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A two-dimensional bonded lattice model for water 
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SW3 6LX 

Received 31 July 1978, in final form 8 March 1979 

Abstract. A lattice fluid model on a two-dimensional quadratic lattice is considered in 
which molecules are capable of preferential bonding between second neighbours. A 
Hamiltonian is introduced which has interactions which differentiate between parallel and 
antiparallel spins and parallel and orthogonal spins. A number of interesting special cases 
are considered including a four-state dilute Potts model and a five-state Potts model. The 
phase transitions are investigated using Landau symmetry theory. The fluid transition is 
studied using a mean-field approximation. Within the limitations of this method the system 
is predicted to have water-like properties. 

1. Introduction 

It is now widely recognised that many of the ‘anomalous’ properties of water arise from 
the strongly directional nature of hydrogen bonding, which leads to the existence of 
regions of open structure with a lower density than other molecular arrangements (see 
e.g. Eisenberg and Kauzmann 1969, Fletcher 1970, Perram and Levine 1974). This 
point of view has motivated the introduction of two-dimensional (Bell and Lavis 1970) 
and three-dimensional (Bell 1972) lattice fluid models. In these models each molecule 
has a number of bonding arms pointing to a subset of the neighbouring sites. If one of 
these neighbouring sites is also occupied by a molecule with a bonding arm in the 
direction of the first molecule then a low-energy bond may be formed. In the case of the 
model of Bell and Lavis (1970), which is based on a triangular lattice, the bonding arms 
are all equivalent and a bond is always formed by the molecules in the configuration 
described. In the three-dimensional body-centred cubic model of Bell (1972) the arms 
are directional (positive and negative) and a bond is formed if and only if there is a 
conjunction of a positive and a negative arm. 

The work of Bell and Lavis (1970) and subsequent papers by Lavis (1973,1975) for 
the triangular lattice model employ a mean-field approximation method. Within the 
limitations inherent in such a method the model is shown to have some of the anomalous 
properties of water. The form of the pressure-temperature phase diagram follows quite 
closely that derived from a transfer matrix calculation (Lavis 1976). It is clear that the 
complexity of this model excludes at present an exact solution. In this context it is 
interesting to note that if this triangular lattice model is expressed in spin-1 form then it 
becomes a generalisation of the well known model of Blume et a1 (1971). This, on the 
one hand, emphasises the difficulty involved in the search for an exact solution, but on 

t Present address: Chemistry Department, Imperial College, London SW7 2AZ. 

0305-4470/79/101869 + 22$01.00 0 1979 The Institute of Physics 1869 



1870 D A Lavis and N I  Christou 

the other hand suggests that real-space renormalisation methods are feasible (see e.g. 
Berker and Wortis 1976). These calculations have now been completed (Young and 
Lavis 1979, Southern and Lavis 1979) using the block-spin method employed by Schick 
et a1 (1977) for the spin-; king model and by Schick and Griffiths (1977) for the 
three-state Potts model. In the work of Southern and Lavis the phase diagram is 
obtained. It follows quite closely that derived from previous calculations. The one 
significant difference is that the solid-liquid transition, which was predicted to be first 
order by mean-field methods, now becomes second order. This result is probably due to 
the two-dimensionality of the system rather than the directional bonding character of 
the molecules. In this respect these results do of course add a cautionary note to any 
conclusions which may be drawn from the present calculations. The discrepancy 
between mean-field calculations and real-space renormalisation methods may not be 
evident in a three-dimensional model such as that of Bell (1972). 

In this paper we wish to discuss an alternative two-dimensional model with 
molecules with directional bonds. The model is based on a square lattice and the 
bonding is between second rather than first neighbours. In Q 2 we propose a rather 
general Hamiltonian which has a number of interesting special cases. One of these is a 
five-state analogue of the Blume-Emery-Griffiths model, and another is a five-state 
Potts model. In 8 3 we consider the possible phase transitions of the model predicted by 
Landau symmetry theory (Landau and Lifshitz 1958, Lyubarskii 1960). In subsequent 
sections we consider the vapour-liquid transition using the mean-field approximation 
of Guggenheim and McGlashan (1951). Again within the limitations of the method, the 
model is predicted to have water-like properties. 

2. The detailed model 

We consider a quadratic lattice of N sites with periodic boundary conditions. Begin- 
ning at an arbitrary site with position vector ro the lattice sites are given by the vectors 

r=ro+I(nl i l+nzj)  (nl=O, 1,.  . . ,  NI-1, n z = O , l ,  ..., Nz-l) 

where I is the nearest-neighbour lattice distance, i^= (1 ,O) and i= (0, 1) are orthogonal 
unit vectors in the directions of the sides of the basic lattice square, and NlN2 = N. The 
lattice is divided into two equivalent interpenetrating sublattices a and f l  so that, taking 
ro to be an a site, the vector r represents either an a or a p site according to whether 
nl + n2 is respectively even or odd. 

Each lattice site is either occupied by a molecule or it is vacant. The ‘spin’ s of a 
molecule is aligned along one of the sides of the lattice square. We therefore represent 
the state at a lattice site by the vector s = *d 0, where s = 0 represents a vacant site. 
The four molecular states are shown in figure 1, where we have represented the bonding 
arms by plus and minus signs. It will be seen that the bonding arms of a molecule point 
towards the four second-neighbour sites. A bond will be formed between a pair of 
molecules on second-neighbour sites if and only if there is conjunction between a 
positive and a negative bonding arm. In order to deal with molecular bonding which 
distinguishes between sublattices we must divide the lattice into two types of basic 
square (see figure 1). A square of type A has an a site at the bottom left and top right 
and a p site at the bottom right and top left; a square of type B has the converse 
arrangement. 
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Ib)  

Figure 1. (a) The four orientational states of a 
molecule. The bonding arms are labelled with plus 
and minus signs. (6) The fully bonded open ground 
state [2,1] on sublattice (I, all sites of sublattice 
being vacant. Squares of sites of types A and B are 
labelled. 

The number M of molecules on the lattice is given by 

WsH = c s2W 
(r) 

where the sum is over all sites r of the lattice. If we use the grand canonical distribution 
then the exponent factor which appears in the distribution is 

-M{s)) /kT = [N({s)) -H({s))I/kT (2.2) 

where g is the chemical potential per molecule, H is the Hamiltonian, k is Boltzmann's 
constant and T is the absolute temperature. Our proposed form of X is given by 

( 2 . 3 ~ )  &P({s)) = 1 XO(Sal, saz, sol, So2) 
0 

where the summation is over every neatest-neighbour square of the lattice and 

%(Sal, sa29 S@l, S@Z) 
2 2  

Z 2 

= -fg(s:I +s:2 +s;1 +s;2)+fal(s:l +s:2)(s*l + s o d  

+3;J1(sa1+sa2) (sgl+s@2)+Izlc(s,1 .sgd +(sal  .sg2> 

+(sa2 .s~l)z+(saz ~sgz~z l+~Ez+~W)(S:IS:Z  +s;1s;22, 

+(J2+3w)(sa1 .sa2+sl31 *sg2)+z2[(sa1 *sa2)z+(s*l *sg2) 1 Z 

+w:1s:2s;1s;2 *ttW(S,lKsh'? -S@lK;F$?)* (2.36) 

In equation (2.3b) the plus or minus sign before the final term applies respectively to a 
square of type A or type B, and 

K = ( Y  i). (2.4) 
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We see that a pair of first- or second-neighbour molecules will interact with energy c1 or 
€2 respectively, irrespective of their orientations. The energies J1 and J2 distinguish 
energetically between parallel and antiparallel orientations, between and within 
sublattices respectively. The energies z1 and 2 2  distinguish energetically between 
aligned and orthogonal orientations, between and within sublattices respectively. The 
second-neighbour bonding energy is w and the interaction energy U occurs only for a 
fully occupied square of molecules. 

For the case w = 0 the ‘effective Hamiltonian’ X is similar to that of the Blume- 
Emery-Griffiths model, except that now we have five rather than three states. The 
other main differences are that we have included both first- and second-neighbour 
interactions and, since in this case (sl . s2)2 # s:s:, terms of both types are included. 

We now consider the group operations under which X is invariant. We define the 
following groups: 

( a )  9 2  = {i, 6} operating on sublattice labels, where f is the identity element and Ci: 
permutes sublattice labels; 

( b )  W4, = {I, Cz, C4, C:, ux, uy, a,, ab}, the eight-order group operating on the four 
molecular states as shown in figure 2; 

(c) Y4, the 24-order symmetric group operating on the four molecular states; 
( d )  Y5, the 120-order symmetric group operating on the five states at a lattice site 

including the vacant state. 

Figure 2. The operators of group Ce,, on 
molecular states. The rotations CS,, g2 and 
a: are denoted by directed arcs of a circle. 
Reflections U=, U,, ua and o b  about axes are 
indicated by labels attached to the axes. 

In terms of these groups we have the following special cases: 

(i) w = U = 0, J I =  z1 = c1/2, J2 = z2 = 4 2 ,  CL = 8(J1 +J2) .  X is invariant under 
9 2 0 . 9 ’ 5  and we have a five-state Potts model. 

( i i )  w = 0,  J1 = zl, J2 = z2. X is invariant under 9 2 0 9 4  and we have a four-state 
Potts model with respect to the molecular states. This could be called a ‘dilute four-state 
Potts model’. 

( i i i )  w =O. X is invariant under 9 2 0 % 4 ,  and we have, as indicated above, a 
five-state analogue of the Blume-Emery-Griffiths model. 
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In the general 

(im,)). This group 
subgroup G of 92 

case the symmetry Qoup-is further reduced to the eight-order 
given by G={(II), (IC21, (GCd, (GC:), (Gux), (Guy), (iun), 

is isomorphic to %'4.,. 

3. Landautheory 

Let p ( r ;  s) be the probability that the lattice site located at vector position r has a 
molecule (or vacancy) specified by the state vector s. Clearly for each r 

(3.1) p ( r ;  13+p(r; - A + p ( r ; O ) + p ( r ; h + p ( r ;  -I?= 1 

and a general state of the system needs 4N probabilities for complete specification. In 
the spirit of Landau theory we impose homogeneity within sublattices so that p(r ;  s) = 
pa(s) for every (Y site and p ( r ; s ) = p s ( s )  for every p site. We now have eight 
independent probabilities, in terms of which we define the independent order 
parameters 

( 3 . 2 ~ )  

(3.26) 

( 3 . 2 ~ )  

(3.2d) 

( 3 . 3 ~ )  

(3.3b) 

(3.3c) 

(3.3d) 

It is not difficult to show that, in terms of these order parameters, the probability weight 
function p(r;  s) is given by 

-(E){ 1 + 5  cos(+) cos(+)]-(3{ cos(+)-cos(+)} 

+ ($) sin(+) Ti s + (5) sin(+) 27rj. s --cos( 7r [ i+J"J .  I 3 
X [ i {  1+5 cos(+) cos(*y+($)( c o s ( ~ ~ - c o s ( ~ ) ]  

- (2) sin(-) 27ri. s - (2) sin($)]. 7rj. s 
& ( 3 4 )  

We are concerned-with the tfansformatio_ns of the order parameters under the elements 
of the g o u p  G, 9 2  @ (84v7 9 2  0 9 4  and 9; 0 95. The generators of these groups are as 
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follows: 

G: {(in, 1, (Gnx 11 
92@%4v: {(icca)~ (Ggx) ,  ( i c x ) }  

9 2 0 9 4 :  {(in,), (&x), (~CX), (iT)} 

92095: (LX), (id, ci, v)} 
where T interchanges the states f and leaving 0, -f and -1 unchanged and v 
interchanges -jand 0 leaving 6 -land funchanged. The effect of these generators on 
the order parameters is given in table 1. We denote the irreducible representations of 

Table 1. The transformations of the order parameters by the generators of the symmetry 
groups. 

%4v (and G) by the standard notation {Al, Az, B1, B2, E} (see e.g. Kilpatrick 1948) and 
the irreducible representations of g2 by {A, 8). The one-dimensional symmetric 
representation of Y4 is denoted by A' and the three-dimensional irreducible represen- 
tation whose characters are given by the number of one-cycles minus one is denoted by 
F. Similarly we denote the four-dimensional irreducible representation of Y5 whose 
characters are given by the number of one-cycles minus one by D. The way in which the 
order parameters give irreducible representations of the symmetry groups is shown in 
table 2. It will be seen that the parameter p ,  given by equation (3.2a), is the molecular 
number density MIN. Except in the special case (i) of 0 2, where the symmetry group is 

Table 2. The irreducible representations of the symmetry groups given by the order 
parameters. 

G 92@g+v &;0.Y4 92@95 
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g2@ Y5 this parameter corresponds to the one-dimensional symmetric representation. 
As in most fluid systems p is not an order parameter in the Landau sense; there does not 
exist a critical density pc such that (p -pc)  = 0 for all temperatures above a critical 
temperature T,. The exception to this comment concerning fluid systems is, of course, 
the simple lattice gas, which in the grand canonical distribution has the hole-particle 
symmetry arising from the equivalent Ising model. In that case if the chemical potential 
p is fixed at the critical value p, then the parameter (p -a) remains equal to zero down 
to the critical temperature at which a second-order phase separation into vapour and 
liquid phases occurs. We show in 9 5 that, within the first-order mean-field approxima- 
tion of Guggenheim and McGlashan (1951), this system exhibits similar symmetry 
properties, except that here the curve of approach to the critical point in the 
p - T plane is of the form p = p*( T), where p*( T) is not a constant. This symmetry is a 
product of a particular classical approximation method and is not evident from 
Landau theory. 

The order parameters e, El and t2, given by equations (3.2b)-(3.2d), are all zero in 
the high-temperature disordered phase. They are related to orientational ordering of 
the molecules; 0 distinguishes between molecules aligned in the &direction and those 
aligned in the *jdirection and & and &correspond to the occurrence of ‘spin moments’ 
in the [and jdirections respectively. It is clear from table 1 that, in the general case and 
in the special case (iii) (w = 0), the irreducible representations {e} and ((1, &} yield no 
third-order invariants. The transitions to the orientationally ordered states, if they 
occur, are predicted by Landau theory to be second order. In the special case ( i i )  
( J 1 =  2 1 ,  J 2  = 22, w = 0)  the irreducible representation {e, &, 5;) yields the third-order 
invariant O((f-($) and here the prediction for a possible phase transition is that it 
would be first order. In the special case ( i )  the symmetry group is P2C3Y5. The 
parameter (p-$) is now zero in the high-temperature disordered phase and the 
irreducible representation {(p -$), 0, (I,&} yields the third-order invariant 28(& - 
6:) + (p -$)(e2 + 26: + 22‘;) - 5(p -t)3. Again a possible phase transition is predicted to 
be first order by Landau theory. The order parameters +, 4, y1 and y2 given by 
equations (3.3) are all zero in the high-temperature disordered phase. They are related 
to sublattice ordering of the molecules; + measures the difference of molecular number 
density on the two sublattices and 4, yl and y2 are related to differences of occupations 
of particular molecular orientations on the sublattices. It is clear that every possible 
phase transition to a sublattice-ordered state is predicted to be second order. 

It is necessary at this point to emphasise the limitation of Landau theory in two 
respects. (i) It gives guidance only in relation to possible phase transitions. It does not 
predict that such phase transitions will necessarily occur. ( i i )  It is not infallible in its 
predictions, which are always those of mean-field theory. An example of this latter 
weakness is provided by the q-state Potts model. Here mean-field theory predicts a 
first-order phase transition for q > 2 (Mittag and Stephen 1974) in the case of only 
nearest-neighbour coupling. Baxter (1973) has, however, shown rigorously that the 
transition in such a model on a two-dimensional quadratic lattice is first-order only for 
q > 4, it being of higher order for q d 4. 

The value of Landau symmetry theory is also twofold. ( a )  It provides an elegant way 
of deriving the predictions of mean-field theory without detailed calculations using a 
particular approximation method. ( i i )  It gives good guidance with respect to the 
symmetry properties of the Hamiltonian. This can be particularly useful in the initial 
stages of group renormalisation calculations (see e.g. Schick and Griffiths 1977, Young 
and Lavis 1979). 
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4: The vapoudqdd phase transition 

To eliminate the complications arising from orientational ordering we set z1 = 22 = 0 
(ensuring that 8 remains equal to zero) and J1 = J 2  = 0 (ensuring that and 5; remain 
equal to zero). We are left with four energy parameters: w the bonding energy, cl  and 
€2 the first- andsecond-neighbour energies and U the four-molecule energy. With these 
energies the spectrum of the single-square effective Hamiltonian 2~ has ten levels. 
These we denote by [n, i], where n is the number of occupied sites (n  = 0, 1,2,3,4)  and 
i distinguishes between the different non-equivalent occupations corresponding to a 
particular value of n. Let ~ [ n ,  i] be the value of when the square is in level [n, i] and 
let w[n,  i] be the degeneracy of the level. In table 3 we list the possible configurations 
[n, i] together with their values of ~ [ n ,  i] and w[n,  i]. It is clear that it is possible to 
occupy every square of the lattice by identical configurations corresponding to any one 
of the levels [n, i]. These ten configurations therefore represent possible groundstates 
of the system. The most stable groundstate will be that which corresponds to the lowest 
value of ~ [ n ,  i] and the pressure of the system in configuration [n, i] at T = 0 is given by 
P = - ~ [ n ,  i]/z2. 

Since this model is intended to simulate the behaviour of the water system, we 
impose conditions on the energy parameters in order to ensure that the stable 
groundstates reflect our intentions. Clearly, for large negative chemical potentials, 
state [0, 11 is the stable groundstate and we identify this with the vapour phase. At the 
other extreme for large positive chemical potentials a fully occupied state (n = 4) will be 
most stable. In order to ensure that this is state [4, 13, the fully bonded structure 
analogous to close packed ice, we need simply to impose the condition 

w C O .  (4.1) 

This automatically ensures not only that [4, 13 is more stable than [4,2] and [4,3] but 
that [2,1] is more stable than [2,2] and [3, 11 is more stable than [3,2]. Configuration 
[2,1] is our analogue for the ordinary low density ice structure. For it to be more stable 
that configuration [2,3] we must have 

2(w + € 2 )  < €1. (4.2) 

In order for there to be a range of chemical potentials, corresponding to positive 
pressures, for which configuration [2,1] is more stable that either [0, l]or [4,1] we must 
have 

O<2€1+ U. (4.3) 

In addition we wish to exclude the possibility of stability ranges for oonfigwations [l, 13 
and [3, 13. This is achieved if 

W + € 2 < 0  (4.4) 
and 

W + E 2 + U < O  (4.5) 

respectively. Finally, to complete the analogy with water, we impose the condition that 
there is a range of pressures such that along an isobar in this range in the p-T plane the 
density has a maximum. A sufficient condition for this to be the case can be derived by 
considering small perturbations on the open ground state [2, 11. We find that 

O < E I + U .  (4.6) 
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Table 3. Molecules are denoted by full circles and vacant sites by open circles. A bond is 
represented by a double line. 

Configuration 4 n ,  il ob, il 

16 

16 
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When all these conditions are satisfied we have: 
Configuration [0, 1 J is stable if p < PO,  P = 0; 
Configuration [2, 13 is stable if p o  < p < pl, 0 < P < PI, with a density maximum along 
isobars in the range PZ < P < PI ; 
Configuration [ 4 , 1 ]  is stable if ~1 < g, P1 < P, where 

Po = 2(w + € 2 )  

P1= (2€1+ u) /13  (4.7c) 

(4 .7a)  

(4.7b) 2(w + €2 + 2€1+ U )  

P2 = €1/l2.  (4 .7d)  

We now investigate the possibility of a vapour-liquid phase transition using the 
approximation method of Guggenheim and McGlashan (1951), based on a square of 
sites. We divide the lattice into N / 2  squares of sites, with sites but not nearest- 
neighbour pairs in common. This means that, in terms of the formulation given for the 
Hamiltonian in Q 2, we are considering a distribution of molecules only with respect to 
either squares of type A or type B. This effectively removes the distinction between cy 
and /3 sublattices and eliminates the possibility of sublattice ordering; the parameters $, 
4, y1 and y2 remain equal to zero. This means that the molecular ordering configura- 
tions of the types described above for the ground states can occur only as forms of 
short-range ordering. In the case for example of configuration [ 2 , 1 ] ,  where the perfect 
ground state would entail A squares bonded from the top right to the bottom left with B 
squares bonded from the top left to the bottom right or conversely, our method is 
equivalent to averaging over the two arrangements. Since we are considering only 
vapour and liquid phases, where for the latter we expect uncorrelated regions of 
ordering of the types exhibited by the ground states, the method is satisfactory. 

The details of the derivation of the thermodynamic equations are given in the 
Appendix. We find that a state of the system at fixed P and T can be expressed in terms 
of a parameter A, which is related to the probability pn that the basic square of sites is 
occupied by exactly n molecules, for n = 0, 1, 2, 3, 4,  by the equations 

( 4 . 8 ~ )  

(4.86) 

( 4 . 8 ~ )  

(4 .8d)  

Where 

u(T) = exp(-2u/kT)- 1 ( 4 . 9 ~ )  

c(  T )  = d? exp[(cl + eZ)/ kT][  1 + exp( -2 w/&T)]-”* (4.96) 

b ( T )  =$cz(T)  e ~ p ( - e ~ / k T ) + $ e x p ( 2 ~ ~ / k T ) .  (4 .9c)  

The molecular number density p, the chemical potential p and the pressure P are 
related to the parameter A by the equations 

(4.10) 
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CL = g ( T ;  A) 
PI2 = h(T;  A) 

f ( T ;  A) = c( T ) A  + 3b( T) + 3c( T)A-' + A-2 
where 

1 c ~ ( T ) ~ ( T ;  A ) A ~  
4f (T; A-') + A2u( T) g(T;  A) = kT In[ 

and 

1 f 2 ( T ;  A)A2 
f ( T ;  A)+f (T;A- ' )+A2v(T)  * h(T;  A) = i k T  In[ 

(4.1 1) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The thermodynamic potential @ per site associated with the grand canonical dis- 
tribution is given by 

(4.16) Qb, T; A ) = p { g ( T ;  A)-p}-h(T;  A). 
Equation (4.10) can be regarded as the definition of p in terms of A and, since 

p ag/aA = ah/aA (4.17) 

equation (4.11) is the equilibrium condition for A at constant p and T obtained by 
minimising Q. Equation (4.12) is then given by 

@"i"(P, T) = -PI2. (4.18) 

We now investigate the possibility of the existence of pairs of solutions {A, 1/A} of 
equation (4.11). At the outset we prove that if such a pair exists then the members of 
the pair represent minima of the potential @ of equal depth. This follows from the 
equation 

PI2 = $kT In[ u (T) + A2f (T; A) + Ad2f  (T; A-')] 

(4.19) 

which has been derived from equations (4.11) and (4.12). The right-hand side of 
equation (4.19) is symmetric under the mapping A @ l / A ,  and it follows that if A and 
1/A satisfy equation (4.11) then the equilibrium situation is one of phase coexistence. 
The condition for the existence of this pair of solutions can now be derived from 
equation (4.1 1). Following the procedure of Lavis (1975) we define the new variable x 
by the equation 

(4.20) 

and we look for a pair of solutions *x where, from equation (4.1 l), x must be a solution 
of 

V(T;CQsx)=O (4.21) 
where 

W T ;  Y )  = Bo( T) + Bi ( T)Y + B2(T)y2 + M T ) Y  
Bo( T) = 4c2( T) 
BI( T) = 126 ( T)c (T) 

A = (1 + sin x)/cos x (-1212 sx c 12/2) 

(4.22) 

( 4 . 2 3 ~ )  

(4.236) 
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B2( T )  =4c2(T) + 9b2( T )  - 1 - U (  T )  

B3(T) = C( T)[6b(T) - 2 - U( T)]. 

( 4 . 2 3 ~ )  

(4.23d) 

On physical grounds our requirements are that: ( i )  9 ( T ;  y )  should have no root in the 
range [0,1] at high temperatures; ( i i )  9(T; y )  should have at most one root in the range 
[0, 11; (iii) if a root of 9(T; y )  appears in the range [0, 11 at a temperature T, then it 
should make its appearance at y = 1; (iu) q ( T ;  y )  should have a root in the range [0,1] 
at low temperatures. It is clear that condition ( i )  is satisfied since as T tends to infinity 
b(T)-c(T)-1,  u ( T ) - 0  and q ( T ;  y ) - 4 ( 1 + ~ ) ~ .  Now Bo(T)>O and Bl(T)>O for 
all T>O. Since 9b2(T) contains the term exp(4cl/kT) (see equation ( 4 . 9 ~ ) )  and we 
have imposed the condition (4.3), it is also the case that B2( T )  > 0 for T > 0. Thus we 
see that 9(T; y )  has at most one positive root, and this if and only if B3(T) < 0. At high 
temperatures B3( T) > 0 and if Tl is the temperature at which B3( T) = 0 then q( Tl ; 1) > 
0. Conditions ( i i )  and ( i i i )  are satisfied. To satisfy condition ( i u )  we must ensure that 
B3( T) is negative at low temperatures and that it dominates B2( T), B1( T )  and BO( T )  so 
that 9( T ;  1) is negative. Now if c (  T) tends to infinity as T tends to zero then we must 
have U < 0, otherwise the negative part of B3( T) is dominated by Bo( T). In this case for 
B3(T) to be negative as T tends to zero we must have - 2 u > 2 ~ ~ ,  which violates 
condition (4.6). It is equally clear that, if c (  T) remains finite as T tends to zero, then the 
negative part of B3(T)  is dominated by Bz(T).  We are left with the condition that c ( T )  
tends to zero as T tends to zero. Now we have 

u>O 

€1<O. 

(4.24) 

(4.25) 

The function c ( T )  will tend to zero in such a way that the negative part of B3(T)  
dominates B2(T),  B1( T )  and Bo( T) if 

(4.26) 

(4.27 1) 

We now have two sets of conditions on our energy parameters (4.1)-(4.6) and 
(4.24)-(4.27). Of these conditions, (4.2), (4.4), (4.6) and (4.26) are automatically 
implied by the remaining six. 

In our numerical calculations we consider three cases: ( i )  e2/w = 0.5, u/w = -1 .1 ,  
( i i )E2/w = 0 . 6 , u / w = - 1 . 3 8 , ( i i i ) € ~ / w  =0*8,u/w =-1-8.  Itwillbeobservedthatcase 
(iii) corresponds to condition (4.5) becoming an equality. This means that at the 
pressure P1 or the chemical potential p l  the configurations [2,1], [3,1] and [4,1] are all 
equally stable at T = 0. This has a negligible effect on the behaviour of the system, since 
in any case the ground state at this special value of the pressure or chemical potential 
would be a mixture of configurations [2,1] and [4,1]. In figure 3 we show curves of the 
reduced critical temperature kT,/lwl as a function of E I / W  for cases ( i)-( i i i ) .  The lower 
endpoint of the curves corresponds to the violation of condition (4.27) and the upper 
endpoint to the violation of condition (4.3). To satisfy both conditions we need to 
choose values of e l / w  with the ranges of these curves. This we do for cases ( i i )  and (iii) 
by choosing respectively the values e1 /w  =Om65 and e1/w =0-85. To emphasise the 
fact that condition (4.27) is a sufficient, but not necessary, condition for the existence of 
a critical temperature we choose for case (i) the value c l / w  = 0.5, which corresponds to 
the lower endpoint of the curve in figure 3, when condition (4.27) becomes an equality. 
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C 

0 7 t  

0 5  0 6  0.7 0.8 09 1.0 
E , l W  

Figure 3. The reduced critical temperature kT,/lwl 
plottedagainstE1/wfor: A ~ ~ / w = O ~ 5 , u / w = - l ~ l ; B  

The values of eI/w chosen for computation are 
indicated by crosses. 

~ 2 / ~ = 0 . 6 ,  ~ / ~ = - 1 ' 3 8 ;  C ~ 2 / ~ = 0 ' 8 ,  ~ / ~ = - 1 . 8 .  

A non-zero solution x, to equation (4.21) exists in the temperature range 0 S T < 

*(T;  1)=0 .  (4.28) 

T,, where T, is the critical temperature, given as the unique solution of 

In the w-T plane we now have the coexistence curve 

w = w , ( T ) = g ( T ;  A,) 

where 

A, = (1 +sin x,)/cos xu. 

Along the coexistence curve the pressure is given by 

P = P, ( T )  h ( T ; Am) / 1 2.  

The densities of the coexistent phases are given by substituting A, and 1/A, in equation 
(4.10). We identify the denser of these phases as the liquid phase with p = pL(  T) and the 
less dense as the vapour phase with p = pv( T). The critical constants are p c  = p,( T,), 
P, = Pe(Tc) and pc = pL( T,) = pv( T,). In the g - T plane the coexistence curve begins at 
the origin and terminates at the critical point (p,, T,). We also have, in this plane, the 
line of symmetry g = w s ( T ) = g ( T ;  1). Along this curve the pressure is given by 
P = P,(T) = h( T; 1)/12 and the density p = p,(T) is given by substituting A = 1 in 
equation (4.10). In figure 4 we show the coexistence curves for cases (i)-(iii), defined 
above, in the p-T plane. We also show the line of symmetry for case (iii). 

5. Asymptotic forms in a neighbourhood of the critical point 

For the simple lattice fluid and for a number of other models (Widom and Rowlinson 
1970, Widom and Stillinger 1973), a line of symmetry can be defined either (i) as the set 
of invariant states of a symmetry transformation or (ii) as the line of states for which the 
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chemical potential in the one-phase region is the analytic continuation of the chemical 
potential along the transition curve. Not only is there no conflict between these two 
possible definitions; it can also be shown that, in the density-temperature plane, the line 
of symmetry is the analytic continuation of the diameter of the two-phase region. It has 
however been shown by Mulholland (1973) that if, for a general classical model for 
which no particular symmetry is assumed, the line of symmetry is defined by ( i i i ) ,  then 
the line of symmetry in the density-temperature plane is no longer the analytical 
continuation of the two-phase diameter. 

Lavis (1975) has shown that for the model of Bell and Lavis (1970), treated by the 
mean-field method of Guggenheim and McGlashan (195 l ) ,  there is a line of symmetry 
defined by (i) above. This coincides neither with a possible line of symmetry defined by 
( i i )  nor, in the density-temperature plane, with the analytic continuation of the 
two-phase diameter. 

For the present model in a neighbourhood of the critical point 

" ( T ;  l ) - v ( T / T , - l )  (5.1) 

where v is a positive constant, and on the coexistence curve it follows from equation 
(4.21) that 

T s T ,  (5.2) 2 xu- -2v (TITc-  l )d (Tc) / c (Tc )  
where 

d (  T )  = [8c( T )  + 6 b  ( T )  + U ( T )  + 21-l. (5.3) 
By expanding p , ( T )  in powers of xu and substituting from (5.2), it may be shown that in 
a neighbourhood of the critical point 

(5.4) P , ( T )  - p m  - kTCd T/ T, - u2 

7 = f U ( Tc)d ( T,) / { c  ( T,) [ c  ( T,) + b ( TJlI. 

T <  T, 

where 

( 5 . 5 )  

Similarly from equation (4.10) it may be shown that, for the two-phase diameter 

Pd(T) -Ps(T) - l ( T /  Tc - 1 )  T < T ,  (5.6) 

Pd(T) = [pL(T) +pV(T)1/2 

where 

5 = 12vv ( Tc)d2( Tc)[c (TJ + b (TAl/c (TJ .  (5.7) 

Again we have a situation where the line of symmetry coincides neither with the analytic 
continuation of the coexistence curve in the p-T plane nor with the analytic continua- 
tion of the two-phase diameter in the p-T plane. 

Consider now the curve 

(5 .8 )  

in the p-T plane. It is clear from equation (5.4) that this curve is continuous with a 
continuous gradient at T = T,. Now let us suppose that the system has independent 
variables p and T and we fix the chemical potential according to equation (5.8) and 
lower the temperature through the critical point. In a neighbourhood of the critical 
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point the thermodynamic potential CP is given, from equation (4.16), by 

CPb*(T), T ;  x ) - a o ( T )  + ~ I ( T ) x  +a2(T)x2 +a3(T)x3 + a4(T)x4 (5.9) 

where 

ao(T) = PS(T){PS(T)  - P *(TI} - Ps(TV2 ( 5 . 1 0 ~ )  

and 

a1(T) = 2ps(T){l -Ps(T)}{Ps(T)-CL*(T)}. (5.10b) 

The remaining coefficients can be expanded in power series with respect to (T/ Tc - 1 )  
and retaining only the leading terms we have 

a2(T)-2kTcvd2(Tc)(T/T,- 1 )  ( 5 . 1 0 ~ )  

a3( T )  - -$~T,Yv  ( Tc)d3( Tc)( T/ Tc - 1 )  (5.10d) 

and 

a4( T )  - $k TCc ( Tc)d ( Tc). (5.10e) 

Above the critical point a l ( T )  =0, cy2(T) > O  and the potential CP has a minimum at 
x = 0. Below the critical point a l ( T )  is of the order of ( T/Tc- 1 ) 2 ,  a2(T)  < 0 and 
cy4( T) > 0. The potential Q, has a minimum at 

X 2  - -az (T) / {2adT) }  

which is equivalent to equation (5.2). The system separates by a second-order phase 
transition into coexistent liquid and vapour phases as it passes through the critical point. 
This is a classical Landau situation, but it differs in a number of interesting respects from 
the case of a simple lattice fluid. There we have 

P* = P, = Ps = P c  

and using the zeroth-order approximation we obtain a potential of the form (5.9) with 

(5.11a) 

(5.11b) 

( 5 . 1 1 ~ )  

(5.11d) 

(5 .11e )  

( 5 . 1  I f )  

The differences between the two cases are therefore: 

(i) For the simple lattice fluid the order parameter is the scaled number density. 
This is true even in higher-order approximations in virtue of the intrinsic hole-particle 
symmetry of the system. The order parameter in our system is related to the basic 
lattice group probabilities of our approximation method by equations (4.8) and (4.20). 
In this sense the symmetry which we have used is less fundamental than that of the 
simple lattice fluid. 

(ii) For the simple lattice fluid, along the curve p = @*, the potential Q, is an even 
function of x,  the minimum at x = 0, for T > T,, becoming a maximum for T < T,. For 
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0 8- 

our system, since CY T )  f 0 for T < T,, ,y = 0 is not a stationary point of Q, for T < T, and 
the potential is an even function of ,y only when ,y = xu-. 

(iii) The critical point in the simple lattice fluid is an isolated point with a 
second-order transition because p does not appear in cy, ( T )  for i > 0 and a T )  = 0 and 
a*( T )  = 0 are lines parallel to the axes in the p-T plane intersecting at (po Tc). In our 
system p appears in a , (T )  for i > 1, but by choosing p = p*(7 ' )  we have ensured that 
cy1( T )  = 0 passes through the critical point together with cyz( T )  = 0 and cy3(  7') = 0, which 
are tangential to the line T = T,. This is sufficient to make the critical point an isolated 
second-order transition. 

I 

i 
I 
; 

6. Discussion of water-like properties 

Part of the purpose of this work has been to investigate the extent to which this lattice 
model, which incorporates a simple form of directional bonding, is capable of exhibiting 
some of the anomalous properties associated with the water system. We shall be 
concerned with five of these properties. 

For a range of subcritical pressures the water system has, along an iso'7ar in the 
liquid state: (i) a maximum in density; (ii) a minimum in the isothermal compressibility 
KT (Eisenberg and Kauzmann 1969, pp 183 and 184 respectively). On the liquid branch 
of the coexistence curve: (iii) there is a minimum in the isothermal compressibility; ( ic 1 
the coefficient of isobaric thermal expansion cyp changes from its normal positive value 
to a negative value as the temperature is lowered (Rowlinson 1969, p 5 5 ) ;  ( U )  the 
discontinuous change Acp in the constant pressure heat capacity cp, as the system 
changes from liquid to vapour, is positive near the liquid-vapour critical temperature 
but negative at lower temperatures (Eisenberg and Kauzmann 1969, p 69 and 99). 

Of course the extent to which our model appears to exhibit water-like properties 
may well be influenced not only by the form of approximation used but also by the fact 
that within this approximation we have eliminated the possibility of the occurrence of a 

0 0.2 O L  0 6  

Figure 4. The liquid-vapour coexistence curves in the 
density-temperature plane for: A c l / w  -0.5,  c 2 / u  = 
0.5, u / w = - l , l ;  B r l / w = 0 . 6 5 ,  c Z / w = 0 . 6 ,  u / w =  
-1.38; C e l / w  =0.85, c2/w=0.8,  u / w  =-1.8. Criti- 
cal points are denoted by crosses and the line of sym- 

P metry for case C is represented by a chain curve 
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long-range ordered solid phase. The effect of the latter can clearly be seen in figure 4, 
where at T = 0 vapour-liquid coexistence occurs at zero density. If long-range order 
were included we should expect from ground state considerations to have two phase 
transitions; a liquid-solid transition and a solid-vapour transition, both associated with 
nonzero discontinuities in density. The transition represented in figure 4 would then be 
metastable. Having recorded these reservations which must necessarily be attached to 
our calculations, we now discuss our results. 

We found, in each of the three cases investigated numerically, that there were clear 
maxima in the density along isobars at temperatures below the liquid-vapour transition 
temperature and pressures less than the critical pressure. Isobars b the p-T plane are 
shown in figure 5 for the case E ~ / W  = 0.8, U/ w = -1.8, E ~ / W  = 0.85. The liquid-vapour 
transition temperature was calculated by comparing the values of the chemical potential 
along the isobars. 

3 

Figure 5. Isobars in the density 
temperature plane for c I / w  = 0.85, 
E Z / W  = 0.8, u / w  = -1.8. The isobars 
are labelled with their values of the 
reduced pressure P12/lwl(Pllz/lwl = 
0.1, PJz/lwl =0.01245). Phase tran- 
sitions are represented by vertical tie 
lines and metastable or unstable parts 
of the curves by broken lines. kTl lwl  

The isothermal compressibility K~ is given by 

We found, again in all three cases, minima in the compressibility along isobars in the 
liquid state. Examples of this, for the same case as figure 5 ,  are shown in figure 6. 

In figure 7 the isothermal compressibility ( K T ) L  along the liquid branch of the 
coexistence curve is shown for all three numerical cases. Minima are exhibited and 
( K ~ ) ~  diverges to order (Tc- T)-' as T approaches T,. 

The coefficient of isobaric thermal expansion ( ( Y ~ ) ~  along the liquid branch of the 
coexistence curve is given by 
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-L 0 001 
Figure bility KTlwl/12 6. The plotted reduced against isothermal reduced compressi- tempera- 
ture along isobars for e l / w  = 0.85, E * /  w = 0.8, 

' 0006 u / w  = - 1 . 8 .  Curves are labelled with their 
values of the reduced pressure. Metastable parts 

I 

/ 

2LO 

200 

This function is shown for all three numerical cases in figure 8. It will be observed that at 
low temperatures (ap)L  is negative. As T approaches T, it diverges to order (T ,  - T)-' .  
It has been shown by Lavis (1975) that the discontinuous change Acp in the constant 
pressure heat capacity cp, as the system changes from liquid to vapour, can be expressed 

- 

- 

kT l lw l  

Figure 7. The reduced isothermal compres- 
sibility along the liquid branch of the coexis- 
tence curve. For case A ( e l / w  =0.5, e 2 / w  = 
0.5,  u / w = - l . l )  the vertical axis is 
KT1w//(10012); for case B ( E ~ / w  =0.65 ,  
E ~ / W  =0.6,  u / w  = -1 .38 )  the vertical axis is 
KT1Wl/(1012) and for case C ( e 1 / w = 0 . 8 5 ,  
E ~ / W  =0.8, u / w  = - 1 . 8 )  the vertical axis is 
~ ~ I w 1 / 1 * .  The curves tend to infinity as the 
critical point is approached. 
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€ 2 1 ~  ~ 0 . 5 ,  U / W  = - 1 . 1 ;  B € 1 , ’ ~  =0.65, E ~ / W  = 
0.6, U / w = - 1 ’ 3 8 ;  C € 1 / w = 0 . 8 5 ,  ~ 2 / ~ = 0 . 8 ;  
u / w  = -1 .8.  The curves tend to infinity as the 
critical point is approached. 

in the form 

(6.3) 

This function is shown for all three numerical cases in figure 9. It can be shown (Lavis 
1975) that Acp diverges to infinity as T tends to zero and also as T tends to T,: in the 
latter case to the order of (T, - T)-”*. It follows that negative values of Acp can be 
achieved only by means of a negative minimum. In numerical cases ( i )  and (ii) there is 
no evidence for such a minimum, although the possibility does exist, since computation 
at low temperatures is very uncertain due to machine errors, even with the large 
computer we employed. In numerical case (ii) there does seem to be some evidence for 
a negative minimum although there is still a large element of computational 
uncertainty. 

7. Conclusions 

We have introduced a lattice model with directional bonding capable of spin and 
sublattice ordering. We have analysed the behaviour of the fluid phases using a 
mean-field approximation and shown that, within this approximation, the model 
exhibits some water-like properties. Landau theory predicts that the transition to 
sublattice ordering if it occurs will be second order. Since such ordering could 
correspond to the fluid-solid transition in this model this would be unfortunate for the 
relationship between the model and the water system. There must however always be 
serious reservations about the results of classical approximation methods especially in 
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Figure 9. The discontinuous change in the 
constant pressure heat capacity as the system 
changes from liquid to vapour. For case .4 
( t i / w ' = 0 . 5 ,  c J t v = O . 5 ,  U / W =  1 . 1 1  the 
vertical axis is A c p / k :  for case B ( c i ~ w  :-. 

0.65 ,  . s / w  =0.6 ,  u / w  = --1,38) the vertical 

c 2 / w  =0.8,  u / w  = -1.8) the vertical axis is 
0 0-2 04  0 6  08  Acp/(4k) .  The curves tend to infinity as the 

I , axis is Acp/(2k) and for case C ( C , ; I \ ,  = (1.85, ' I  I , ,  
kT l lw l  critical point is approached. 

two dimensions. A clearer appreciation of the properties of this model should be 
achieved by means of real space renormalisation calculations on the lines applied to the 
corresponding triangular lattice model by Young and Lavis (1979) and Southern and 
Lavis (1979). The present work, especially the Landau analysis, should be regarded as a 
preliminary to such calculations. 
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Appendix: the derivation of equations (4.8)-(4.15) 

We consider Nj2 squares of sites sharing sites but not nearest-neighbour pairs. Let 
p [ n ,  i] be the probability of a square being occupied by one of the equivalent 
configurations [n,  i ]  of table 3. Then 

1 = p [ n ,  i]w[n,  i ]  

4 p  = np[n,  i ]w[n ,  i ] .  

[n,il 

In.11 

iA.lh1 
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In order to compensate for the elimination of half the lattice squares appearing in the 
Hamiltonian (2.3a), we double the energies ~ [ n ,  i ]  which appear in table 3. We thereby 
obtain the total energy E for the system, given by 

E = N ~ [ n ,  i ]p [n ,  i ]w[n ,  i ] .  
[n,il 

The thermodynamic potential @per site can now be expressed as a function of the set of 
parameters { p [ n ,  i ] }  and p by the equation 

N@(cL, T ;  { A n ,  i l l ,  P )  = -kT In W M n ,  ill, p ) + E ( { p [ n ,  ill). 64.3) 

The function fi in the entropy term of equation (A.3) is evaluated using the approxima- 
tion method of Guggenheim and McGlashan (1951). The calculation is quite standard 
and follows the same pattern as that for the triangular lattice model of Bell and Lavis 
(1970) and the body-centred cubic lattice model of Bell (1972). We have 

In W P [ n ,  i l l ,  P )  

@ is now minimised with respect to { p [ n ,  i ] }  and p subject to the constraints imposed by 
equations (A. 1). We obtain the equilibrium conditions 

x"  exp(-2d[n, i ] / k T }  
Z[n,i] x"w[n, i ]  exp{-2~'[n, i ] / k T }  P b ,  i l =  (A.5) 

and 

j~ = kT[2 In x - ln(p/4( 1 - p ) } ]  (A.6) 
where x is a variable which arises from the use of undetermined multipliers and 

~ ' [ n ,  i ]  = ~ [ n ,  i ] + f n k .  

P n  = c A n ,  iIw[n, il 

We defined the probability 

ifn) 

(A.7) 

that a square of sites is occupied by n molecules for n = 0, 1, 2, 3 , 4  and the variable 

A=4x/c(T) (A.9) 
where c( T )  is given by equation (4.9b). Equations (4.8) now follow from table 3 and 
equations (AS) and (A.8). Substituting into equations (A. 1) we obtain equation (4.10). 
From equations (A.6), (A.9) and (4.10) we obtain equation (4.11). Equation (4.12) is 
finally obtained by substituting into (A.3), giving the minimum value for Q, which, 
according to equation (4.18), is equal to -P1*. 
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