more detailed discussion). A trajectory which 
begins at a point where the behaviour of the system is not critical will iterate to a sink 
which characterises that phase. These regions are separated by the critical regions which 
form domains of attraction for the critical fixed points. Once these fixed points have been 
located, the recurrence relations can be linearised about the fixed points and the eigen- 
values jbi of the linear equations can be calculated. The critical exponents y i  are related 
to the eigenvalues by Ai = by!, where b is the scale factor and is equal to 43 in the present 
calculation. 

3. Phase diagram and critical behaviour 

At zero temperature, the behaviour of the model defined in equation (1) can be obtained 
most easily by comparing the ground-state energies of the seven possible configurations 
Cj(j  = 1,2,. . . ,7) of each elementary triangle. The energies E?) 0' = 1,2,. . . ,7) of these 
configurations are given in table 1 in terms of the parameters p ,  w, 8, and E .  The 
ground-state phase diagram is shown in figure 3 in terms of the reduced variables 
z = (8 - €)/(e + E), d = w/(8 + E )  and fi = p/(8 + E ) .  In our analysis we have considered 
only cases for which both 6' > 0 and E > 0 from which it follows that -1 < z d 1. 
Qualitative differences occur in the zero-temperature phase diagrams for negative and 
positive values of z and these cases are shown in figures 3(a) and 3(b) respectively. 

The only stable ground states are found to be those corresponding to the lattice 
completely filled by triangles all of which are in one of the configurations C , ,  C,,  C ,  or 

Table 1. Spectrum of ( - B H A ) .  

Configuration Degeneracy Energy 
c, E ;  
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Figure 3. Zero-temperature phase diagram as a function of the reduced variables 6 = 
w/(O + E ) ,  = p/(O + E) and z = (0 + <)/(e + E) for (a) - 1 G z i 0 and (b) 0 G 1 G 1. In 
both cases the point which lies in the extended Potts subspace at all temperatures is indicated 
by a cross. 

C,. The vacant state C, corresponds to the gas phase of the model and C, is the close- 
packed (ferromagnetic) solid phase. The close-packed antiferromagnetic state C, is 
highly degenerate with the same ground-state entropy as the spin -f Ising antiferro- 
magnet on a triangular lattice and corresponds to the liquid phase of the model (Southern 
and Lavis 1980). At intermediate values of ,ii and $, the open honeycomb (antiferro- 
magnetic) structure C, ,  which describes a lower-density commensurate solid phase, 
appears. The domains of these phases at finite temperature are the regions of attraction 
of the corresponding sinks of the recurrence relations for the renormalised couplings. 
A numerical study of the trajectory flows allows the construction of the phase diagram 
in the temperature-chemical potential and temperature-density planes for any initial 
choice of the parameters 2 and e. Since the aim of this paper is to present a model which 
exhibits a wide range of possible behaviour rather than to investigate all cases in detail, 
we have concentrated our attention on the cases z = 'I 1 for a number of typical values 
of 8. However, we have investigated the fixed point structure for intermediate values of 
z as well. We find that the case z = - 1  is typical of all values of z which are negative 
whereas the case z = + 1 is a special case for positive values of z. The differences between 
z = + 1 and z < 1 will be discussed in 0 3.3. 

3.1.2 = -1 

Our results for the phase diagram in the case z = - 1 are shown in figures 4(a)-(e). This 
case corresponds to the original model introduced by Bell and Lavis (1970) and some of 
the results for positive values of 6 have been discussed in the paper by Southern and 
Lavis (1980). Five basic types of behaviour can occur depending on the value of E. 

(i) 8 < - 1. Figure 4(a) shows a typical phase diagram both as a function of the 
= ,u/~ and the molecular number density p. The phase reduced chemical potential 
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of coexistence between two phases are indicated 
with a plus sign between the two symbols which 
represent the phases. First-order transitions are 
indicated by broken curves and second-order 

diagram is qualitatively identical to that observed experimentally for monolayers of 
krypton or nitrogen adsorbed on graphite (Ostlund and Berker 1979). At low tempera- 
!ures there is a first-order transition (broken curve) between the gas phase (G) and the 
close-packed solid phase (5)  while at higher temperatures there is a second-order transi- 
tion between the liquid phase (L) and S. The coordinates and exponents of the fixed 
points which control these transitions are given in table 2. The first-order transition is 
described by the discontinuity fxed point GS which has a characteristic relevant ex- 
ponent y ,  = d = 2 (Nienhuis and Nauenberg 1975) and the liquid-solid transition is 
controlled by the fixed point LS which is identical to the fxed point found by Schick 
et a1 (1977) for the spin - 3 Ising ferromagnet. These two phase boundaries meet at the 
tricritical point T,, which lies within the domain of attraction of fxed point N. This 
latter fxed point is identical to that found by Mahan and Girvin (1978) for the tricritical 
transition in the ferromagnetic Blume-Capel model (Blume 1966, Cape1 1966). 
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The phase diagram changes qualitatively as 8 passes through the value 8 = - 1. At 
this value the tricritical point T,a actually lies in the Potts subspace and flows to the fixed 
point F which was found by Schick and Griffiths (1977) in their study of the ferromagnetic 
three-state Potts model. In the present model the point T,, plays the role of a special 
tricritical fixed point. 

(ii) - 1 < G < 0. Figure 4(b) shows the type of behaviour which is typical of small 
negative values of 8. In addition to the transitions of the previous case, there is now a 
temperature range below the point C for which a first-order gas-liquid transition occurs. 
This transition is controlled by the first-order fixed point LG whereas the transition at 
the critical end-point C itself is described by the fixed point X. The liquid-solid, gas- 
liquid and gas-solid transitions meet at the point T,, which lies in the domain of attrac- 
tion of fixed point V. This latter fixed point has two relevant exponents and describes the 
meeting of one critical and two firstyorder surfaces. The exponents exhibit typical critical 
end-line behaviour (Berker and Wortis 1976), combining a leading y1 = d = 2 with a 
y z  = 0.638 in close agreement with the leading exponent of Ls. As 8 passes through zero 
we again have a qualitative change in behaviour marked by the complete suppression 
of the close packed solid phase. 

(iii) (iv) (v) 6 2 O.The results shown in figures 4(c)-(e) have been discussed previously 
by Southern and Lavis (1980) in connection with the Bell-Lavis bonding model and will 
be considered here only briefly. The type of behaviour shown in figure 4(c) occurs in the 
range 0 G G G 3 .  However, for values of 8 greater than 3, a second solid phase appears 
at intermediate densities whose structure has an open honeycomb (antiferromagnetic) 
arrangement of molecules. The transition between this solid phase (S) and the liquid 
phase is second-order and controlled by the fixed point LS. The gas-solid and gas- 
liquid transitions are first-order and described by the first-order fixed points GS and LG 
respectively. The three phase boundaries intersect at the point T,, which flows to the 
fixed point Y .  For larger values of 8 the points C and T, converge until finally the be- 
haviour shown in figure 4(e) is attained where the first-order liquid-gas transition has 
completely disappeared. The gas-solid and liquid-solid phase boundaries meet at the 
tricritical point T,, which lies in the domain of attraction of the fixed point AF'. The 
changeover from the type of behaviour shown in figure 4(d) to that shown in 4(e) occurs 
at an intermediate value of 8 when the domains of attraction of fixed points X, Y and 
A F +  intersect. This special point is controlled by the special tricritical fixed point Z. 
In contrast to the special tricritical fixed point F in §3.l(i) above, Z does not belong to the 
universality class of the three-state Potts model. 

3.2. z = + 1  

Our results for the phase diagram in the case z = + 1 are shown in figures 5(a)-(c). This 
corresponds to the case E = 0 which for w = 0 reduces to the Blume-Cape1 model (Blume 
1966, Cape1 1966). For z = + 1, three basic types of behaviour can occur depending on 
the value of d.  

(i) 8 4 3.The results shown in figure 5(u) are qualitatively the same as those exhibited 
in figure 4(a) and the same fixed points control the various transitions. The change over 
in behaviour to that shown in figure 5(b) occurs at 8 = 3. At this value of 8 the tricritical 
point T,, flows to the special multicritical point B+  which lies in the extended Potts 



A model for  adsorbed monolayers of orientable molecules 
( a )  

L L 

G 

,' 

. ,  
I' 

G + S  

I 

I 
-LO -30 -20 -10 00 0.0 02 O L  0 6  08  10 

u e  P 

3 

5341 

P / e  P 

Figure 5. Phase diagrams for z = + 1 ( E  = 0) in terms of both the reduced chemical potential 
pi0 and the molecular number de_nsity p. The gas, liquid and close-packed solid phases are 
denoted by the symbols G, L and S respectively. The open honeycomb solid phase is denoted 
by S .  Regions of coexistence between two phases are indicated with a plus sign between the 
symbols representing each phase. First-order transitions are indicated by broken curves and 
second-order transitions are indicated by full curves (a) w/O = 0.0, (b) w/O = 3.5, (c) w/ii = 5.0. 
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subspace. Our investigations indicate that the role played by Bf is particular to the 
case z = + 1 and that for values of z in the range 0 < z < 1 different fixed points control 
the transitions. The fact that z = + 1 represents a special case can be easily seen from 
the ground-state phase diagram in figure 3(b) where for z = 1 the point which lies in the 
extended Potts subspace is also at the coexistence point of the phases C,, C ,  and C,. A 
brief discussion of the more general case is given below in § 3.3. 

(ii) 3 < 3 < 4. Figure 5(b) shows the phase diagram for a typical case with 3 in this 
range. Interposed between the gas and close-packed solid phases we now have a region 
of stability for the open honeycomb solid phase (S) at low temperatures. The transition 
between the close-packed solid phase (s) and the open solid phase (S) as well as the 
transition between the gas phase (G) and S are first order and described by the fixed 
points S s  and GS respectively. The transitions from the liquid phase to S and 5 are both 
second order and controlled by the critical fixed points LS and L s  respectively. These 
two second-order phase boundaries meet at the bicritical point B,, which flows to the 
bicritical fixed point M of table 2. The first-order gas-open solid phase boundary meets 
the second-order liquid-open solid boundary at the tricritical point T,, which lies within 
the domain of attraction of the fixed point AF +. As the value of 8 approaches four, the 
close-packed solid phase 5 is progressively suppressed. 

(iii) B 2 4. Figure 5(c) shows a typical phase diagram for fi 2 4 and the behaviour is 
qualitati.vely the same as that shown in figure 4(e'). The various transitions are controlled 
by the same set of fixed points in both cases. 

3.3.0 < z < 1 

In all of the cases considered for z = +1, a first-order liquid-gas transition does not 
occur. This behaviour is peculiar to z = +1 and will be qualitatively different for all 
positive values of z less than unity. For negative values of z ,  the appearance of the first- 
order liquid-gas transition as 6 increases is marked by the sequence of fixed points N, 
F, V and this will also be the case for 0 < z < 1 with F playing the role of a special tri- 
critical fixed point. Hence the phase diagram will be the same as that shown in figure 4(b) 
for values of B in the range 1 + 22 < 6 ,< 2 + z. For values of fi > 2 + z ,  the open- 
solid phase has a region of stability between the close-packed solid phase and the gas 
phase. The appearance of this phase is marked by the sequence of fixed points V, U, Y. 
The fixed point U is a special critical end-line fixed point which describes the appearance 
of the second-order transition between the liquid and open-solid phases. The disappear- 
ance of the first-order liquid-gas transition at larger values of 6 is associated with the 
sequence of fixed points Y, Z ,  AF', just as it is in the case of negative values of z.  Hence 
the case z = + 1 is special, with the multicritical fixed point B+ taking us directly from 
tricritical behaviour described by the fixed point N to tricritical behaviour described by 
AF' without the appearance of a first-order liquid-gas transition. 

4. Summary and conclusions 

In this paper we have considered a lattice fluid model on a triangular lattice which 
describes the ordering that may occur in adsorbed monolayers of molecules which have 
an orientational degree of freedom. The phase diagram was determined for various 
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choices of the coupling constants using RSRG techniques and the model was found to 
exhibit many types of complicated multicritical phenomena. The coexistence of both 
ordered-ordered and ordered-disordered phases occurred. There are four different 
phases corresponding to the gas, liquid and two distinct types of commensurate solid 
phase. The fixed points which control the transitions between these different phases 
were determined and in all the cases studied the melting transition was found to be 
continuous. Our results may have some application to monolayers of methane or 
ammonia adsorbed onto a graphite substrate. 
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