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Symmetry properties and the two-phase coexistence curve of a 
t wo-dimensional bonded lattice fluid 

D A Lavis 
Mathematics Department, Chelsea College, University of London, Manresa Road, London 
SW3 6LX, UK 

Received 14 November 1974, in final form 24 April 1975 

Abstract. By examining the symmetry properties of a two-dimensional bonded lattice 
fluid we are able to obtain in a simple way the two-phase coexistence curve and the line of 
symmetry. We show that, in the density-temperature plane, the line of symmetry, the 
analytically continued two-phase diameter and the curve on which the chemical potential 
is equal to the analytic continuation of its values along the coexistence curve are all distinct. 
These curves intersect at the critical point in nonzero angles. We examine the behaviour 
of the thermodynamic response functions on the coexistence curve and show that on the 
high-density branch of the curve the isothermal compressibility and the coefficient of 
isobaric thermal expansion exhibit anomalies similar to those shown by the water system. 
We show also that the discontinuous change in the constant pressure heat capacity as the 
system changes from the high-density to the low-density phase becomes negative below 
a certain temperature. This again is a characteristic of the water system. 

1. Introduction 

The main purpose of this work is to extend the studies of the two-dimensional lattice 
model of Bell and Lavis (1970b, hereafter referred to as BL(b)) by deriving an explicit 
form for the two-phase coexistence curve, and by investigating the behaviour. of the 
thermodynamic response functions along the branches of this curve. Derivation of the 
coexistence curve is shown to be comparatively simple once we have obtained a symmetry 
transformation for the model. This symmetry transformation is a one-to-one mapping 
between states of the system at the same temperature. We shall show in $ 2  that all 
pairs of states under this transformation for which pressure is invariant will also have 
chemical potential invariant. There will be one such pair for each temperature less than 
the critical temperature such that the members of the pair are distinct. These two states 
will represent points on the two branches of the coexistence curve. The line of symmetry 
of the system is defined to be the set of invariant states under the transformation. Here 
we show that it coincides neither with the analytically continued two-phase diameter nor 
with the curve on which the chemical potential is equal to the analytic continuation of its 
values along the coexistence curve. 

In order to obtain some analytic information about the behaviour of the thermo- 
dynamic functions along the coexistence curve, we consider their asymptotic forms in the 
limit as the temperature tends towards absolute zero and in the limit as the temperature 
tends towards its critical value. In the latter case we obtain the rectilinear diameter law 
and some of the critical exponents of the model. Since the model is classical, in the sense 
that there exists in the one-phase region a Taylor expansion in temperature and density 
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for the Helmholtz free energy about the critical point, these exponents will all take their 
classical values (Fisher 1964). 

The model of BL(b) consists of a two-dimensional triangular lattice system in which 
the molecules form bonds in such a way that an open honeycomb structure with vacant 
sites is necessary for the achievement of minimum configurational energy in the assembly. 
Close packing occurs when the open structure breaks down under the influence of 
pressure and thermal motion. This situation resembles that occurring in water (see eg 
Eisenberg and Kauzmann 1969 pp 185-9, Fletcher 1970 pp 73-85). The approximation 
method used by BL(b) is an extension of the quasi-chemical approximation, using as a 
basic unit a triangle of nearest-neighbour sites. This was the approximation used by 
Guggenheim and McGlashan (1951) for a binary mixture. This method allows the 
molecules to attain only a form of short-range ordering measurable in terms of the 
different occupational probabilities for the basic triangle of sites. The analogy with the 
water system can therefore be drawn only with respect to the liquid and vapour states. 
Isobars were obtained in the density-temperature plane which exhibited one phase 
transition to a denser state as temperature decreased and which showed a density 
maximum below the transition temperature. These characteristics parallel those shown 
by the water system. The work of BL(b) was extended by Lavis (1973) to include a long- 
range ordered phase realized through a phase transition from a denser short-range 
ordered phase, the type of phase transition exhibited when water freezes. 

The present work is supplementary to that of BL(b) and we shall therefore avoid a 
complete discussion of the model, referring the reader to the original paper for full 
details. We consider a triangular lattice of N sites containing p N  molecules, (0 < p < l), 
there being at most one molecule per site. The (two-dimensional) volume of the lattice 
is N A , ,  where A ,  is the area per lattice site. We regard each molecule as possessing three 
bonding directions at 120" to each other. A molecule on a lattice site has two orienta- 
tional states, referred to as states l and 2, in each of which the molecule has bonding 
directions pointing towards three of the six nearest-neighbour sites. If bonding directions 
from each of a nearest-neighbour pair of molecules point towards each other, a bond is 
formed (see figure 1). It is supposed that the interaction energy for pairs of molecules is 

( 0  1 (6) 

Figure 1. Orientational states of molecules and typical forms of short-range ordering for 
(4 P - 4, (b)  P - f . 
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confined to nearest-neighbour pairs and is - E  and - (E+w)  for unbonded and bonded 
pairs respectively, E and w being constant with E 2 0, w 2 0 and (E + w) > 0. 

Let pi be the probability that a triangle of nearest-neighbour sites is occupied by 
exactly i molecules for i = 0, 1 ,2 ,3 .  Then 

1 = P O + P l f P Z + P 3  ( l . l a )  

and 

P = 3P1+ 2P2 + 3 P d  ( l . lb )  

Now a triangle of nearest-neighbour sites contains at most one bonded pair of molecules. 
Let p i B  be the conditional probability that the triangle of nearest-neighbour sites con- 
tains a bonded pair of molecules given that it contains exactly i molecules for i = 2, 3. 
The equilibrium values of the occupational probabilities were calculated in BL(b) by 
minimization of the Helmholtz free energy. From figure 1, equations (3.9) and (3.10) 
of BL(b) we have 

pzB = ( 1  + 3 (1 .24  

p3B = 3(3 + e-w/kT)- (1.2b) 

( 1 . 3 ~ )  

(1.3b) 

( 1 . 4 ~ )  

(1.4b) 

The degree of short-range molecular ordering is measured in terms of the extent to which 
molecules will form clusters. We therefore define the short-range order variable z by the 
equation 

z = P Z I P 1 .  (1.5) 

p(b( T )  + 22 + 2') = (1 - P)Z( 1 + 22 + Z'U( T ) )  (1.6) 

Substituting from equations (1.3) and (1.5) into ( 1 . 1 )  we have the equation 

which determines the equilibrium value for z at density p and temperature T. The 
variable r of BL(b) is related to the short-range order variable z by the equation 

r = 22 e('- w ) / k T / (  1 + 3 e - w / k T ) .  (1.7) 
By substituting from (1.7) into equation (3.15) of BL(b) we see that the Helmholtz free 
energy f per lattice site is given by 

f ( p ,  T )  = - k T [ ( l -  2p) In (1 - p )  + 2 p  In p + p In 2 - 3p In z -(I - 3p) In b( T )  

+ In (b( T )  + 22 + zz)]. (1.8) 
Equations (1.6) and (1.8) determine completely the thermodynamic properties of the 
model and allow us to obtain the pressure P given by 

P(p,  T)Ao = f = kTln [ (1 -p ) (b (T)+2z+z2) /b (T) ]  (1.9) 



1936 D A Lavis 

and the configurational chemical potential /.A given by 

(1.10) 

The isobar for (c /w)  = and P A , / w  = 0.01 is displayed in figure 3. 

2. The line of symmetry and the coexistence curve 

We now prove the following theorem : The one-to-one symmetry transformation Y : z -+ l/z 
between states of the system at the same temperature has the property that states which are 
images under Y will have equal pressures if and only if they have equal chemical potentials. 

Consider the function Y given by 

Y(z, T )  = 

Substituting from equations (1.9) and (1.10) into (2.1) we have 

Y ( z ,  T )  = a(T)+b(T)+2 z + -  + z 2 + ?  ( :I i :I 
Equation (2.2) establishes that Y is invariant under Y and the theorem follows. 

Consider a curve in the density-temperature plane on which the short-range order 
variable takes the fixed value z’. On the transform of this curve under Y the short-range 
order variable has the value z” = l/z’. Denoting by primes the corresponding values of 
the occupational probabilities on the two curves, we have, from equations (l.la), (1.3) and 
(1.5) 

Pb = b(T)/u(z’, TI, p i  = 3z’/u(z’, T ) ,  p i  = ~ z ’ ~ / u ( z ’ ,  T ) ,  

p i  = ~’~a(T) /u(z’ ,  T )  

p g  = zr3b(T)/~(z’, T) ,  p ;  = 3Z’Z/U(Z’, T),  p’; = 3z’/v(z’, T ) ,  
p’; = a(T)/v(z’, T )  

where 

(2.3) 

u(z, T )  = b( T )  + 32 + 3z2 + z3a( T )  

v(z,  T )  = a( T )  + 3.2 + 3z2 + z3b( T ) .  

In the special case w = 0, a ( T )  = b(T) = exp(c/kT), and we have from equations (2.3) 
and (1.6) the molecule-vacancy symmetry of the simple lattice gas: 

(2.5) Pb = P‘;, P; = P‘;, ‘Pi = p ; ,  p ;  = p ; ,  p’ = (1 - p”). 

We shall, for reasons which are discussed in 9 4, be concerned in this work with the case 
w > 3t. Here the simple molecule-vacancy symmetry is broken, except asymptotically 
as T tends to infinity when a ( T )  - b(T) - 1 and equations (2.5) are asymptotically 
satisfied. The type of symmetry which exists at finite temperatures, being determined by 
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the sizes of a(T) and b(T), is difficult to describe in simple geometric terms. We can how- 
ever see from equations (1.4) that at  low temperatures a(T) - 12exp[(c-w)/kT] is 
small and b(T) - $exp[(c+w)/kT] is large. It follows from equations (1.6) and (1.9) 
that, on the curves z = z‘ and z = z”, as the temperature tends to absolute zero the densi- 
ties and pressures tend to zero. For a fixed number of molecules the number of lattice 
sites becomes infinitely large. Apart from a set of measure zero these sites will be empty. 
For these remaining sites, the molecular bonding ensures that it is overwhelmingly 
probable that a triangle of nearest-neighbour sites is occupied by either one molecule 
or two bonded molecules, the relationships between the probabilities being given by 

The line of symmetry corresponds to the case z’ = 1 and, denoting by an asterisk the 
values of the variables on the line of symmetry, we have, from equations (1.6), (1.9) and 
(1.10) 

3 + a(T) 
= 6 + a( T )  + b( T)’ 

P*( T )  = - In 

and 

(2 .7~)  

(2.7b) 

It is clear from the above discussion and from equation (2 .7~)  that the line of symmetry 
in the density-temperature plane tends asymptotically to the line p = f a t  high tempera- 
tures and that it tends to p = 0 as the temperature tends towards absolute zero. Lines 
of constant z in the density-temperature plane are shown, for (c/w) = $, in figure 2. 

Derivation of the coexistence curve for the system is simplified by defining a new 
variable $ in terms of which the short-range order variable z is given by 

z = (1 + sin $)/cos t,b -$n < * < in, (2.8) 
with Y : $ -+ -$. According to the theorem at the beginning of this section, we may find 
a pair of states at the same temperature with equal pressures and chemical potentials by 
imposing either one of these conditions. We use equations (1.6), (1.9) and (2.8) to construct 
a condition for two states to have equal pressures. This condition reduces to an equation 
for $ satisfied either by $ = 0 (a point on the line of symmetry) or by the roots of the 
equation 

COS’ 4!/(7-a(T)-b(T)-a(T)b(T))+2~0~ $(5-~(T)b(T))+4 = 0. (2.9) 
The function of $ represented by the left-hand side of equation (2.9) is even and, for 
sufficiently small temperatures, will be negative for $ = 0 and positive for $ = fn/2.  
Equation (2.9) will therefore have roots $, and -$, in the range 0 < $, < 3.. As T 
increases to the temperature T, ,  given by the equation 

64-(1+3a(T,))(1+3b(T,)) = 0, (2.10) 

I), decreases to zero. The pair of states with $ = $,, - $, will represent points on the 
coexistence curve corresponding respectively to the dense and less dense phases. For 
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Figure 2. Curves of constant short-range order (full curves) and the coexistence curve 
(broken curve) in the density-temperature plane for c/w = t .  

the sake of brevity and by analogy with a real fluid system, we shall refer to the dense 
and less dense phases as the liquid and vapour phases respectively. The temperature 
T,  given by equation (2.10) is the liquid-vapour critical temperature?. The critical point 
lies of course on the line of symmetry, and the critical density, pressure and chemical 
potential are given by 

P c  = P*(T,)> p, = P*(T,), P c  = P*(T,). (2.1 1) 

We denote the short-range order variable and density at points on the vapour and 
liquid branches of the coexistence curve by z,( T )  and p,( T )  with n = 1,2. Thus we have 

z ,  = [ 1 + ( - 1)" sin $,,]/cos I),, , 0 < $,, < +r, n = 1,2 (2.12) 

and from equation (1.6) 

PAT) = d $ u i  T)+(-1Y'M$uy T )  n = 1,2 (2.13) 

where 

2( 1 - cos I),,)( 1 + 2 cos $,,) + cos2 $,(3 + a( T ) )  
(2.14~) g(''' = 4(1 -cos $,,)(I +2cos $,)+cos2 $,(6+a(T)+b(T)) 

and 

2 sin $,,( 1 + cos $,,) 
(2.14b) T ,  = 4(1 -cos $,,)(I +2  cos $,)+cos2 $,,(6+a(T)+b(T))' 

t We note that when w = 0 equation (2.10) immediately yields the result k q j c  = (In :)- which is the critical 
temperature obtained by Guggenheim and McGlashan (1951) for the binary mixture on a triangular lattice. 
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On the two branches of the coexistence curve the pressure and the chemical potential 
both have common values which we denote by P,( T )  and pu( T )  respectively. From equa- 
tions (1.9), ( l . lO) ,  (2.12) and (2.13) we obtain expressions for these quantities which can be 
simplified using equation (2.9) to give 

cos II/, + b( T)(2 +cos $,) P,( T )  = - In 
kT A0 ( b(T)(2+cos$,) 

and 

cos $, + a( T)(2 +cos $,) 
cos $, + b( T )  (2 + cos $,) 

p,(T)  = -kTln [Zb3(T)( 

(2.15) 

(2.16) 

From equations (1.4) and (2.7) we see that p * ,  P* and p* are regular functions of T and, 
since from equation (2.9) cos t+k, is a regular function of T, it follows that P, and p, are 
also regular functions of T. Although p1  and p 2  are not regular functions of T the density 
pd on the diameter of the two-phase region, given by 

P,(T) = &P,(T)+P,(T)) = d I I / U >  T )  (2.17) 

is a regular function of T. 
Coexistence curves for a number of values of (c/w) are shown in figure 3 together with 

the line of symmetry, the critical isochore and the diameter of the coexistence region for 
( c / w )  = b. The critical constants for (c/w) = $ are given in table 1. The general shape of 
the coexistence curves and the significance for it of the ratio (c /w)  = f will be discussed 
in detail in $4. 

Figure 3. Coexistence curves in the density-temperature plane. The critical isochcre (dotted 
line), the line of symmetry (chain curve), the diameter of the two-phase region (bold broken 
curve) and the isobar for PA,/w = 0.01 (light broken curve) are shown for C/W = 4. 
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Table 1. 

Theoretical values, 
€/W = a Experimental values 

T 0.548 wlk 647 K" 

Molecular number density 0402/A, 1 0 2 ~  1020cm-3a 

0,0482 w/AO 221 x lo6 dyne cm-' a 

T2lT 0.4 1 0,43b 

TI r, 042d 0.42" 

a Values given by Eisenberg and Kauzmann (1969). 
Derived from values given by Rowlinson (1969). 
Derived graphically from saturated liquid values given by Rowlinson (1969) and saturated 

From Lavis (1973). 
vapour values given by Keyes (1949). 

3. The thermodynamic response functions 

The isothermal compressibility tiT is given by 

where, from equations (1.6) and (1.9), 

4 ~ (  1 + Z) - 3p(b( T) + 22 + z') 

T Ao(1 kT - p )  i 2 ~ ( 1  +~) -3p(b (T)+22+~ ' )  

We shall be concerned with the response functions at points on the coexistence curve. By 
substituting from equations (2.12) and (2.13) into (3.2) we have 

= 2kTtan' $,[1+(-1)"sin$,][1+cos$,+(-1)"sin$,] 
Ao(1  COS $,)[COS $,+b(T)(2 + C O S  +g)] 

n = 1,2 (3.3) 

respectively for the isothermal compressibility at points on the vapour and liquid 
branches of the coexistence curve. 

The coefficient of isobaric thermal expansion ap is given by 

(3.4) 
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At points on the coexistence curve we are however considering either a saturated liquid 
or a saturated vapour. If such a saturated substance is heated, its vapour pressure will 
increase and the change in density is no longer associated with a constant pressure. We 
shall therefore define, at points on the vapour and liquid branches of the coexistence 
curve, the two response functions 

respectively. Thus we have, for points on the coexistence curve, 

(3.5) 

Let s be the entropy of the system per lattice site and consider the Helmholtz free 
energy per molecule (f/p) plotted in a three-dimensional Gibbs space as a function of the 
variables ( s / p )  and (A, /p) .  The coexistence region will appear as a 'bridged' section of the 
surface with the generator at temperature T i n  the direction 

(A(-f/P)> W P ) ,  A(Ao/P)) = (-Pa, dP,/dT> 1) (3.7) 

(Buckingham 1972). It follows therefore that the entropy per site s, at a point in the co- 
existence region with temperature T and density p is given by either of the equations 

n = 1,2 
Pn 

where s, is the entropy per site at temperature T on the corresponding branch of the 
coexistence curve. Thus the constant density heat capacities c,  and (cJn per molecule are 
related by the equations 

T T dP, 
c,  = ( ~ , ) , - T u , [ ~ ~ ) T ] , + - ~ , s , - - ~ n A , - - ~ ~ ,  P n  P" d T  n = 1,2. (3.9) 

Since from Maxwell's relationships 

equations (3.9) can be transformed using equations (3.5) and (3.6) into 

(3.10) 

The discontinuities of cP across the two branches of the coexistence curve are given from 
equations (3.11) by 

TA,u; 
(Ac,), = lim [c , - (cp) , ]  = - n = 1,2. 

P - P n  Pn(KT)n 

Since the constant pressure heat capacity per molecule c p  is given by 

TA,az cp = c,+- 
P K T  

(3.12) 

(3.13) 

t The equation for c, of Fisher (1964) is obtained by eliminating d2P,/dT2 between the two equations (3.11). 
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we can obtain from equations ( 3 3 ,  (3.1 1) and (3.13) the discontinuous increase Acp in c p  
as the system changes from liquid to vapour along an isobar. This is given by 

1 d2P, 
d T  +--+2-p1) * 

(3.14) 

The functions ( K ~ ) ~ ,  ( c ( ~ ) ~  and Acp are shown in figures 4-6 for a number of values of 
(c/w). Curves of Acp against density are shown in figure 7. 

4. The limit of absolute zero temperature 

The effect in this model of the occurrence of molecular bonding can be seen, not only in 
terms of the conditional probability of a bonded pair occurring on a triangle of nearest- 
neighbour sites with a particular occupation (equations (1.2)), but also by examining the 
occupational probabilities themselves (equations (1.3) and (2.3)). In 5 2 we examined this 
effect upon curves of constant short-range order in the density-temperature plane. 
Consider now the situation where the system is subjected to increasing pressure in iso- 
thermal conditions with T < T,. For some pressure less than the critical pressure 
the system will undergo a phase transition from the vapour to the liquid phase. The 
interesting case for the model will be when the bonding energy w is sufficiently large 
relative to the non-bonding energy E to prevent the system undergoing the phase transi- 
tion from collapsing into a very dense short-range ordered liquid phase. This will yield a 
liquid phase with regions of short-range ordered honeycomb structure. The effect of 
molecular bonding will therefore be seen most clearly by examining the density and the 
thermodynamic response functions along the liquid branch of the coexistence curve, 
particularly in the region of absolute zero temperature where the effect of thermal 
agitation is small. From equation (1.4b), since at least one of the energy parameters t 

and w is greater than zero, it follows that b(T) tends to infinity as the temperature tends to 
absolute zero. From equation (2.9) we see that it must be the case that the zero-tempera- 
ture limit of cos $, is zero. It follows from equation (2.13) that 

2( 1 + cos $,) 
h. 4 + cos $,(7 -a( T)b(T)) 

and from equations (2.9) and (1.4) it is not difficult to show that 

w < 3 r  C '  
(20-6,/10)-' = 0.973 

% I +  3 exp[(3c- w)/2kT]) w > 3 r > O  

w = 3 r  
P 2 ( T )  - 

We see therefore that molecular bonding becomes important for c/w < f, when the 
liquid branch of the coexistence curve tends to p = 3 as the temperature tends to absolute 
zero. For 0 < E/W < this limiting behaviour occurs together with a region for T > 0 
in which p > 9, producing the 'bulge' in the liquid branch of the coexistence curve which 
is a characteristic of our model. From equations (2.3), (2.9) and (2.12) it follows that, for 
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E/W < 3, z2 - + exp[(c + w)/2kT] with p o  - and p 2  - 2. Apart from a set of measure 
zero each basic nearest-neighbour triangle of sites is either occupied by a pair of bonded 
molecules or is unoccupied, the ratio of these occupations being three to one. 

The importance of the condition c/w = 3 can also be seen if, after the manner of 
Lavis (1973), we consider the limiting behaviour of an isobar in the density-temperature 
plane as the temperature tends to absolute zero. From equations (1.6) and (1.9) we have 

P > (W-  3€)/Ao 

p - 3 J 3  - 1) = 0.9763 P = (W-3t)/Ao (4.3) I: P < (W-3c)/Ao. 

This result was also achieved by Bell and Lavis (1970a) by considering the stable state at 
T = 0. In the case where (c/w) < f and P < (w - 3c)/A0 we have 

z - exp[(c + w + PA,)/kT] 

and p 2  - 1 on an isobar in a neighbourhood of absolute zero. A perfect arrangement of 
this type is of course a honeycomb arrangement of molecules with each nearest-neighbour 
triangle of sites occupied by a bonded pair. This would be a state with long-range order. 
Short-range ordering will occur when the honeycomb arrangement is broken by lines of 
imperfections, the number of nearest-neighbour triangles involved being of measure 
zero. Examples of the types of ordering at low temperatures with p - 4 and p - 3 are 
displayed in figure 1. An isobar of the type which we have just discussed is shown in 
figure 3. 

We shall omit details of the calculations of the asymptotic forms for the response 
functions along the liquid branch of the coexistence curve, simply quoting the results 
which, for c/w < 3 ,  are 

3(w - 3r) 
- exp[(3r - w)/2kT] r > O  

(aT)2  a2 - (4.5) 
2kT2 I $ exp( - w/kT) c = o  

and 

9(w - 342 
exp[(3c - w)/kT] E > O  

exp(-2w/kT) c = 0. 

-- 
2kT2 

288w2 I kT2 

( 4 2  - 
We can also show that 

3(t + w)2 

A c ~  - c > o  

(4.7) 
c = 0. 
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5. Asymptotic forms in a neighbourhood of the critical point 

In a neighbourhood of the critical point we have, from equations (1.4), 

and 

where 

and 

E W  1 
b --+- 

- k T ,  kT, (1 + 3  e-wikTc)' 

From equations (2.10) and (2.11) 

(8 - 9PJ b(T,) = -. 
3 Pc 

(5 .1~)  

(5.1 b) 

(5.2a) 

(5.2b) 

( 5 . 3 4  

(5.3b) 

From these equations and equations (2.7), we obtain asymptotic forms for the line of 
symmetry in a neighbourhood of the critical point given by 

and 

(5.4a) 

(5.4b) 

(5.44 

where 

and 

(5 .54  

In order to obtain asymptotic forms for functions on the branches of the coexistence curve 
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in a neighbourhood of the critical point we need an asymptotic form for IC/,. This is 
given from equations (2.9) and (5.1)-(5.3) by 

$a2 - v( 1-5) 

where 

From equations (2.17), ( 5 . 4 ~ )  and (5.6) we have 

-'v l -B,  - - 1  
pd(T) P C  iF I 

where 

B ,  = B* - iv( 1 - p c ) (  1 - 2pJ. (5.9) 

Equation (5.8) is the rectilinear diameter law. From equations (2.7), (2.15) and (2.16) we 
have 

3p,2kT,vZ T 
64Ao (T-') P,( T) - P*( T) - 

and 

We have therefore 

(5 .10~)  

(5.10b) 

(5.11) 

The value of this dimensionless quantity for E / W  = is given in table 1. Since we are 
dealing with a closed form approximation with the two-phase region represented by a 
bridged section of the Helmholtz free energy surface, the line of symmetry, with density, 
pressure and chemical potential given by p* ,  P* and p* respectively, represents realizable 
states of the system only when T >, T,. In the two-phase region at temperature T, the 
pressure and chemical potential are given by PJT)  and p , ( T )  for all densities. These 
latter functions together with the two-phase diameter are of course defined only for 
T < T,. Since however they are regular functions of T in their domain of definition, 
they may be analytically continued into the domain T > T,  by obtaining their Taylor 
expansions about the critical point. The first term of the series expansion of pd is given 
by equation (5.8). The first nonzero terms of the differences between the series expansions 
of P, and p, and the corresponding series expansions for the pressure and chemical 
potential along the line of symmetry are given by equations (5.10). Let pLp) and p p )  be 
functions of T which represent the curves in the density-temperature plane, with T 2 T, ,  
on which the pressure and chemical potential, respectively, take the analytic continua- 
tions of their values along the coexistence curve. From equations (1.6), (1.9), (1.10) and 
(5.10) 

(5.12a) 
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and 

where 

B, = B* +&vPc(l- Pc) 
and 

B, = B* + %v( 1 - pJ2( 1 - 2pc). 

(5.12b) 

(5.134 

(5.13b) 

These equations are important for the discussion, in 5 6, of the symmetry properties of the 
model. 

It is also of some interest to obtain asymptotic expressions for the shape of the 
coexistence curve in a neighbourhood of the critical point and for the thermodynamic 
response functions. Derivation of these formulae is straightforward and we omit all 
details, simply stating our results. From equations (2.13) and (2.14) 

where 

B1 = 8 1  -pC)v’/’ 

and = 3. From equation (3.3) 

(5.14) 

(5.15) 

(K*),,P~ - (1--) T - Y ’  [C1-(-1)”C,(1-~)1’2] n = 1,2 (5.16) 

T,  
where 

and y’ = 1. From (3.6) 

(a,,),,K - d ( 1-- ;)-l n =  1,2 

where 

d = rI*c,. 
From (3.12) 

(Acp)n - (AcJc = -PJ  n =  1,2 

and from (3.14) 

(5.174 

(5.1 7b) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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where 

(5.22) 

The values given for the critical exponents p and y‘ and the finite discontinuity in the 
constant density heat capacity along the critical isochore are consequences of the classical 
nature of the model. 

6. Conclusions 

For the simple lattice fluid and for a number of other models (Widom and Rowlinson 
1970, Widom and Stillinger 1973), the line of symmetry can be defined either (i) as the 
invariant states of a symmetry transformation between states of the system or (ii) as the 
line of states for which the chemical potential in the one-phase region is the analytic 
continuation of the chemical potential along the transition curve. Not only is there no 
conflict between these two possible definitions but it can be shown that, in the density- 
temperature plane, the line of symmetry is the analytic continuation of the diameter of 
the two-phase region. But Mulholland (1973) has shown that if, for a general classical 
model for which no particular structure is assumed, the line of symmetry is defined by (ii) 
then the line of symmetry in the density-temperature plane is no longer the analytic 
continuation of the two-phase diameter. 

We have seen in Q 2 that for w = 0, our model has the vacancy-molecule symmetry of 
the simple lattice fluid with a( T )  = b( T) .  In this case from equations (2.7), (2.1 l), (2.144, 
(2.17) and (2.16) 

p * ( T )  = pd(T) = pc = 

p*(T) = p(,(T) = -(3c+kTln2).  

(6.1) 

(6.2) 

and 

The curve p = pr) (T) ,  on which the chemical potential is the analytic continuation of 
the chemical potential on the coexistence curve, coincides with the line of symmetry. 
However the curve p = pkp)(T), on which the pressure is the analytic continuation of the 
pressure on the coexistence curve, does not coincide with the line of symmetry. The 
coefficient B ,  in equation (5 .12~)  has the value # In ;. 

For the general case of our model with bonding (w # 0) p* is a regular function of T 
which coincides neither with the critical isochore nor with the two-phase diameter in the 
two-phase region (see figure 3). In the one-phase region we have obtained the first terms 
of the analytic continuations of Pd and pb!) (equations (5.8) and (5.12b)). We see by 
comparing these equations with (5 .44 that the curves p = p*(T), p = p,(T) and 
p = py’( T )  are all distinct and meet at the critical point in nonzero angles. (For E/W = 4 ,  
B* = 0.604, B ,  = -0.398 and B ,  = 1.503.) 

As we indicated in the introduction, the model investigated by BL(b), by Lavis (1973) 
and in the present work was designed to be analogous in a simple way to the water 
system. Detailed examinations of the thermodynamic response functions along the 
vapour-liquid transition curve have been made for a number of common substances 
including water (see eg Rowlinson 1969, chapter 2). These investigations exemplify in a 
particularly clear manner the anomalous behaviour of water in that : 
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(a) On the liquid branch of the coexistence curve 
(i) there is a minimum of the isothermal compressibility K ~ ,  
(ii) the coefficient of isobaric thermal expansion c y p  changes from its normal positive 
value to a negative value as the temperature is lowered, 

(Rowlinson 1969, table 2.10). 
(b) The discontinuous change Acp in the constant pressure heat capacity cp as the 
substance changes from liquid to vapour is positive at temperatures near to the liquid- 
vapour critical temperature but is negative for lower temperatures (Eisenberg and 
Kauzmann 1969, figures 2.1 1, 3.12). It is of interest to consider the extent to which these 
properties are reflected by our model. 

For thermodynamic stability it must be the case that ( K ~ ) ~  > 0 for 0 < T < T,  and 
from equations (4.4) and (5.16) it is clear that for all E/W in the range [0, 3) this function 
tends to infinity when T -+ 0 and T -+ T,. It follows that ( K ~ ) ~  must have a minimum 
for some temperature TI with 0 < TI < T,. Computer calculations have shown that 
this is also the case when 3~ = w, (figure 4). Thus the existence of a minimum in the 
isothermal compressibility on the liquid branch of the coexistence curve is a character- 
istic which is fairly insensitive to the value of the ratio ciw. 

I 
I 

I 
I I 

31 I i 
,i 

I 

I 

i 

kTlW 

Figure 4. The isothermal compressibility plotted against temperature along the liquid branch 
of the coexistence curve. 

We have shown in 8 4 that the case 3 r  = w does not produce the local (short-range 
ordered) honeycomb arrangement of molecules as the temperature is reduced to absolute 
zero along an isobar, and numerical calculations have shown also that in this case is 
positive for all 0 < T < T, .  From equations (4.5) and (5.18) we see that, for E = 0, ( r p ) z  is 
positive when T -+ 0 and when T -+ T,. This is not conclusive evidence that this function 
remains positive throughout the length of the liquid branch of the coexistence curve, but 
numerical calculations confirm that this is the case (figure 5) .  On the other hand we see 
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Figure 5. The coefficient of isobaric thermal expansion plotted against temperature along 
the liquid branch of the coexistence curve. 

from these same equations that for E/W in the range (0, f) there must be a temperature T2 at 
which ( a p ) z  becomes negative (see figure 5) .  This property is therefore somewhat more 
sensitive to the value of E/W than is the occurrence of a minimum in the isothermal 
compressibility. A rather simpler quantity with which to deal, both mathematically 
and experimentally, is a2 (Rowlinson 1969,g 2.3). This quantity also exhibits the anomal- 
ous behaviour of water in that it becomes negative at low temperatures. Since however 
from equation (3.6) ( x ~ ) ~  > a2 it follows that if ( E ~ ) ~  < 0 then a 2  < 0 and we do not 
need to devote a separate figure to a display of this function. 

Of the properties which interest us, that which is most sensitive to the value of riw is 
the occurrence of a temperature T3 at which Acp is zero. From equation (4.7) we see that 
Acp tends to infinity as T --f 0. Ifa temperature T3 exists there must be a lower temperature 
T i  at which Acp again becomes positive. The existence of these temperatures has been 
definitely established by numerical calculation for the case c/w = a (see figure 6). They 
probably exist for the case c/w = &, but even using double precision variables for a 
large computer, the existence of rounding errors yielded numerical values which were 
unreliable at sufficiently low temperatures. 

From table 1 we see that the ratio (P,A,/kT,p,)  for c/w = a corresponds quite closely 
to that derived from the experimental data for water as do also the ratios TJT, and 
T2/T,. The deficiencies of the model are revealed by the value of T3/T, which is much too 
low. This is probably due to the fact that cp is more sensitive than the other properties to 
the entropy of the system which is always rather inaccurate for lattice fluid models. For 
the sake of comparison we have included the vapour-liquid-solid triple point ?; of 
Lavis (1973). Ideally of course we should have liked to have T i  < I; < T3 so that the 
temperature T i  corresponded to a sign change for Acp in the supercooled region. How- 
ever, in addition to the low value for T3/T,, the value of TJT, is much too high and we have 
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Figure 6.  The discontinuous change in the constant pressure heat capacity as the system 
changes from liquid to vapour, plotted against temperature. 

Figure 7. The discontinuous change in the constant density heat capacity across the coexist- 
ence curve plotted against density. 
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in this respect been unsuccessful. We may nevertheless claim qualitative success in that 
the anomalous properties of water, listed above, do all occur in our model. We have 
modified a simple lattice fluid model only with respect to the introduction of preferential 
bonding directions designed to represent in a simple way the hydrogen bonding proper- 
ties of the water molecule. It may therefore be suggested that, contrary to the comments 
of Eisenberg and Kauzmann (1969, p 105) on the negative coefficient of expansion, the 
anomalous properties ofwater discussed in this work are due mainly to the role played by 
hydrogen bonding in the structure of water. 

The behaviour of the system in the immediate neighbourhood ofthe critical point is of 
course determined by the classical nature of the model which results from the use of a 
first-order approximation of the mean-field type. Critical exponents and amplitudes 
for the vapour-liquid transition of water are known (see eg Levelt Sengers and Greer 
1972), but no real purpose would be served by comparing them with values computed 
from our model. Recent work of Bell and Sallouta (1975) on the comparison of accurate 
and approximation methods for interstitial models of the water system shows however 
that, in contrast to the zeroth-order method, the first-order method gives good approxi- 
mation to the accurate calculations for the shape of the coexistence curve and for the 
behaviour of the isothermal compressibility. It is possible therefore that the deficiencies 
of our model with respect to experimental data away from the critical point are due not so 
much to the use of an approximation method as to the use of a simplified lattice model. 
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