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Chapter 1

Dynamic Systems

1.1 What is a Dynamic System?

Counsider a particle of constant mass m moving on a line so that at time ¢ it is
at a point P; at a distance x(t) from a point O, (Fig. 1.1). Suppose that a force

Figure 1.1: A particle moving in simple harmonic motion on a line.

F = m@ (k > 0) is acting on the particle. Then according to Newton’s second
law the equation of motion of the particle is
d?z
ae
The behaviour of the particle when governed by this equation is called simple
harmonic motion.
When convenient we shall use the ‘dot’ notation to signify differentiation
with respect to time.! Thus

N (1.1)

2
e ()
and the convenient forms for (1.1) are now the one second-order equation
#(t) +w?z(t) = 0, (1.2)
or the pair of coupled first-order equations
&(t) = v(t), O(t) = —w?a(t), (1.3)

where w? = r/m and v(t) is the velocity of the particle. This is a simple case

IFor derivatives of higher than second order this notation becomes cumbersome and will
not be used.
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Figure 1.2: The trajectory in phase space for a particle moving with simple
harmonic motion.

of a dynamic system with two degrees of freedom (z,v). Given that the state of
the system at some time t = 0 is given by (zg, vg) = (2(0),v(0)), then the state
(x(t),v(t)) at time ¢ will be given by solving (1.2) (or equivalently (1.3)). The
the set of states for all ¢ will be represented by a path or trajectory parameterized
by t in the phase space I's of the variables (z,v).

The auxiliary equation for (1.2) is

M +w? =0, with roots A = tHiw. (1.4)
with solution
x(t) = A cos(wt) + B sin(wt). (1.5)

The motion is periodic with angular frequency w. The period T is the time for
it to perform one complete cycle. This is given by w(t + T) = wt + 27. So
T =2r/w.
If the initial conditions are z(0) = a, ©(0) = 0, then the solution becomes

x(t) = acos(wt), with the velocity v(t) = —aw sin(wt). (1.6)
The particle oscillates about the origin. In the phase space I's its path is the
ellipse

2 2

x v
& =t "

with motion in the clockwise direction (Fig. 1.2). The time for the phase point
(z,v) to pass around the ellipse once is the period T
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We shall now give some more general definitions:

A dynamic system with d degrees of freedom is a set of d variables
x1,T2,...,2q (usually, but not always with some particular significance) to-
gether with a set of equations which give a deterministic mathematical pre-
scription for the evolution of the variables with time t. The evolution of the
state (x1(t),z2(t),...,xq(t)) of the system with time is given by a trajectory
in the d-dimensional phase space I'y of the variables.

We shall be concerned mainly with systems governed by first-order ordinary
differential equations. The standard form for a system with d degrees of freedom
is then

Il(t) = Fl(fEI;IQ;' "7xd;t)7

IQ(t) = FQ(fEI;IQ; .. '7xd;t)7

2a(t) = Fa(z1,22,...,24;1).

Equations (1.3) are of this type with d = 2. It is often convenient to express
equations (1.8) in vector form as

©(t) = F(x;t), (1.9)

where * = (z1,22,...,24)" is an d-dimensional column vector? in the phase
space 'y and F' is a family of vector fields on I'j parameterized by .

A dynamic system of the type (1.8) is non-linear if one or more of the
functions F, Fs, ..., Fy is non-linear in one or more of the variables x1, ..., xq.

1.2 Hamiltonian Systems

A dynamic system with 2d degrees of freedom and variables

T1y...,2dsP1,---,Pd IS a Hamiltonian system if there exists a Hamiltonian
function H(x1,...,24,p1,--.,pq;t) and the evolution is given by the equations
. OH
Ig(t) = a—,
2
{=1,2....d. (1.10)
(k) = OH
Pell) = Oy’

20ur default notation for vectors will be in column form. A superscript ‘I’ (meaning
transpose) is used to translate between row and column forms.



4 CHAPTER 1. DYNAMIC SYSTEMS

From (1.10), the rate of change of H along a trajectory is given by

d

dH 0H . OH OH
Fr ;{a—uiﬂé(f)‘Fa—mm(f)}‘i‘W’
_ N [PHOH _0HOHY  oH
B =t Oxyp Opy Ope Oxy ot’
OH
= = (1.11)

If the system is autonomous (0H /9t = 0, see Sect. 1.5) the value of H does not
change along a trajectory. It is said to be a constant of motion. In the case
of many physical systems the value of the Hamiltonian is the total energy the
system.

1.3 Conservative Systems

As we have already seen in the case d = 2, a system with d variables x1, 2, ..., 24
determined by second-order differential equations, given in vector form by

&(t) = G(x;t), (1.12)
where
z1(t) gl(wa )
To(t x;
2(t) = 2:( s Gla;t) = 2(: R (1.13)
alt) Galw: 1)
is equivalent to the 2d-th order dynamical system
(t) = --p(1), p(t) = mG(x;t), (1.14)
where
pa(t) 1 (t)
p(t) = p2:(t) =m x2:(t) . (1.15)
Pd'(t) Q'Ud'(t)

If there exists a potential function V(x;t), such that
G(x;t)m = —=VV (x;t), (1.16)

the system is said to be conservative. This is equivalent to the condition that

x(t)
V(x;t) = —/ mG(x;t).dr, (1.17)
=(0)
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where the line integral in 'y from 2(0) to «(t) is independent of the path taken.
By defining
H(z,p;t) = ﬁpz + V(z;t), (1.18)

we see that a conservative system is also a Hamiltonian system. In a physi-
cal context this system can be taken to represent the motion of a set of %d
moving in three-dimensional space, with position and momentum coordinates
1,22, ...,2q and p1, pa, ..., pq respectively. Then ﬁ}ﬁ and V(x;t) are respec-
tively the kinetic and potential energies.

A rather more general case is when, for the system defined by (1.9), there exists
a scalar field U(zx;t) with

F(z;t) = —VU(z;1). (1.19)

1.4 Discrete-Time Systems

Although our main interest will be in dynamic systems defined by differential
equations, it is worth referring to the case where the system is defined by a
difference equation. This simply corresponds to the situation where ‘time’ is
made discrete and becomes a variable defined on the countableset n = 0,1,2,....
Then (1.9) is replaced by?

x(n+ 1) = Fix(n); n], n=0,1,2,.... (1.20)

In fact, of course, numerical solutions of systems of differential equations are
normally calculated by considering the corresponding difference equation. The
derivative &(t) is replaced by a two (or possibly more) point numerical approx-
imation. Suppose we take t = ne, with e > 0 and x(t) = &(ne) = x(n) in (1.9)
and use the forward two-point derivative

de  z({n+1}e) —z(ne) _ x(n+1)—x(n)

o = - = - . (1.21)
Then

eF(x(ne);ne) =x(n+1) —x(n). (1.22)
This is a difference equation like (1.20) with

eF(x(ne);ne) = Fix(n); n] — x(n), (1.23)

and € as an independent parameter. Different choices of € may lead to very dif-
ferent behaviours for the equations. Intuitively one may suppose that choosing
€ as small as possible will lead to behaviour close to that of the underlying dif-
ferential equation, but there is, of course, a practical limit on accuracy with any

370 distinguish between discrete-time and continuous time system we shall use the same
letters but a different font.
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computing systems and going beyond this will lead to rounding errors. There
are also questions of stability. It may be the case that differences in ¢, however
small they are, lead to large changes in the evolution of (1.23), with none accu-
rately representing the analytic solution of (1.9) which would correspond to the
limit ¢ — 0.

1.5 Autonomous Systems

A dynamic system of the type (1.8) is autonomous (sometimes called ‘sta-
tionary’) if none of the functions Fi, Fs, ..., F4 is an explicit function of t. The
time dependence of F' in this case enters through the dependence of the variables
x1(t), ..., zq(t) on t.

It is clear that (1.3) is an autonomous dynamic system. Autonomous sys-

tems have the important property that, if the system is at (azgo), .. .,xglo)) at
time tg and (a:gl), el xgll)) at ¢; then the values a:gl), e, x&l) are dependent on

xgo), . ,xl(io) and t; — to but not on tg and ¢; individually.

In fact being autonomous is not such a severe restraint. A non-autonomous
system can be made equivalent to an autonomous system by the following trick.
We include the time dimension in the phase space by adding the time line T
to I'y. The path in the (d + 1)-dimensional space I'; X T is then given by the
dynamical system

() = F(x, ), 2e(t) = 1. (1.24)

This is called a suspended system.

1.6 Equilibrium Points and Their Stability

In general the determination of the trajectories in phase space, even for au-
tonomous systems, can be a difficult problem. However, we can often obtain a
qualitative idea of the phase pattern of trajectories by considering particularly
simple trajectories. The most simple of all are the equilibrium points.* These
are trajectories which consist of one single point. If the phase point starts at
an equilibrium point it stays there. The condition for £* to be an equilibrium
point of the autonomous system

x(t) = F(x), (1.25)
F(z*) =0. (1.26)

For the system given by (1.19) it is clear that a equilibrium point is a stationary
point of U(x) and for the conservative system given by (1.13)—(1.16) equilibrium

4 Also called, fized points, critical points or nodes.



1.7. DAMPED AND FORCED SIMPLE HARMONIC OSCILLATORS 7

points have p = 0 and are stationary points of V(x). An equilibrium point is
useful for obtaining information about phase behaviour only if we can determine
the behaviour of trajectories in its neighbourhood. This is a matter of the
stability of the equilibrium point, which in formal terms can be defined in the
following way:

The equilibrium point * of (1.25) is said to be stable (in the sense of
Lyapunov) if there exists, for every € > 0, a 6(g) > 0, such that any solution
x(t), for which =(tg) = (© and

le* — 2| < d(e), (1.27)
satisfies
le* — x(t)| < e, (1.28)

for all t > to. If no such é(e) exists then x* is said to be unstable (in the
sense of Lyapunov). If * is stable and

lim |z* — (1) = 0. (1.29)

it is said to be asymptotically stable. If the equilibrium point is stable and
(1.29) holds for every (%) then it is said to be globally asymptotically stable.
In this case &* must be the unique equilibrium point.

There is a warning you should note in relation to these definitions. In some texts
the term stable is used to mean what we have called ‘asymptotically stable’ and
equilibriumn points which are stable (in our sense) but not asymptotically stable
are called conditionally or marginally stable.

An asymptotically stable equilibrium point is a type of attractor. Other types
of attractors can exist. For example, a close (periodic) trajectory to which all
neighbouring trajectories converge. These more general questions of stability
will be discussed in Chap. 3. We now illustrate the ideas described here by
returning to the simple harmonic oscillator.

1.7 Damped and Forced Simple Harmonic Oscil-
lators

It is not difficult to see that the simple harmonic system with equations of
motion (1.3) is a autonomous Hamiltonian system with momentum p = mv and

1 1
H = —p* + swa’. 1.30
(0,) = 50" + 5% (1.30)
It is also a conservative system with V(z) = w?x?/2.

The point x = v = 0 is a stable equilibrium point, but not an asymptotically
stable equilibrium point. A trajectory which begins close to the equilibrium
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point will perform an ellipse about the point without converging to the point or
moving away.
1.7.1 A Damped Simple Harmonic Oscillator

Now suppose that motion of the simple harmonic oscillator is slowed down
(damped) by a force like viscosity, which is proportional to the velocity. The
equation of motion is modified to

mi(t) = —Llu(t) — ka(t),
or equivalently (1.31)
i(t) + 2B2(t) + w?z(t) =0,
where 8 = £/(2m) > 0. The auxiliary equation is
N 280 4 w? =0, with roots A=—F+V3?— w2 (1.32)
We must consider three cases:

(i) B > w. Then both roots of the auxiliary are real and the solution is
(t) = Aexp(=[B+7]t) + Bexp(=[3 —t) (1.33)

where v = /(3% — w?. With the initial conditions are z(0) = a, #(0) = 0,
the solution becomes

x(t) = % exp(—pt) {(v — B) exp(—7t) + (v + B) exp(71)},
with the velocity (1.34)
a3 — ~2

o(t) = % exp(—/ft) {exp(—vt) — exp(7t)},

As t — oo the solution converges to x = v = 0, which is now an asymp-
totically stable equilibrium point. The path in I's, for a = 1, w = 0.6,
8 = 0.7, is shown in Fig. 1.3.

(ii) w > B. Then both roots of the auxiliary equation are complex. You can
either re-derive the solution from scratch or make the substitution v = i¢

n (1.34), where £ = \/w? — 2. This gives

x(t) = ¢ exp( Ot) {€ cos(&t) + Bsin(&t)},
with the velocity (1.35)
o(t) = @exp(—m) sin(¢t).

In the limit 8 — 0, £ — w, we recover the undamped solution (1.6). When
8 > 0, the solution oscillates with an exponentially decreasing amplitude.
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Figure 1.3: The path begins at (a, 0) by following the undamped solution (shown
by a broken line) but then converges to the origin.

(iii)

The path in I's, for ¢« = 1, w = 0.6, 8 = 0.1, is shown in Fig. 1.4.
Again the origin in I'y is an asymptotically stable equilibrium point but
the trajectory approaches it in a spiral.

w = (. Then the roots of the auxiliary are both A = —( and the solution
is

x(t) = [A 4 Bt] exp(—ft). (1.36)
With the initial conditions are x(0) = a, ©(0) = 0, the solution becomes

z(t) = a(l+ fBt)exp(—pt),
with the velocity (1.37)

v(t) = —p%atexp(—pt).

The path in T'y, for a = 1, § = 2, is shown in Fig. 1.5. Again the origin
is a asymptotically stable equilibrium point.

1.7.2 A Forced, Damped Simple Harmonic Oscillator

We now consider a case of the situation where the damped harmonic oscillator
is subject to a periodic forcing term. The equation of motion (1.31) becomes

#(t) 4+ 2Ba(t) + wx(t) = ccos(xt). (1.38)
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Figure 1.4: The path begins at (a, 0) by following the undamped solution (shown
by a broken line) but then spirals into the origin.

The complementary function for this equation is just the same as in the cases we
have treated. We shall concentrate on the case w > (3 where the complementary
function (unforced part of the solution) is periodic

xc(t) = exp(—pt) {A cos(&t) + Bsin(&t)}, &= Vw2 -2 (1.39)
The trial function for the particular integral is
T(t) = Ccos(xt) + D sin(xt), (1.40)

and substituting into (1.38) gives the particular solution

2y (t) = % {(w? = x) cos(xt) + 2By sin(xt)} (1.41)
where
¢ =wh+x+ 23 (28% - W?). (1.42)

Now we apply the initial conditions 2(0) = a and 4(0) = 0 to evaluate A and B
so that the complementary function becomes

_exp(—pt)
) ="

When g > 0 the solution

z(t) = zc(t) + zp(t), with v(t) = o (t) + &p(t) (1.44)

{€lag + c(x* — w?)] cos(€t) + Blad — c(x* + w?)] sin(&t) } (1.43)
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Figure 1.5: The path begins at (a, 0) by following the undamped solution (shown
by a broken line) and then converges to the origin as in Fig. 1.3, but in this
case the convergence is delayed by the linear ¢ terms.

has a part z.(t) which tends to zero as ¢ — oo. This is called the transient
contribution and a part x,(t) which does not attenuate. This is called the
persistent contribution. In the long-time limit the system tends to an oscillation
of the forced frequency. In T's the solution begins at the point(a, 0) on the ellipse
of the ‘natural motion’ of the oscillator and then converges on the ellipse

x? v? c?

Z—CF P F
Figure 1.6 shows the case where a =1, ¢ =2, w =0.6, = 0.7 and

chi = 0.5. The origin in I'y is no longer an equilibrium point but the ellipse
(1.45) is an attractor.

(1.45)

1.7.3 A Forced, Undamped Simple Harmonic Oscillator
We now consider the special case § = 0, when the solution simplifies to

o(t) = {a+( c

W} cos(wt) + (D) cos(xt), (1.46)

w? —x
o(t) = —w{a+Ggézﬁ}$Mwﬂ—X@§%;5$Mﬂ) (1.47)

It is clear that the amplitude of the oscillations tends to infinity as x is ‘tuned’
to approach w. This phenomenon is known as resonance. For the case y = w we
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Figure 1.6: A damped force simple harmonic oscillator. The path begins at (a, 0)
on the natural ellipse and then converges onto the forced ellipse as t — oo.

should have taken a different trial function containing a linear term in ¢. Then
we would have obtained the solution

xz(t) = % [2aw cos(wt) + ct sin(wt)], (1.48)
o(t) = %[—Qaw sin(wt) + ct cos(wt)], (1.49)

in which the amplitude of the periodic solution increases linearly with t. Away
from the resonance case we have, in equations (1.46) and (1.47) a solution which
involves contributions with two different angular frequencies w and x and periods
Ty = 27 /w and Ty = 27/x. The possible behaviour divide into two types:

(i) There exist integers n; and ng such that

m Ty = noTy or, equivalently Now = N1X. (1.50)

Then the period of the solution is ni1Ty = nsT%, where now nq and ng are
the smallest pair of integers which satisty (1.50). Equation (1.50) can, of
course, always we satisfied if w and x are rational numbers (fractions or
integers) and the case where a =1, c =2, w = 1—70, X = % is shown in Fig.
1.7.

(ii) There do not exist integers ny and no such that (1.50) is satisfied. For this
to be the case one or both of w and x must be irrational. The curve in
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—20

—10"-

Figure 1.7: An undamped force simple harmonic oscillator where the frequencies
are rationally related and the solution is periodic.

20

N

at%\\\\\\\\\\\:\\\\?

gl alad D

Figure 1.8: An undamped force simple harmonic oscillator where the frequencies
are not rationally related and the solution is quasi-periodic.

I's now never closes. This solution is said to be quasi-periodic. The case

_ B 1 1. -
wherea=1,c=2,w= BX= 5 shown in Fig. 1.8.
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1.8 Omne-Variable Autonomous Systems

We first consider a first-order autonomous system. In general a system may
contain a number of adjustable parameters a,b,c,... and it is of interest to
consider the way in which the equilibrium points and their stability change
with changes of these parameters. We consider the equation

z(t) = F(a,b,c,...,x), (1.51)
where a, b, ¢, . . . are some (one or more) independent parameters. An equilibrium
point z*(a, b, ¢, ...) is a solution of

F(a,b,c,...,2") =0. (1.52)

According to the Lyapunov criterion it is stable if, when the phase point is
perturbed a small amount from z*, it remains in a neighbourhood of z*, as-
ymptotically stable if it converges on x* and unstable if it moves away from z*.
We shall, therefore, determine the stability of equilibrium points by linearizing
about the point.?

Example 1.8.1 Consider the one-variable non-linear system given by
i(t) = a—2°. (1.53)

The parameter a can vary over all real values and the nature of equilibrium
points will vary accordingly.

The equilibrium points are given by = z* = +4/a. They exist only when
a > 0 and form the parabolic curve shown in Fig. 1.9. Let x = z* + Az and
substitute into (1.53) neglecting all but the linear terms in Az. This gives

dAz
dt

The right-hand side of (1.54) can be understood either as a Taylor expansion,

as far as the linear term, of the right-hand side of (1.53) about x = z*, or as the

expansion of the quadratic (z* + Ax)? with the term (Axz)? neglected.® Since

a = (z*)? this gives

dAz
dt

which has the solution

=a— (z%)? — 22" Ax. (1.54)

= —2z" Az, (1.55)

Az = Cexp(—2z*t). (1.56)

Thus the equilibrium point z* = y/a > 0 is asymptotically stable (denoted by a
continuous line in Fig. 1.9) and the equilibrium point z* = —/a < 0 is unstable

5A theorem establishing the formal relationship between this linear stability and the Lya-
punov criteria will be stated below.

60f course, in cases where the right-hand side of the differential equation is not of some
simple polynomial form we shall have to use a Taylor expansion.
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Figure 1.9: The bifurcation diagram for Example 1.8.1. The stable and unstable
equilibrium solutions are shown by continuous and broken lines and the direction
of the flow is shown by arrows. This is an example of a simple turning point
bifurcation.

(denoted by a broken line in Fig. 1.9). When a < 0 it is clear that @(t) < 0
so x(t) decreases monotonically from its initial value 2(0). In fact for a = 0
equation (1.53) is easily solved:

x t
/ r2dr = —/ dt (1.57)
z(0) 0

gives

(0 @) \*
‘T(t) = Tx(())’ ,T(t) = — {TZ(O)} . (1.58)
Then

0, as t — oo, if (0) > 0,
z(t) — { (1.59)

—o0, ast— 1/[z(0)], if (0) < 0.

In each case z(t) decreases with increasing t. When z(0) > 0 it takes ‘forever’
to reach the origin. For z(0) < 0 it attains minus infinity in a finite amount of
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time and then ‘reappears’ at infinity and decreases to the origin as ¢ — co. The
linear equation (1.55) cannot be applied to determine the stability of z* = 0 as
it gives (dAz/dt)* = 0. If we retain the quadratic term we have

dAz
dt

So including the second degree term we see that dAz/dt < 0. If Az > 0, z(¢)
moves towards the equilibrium point and, if Az < 0, it moves away. In the
strict Lyapunov sense the equilibrium point x* = 0 is unstable. But it is ‘less
unstable’ that z* = —/a, for a > 0, since there is a path of attraction. It
is at the boundary between the region where there are no equilibrium points
and the region where there are two equilibrium points. It is said to be on the
margin of stability. The value a = 0 separates the stable range from the unstable
range. Such equilibrium points are bifurcation points. This particular type of
bifurcation is variously called a simple turning point, a fold or a saddle-node
bifurcation. Fig.1.9 is the bifurcation diagram.

= —(Ax)% (1.60)

Example 1.8.2 The system with equation
i(t) = z{(a+c*) — (z — ¢)*} (1.61)
has two parameters a and c.

The equilibrium points are x = 0 and x = z* = ¢ & Va + ¢2, which exist when
a+ c? > 0. Linearizing about z = 0 gives

x(t) = Cexp(at) (1.62)

The equilibrium point = 0 is asymptotically stable if a < 0 and unstable for

a > 0. Now let x = z* + Az giving

dAz
dt

= —2Azz*(z* —¢)

= T202va+ [c:l: \/a—i—c?} . (1.63)
This has the solution
Az = Cexp [:F2t\/a +c? (c +vVa+ 02)} . (1.64)

We consider separately the three cases:

c=0.

Both equilibrium points z* = +./a are stable. The bifurcation diagram for
this case is shown in Fig.1.10. This is an example of a supercritical pitchfork
bifurcation with one stable equilibrium point becomes unstable and two new
stable solutions emerge each side of it. The similar situation with the stability
reversed is a subcritical pitchfork bifurcation.
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Figure 1.10: The bifurcation diagram for Example 1.8.2, ¢ = 0. The stable and
unstable equilibrium solutions are shown by continuous and broken lines and the
direction of the flow is shown by arrows. This is an example of a supercritical
pitchfork bifurcation.

2?2 —2cx=a

Figure 1.11: The bifurcation diagram for Example 1.8.2, ¢ > 0. The stable and
unstable equilibrium solutions are shown by continuous and broken lines and
the direction of the flow is shown by arrows. This gives examples of both simple
turning point and transcritical bifurcations.
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c>0.
The equilibrium point z = ¢ + va + ¢2 is stable. The equilibrium point x =

¢ — Va+ c? is unstable for a < 0 and stable for @ > 0. The point z = c,

a = —c? is a simple turning point bifurcation and z = a = 0 is a transcritical

bifurcation. That is the situation when the stability of two crossing lines of
equilibrium points interchange. The bifurcation diagram for this example is
shown in Fig.1.11.

c<0.
This is the mirror image (with respect to the vertical axis) of the case ¢ > 0.

Example 1.8.3

x(t) = cx(b— z). (1.65)
This is the logistic equation.

The equilibrium points are z = 0 and x = b. Linearizing about z = 0 gives
x(t) = Cexp(cbt) (1.66)

The equilibrium point z = 0 is stable or unstable according as if ¢b <, > 0. Now

let x = b+ Ax giving

dAz
dt

So the equilibrium point x = b is stable or unstable according as cb >, < 0. Now
plot the equilibrium points with the flow and stability indicated:

= —cbAx. (1.67)

e In the (b, z) plane for fixed ¢ > 0 and ¢ < 0.
e In the (¢, ) plane for fixed b > 0, b =10 and b < 0.

You will see that in the (b, z) plane the bifurcation is easily identified as trans-
critical but in the (¢, z) plane it looks rather different.

Now consider the difference equation corresponding to (1.65). Writing x(n) =
x(ne) and using the two-point forward derivative,

x(n+1) = x(n)[(echb + 1) — cex(n)]. (1.68)
Now substituting

. (1—scb)€y+£cb (1.69)
c

into (1.68) gives

y(n+1) =ay(n)[1 —y(n)], (1.70)
where

a=1—cech. (1.71)
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(1.70) is the usual form of the logistic difference equation. The equilibrium
points of (1.70), given by setting y(n 4+ 1) = y(n) = y* are

y* =0 — xX* =0,

(1.72)
Now linearize (1.70) by setting y(n) = Ay(n) + y* to give
Ay(n+1) =a(l —2y*")Ay(n). (1.73)

The equilibrium point y* is stable or unstable according as |a(1 — 2y*)| <, > 1.
So

e y* =0, (x* =0b)isstableif -1 <a <1, (0 <echb < 2).
e y"=1—1/a, (x* =0) isstableif 1 <a < 3, (-2 < ecb < 0).

Since the differential equation corresponds to small, positive €, these stability
conditions agree with those derived for the differential equation (1.65). You
may know that the whole picture for the behaviour of the difference equation
(1.70) involves cycles, period doubling and chaos.” Here, however, we are just
concerned with the situation for small ¢ when

y =~ (ce)x, a=1-(ce)b. (1.74)

The whole of the (b,x) plane is mapped into a small rectangle centred around
(1,0) in the (a,y) plane, where a transcritical bifurcation occurs between the
equilibrium points y =0and y =1 - 1/a.

1.9 Digression: The Eigen-Problem

Before considering systems of more than variable we need to revise our knowl-
edge of matrix algebra. A d x d matrix A is said to be singular or non-singular
according as the determinant of A, denoted by Det{ A}, is zero or non-zero. The
rank of any matrix B, denoted by Rank{B}, is defined, whether the matrix is
square or not, as the dimension of the largest non-singular (square) submatrix
of B. For the d x d matrix A the following are equivalent:

(i

) The matrix A is non-singular.

(ii) The matrix A has an inverse denoted by A~
(iii) Rank{A} =d.

)

(iv) The set of d linear equations

Az =c, (1.75)

"lan Stewart,Does God Play Dice?, Chapter 8, Penguin (1990)
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where
KA C1
€2 C2
z=| , c=| , (1.76)
Xq Cq
has a unique solution for the variables z1,zo,..., x4, for any numbers
c1,C2,...,Cq, given by
z=A"'c (1.77)
(Of course, when ¢; = ¢y = --- = ¢4 = 0 the unique solution is the trivial
solution t1 = x5 =--- =124 =0.)

When A is singular we form the dx (d+1) augmented matriz matrix A’ by adding
the vector ¢ as a final column. Then the following results can be established:

(a) If
Rank{A} = Rank{A'} = m < d (1.78)
then (1.75) has an infinite number of solutions corresponding to making an
arbitrary choice of d — m of the variables x1, o, ..., zq4.

(b) If
Rank{A} < Rank{A'} <d (1.79)

then (1.75) has no solution.

Let A be a non-singular matrix. The eigenvalues of A are the roots of the
d-degree polynomial

Det{A — M} =0, (1.80)

in the variable X\. Suppose that there are d distinct roots AV AR A(@)
Then Rank{A - A® T} =d—1forallk =1,2,...,d. So there is, corresponding
to each eigenvalue \¥)| a left eigenvector v*) and a right eigenvector u'*) which
are solutions of the linear equations

[v(k)]TA _ )\(k) [,U(k)]T7 Au(k) = u(k))\(k). (1'81)

The eigenvectors are unique to within the choice of one arbitrary component.
Or equivalently they can be thought of as unique in direction and arbitrary in
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length. If A is symmetric it is easy to see that the left and right eigenvectors
are the same.® Now

[v(k)]TAu(j) NG [v(k)]Tu(j) — [,U(k)]Tu(j))\(j) (1.82)

and since A(®) £ \U) for k # j the vectors v(*¥) and u(9) are orthogonal. In fact
since, as we have seen, eigenvectors can always be multiplied by an arbitrary
constant we can ensure that the sets {u®} and {v} are orthonormal by

dividing each for «® and v® by Vu®) . v®) for k =1,2,...,d. Thus

u® o) = 5% (k — §), (1.83)
where
Kr(l. _ 7\ — 1, k=y,
0% (k—j) = {07 k£ (1.84)
is called the Kronecker delta function. Now form the matrix
]
@7
V = . , (1.85)
[p@]"
which has the left eigenvectors v, k =1,2,...,d as its rows. In a similar way
U = (u(l) u?@ ... u(d)) (1.86)

has the right eigenvectors as its columns. From the orthonormality condition
(1.84)

VU =1. (1.87)
This means that
V=U", U=v "' (1.88)

If A is symmetric U = V'*. So the inverse of U (or V') is its transpose. A matrix
with this property is called orthogonal. Now, if we take all the eigenvectors
together in (1.81), it can be written

VA=AV, AU =UA, (1.89)

where A is the d x d diagonal matrix with the eigenvalues A(1), X2 . (@)
along the diagonal. From (1.88) and (1.89),

VAU =U 'AU = A. (1.90)

The matrix A is diagonalized by the transformation with U (or V). When A
is symmetric this is an orthogonal transformation.

8The vectors referred to in many texts simply as ‘eigenvectors’ are usually the right eigen-
vectors. But it should be remembered that non-symmetric matrices have two distinct sets of
eigenvectors. The left eigenvectors of A are of course the right eigenvectors of A" and vice
versa.
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1.10 Linear Autonomous Systems

The autonomous system (1.25) is linear if

F=Azx—c, (1.91)
for some d x d matrix A and a vector ¢ of constants. Thus we have

z(t) = Ax(t) — ¢, (1.92)
An equilibrium point «*, if it exists, is a solution of

Az = c. (1.93)

As we saw in Sect. 1.9 there can be either no solution points, one solution or
an infinite number of solutions. We shall concentrate on the case where A is
non-singular and there is a unique solution given by

¥ =A""e (1.94)
As in the case of the first-order system we consider a neighbourhood of the
equilibrium point by writing

z=x*+ Ax. (1.95)
Substituting into (1.92) and using (1.94) gives

Of course, in this case, the ‘linearization’ used to achieve (1.96) was exact be-
cause the original equation (1.92) was itself linear.

Asin Sect. 1.9 we assume that all the eigenvectors of A are distinct and adopt
all the notation for eigenvalues and eigenvectors defined there. The vector Ax
can be expanded as the linear combination

Az(t) = wi ()u® +wr()u® + - +wa(t)u?, (1.97)
of the right eigenvectors of A, where, from (1.83),
wi(t) = v® - Ax(t), k=1,2,....d. (1.98)
Now
ALz(t) = wi(t)AuY +wr(t)Au® + - + wy(t) Au?

AWy (B + XPwy(u® + -+ XDy (H)u@ (1.99)
and
ddA—tm =1 ()u + i (H)u® + - g (t)u'?, (1.100)

Substituting from (1.99) and (1.100) into (1.96) and dotting with v(®) gives
g (t) = APy (t), (1.101)
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with solution

wi(t) = Cexp (A(k)t) . (1.102)

So Az will grow or shrink in the direction of u(*) according as # {)\(k)} >, < 0.
The equilibrium point will be unstable if at least one eigenvalue has a positive
real part and stable otherwise. It will be asymptotically stable if the real part
of every eigenvalue is (strictly) negative. Although these conclusions are based
on arguments which use both eigenvalues and eigenvectors, it can be seen that
knowledge simply of the eigenvalues is sufficient to determine stability. The
eigenvectors give the directions of attraction and repulsion.

Example 1.10.1 Analyze the stability of the equilibrium points of the linear
system

(1) = y(t), §(t) = da(t) + 3y(t). (1.103)

The matrix is

a (01 1.104
_<4 3)’ (1.104)

with Det{A} = —4 and the unique equilibrium point is x = y = 0. The
eigenvalues of A are A() = —1 and A® = 4. The equilibrium point is unstable
because it is attractive in one direction but repulsive in the other. Such an
equilibrium point is called a saddle-point.

For a two-variable system the matrix A, obtained for a particular equilibrium
point, has two eigenvalues A() and A\(?). Setting aside special cases of zero or
equal eigenvalues there are the following possibilities:

(i) A1) and A\® both real and (strictly) positive. Az grows in all directions.
This is called an unstable node.

(ii) A®) and A® both real with A*) > 0 and A® < 0. Az grows in all direc-
tions, apart from that given by the eigenvector associated with A(?). This,
as indicated above, is called a saddle-point.

(iii) A and A\® both real and (strictly) negative. Aa shrinks in all directions.
This is called a stable node.

(iv) A1 and A?) conjugate complex with R{AD} = R{IAP} > 0. Az grows in
all directions, but by spiraling outward. This is called an unstable focus.

(v) A1 = X are purely imaginary. Close to the equilibrium point, the length
of Ax remains approximately constant with the phase point performing a
closed loop around the equilibrium point. This is called an centre.

(vi) A and A conjugate complex with R{AD} = R{AP} < 0. Az shrinks
in all directions, but by spiraling inwards. This is called an stable focus.
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Example 1.10.2 Analyze the stability of the equilibrium points of the linear
system

2(t) = 2z(t) — 3y(t) + 4, y(t) = —x(t) +2y(t) — 1. (1.105)
This can be written in the form
x(t) = Ax(t) — ¢, (1.106)

with

L)) )
T = , A= , c= . (1.107)
Yy -1 2 1

The matrix is

a7 1.1
() s

with Det{A} = 1, has inverse

Al = 23 1.109
_<1 2)' (1.109)

So the unique equilibrium point is

(21

Linearizing about * gives an equation of the form (1.96). The eigenvalues of
A are 24+ /3. Both these numbers are positive so the equilibrium point is an
unstable node.

1.11 MAPLE for Systems of Differential Equations

In the discussion of systems of differential equations we shall be concerned less
with the analytic form of the solutions than with their qualitative structure.
As we shall show below, a lot of information can be gained by finding the
equilibrium points and determining their stability. It is also useful to be able to
plot a trajectory with given initial conditions. MAPLE can be used for this in
two (and possibly three) dimensions. Suppose we want to obtain a plot of the
solution of

(1) = a(t) —y(b), y(t) = x(t), (1.111)

over the range ¢t = 0 to ¢ = 10, with initial conditions z(0) = 1, y(0) = —1.
The MAPLE routine dsolve can be used for systems with the equations and
the initial conditions enclosed in curly brackets. Unfortunately the solution is
returned as a set {z(t) = ---,y(t) = ---}, which cannot be fed directly into
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the plot routine. To get round this difficulty we set the solution to some
variable (Fset in this case) and extract z(t) and y(t) (renamed as fz(t) and
fy(t)) by using the MAPLE function subs. These functions can now be plotted
parametrically. The complete MAPLE code and results are:

Fset:=dsolve(

{diff (x(t),t)=x(t)-y(t),diff (y(t),t)=x(t),x(0)=1,y(0)=-1},

{x(t),y(t)}):

> fx:=t->subs(Fset,x(t)):

V V Vo

\

fx(t);

W =

e1/2t) (3cos(% tV3) + 3\/§sin(% tv/3))

> fy:=t->subs(Fset,y(t)):
fy(t);

\

W =

/2t 3 \/gsin(% tV/3) — 3cos(% tV/3))

Y

plot ([£fx(t),fy(t),t=0..101);

001 20 40 6 0 100 120 140 160

It is not difficult to see that the eigenvalues of the matrix for the equilibrium
point = y = 0 of (1.111) are 2(1 +iv/3). The point is an unstable focus as
shown by the MAPLE plot.

1.12 Linearizing Non-Linear Systems

Consider now the general autonomous system (1.25) and let there by an equi-
librium point given by (1.26). To investigate the stability of * we again make
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the substitution (1.95). Then for a particular member of the set of equations

dllxg
dt

= F(z" + Ax)

d *
> (ﬁ) Az + O(Az;Axy), (1.112)
=1 8Ik

where non-linear contributions in general involve all produces of pairs of the
components of Ax. Neglecting nonlinear contributions and taking all the set of
equations gives

dAz
—— =J*A 1.11
5%y, (1113)
where J* = J(x*) is the stability matriz with
ox1 Oxa 0xy
J(x)=| 0z1 Oz2 Oxq | . (1.114)
ox1 Oxa 0xq

Analysis of the stability of the equilibrium point using the eigenvalues of J*
proceeds in exactly the same way as for the linear case. In fact it can be
rigorously justified by the following theorem (also due to Lyapunov):

Theorem 1.12.1 The equilibrium point x* is asymptotically stable if the real
parts of all the eigenvalues of the stability matriz J* are (strictly) negative. It
is unstable if they are all non-zero and at least one is positive.

It will be see that the case where one or more eigenvalues are zero or purely
imaginary is not covered by this theorem (and by linear analysis). This was
the case in Example 1.8.1 at ¢ = 0, where we needed the quadratic term to
determine the stability.

Example 1.12.1 Investigate the stability of the equilibrium point of
i(t) = sinfa ()] - y(t),  9(0) = alt). (1.115)

The equilibrium point is 2* = y* = 0. Using the McLaurin expansion of sin(z) =
Ax+O(Ax?) the equations take the form (1.113), where the stability matrix is

P 1.116
_<1 0)' (1.116)

This is the same stability matrix as for the linear problem (1.111) and the
equilibrium point is an unstable focus.
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Example 1.12.2
©(t) = —y(t)+a(t)la—2*(t) —y* (@), (1.117)

g(t) = a(t) +yt)a—2*(t) - y* (1)) (1.118)

The only equilibrium point for (1.117) (1.118) is x = y = 0. Linearizing about
the equilibrium point gives an equation of the form (1.113) with

J* = (‘; _i > (1.119)

The eigenvalues of J* are a &-i. So the equilibrium point is stable or unstable
according as a < 0 or @ > 0. When a = 0 the eigenvalues are purely imaginary,
so the equilibrium point is a centre.

We can find two integrals of (1.117) (1.118). If (1.117) is multiplied by x
and (1.118) by y and the pair is added this gives

dx dy 9 9 9 9
— +ty— = + —x° — . 1.12
xdt ydt (z y )a—z y~) ( 0)

With r? = 22 4 42, if the trajectory starts with r = ry when t = 0,

1M 1 1) .
_/TU{G_T2+T_2}C1(7«), a0,

t a
2/ dt = (1.121)
0 "1
—/ 75—4d(7“2)7 a=0,
ro
giving
2
arg
0,
) e + exp(—2at){a —r3}’ a7 0,
r2(t) = , (1.122)
To _
1+ 2t a=0.
This gives
0, a <0,
r(t) — (1.123)
Vva, a>0.

Now let = rcos(), y = rsin(f). Substituting into (1.117)—(1.118) and elimi-
nating dr/dt gives

de

—~ -1

dt

If 0 starts with the value 6(0) = 6y then

(1.124)

0 =t + 6. (1.125)
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Figure 1.12: A Hopf bifurcation with (a) a <0, (b) a > 0.

When a < 0 trajectories spiral with a constant angular velocity into the origin.

When a = 0 linear analysis indicates that the origin is a centre. However, the full
solution shows that orbits converge to the origin as t — oo, with r(t) ~ 1/v/2t,
which is a slower rate of convergence than any exponential.

When a > 0, if (0) = 79 = v/a, 7(t) = y/a. The circle 22 + y? = a is invariant
under the evolution of the system. The circle 22 +y? = a is a new type of stable
solution called a limit cycle. Trajectories spiral, with a constant angular velocity
towards the limit cycle circle, either from outside if rq > /a or from inside if
ro < v/a see Fig. 1.12. The change over in behaviour at a = 0 is an example of

the Hopf bifurcation. If the behaviour is plotted in the three-dimensional space
of {a,z,y} then it resembles the supercritical pitchfork bifurcation (Fig. 1.13).

Example 1.12.3

i(t) = a— 2*(t), (1.126)
which can be written as

i) = y), (1.127)
g(t) = a—23(t). (1.128)
The equilibrium points for (1.127) (1.128) are given by x = z* = ++/a, y =0,
when a > 0 and there are no equilibrium points when a < 0.

Before considering the stability of the equilibrium point we obtain an integral
of the equations (1.127) (1.128). Since

odz n dy dz
i — =ay=a—
a Y — YT Yar

it follows that a trajectory lies on a curve

%xg + %y2 —ax =c. (1.130)

(1.129)
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Figure 1.13: A Hopf bifurcation in the space of {a,z,y}.

for some fixed value of c. The curves are symmetric about the z axis. Trajecto-
ries with ¢ < 0 do not cut the y—axis, the trajectory with ¢ = 0 passes through
the origin and trajectories with ¢ > 0 cut the y—axis at y = +v/2¢. Curves with
a # 0 cut the z—axis with a vertical tangent. We now consider separately the
three ranges of a:

a < 0. In this case there are no equilibrium points and g(¢) < 0 for all z and y.
A trajectory cuts the z axis at the roots of 2 — 3az — 3¢ = 0. For negative a
this cubic has no extrema so a trajectory cut the z—axis only once. Also as |y|
increases from zero on a trajectory it follows from (1.130) that x must decrease
so the trajectories must be convex to the right. The phase pattern for a = —1
can be plotted using MAPLE :

> with(plots):
> f:=(x,y,a)->x"3/3+y"2/2-a*x:

> curve:=implicitplot(
> {f(x,y,-1)=-1,f(x,y,-1)=0,f(x,y,-1)=1}, x=-3..1.5,y=-3..3,
> grid=[100,100],labelfont=[TIMES,ITALIC,12]):

> text:=plots[textplot] (
> {[-0.8,0.55,¢c=-1¢], [-0.32,1,¢c=0‘], [-0.8,2.25,¢c=1¢]},
> align={ABOVE,RIGHT}, font=[TIMES,ITALIC,14]):

> plots[display] ({curve,text});
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W

(First run the MAPLE program without the labelling ¢ = —1,0, 1 on the curves.
Then add the labels by reading off from the plot the best place for them to be
put.)

a = 0. In this case there is one equilibrium point. Curves with ¢ # 0 are very
similar to those for a < 0. The curve with ¢ = 0 is given by %x?’ + %yz = 0 which
has a cusp at the origin rather than a vertical tangent. A MAPLE program like
the one given above can be used to obtain the plot:

w

N




1.12. LINEARIZING NON-LINEAR SYSTEMS 31

a > 0. In this case there are two equilibrium points z = z* = +y/a, y = 0. Lin-
earizing about the equilibrium point (z*,0) gives equations of the form (1.113)
with

J =J(z",0)= ( 9t 0 ) (1.131)
The equilibrium point (v/a,0) has eigenvalues A(1?) = +ir, where 7 = (4a)'/%,
so it is a centre. The equilibrium point (—+/a,0) has eigenvalues A = 7
A2 = —7, with corresponding right eigenvectors (1,7)" and (—1,7)". So it is
a saddle-point and the line along which it is attractive is given by (Az, Ay) ~
(—1,7). Now the trajectory which passes through (—+/a,0) is, from (1.130)

%xg + %y2 —axr = %a\/a. (1.132)
Differentiating
— 72 2
gty = 21— — 4 a7 . (1.133)
Yy \/%a\/a+2a;v— 243
At the equilibrium point x = —./a this expression is undefined and we must
substitute z = Az — y/a. This gives
. a— z? 2/al Nz — (Azx)? Ax

y \2Va(0)? - 2D

So one of the branches of the curve through the equilibrium point is in the stable
direction. The MAPLE plot is:
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The closed part of the orbit (1.132), which begins at the saddle-point (—+/a, 0)
and returns to the same point, has two important properties:

e It separates the closed orbits from the trajectories which go off to infinity
and is thus called a separatriz.

e It connects the saddle-point to itself. Such a trajectory is called homo-
clinic. (A trajectory connecting different saddle-points together is called
heteroclinic.)

In general the points where a trajectory cuts the x—axis are given, from (1.130),
by

flz) =32 —az —c=0. (1.135)

f(z) has a maximum at = —/a with f(—y/a) = 2a\/a — ¢ and a minimum
z = \/a with f(y/a) = —2ay/a — c. So, when 2a\/a > ¢ > —Za\/a, an orbit
cuts the xz—axis at three points. The upper limit of this range is the separatrix
and the case ¢ = 0 corresponds to the closed orbit through the origin. As
¢ — —2a,/a the closed orbit contracts to a point on the centre (y/a,0). We can
calculate the period around a closed orbit from (1.127) and (1.130).

i(t) = \/2c+ 2az — 23, (1.136)

If this orbit cuts the z axis at x1 and x5 (x1 < 22) then the period T around
the orbit is

vz dx
T= 2/ .
3} 1/204—2@.’[:—%,@3
The integrand has a singularity at x = x1 = —4/a on the separatrix; so T — oo
on this curve, which is the limit of the closed orbits.

(1.137)

Example 1.12.4 The equation of motion of a simple pendulum of length £
swinging under gravity g s

0(t) = —asin[0(t)], (1.138)

where 0 is the angle the pendulum makes with the downward vertical and a = g/¢.
Using the angular velocity w this equation of motion can be written

o) = w(t), (1.139)
w(t) = —asinlf(t)]. (1.140)

The equilibrium points for (1.139) (1.140) arew =0,0 =nw, n =0,+1,+2.....
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Equations (1.139)—(1.140) can be integrated to give the family of curves
w? = 2a{cos(#) — c} (1.141)

in the phase space I's of the variables {6, w} parameterized by c¢. At the equi-
librium point (6*,0)

« (0 1
I = ( —acos(0*) 0 > (1.142)
So the eigenvalues are A(") = i,/a cos(0*) and A = —i\/a cos(6*). The equilib-
rium points § = 2nmw, n = 0,+1,+2, ..., where the eigenvalues are purely imag-

inary, are centres and the equilibrium points § = (2n + 1), n = 0,+1,£2,..,
where the eigenvalues are real and of opposite sign, are saddle-points. A trajec-
tory given by (1.141) cuts the 6 axis at a periodic sequence of points if |¢| < 1
and is the heteroclinic separatriz passing through the saddle-points if ¢ = —1.
If ¢ = 1 it collapses into a set of points at the centres. Again using a MAPLE
program, like that given above, we obtain curves of (1.141) with a = 0:

The period of a closed orbit around the origin which cuts the f—-axis at § =
+6p = + arccos(c) is given by
b do
T=2[| —— . (1.143)
2a(cos(0) — ¢)

This integral can be expressed in terms of a complete elliptic integral of the first
kind (Drazin, p. 28) and the usual formula T = 27//c = 2w4/£/g for small
oscillations can be recovered in the limit ¢ — 1.

1.13 Conservative Systems

For a conservative system with equation

#(t) = —V'(x), (1.144)
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we follow the procedure of Sect. 1.3 and take

it) = yi), (1.145)
yt) = =V'(2). (1.146)
The equilibrium points are the turning points of V(a,b, ¢, ..., ), appearing in

the space I's of {z,y} on the z—axis. Now linearize about the equilibrium point
(x*,0).

dAx

= A 1.14
¥ Y (1.147)
dd—Aty = —AzV"(z"). (1.148)

The eigenvalues of the stability matrix are +i\/V"(2*). So z* is a centre if
V"(z*) > 0 and a saddle-point if V”(z*) < 0. These two conditions corre-
spond respectively to the potential function V(x) having a local minimum and
maximum respectively at z = z*. From (1.145) (1.146)

dy dzx

3

= — V' (z) = —===V'(2). 1.149
v = V@) = - F V@) (1149)
Integrating this gives
%yQ +V(z) = E, (1.150)

for constant E. In mechanical terms this is the energy integral for a particle
of unit mass, location z and speed y moving under the influence of a potential
V(z) with constant energy E. From (1.150)

y =++/2Y (), (1.151)
where
Y(z)=F —V(x). (1.152)

The zeros of Y (z) are the points in I'y where the curve given by (1.150) cuts
the z axis. Let Z be such a point about which Y (z) has the Taylor expansion

Y(e) = (z-2)Y'(@)+5(x—2)*Y"(7)
+0((z - 2)*),
= (- V(@) - 5@ - BPV"(@)
+0((z — 2)3). (1.153)
Then, if V/(Z) # 0,
y? ~ —2(z — 7)V'(2), (1.154)

in a neighbourhood of (#,0). The curve (1.150) is parabolic; convex in the
positive z direction if V/(Z) > 0 and in the negative z direction if V'(z) < 0.
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These cases correspond to extremities of closed orbits of the curve (1.150). Now
suppose V' (Z) = 0 and assume V" (%) # 0. From (1.151) and (1.145)

y ~ =i(z—2)W/V(@), (1.155)
z(t) =~ T+ cexp{xit\/V"(Z)}. (1.156)

where cis a constant. When V" (%) > 0 (1.156) again confirms the linear analysis
of periodic orbits about a centre. When V" (Z) < 0 the choice of signs in (1.156)
gives the stable and unstable directions from the saddle-point, with the phase
point taking an infinite amount of time to reach the saddle-point in the stable
direction. This is the same result as the divergence of the integral (1.143) as
6 — arccos(c).

Now consider a possible plot (Fig. 1.14) of Y (z) given by (1.152) against z.

Figure 1.14: A possible plot of Y (z) against 2. The shape of parts of trajectories
(in the {x,y} plane) are shown by broken lines.

The zeros Z1,2,... on the x axis are points like & with Y'(z) = —=V’(z) # 0.
The points Z; and Z3 are places where V'(Z) = —=Y'(Z) > 0, so they cor-
respond to right-hand extremities of closed orbits, while Z, corresponds to
a left-hand extremity. The minimum at A is a point where V'(z) = 0 and
V' (z) = =Y"(x) < 0, so it is a saddle-point, whereas the maximum at B
is a centre. If A approaches the x axis Z; and Z, coalesce at a point where
Y'(z) = -V (z) =0, Y"(Z) = —=V"(Z) > 0 and the two trajectories merge to
produce a crossing point like those shown in the MAPLE plot on page 33, at odd
multiples of 7. If B approaches the x—axis Z3 and T3 coalesce at a point where
Y'(z) = -V'(2) =0, Y" (&) = =V"(Z) < 0 and the orbit between Z5 and Z3
closes in on the centre like those shown in the MAPLE plot on page 33, at even
multiples of .

Given that there is a closed orbit between Zs and Z3, it follows from the
symmetry of (1.150) that the time taken between Zo and 3 is half the complete
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period. Since Y(z) > 0 in the interval (Z2,#3) the period T for the orbit is
given, from (1.151), by

(1.157)

3 dz
= 2/52 V2Y (2)
Problems 1

1) Find out as much as you can about the one-dimensional dynamic systems:

(i) z(t) = z(t)[a — ¢ — abx(t)],
(i) @(t) = ax(t) — ba?(t) + ca®(t),

You may assume that a and b are non-zero but you can consider the case
¢ = 0. You should be able to

(a) Find the equilibrium points and use linear analysis to determine their
stability.

(b) Draw the bifurcation diagrams in the {z, a}—plane for the different ranges
of b and c.

(c) Solve the equations explicitly.
2) Verify that the system
#(t) = a(t) + sinfy 1),
y(t) = cosla(t)] —2y(t) — 1
has an equilibrium point at * = y = 0 and determine its type.

3) Find all the equilibrium points of

_I2(t) + y(t)a

K-
—~
~+
~
Il

and determine their type.

4) Show that the system given by

I(l—I2—y2) y(t):x—}—y(l_IQ_yQ),

VaZ+y? /22 + 42

has a stable limit cycle given by « = cos(fp + t), y = sin(6y + t).

z(t) = —y+
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5)

A particle moves around a smooth circular wire of radius ¢ which is fixed
relative to a vertical plane. Gravity g acts on the particle and the plane
rotates with constant angular velocity 2 about a vertical diameter of the
circle. The motion of the particle on the circle is given by

() = 02 sin(h){cos() — a},

where 6 is the angle the radius to the particle makes with the downward
vertical and a = g/(Q%¢) > 0. Find the equilibrium points in the plane of
{0,w} where w(t) = 6(t) and give a sketch of the bifurcation diagram in
the {a, 6} plane indicating the stability of the equilibrium lines. Find out
anything else you can about this problem.

Show that the system

i(t) = —y +a{f(z,y) - a®}", y(t) = = +y{f(z,y) — a®}",

where n is a positive integer and f(z,y) is continuous, can be transformed
to

#(t) = r{f(rcos(f), rsin(9)) — a*}", o) =1,

in terms of polar coordinates given by x = rcos(), y = rsin(d). Deduce
that the equilibrium solution r = 0 is stable or unstable according as

{£(0,0) — a®}" <,> 0.
With f(x,y) = 22 + y? show that the limit cycle » = a is unstable if n is odd

and semistable if n is even, where ‘semistable’ means that it is stable from
one side and unstable from the other.

A system is given by
2(t) =iz + zf(|2]),
where z = x + iy. Express this formula in polar form. Show that, when

f(r) = { sin{1/0* =1} r AL

r=1.

the system has limit cycles » = 1 and r = /1 + n—lﬂ forn = £1,+2,....
Determine the stability of the limit cycles and of the equilibrium point r = 0.

Consider the equation

At) =a+z(0—|2),
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where z is a complex function of ¢t and a and b are real. Expressing z in the
usual polar form z = rexp(if) show that

#(t) = acos(f) + (b —r?), é(t) _

Investigate the steady solutions and their stability and sketch their curves in
the plane of {b,r} for fixed positive, zero and negative a.



Chapter 2

Bifurcations and Catastrophe
Theory

2.1 The Classification of Bifurcations

We consider an d-dimensional autonomous system which evolves according to
the equation

.’B(t) = F(a,w), (2.1)

where = (21, 22,...,24)" and a = (a1, a2,...,a,)" is a vector of independent
parameters. The equilibrium points for fixed a are solutions of (2.1) for which
@(t) = 0; that is they are the roots of

F(a,z)=0. (2.2)

The condition (2.2) corresponds to d surfaces in I’y which, will in general inter-
sect in one or more points. If the n components of a vary over their allowed
ranges then the equilibrium solutions form an n—dimensional equilibrium surface
or surfaces in the (d + n)-dimensional space Agyy, = II, x I'q, where II,, is the
space of the parameters a.

A bifurcation point or branch point is a solution (xg,ag) of (2.2) such
that the number of solutions x of (2.2) in a small neighbourhood of xo changes
when a varies within a small neighbourhood of ay.

2.1.1 The One-Dimensional, One-Parameter Case

In this case d = 1 with one variable z(¢) and n = 1 with one parameter a. Then
(2.1) becomes

I(t) = F(CL, I)v (23)

39
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To discuss the possible bifurcations in this case the following definition and
theorem will be needed:

If there exist P(a’,2') and Q(a’,z"), such that
F(a' +éa,2' +6x) = F(d,2)
+ P(d',2")da+ Q(d',2")0x
+60(d, 2, da,dz)da
+¢(d’, 2, 6a,0z)dx, (2.4)
with

6(d’,2’,0a,6z) — 0
as (da, dx) — (0,0) (2.5)
Y(d', ', da,dx) — 0

then F(a,z) is differentiable at (a’,2’) with
OF
P(a/7x/) - (%)a—a/ r=x’ - Fa(a/7x/)7

roN a_F o o
Qd',2") = (83: R = F,(da',2").

The Implicit Function Theorem: If F(a,x) is differentiable and has
continuous partial derivatives with F,(a,x) # 0 in the closed rectangle a; < a <
a2, x1 < x < 9 and if F(ag,z9) = 0 at the point (ag, zo) in the open rectangle
a1 < a < ag, ¥1 < x < o, then there exists an interval (a’,a”) containing ag
within which F(a,x) = 0 defines x as a continuous and differentiable function
of a with
dz F.(a,x)

da C Fy(a,z) (27)

Suppose that (ag, o) is a point on the curve of equilibrium points given by

F(a,z) = 0. (2.8)

If (ag, o) is a bifurcation point then a small positive or negative change (one
but not both) in a will increase the number of solutions in z of (2.8). This
means that xo must be a multiple root of F(ap,z) = 0 and so a necessary,
but not sufficient, condition for (ag,xo) to be a bifurcation point is that it is a
simultaneous solution of (2.8) and

F.(a,z) =0. (2.9)
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In principle the solutions of the pair of equations (2.8)—(2.9) will give the bifur-
cation set. Thus for Example 1.8.2 the bifurcation set is given by solving

x(2? —2xc—a) =0

(2.10)

322 —dxc—a =0.
These equations give * = —a/c and a(a + ¢*) = 0, yielding the transcritical
bifurcation at @ = 2 = 0 and the simple turning point at a = —c?, x = ¢ (see

Fig. 1.11).

That these conditions are not sufficient to yield a bifurcation is illustrated
by the case F(a,z) = (a — z)?. Any values of a and z on the line z = a will
satisfy (2.8) and (2.9) but there is no bifurcation. This is the degenerate case
of a transcritical bifurcation disappearing when the crossing pair of solutions
merge into each other.

We now consider different types of points which can occur on the equilibrium
curve. These will include all the simple types of bifurcation. We assume that
F(a,x) is infinitely differentiable in both variables. Then the Taylor expansion
about (ag, zp) in the two variables a and z is

F(a,z) = +(a—ag)Fu(ao,zo) + (¥ — x0)Fs(ao, o)

+ %(ZZ? - {E0)2Fzz (ao, Io)
+ (2 — x0)(a — ag) Faz (a0, zo)
+%(a—a0)2Faa(a0,!E0)+"'- (2.11)

(ao,x0) is regular point on the equilibrium curve if F(ag,z9) = 0 and
one or both of F,(ag,xq) and F(ag,x¢) is non-zero. All other points on the
equilibrium curve are singular points. If (ag,xo) is a singular point on the
equilibrium curve then it is called a higher-order singularity if F,,(ag,z) =
Faa(ao,fbo) = Fax(ao, Io) =0.

Excluding the case where (ag, xg) is a higher-order singularity there are the fol-
lowing possibilities:

e (ag,xp) is a regular point and:

F,(ag,z0) # 0. Then, according to the implicit function theorem, (2.8)
and (2.11) give the equilibrium curve as an expression for z as a continuous
function of a in a neighbourhood around ag, with dz/da given by (2.7).

F.(ap,z9) = 0. The roles of a and z in the implicit function theorem
can now be reversed and the equilibrium curve is given as a expressed as a
continuous function of z in a neighbourhood of z¢. From (2.7) da/dz =0
at x = x¢, so the equilibrium curve of x as a function of a has a horizontal
tangent at (ag, xo). The is called a regular or simple turning point and it is
the only type of bifurcation which is not a singular point. The bifurcation
at the origin in Example 1.8.1 is a case of this.
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e (ag, 7o) is a singular point with [F,.(ag,20)]?> > Fua(ao, 20)Frz(ag, o).

(2.11) as far as quadratic terms has the form

F(a,z) = {ai(a — ag) + B1(x — o) Haz(a — ag) + B2(z — x0)}, (2.12)
where all the coefficients are real and

20109 = Fua(ao, o),

26102 = Fz(ao, o), (2.13)

a1z + a2f1 = Faz(ao, xo).

The equilibrium curve has two distinct branches through (ag,z¢) with
tangents given by the linear factors in (2.12) and (ag, zo) is a double point.

Now suppose 31 # 0 and B2 # 0 and consider the local stability of
the first factor at a point

.I* = X0 —ozl(a—ao)/ﬂl. (214)
With z = z* + Az, from (2.3) and (2.12),

927 _ Aafa - ao){ash — ). (2.15)
The curve with tangent aq(a — ag) + B1(z — zo) = 0 changes its stability
as a increases through ag from stable to unstable if asfB3; > «182 and
unstable to stable if as(; < ay8s. Since the stability of the second factor
is given by reversing the subscripts 1 and 2, it is clear that the stability
is also reversed and the bifurcation is a transcritical point. This analysis
includes the case where either one but not both of o or as is zero. Then
one member of the pair of tangents is the vertical line z = ¢ as in the case
of the transcritical bifurcation at the origin in Example 1.8.2 for ¢ # 0.

Now suppose 1 = 0 and (3 # 0. This is the limiting case of the
previous situation where the first tangent line is horizontal. The complete
curve plotted for a as a function of z has a turning point at (ag,xo) and
the bifurcation is called a singular turning point. The precise form for this
bifurcation is revealed by taking higher-order factors. One possibility is
the pitchfork bifurcation of Example 1.8.2, with ¢ = 0, when the leading
terms in F(a,x) about the origin are x(a — 2?). The linear factor is a
vertical line and the factor with a horizontal tangent is quadratic.



2.1.

THE CLASSIFICATION OF BIFURCATIONS 43

(ag, o) is a singular point with [F,(ao,z0)]? < Faa(ao,0)Frz(ao, o).
In this case the set of leading quadratic terms has complex roots and can-
not be resolved into real linear factors. There are no points on an equilib-
rium curve in a neighbourhood of (ag, zo) which is an isolated equilibrium
point called a conjugate point.

(ag, o) is a singular point with [F,.(ao,70)]? = Faa(ao, o) Fez(ao, o).
In this case the leading term is a product of two identical linear factors.
In general

F(a,z) = {ala — ag) + Bz — z0)}* + g(a, x), (2.16)

where g(a,x) has a zero at (ag,z) and is of at least cubic degree in the
variables (a — ag), (¥ — xp). Equation (2.8) has a solution only when
gla,z) < 0 and, if g(a,z) changes sign along the line a(a — ag) + Bz —
xo) = 0 at (ag, xo), the equilibrium curve has a cusp at (ag, zp). A simple
example is

F(a,z) ={(a—1)+2(z - 3)}* + 7(a — 1)3, (2.17)

The curve F(a,z) = 0 can be plotted by the following MAPLE code:

with(plots):

f:=(x,a)->((a-1)+2*(x-3))"2+7*(a-1)"3:

curve:=implicitplot (f(x,a)=0,x=0..5,

a=0..4,grid=[100,100], labelfont=[TIMES,ITALIC,12]):
text:=plots[textplot]

([3,1,¢(3,1)“],align={ABOVE,RIGHT}, font=[TIMES,ROMAN,12]):
plots[display]

({curve,text});

vV V.V V V V V V

[3. 1]
!

This is a cusp-point bifurcation.
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2.1.2 The One-Dimensional, Two Parameter Case
In this case (2.3) is replaced by
x(t) = F(a,b, z), (2.18)

and the equilibrium solutions form a surface (or surfaces) in the space Az of
{a,b,z}. With b set at a fixed value we are taking a slice through the equilibrium
surface and on the resulting curve of equilibrium points in the {a,z} plane
we may see any of the bifurcations described above for a one-dimensional one
parameter system. In this situation the parameter b is passive or irrelevant to the
occurrence of the bifurcation in the sense that it plays no role in the occurrence
of the bifurcation. A simple example of this would be the modification

i(t) =a+b— 2% (2.19)

to Example 1.8.1. There is now a simple turning point bifurcation at a = —b,
x = 0 which gives a picture like Fig. 1.9 in any plane parallel to the x axis. In
a similar way the parameter c is an irrelevant parameter in Examples 1.52 and
1.53.

We now consider an example of a new type of bifurcation which can occur
only because of the presence of two parameters.

Example 2.1.1

@(t) = 42® — 2azx + 0. (2.20)
The equilibrium points for (2.20) lie on the cubic curve
F(a,b,z) = 42® — 2az + b = 0. (2.21)

Taking fixed values of @ and b there will in general be three solutions or one
solution in z to (2.21) (Fig. 2.1). The boundaries between these regions are
given by the curves on the surface where, for fixed a, the tangent is parallel to
the x—axis. These curves form lines of simple turning point bifurcations, which
from (2.21) are given by

ob

oy = 20 122% = 0. (2.22)

This gives x = :l:\/g. Now let x = :I:\/% + Az and, substituting back into
(2.20)

dAz 3 a 9 da fa
= - -/ = 2.2
T 4(Lx)° + 12\/;(A;v) +bF 3 \/; (2.23)

Neglecting the cubic term this becomes a similar situation to that discussed in
Example 1.8.1 with a simple turning point bifurcation occurring at

4
b 3“\/% =0, which is 2702 = 8a®. (2.24)
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one solution

one solution

three solutions

Figure 2.1: (a) The surface F(a,b,x) = 0 given by (2.21). (b) The cusp bifur-
cation set in the plane of {a,b}.

The curve in the {a, b} plane given by (2.24) which is the bifurcation set for this
example has a cusp at the origin. Both the variables a and b are needed or are
relevant for the occurrence of this cusp. It is important to distinguish between
this cusp in the bifurcation set in two parameter space and the cusp bifurcation
at a single point in the space of the equilibrium curves which is shown in the

MAPLE figure on page 43.

2.2 Co-Dimension, Co-Rank and Structural
Stability

2.2.1 Co-Dimension

As we have seen the parameters of a system near to a bifurcation can be divided
into two sets, those which are relevant to the occurrence of the bifurcation and
those which are not. The number of members of the first set is called the co-
dimension of the bifurcation. The simple turning point of Example 1.8.1 is thus
an example of a bifurcation of co-dimension one and the cusp of Example 2.1.1
is a bifurcation of co-dimension two. Another way of understanding this idea is
to think of the bifurcation as a geometrical object of dimension 0 in the space
II,, of parameters {a,b,c,...}. The co-dimension of the bifurcation is then the
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number of equations needed to specify the bifurcation. In general this number
is 7 — 0. Thus for the simple turning point in Example 1.8.1 n =1, 9 = 0 giving
co-dimension one. In Example 2.1.1 the lines of turning points haven =2,0 =1
so again the co-dimension is one. For the cusp bifurcation, which terminates the
lines of turning points in Example 2.1.1, = 2 and ? = 0 so the co-dimension
for this is two.

2.2.2 Co-Rank

Just as we can divide the parameters of a system at a bifurcation into a relevant
set and an irrelevant set, we can do the same for the variables. The number of
relevant variables is called the co-rank of the bifurcation. In this case we can
be more precise by supposing that * = x*(a) is an equilibrium point for the
d dimensional system given by (2.1). As in Sect. 1.12 we can linearize about
x*(a) for a particular value of a to give
dAz N

o =J b (2.25)
where J* is the stability matrix given by (1.114). With V and U as the d x d
matrices containing the left and right eigenvectors of J* as rows and columns
respectively, as explained in Sect. 1.9, and A the dxd diagonal matrix containing
the eigenvalues

J*=UAV. (2.26)
Substituting into (2.25) and operating on the left with V' gives
dw
— =AU 2.27
dt ’ (2.27)
where
¥ =VAzx. (2.28)
The d = 1 case of this analysis corresponds to the situation where
oF

J=2A = —. 2.29

(a,2) = = (2:29)

and, as we saw Sect. 2.1.1, the bifurcation set corresponds to the simultaneous
solution of F(a,z) = 0 and A(a,z) = 0. This means that the dimension of the
bifurcation set is n+d —2 =1+ 1—2 = 0. That is a single point.

For the general case the matrix J has d eigenvalues \(¥) (a,z), k=1,2,...,d.
At a bifurcation some number p (< d) of these eigenvalues will be zero. The
change of variables from Ar to ¥ is a linear approximation to a change of
variables of which p have zero eigenvalues. This means that p independent
combination of the variables x1, s, ..., zq are relevant to the bifurcation. The
co-rank of the bifurcation is thus the number p of zero eigenvalues at the bifur-
cation!.

ISince the rank of an d x d matrix is the number of independent rows, which is the number
of non-zero eigenvalues, co-rank = d — rank.
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2.2.3 Structural Stability

We first consider the one-dimensional case of a function V(a,b,c,...,z) which
is a polynomial of degree p in = with coefficients a,b,c,.... By linear and
multiplicative scaling of V' we can eliminate the constant term and set the
coefficient of z* to 1/u. For any V(a,b,c,...,z) of this type we now define a
set of perturbed polynomials

. exP

Vo(e,a,b,...,2) = — +V(a,b,c,...,x). (2.30)
p

Then V(a,b,c,...,x) is said to be structurally stable if, for all p > 0 and for
small ¢, f/p(s, a,b, ..., x) has the same x-dependent character (having a non-zero
gradient or a maximum or a minimum or a point of inflection) in a neighbour-
hoodofz =a=b=---=0as V(a,b,c,...,z)doesat c =a=b=c=---=0.
For each value of 1 we begin building a structurally stable polynomial by adding
terms to

s

V(z) = —. (2.31)
I

For p even this has a minimum at x = 0, for u =1 it is a straight line through

the origin and for p > 3 and odd there is a point of inflection at the origin.

Consider
~ exP ¥
= — 4+ — > . .

Vp(e, ) ot p>p (2.32)
This perturbation does not affect the degree of the root at the origin since the
first non-zero derivative is still the p th with value one. If p = p the only effect
is a trivial change of coefficient. If p > p the large = value is changed. With
p and p of different parity, or of the same parity with ¢ negative, this involves
new roots far from the origin.

Now consider the possibilities for destabilization with monomial terms with
p < . (We start with g = 2 since there is no scope for adding terms for p =1,
which is structurally stable in a trivial sense.)

o =2, 171(5,55) =cx+ %x2. This simply shifts the minimum to x = —¢

so 22 /2 is structurally stable.

e u=3, Vi(e,x) = ex + 223, The point of inflection at z = 0 in V(z)
has been eliminated leaving no turning points when ¢ > 0 or split into a
maximum and minimum if € < 0. So 23/3 is structurally unstable. Now
consider

V(a,z) = 12° + ax. (2.33)

It is clear that this potential is not destabilized by ex which now just shifts
the function a distance ¢ in the a direction. What about

Va(e,a,2) = $ea® + 22° + ax? (2.34)
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This can be rewritten as
Va(e,a,2) = & (z + %5)3 + (a—1e%) (z + 3¢) + S5e(e” — 6a). (2.35)

So a small shift of origin will restore the polynomial to the form (2.33). It
follows that (2.33) is structurally stable.

Are there any general conclusions we can draw at this stage? Suppose we want,
for some value of u, to construct the the structurally stable polynomial with
minimum co-dimension, that is with the minimum number of parameters as
coefficients. It is clear that

p—1 ok

V(ai,as,...,ap—1,2) = — + ap— (2.36)
Lt &

is structurally stable since addition of a perturbation of degree k < p will just
shift the parameter a; by e. It is also not difficult to see that the degree u — 1
monomial can, as in the case p = 3, be eliminated by a shift in all the remaining
parameters and in V' and z. It follows that

pn—2 ok

V(ai,as,...,ap—2,2) = — + ap— (2.37)
W k

k=1

is structurally stable and the minimum co-dimension for a pu—degree polynomial
is not more that g — 2. In fact it turns out that (2.37) with degree u has the

maximum degree for a polynomial of co-rank one and co-dimension p — 2. We
shall not prove this general result, but it is worth considering

V(a,b,z) = 22" + Saz® + ba. (2.38)

We know that this polynomial is unstable if a = b = 0. But is it still stable with
one but not both of a or b zero? With V(a,z) = V(a,0, z)

Vile,a,x) = ex + 1zt + Laa? (2.39)

The turning points of Vi (e, a, x) are given by

%
8—331 =c+z(2?+a) =0. (2.40)
For the unperturbed case (¢ = 0) and with
ov
F = 2.41
(@)=, (2.41)

V(a,z) can just be regarded as the potential for the pitchfork (¢ = 0) case of
Example 1.8.2 and (apart from a trivial reversal of sign for a) the pattern of
maxima and minima derived from (2.40) with ¢ = 0 are just the unstable and
stable curves plotted in Fig. 1.11. Now include a small non-zero €. The picture
changes completely and the pitchfork bifurcation structure of potential turning
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Figure 2.2: The plot of the curves of (2.40) with small positive e.

points is broken into two disconnected branches (Fig. 2.2). So the function
(2.38) is not structurally stable with b = 0. With V(b,z) = V(0,b,x)

Vi(e, b, x) = lea® + 1ot + ba (2.42)
The turning points of V3 (e,b,z) are given by

oV, 5

— =¢ex+(z°+b) =0. 2.43

a (= +) (2.43)
In this case the potential does not correspond to any kind of bifurcation since
for € = 0 there is only one branch of the curve with a point of inflection at the
origin (as a plot of b as a function of x). With non-zero € the point of inflection
is removed to be replaced by a maximum and a minimum. So the function
(2.38) is not structurally stable with @ = 0 and with the two parameters a
and b it is the structurally stable quartic one-variable polynomial with smallest

co-dimension. In a similar way

Via,bc,x) = 22°+Ltaa® + Lba® + ez, (2.44)
Va,b,c,d,z) = %xﬁ + %aafl + %bxg + %cxz + dz, (2.45)
can be shown to be the lowest degree co-rank one polynomials with co-dimension
three and four. If the co-rank is allowed to increase then there are three more
structurally stable polynomials with co-dimension not greater than four:

V(a,bc,m,y) = 22+ 2y° + coy — ax — by, (2.46)

V(a,b,c,x,y) = %x?’ — 2y + c(x? +y?) — ax — by, (2.47)
V(a,b,c,d,z,y) = x*y+ iy4 + cx?® + dy? — ax — by, (2.48)
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Figure 2.3: The plot of the curves of (2.52) with a small positive ¢.

giving in all seven structurally stable polynomials with co-dimension less than
or equal to four and degree greater than two. We have seen that the simple
turning point bifurcation has the structurally stable potential (2.33) and it is
clear that the cusp bifurcation of Example 2.1.1 has the potential

V(a,b,x) = —z* + ax® — b, (2.49)

which with slight changes of parameterization is equivalent (2.38). Thus the cusp
bifurcation has a structurally stable potential. We have already seen that the
pitchfork bifurcation is not stable and by implication the transcritical bifurcation
with

F(a,z) = z(a—x), (2.50)
Via,2) = i2°— laa®, (2.51)

is structurally unstable. This can be seen clearly if we add a term ez to (2.51).
Then the equilibrium diagram is given by

z(a—x)—e=0. (2.52)

With € = 0 the transcritical bifurcation occurs with the lines x = 0 and x = a
crossing at the origin and exchanging stability. With € # 0, however small,
the bifurcation is removed and the equilibrium points form two non-intersecting
branches (Fig. 2.3).
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2.3 Bifurcations in More Than One Dimension

In Sect. 2.1 we considered bifurcations with one variable x and up to two para-
meters. Here we indicate briefly the situation for a system evolving according
to (2.1) where d > 1. Suppose (@o,xg) is an equilibrium point in the (1 + d)
dimensional space A,q of all the variables and parameters. Then

F(ao, :130) =0 (253)

and the vectorial form of the Taylor expansion (2.11) is

F(a,z) = J(ap,xo)(x—xo)+ Alag,xo)(a — ag)
+O(|z — zolla — aol)
+0(Jx — zo|?) + O(la — ag|?). (2.54)
where
Oxr1  Oxa 0xq
J(a,z)=| 0r1 0Ox2 Oxq | . (2.55)
Oxr1  Oxa 0xy
is a d x d matrix and
Oa; Oas Oay,
A(a,x) = | Qa1 Oay Oa, | . (2.56)
da; Oas Oay,

is a d xn matrix. The differential element da of the equilibrium curve at (ag, )
for a differential change da in the parameters is given, from (2.54), by taking
x —x9 — dx, a — ag — da and neglecting non-linear terms. This gives

J(ag, zo)dz = —A(ag, xo)da. (2.57)

If J(ag,xo) is non-singular then (ag, o) is a regular point on the equilibrium
curve with tangent element

dax = —[J(ag, x0)] ' A(ag, z¢)da. (2.58)
and, if J(ao,xo) is singular, but A(ag, xo) has an inverse,

da = —[A(aog, z0)]"*J (aog, xo)dz. (2.59)
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This is the multi-dimensional version of a regular turning point. Otherwise
(ag, o) is a singular point. As in the case d = 1 bifurcations arise both from
singular points and regular turning points. They satisfy

Det{J(ag,zo)} = 0. (2.60)

The d equations (2.53) and (2.60) are (d — 1)-dimensions surfaces in the space
Agyy. Their intersection is the (d + 7 —d — 1 = n — 1)-dimensional bifurcation
set. Which is simply to say that we can (in principle) eliminate the d variables
Z1,%2...,2q between the d + 1 equations to give one relationship between the
7n parameters ai,as,...,a, which is an (7 — 1) dimensional surface in the 7
dimensional space of parameters. An example, for d = 1, n = 2, is the cusp
bifurcation set in Fig. 2.1(b).

Example 2.3.1
ar —y — 1y

F(avx,y)—< yor > (2.61)

The equilibrium points for (2.61) lie on the curve in the three-dimensional space
which is the intersection of the surfaces

y—x =0, ar—y—x’y =0 (2.62)
and

-1 1
J(a,x,y) - ( a— 2$y _(1 —|—I2) ) (263)

The equilibrium curve lies in the plane x = y in the space of the variables
{a,z,y} and in this plane is given by

(a— 1Dz -2 =0, (2.64)

which is a pitchfork. From (2.60) and (2.63) the bifurcation set is given by
solving (2.62) with

(1+2%) — (a—2zy) =0, (2.65)
which gives the bifurcation set a = 1.

Example 2.3.2 The system with potential (2.46) has equilibrium set given by

°)%
—5y = ¥ —w+a=0,
X
o (2.66)
——— =y —cx+b=0,
dy

and the bifurcation set is given by eliminating x and y between these equations
and

—2r —c

dorfata) =| 2 )

‘ =day — 2 = 0. (2.67)
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Figure 2.4: The curve V(a,z) = 32 — axz for (a) a >0, (b) a =0, (¢) a < 0.
2.4 Catastrophe Theory

This subject, which was initiated by René Thom?, has been applied to all
kinds of situations (conflicts, biological morphogenesis, phase transitions etc.)
in which sudden changes occur.

Catastrophe theory is concerned with systems with a set of state variables
denoted by x1, 2, ..., x4 and a set of control variables denoted by a1, as,...,a,.
Since time does not enter explicitly into the theory one may suppose that the
state variables have reached temporal equilibrium and their values are then
smooth functions of the control variables. Changes in the state variables are
now caused by changes in the control variables. In general small changes in the
control variables lead to small changes in the state variables. However, for some
values of the control variables, there is the possibility of a catastrophe occurring
when a small change in one or more of the control variables leads to a large and
discontinuous change in one or more of the state variables. Catastrophe theory
is concerned with the classification of the different ways these discontinuous
changes can occur. As a simple example of a catastrophe consider a system in
which a particle is free to roll on the curve

V(a,z) = 32° — ax. (2.68)

When a > 0 the curve has a local minimum at z = v/a and the particle can sit
at rest at this minimum (Fig. 2.4(a)). While a remains positive a small change
in a will lead to only a small change in the location of the particle. However,
at @ = 0 the maximum and minimum of V' (a,x) merge at x = 0. The state
of the particle becomes precarious (Fig. 2.4(b)) and, when a becomes negative,
the catastrophe occurs and the particle is tipped off and falls down to z = —o0
(Fig. 2.4(c)).

Of course we can see that what we are really talking about here is the simple
turning point bifurcation, with

oV
2
—— =a—2x". 2.69
ox ( )
2 Structural Stability and Morphogenesis, Benjamin, 1975; for an introduction see P.T.
Saunders, An Introduction to Catastrophe Theory, Cambridge, 1980.




54 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORY

The maximum and minimum of the potential V'(a,z) are the unstable and
stable equilibrium states of the particle. The particle moves downwards along
the right-hand branch of the parabola in Fig. 1.9 as a is decreased and finally
‘drops off” at a = 0.

This example gives a case where a bifurcation at z = 0, a = 0 gives a
catastrophe. Now we generalize by considering a smooth potential function
V(a,x), which can be represented approximately in a neighbourhood of the

origin by a polynomial and which is linear in the control variables a1, a2, ..., a,.
With
F(a,z) = -VV(a,z), (2.70)

we have a dynamic system
z(t) = F(a,x). (2.71)

When the system has reached equilibrium we can think of its state as a particle
lying at a local minimum on the surface of V' plotted in the (d+ 1) dimensional
space of the variables {V,x1,x2,...,24}. Now the point x = 0, @ = 0 is a
catastrophe if there are paths which can be traced out by varying a near to
a = 0 which lead to discontinuous changes in the equilibrium value of x. In
the case d = 1, n = 1 we have already seen that the path through a = 0 for
the potential (2.68) leads to a discontinuous change in equilibrium state. For
d =1, 7 = 2 we can think of the path as a small circle around the origin in
the plane of the control variables {a,b}. A discontinuous change in z means
that the function F'(a,b,z) = 0 plotted as a surface of z against a and b has a
branch-point at the origin, with the equilibrium state changing discontinuously
from one branch to another. In Sect. 2.1 we saw that a bifurcation point is
just a branch-point. So catastrophes are bifurcations. But are all bifurcations
catastrophes? The answer is ‘no’ and we can already produce two examples with
co-dimension one, the transcritical bifurcation with F(a,z) = z(a — z) and the
pitchfork bifurcation with F(a,z) = x(a—2?) where passing through a = 0 does
not produce a discontinuous change in x. These are not catastrophes in their
own right.> On the other hand the cusp bifurcation of Example 2.1.1 does give
a discontinuous change in x on a small closed path about the origin in the {a, b}

plane, either at b = /8a3/27 or b = —4/8a3/27 depending on the orientation
of the path. So we have two examples of catastrophes:

e The fold catastrophe with co-dimension one and co-rank one, which is the
simple turning point bifurcation with F(a,2) = —a—2? (this is just (1.53)
with the sign of a reversed) and potential (2.33).

e The cusp catastrophe with co-dimension two and co-rank one, which is the
cusp bifurcation with F(a,b,z) = —a® — ax — b (this is just (2.21) with
the signs of a, b and z reversed) and potential (2.38).

3 Although they do make a guest appearance; see Problem Sheet 4.
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The distinguishing features of these two cases is that they are structurally stable.
In fact it can be shown that all the structural stable polynomial forms give
catastrophes. We have already listed these for co-dimension up to four. We can
now given them their names as catastrophes.

e (2.44) is the swallow’s tail catastrophe.

2.45) is the butterfly catastrophe.

(2.44)
(2.45)
(2.46) is the hyperbolic umbilic catastrophe.
(2.47) is the elliptic umbilic catastrophe.
(2.48)

e (2.48) is the parabolic umbilic catastrophe.

The swallow’s tail and the butterfly are of co-rank one and co-dimensions three
and four respectively. Their names derive from resemblances seen in their bi-
furcation sets. The umbilics are of co-rank two with the hyperbolic and elliptic
being of co-dimension three and the elliptic being of co-dimension four.

2.4.1 Bifurcation Sets Using MAPLE

Given the potential V(a,b,...,z) for a catastrophe of co-rank one, the bifurca-
tion set is given by eliminating = between the two equations

ov 0%V

— =0, — =0. (2.72)
ox 0x?

For the swallow’s tail V'(a,b,c, ) is given by (2.44) and the bifurcation set is
obtained by finding the values of a, b and ¢ for which the polynomials

2 +ar? +br+c=0,
(2.73)
423 +2ax +b=0

have a common solution for z. The simplest way to solve this problem is to
construct the Sylvester determinant

1 0 a b c 0 O
01 0 a b c 0
0 0 1 0 a b ¢
S(a,b,e)=14 0 2¢ b 0 0 0 (2.74)
0 4 0 2a b 0 0
0 0 4 0 2a b O
0 0 O 4 0 2a b
The bifurcation set is then given by
S(a,b,c) = 0. (2.75)

Solving this determinant and plotting the results is a fairly complicated task.
The easiest way to do it is to use MAPLE. The following is the record of a
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MAPLE session which confirms the formula (2.24) for the bifurcation set of the
cusp catastrophe and calculates the bifurcation set for the swallow’s tail plotting
slices through the surface.

with(linalg,det,matrix):
with(plots,implicitplot,implicitplot3d):
# This is the matrix of the Sylvester determinant

# for the cusp.

Sc:=(a,b)->matrix([[4,0,-2%a,b,0],[0,4,0,-2*a,b],[12,0,-2%a,0,0],[0,1
2101_2*3’0] 1[0’0312101_2*311):

Sc(a,b);

vV VV V V V V

4 0 —-2a b 0
0 4 0 —2a b
12 0 —2a 0 0
0 12 0 —2a 0
0o 0 12 0 -2

> sc:=(a,b)->simplify(det(Sc(a,b))):
> sc(a,b);
—512a° + 1728 b
> #This is the bifurcation set for the cusp.
> # It can be plotted in the {a,b} plane using:
> implicitplot(27*b~2=8%a~3,b=-2..2,a=-0.5..2,grid=[50,501);

2
1.8-
1.6
1.4-
1.2-

2

© O 9
(V)

15 -1 05 0 05 p 1 15

> # This is the matrix of the Sylvester determinant

> # for the swallow’s tail.
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\

>

>

>

Sst:=(a,b,c)->matrix([[1,0,a,b,c,0,0],[0,1,0,a,b,c,0],[0,0,1,0,a,b,c]
,[4,0,2%a,b,0,0,0],[0,4,0,2%a,b,0,0],[0,0,4,0,2%a,b,0],[0,0,0,4,0,2%a,
bll):

Sst(a,b,c);

( 1 0 a b c 0 0]
0 1 0 a b c 0
0 0 1 0 a b ¢
4 0 2a b 0 0 O
0 4 0 2a b 0 O
0 0 4 0 2a b O

L 0 0 O 4 0 2a b |

sst:=(a,b,c)->simplify(det(Sst(a,b,c))):
sst(a,b,c);
16ca® —4b%a® — 128¢% a® + 144b° ca — 27b* + 256 ¢°

# This is the bifurcation set for the swallow’s tail.
# We can plot various slices through the surface.
sstal:=(b,c)->simplify(sst(1,b,c)):
sstal(b,c);

16c— 128 ¢ + 144b% ¢ + 256 ¢* — 45> — 27"
implicitplot(sstal(b,c)=0,b=-2..2,¢c=-0.5..2,grid=[100,100]) ;

0.7
0.6
0.5
0.4

C 1
0.3
0.2

0.1

ok

ssta2:=(b,c) ->simplify(sst(-2,b,c)):
ssta2(b,c);

256 ¢ — 512¢* — 288 b° ¢ + 256 ¢ + 32b% — 27"
implicitplot(ssta2(b,c)=0,b=-2..2,c=-2..2,grid=[100,100]) ;
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05 p

So we see that the bifurcation set for the swallow’s tail is given by

4ea* — b2a® — 32c¢%a” + 36b%ca — 2?7174 + 64c¢® = 0. (2.76)
This surface is symmetric under interchange of the sign of b and cuts the b =0
plane in the lines
c=0, c=za’. (2.77)
As we can see from the MAPLE session given above, its intersection with the
plane a = 1 is given by

256¢% — 128¢2 + 16¢ + 4(36¢ — 1)b? — 27b* = 0. (2.78)
This curve passes through b = ¢ = 0 and is of a basin shape. Although the
point b =0, ¢ = %, given by (2.77) is a solution of (2.78) it is an isolated point

when a > 0. Again from the MAPLE session, we see that the intersection of the
surface (2.78) with the plane a = —2 is given by

256¢ — 512¢2 + 256¢ + 32(1 — 9¢)b? — 27b* = 0. (2.79)
This curve passes through b = ¢ = 0, but is now also satisfied by the second

solution of (2.77) b =0, ¢ = 1, which is a point where the curve intersects itself.
The curve has the shape which gives the bifurcation set its name.
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Problems 2

1)

Consider the roots of F(e,a,z) = 0, where
F(e,a,2) = ex® 4+ 2° — ax,

Show that the pitchfork bifurcation at the origin in the plane of {a,z} when
€ = 0 becomes a transcritical bifurcation for small € # 0 and that there is a

turning point at a = —%52, T = —%5. Sketch the equilibrium curves in the

{a, z} plane for £ > 0.

A system is given by
i(t) = 2® — 2a2® — (b—3)z +c.

Find the equation for the bifurcation set, which is the surface in the space
of {a,b, ¢} satisfying F(a,b,c,z) = Fy(a,b,c,z) = 0. Show that in the plane
a = 1 the bifurcation set is the curve

(27c — 18b + 38)% = 4(3b— 5)3

5 8

Prove that it has a cusp at b = 3, ¢ = —5= and sketch the curve. Try

sketching curves for other fixed values of a to see how the cusp is affected by
variation of a.

Show that the cusp bifurcation with
1 4 1 2
V(a,b,z) = 72" + Faz” + bx

has pitchfork and transcritical bifurcations in special planes in the {a,b, 2}
space. (For the second of these you may find it helpful to note that the system
considered in Example 1.7.2 has a transcritical bifurcation.)

A two-dimensional system is given by
i(t) = —2% +y* — 2cx + a, y(t) = 2zy — 2cy + b.

Show that the bifurcation set is given by eliminating x between the polyno-
mials

222 4+ 22c—a—c? =0,
4% — 8x3¢c 4+ 83z + b2 — 4¢* = 0.

Either by hard work or by using MAPLE carry out this process and show
that the bifurcation set can be expressed in the form

27¢8 — 18¢*(a® + b?) + 8%a(a® — 3b2) — (a® + )% = 0.
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Show that in terms of the polar coordinates a = rcos(f), b = rsin(f) this
formula can be expressed in the form

(r+c*) (3¢ —7)® + 8c*r*{cos(30) — 1} = 0.

Sketch the intersection with a plane of constant ¢ showing that there are

cusps at r = 3¢2, § =0, %”, %’T.

5) Find the equilibrium points of the system
i(t)=-y—z  ylt)=z+y,  t)=c+z(@—a)

and determine the conditions for their existence. Determine the conditions
for the existence of a bifurcation and identify its type.



Chapter 3

Stability

3.1 The Stability of Trajectories

This chapter will be concerned solely with the stability properties of autonomous
systems. In fact, as we saw in Sect. 1.5, this is not a severe restriction, since a
non-autonomous system can be represented as a suspended autonomous system.
In this section we consider the general stability properties of a solution x(t) of
the dynamical system

&(t) = F(a,z). (3.1)

With x(tg) = x(©) specifying the solution at time ¢, =(t) defines a trajectory*
in the space I'y of the d variables {x1,x2,...,xq}.
The map ¢;: I'y — T’y for all ¢ > 0 is defined by

otz (to)] = x(to + ¢) (3.2)

and the set of maps {¢; : t > 0} is called a flow. Since

b1, [P, [x(t0)]] = @ (to + t1 + t2) t1,ta >0 (3.3)

the flow satisfies the conditions

¢t1 (btz = ¢t1+t2 = (btz ¢t1' (34)

It thus has all the properties of an Abelian (commutative) group apart from the
possible non-existence of an inverse; it is therefore an Abelian semigroup.

An important question concerning a solution x(¢) of (3.1) is whether it is
stable. There are many different definitions of stability in the literature. We
shall give two of the most common ones:

T Also called the path or orbit.

61
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The solution x(t) to (3.1), with x(ty) = x*), is said to be uniformly stable
or stable in the sense of Lyapunov if there exists, for every e > 0, ad(g) > 0,
such that any other solution &(t), for which &(ty) = & and

|2 — 2] < §(e), (3.5)
satisfies
lz(t) — z(t)| < e, (3.6)

for all t > to. If no such 6(e) exists then x(t) is said to be unstable in the
sense of Lyapunov. If x(t) is uniformly stable and

Jim |z(t) — &(t)] = 0. (3.7)

it is said to be asymptotically stable in the sense of Lyapunov.

The solution x(t) to (3.1), with x(tg) = =), is said to be orbitally stable
or stable in the sense of Poincaré if there exists, for every e > 0, a 6(¢) > 0,
such that, for any other solution &(t), with &(t,) = ) and

|2 — V] < §(e), (3.8)
there exists a to(t) with
lz(t) — &(t2)] < e, (3.9)

for all t > to. If no such 6(e) exists then x(t) is said to be unstable in the
sense of Poincaré. If x(t) is orbitally stable and

lim |2(t) — &(t2(t))] = 0. (3.10)

t—o0

it is said to be asymptotically stable in the sense of Poincaré.

It is clear that Lyapunov stability is more restrictive than Poincaré stability,
which it implies with ¢; = ¢ and t2(¢) = ¢t. Lyapunov stability could be charac-
terized by saying that the two solutions are forced to lie in a ‘tube’ of thickness
g, for t > to, by the initial condition (3.5) (Fig. 3.1(a)). A cross-section of the
tube represents the same time instant on each trajectory. They can be said
to have same histories on the same time scale. The picture is very similar for
Poincaré stability (Fig. 3.1(b)) but in this case the time scales, marked on the
trajectories may be different. The two solutions have the same histories, but not
necessarily on the same time scale. Unless otherwise stated we shall henceforth
in the discussion of stability mean stable in the sense of Lyapunov.

For later reference we include at this point the following definitions:
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a(t)

x(t)

x(t)

Figure 3.1: Neighbouring trajectories which are stable in (a) the sense of Lya-
punov, (b) the sense of Poincaré. Dots on the trajectories indicate equal units
of time.

The solution x(t) to (3.1), with x(ty) = x©), is a periodic solution of
period T if, (t + T) = x(t), for all t > ty, and there does not exist a T < T
with x(t +T") = x(t), for all t > t,.

A cluster (or limit) point x., of the solution x(t) to (3.1), with x(ty) =
x(9) | is such that, for all T > 0 and € > 0, there exists a t;(¢) > 7 with

|Too —x(t1)] < €. (3.11)

The set of cluster points is called the w-limit set of the trajectory.

Given that the solution x(t) to (3.1) is defined for all (positive and negative)
t and z(0) = (%) the reverse trajectory z"(t) is defined by x"(t) = x(—t).
The set of cluster points of the reverse trajectory is called the a-limit set of
the trajectory x(t).

It is clear that the existence of a cluster point x., implies the existence of a
sequence t] < ty < --- < t, — oo such that, for the specified trajectory,

z(ty) = oo, asn — oo. (3.12)
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Let 2 be the w-limit set of a particular solution x(t) to (3.1). If there exists
a region D(), in I'y, which contains 2 and for which the trajectories with
x(0) = (), for all (%) in D(A), have A as their w-limit set, then A is called an
attractor with basin (or domain) D(2). An o-limit with the same property
for reverse trajectories is called a repellor.

3.2 The Stability of Equilibrium Points

In Sect. 1.6 we defined the stability of an equilibrium point x*. It is now clear
that that definition was just for the special case of the stability of a trajectory
which consists of the single point &*. An asymptotically stable equilibrium point
has a neighbourhood such that every trajectory with x(0) = 2@ and 2 in
the neighbourhood, has &* as its unique cluster point (and thus the w-limit set).
An asymptotically stable equilibrium point is therefore an attractor with basin
consisting of some neighbourhood. Of course, as we shall see, not all attractors
are asymptotically stable equilibrium points.

3.2.1 The Lyapunov Direct Method

An interesting method for establishing the stability of an equilibrium point is
given by Lyapunov’s first theorem for stability:

Theorem 3.2.1 Let =* be an equilibrium point of (3.1). Suppose that there
exists a continuous differentiable function L(x) such that

L(z*) =0 (3.13)
and, for some p > 0,

L(x) >0, when0 < |z*—x|<p. (3.14)
Then x* is

(i) stable if

F(a,z).VL(x) <0, when0<|z*—x| <y, (3.15)
(ii) asymptotically stable if

F(a,z).VL(x) <0, when0<|z*—x| <y, (3.16)
(iii) unstable if

F(a,z).VL(x) >0, when0<|z* —x| < p. (3.17)
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Proof: From (3.1) along a trajectory

dL(x) dx

T VL(x). T F(a,z).VL(x). (3.18)
From (3.13) and (3.14), «* is a local minimum of £(x). So we can find an R > 0,
with u > R, such that, for all R > |x* — x1| > |z* — x2| > 0, L(x1) > L(x2).
Then if (3.15) applies, it follows from (3.18) that a trajectory cannot move
further from a* and, given any £ > 0, (1.28) can be satisfied by choosing d(¢)
in (1.27) to be the smaller of € and R. If the strict inequality (3.16) applies it
follows from (3.18) that the trajectory must converge to «*. The condition for
x* to be unstable is established in a similar way.

A function L() which satisfies (3.15) is called a Lyapunov function and which
satisfies (3.16) a strict Lyapunov function. The method of establishing stability
of an equilibrium point by finding a Lyapunov function is called the Lyapunov
direct method.

Suppose the dynamical system is given by (2.70) (2.71) and the function
V(a, ) has a local minimum at «*, for some fixed @ = a*. Then the choice

L(x)=V(a",z) —V(a™,x"), (3.19)
satisfies (3.13) and (3.14), with
F(a*,x).VL(x) = —|VV(a*, z)|* <0. (3.20)

So a local minimum of V(a, x) is, as we might expect, an asymptotically stable
equilibrium point. To establish that a local maximum is an unstable equilibrium
point simply make the choice

L(x) =V (a*,x*) - V(a", x). (3.21)

Example 3.2.1 Show that (0,0) is a stable equilibrium point of

i(t) = —22 — y?, y(t) = —y — 22 (3.22)
Try
L(z,y) = az? + By (3.23)
For o and § positive (3.13) and (3.14) are satisfied and
F(z,y).VL(z,y) = —{2az(2z+y°)+20y(y +2°)}

= =222+ By) — 20°(B + 2ax). (3.24)

So in the neighbourhood |z| < 8/(2a), |y| < 2a/8 of the origin (3.15) is satisfied
and the equilibrium point is stable.

The problem in this method is to find a suitable Lyapunov function. This in
general can be quite difficult. There are, however, two cases where the choice is
straightforward:
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A conservative system given by |

z(t) = —-VV(a,x), (3.25)
which in terms of the 2d variables {z1,...,z4,v1,...,v4} can be expressed in
the form

x(t) = v, v(t) =-VV. (3.26)

An equilibrium point with a = a* is given by v = 0 and a value & = &* which
satisfies VV = 0. Now try

L(z,v) =tvv+V(a*,x)—V(a*, x). (3.27)
With

VL(z) = ( VUV > (3.28)
F(a",z).VL(x) =0. (3.29)

Since, from (3.27), L(x*,0) = 0 it follows from (3.29) that the equilibrium point
is stable (but not asymptotically stable) if (3.14) holds. From (3.27) this will
certainly be the case if * is a local minimum of V(a*, x). According to the
analysis of Sect. 1.3 such a minimum of the potential is a centre, which is stable
in the sense of Lyapunov.

A Hamiltonian system given by (1.10) , in terms of the 2d variables
{x1,...,24,p1,...,pa}. If the system is autonomous and we have an equilibrium
point (x*,p*) then, with

we have, from (1.11)

d.  dH
P F(x,p).VL(z,p) =0. (3.31)

The equilibrium point is stable if it is a local minimum of the Hamiltonian. An
example where this is true is the equilibrium point at the origin for the simple
harmonic oscillator with Hamiltonian (1.30). Even when the equilibrium point
is not a local minimum of the Hamiltonian, its form can often be a guide to
finding an appropriate Lyapunov function.

Example 3.2.2 Consider the stability of the equilibrium point at the origin for
the system with Hamiltonian

H(a,z1,22,p1,p2) = 3{x] + 23 + pi + p3} + a{p1z2 — paa1 }. (3.32)
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From (1.10) the equations of motion for this system are

. 0H . oOH
5Cl(t): Iy =p1 + azy, Pl(t)z—a— = —x1 + apa,
P1 Z1
o OH (3.33)
552@):—:]92—@%17 p2(t):_—:—$2—ap1.
Op2 Oz

The origin is clearly an equilibrium point. However in the plane xo =p; =0

OPH  0*H

927 9010

RN P P~ (3.34)
OPH  0*H

Op2011 p3
So the origin is a saddle point in this plane when |a| > 1. However, the function

L(xy, w2, p1,p2) = H(0, 21,72, p1,p2) (3.35)

has a minimum at the origin with

F(avxlvﬂﬂz,pl,pz)-VL(ﬂfl,$27p17p2) =0. (336)

So we have found a Lyapunov function which establishes the stability of the
equilibrium point.

3.2.2 Linearization

The Lyapunov criterion for stability of an equilibrium point given by (1.27)-
(1.29) is local in the sense that a trajectory will wander near to the equilibrium
point only in cases where it begins sufficiently close by. In Sects. 1.10 and 1.12
we examined the stability of equilibrium points for systems linearized about
an equilibrium point. The criteria for stability that we developed, which are
related to the types of eigenvalues of the stability matrix (1.114) at the equilib-
rium point, apply globally to the linearized equation (1.113) and apply to the
full equations (2.1) for infinitesimal disturbances from the equilibrium point.
The connection between these conditions for linear or infinitesimal stability and
the stability conditions given by (1.27)—(1.29) was provided by Thm. 1.12.1.
This theorem allows us to use linear analysis to determine the stability (in the
Lyapunov and not just the infinitesimal sense) whenever all the eigenvalues have
non-zero real parts. Thus it leaves open the question of the stability of a cen-
tre. Such a case is the simple harmonic oscillator with equations of motion
(1.3). The stability matrix for equilibrium point at the origin has eigenvalues
+iw/y/m. We have, however, shown, using the Lyapunov direct method, that
this equilibrium point is stable. Another case of interest is Example 1.12.2,
where for a = 0 the point x = y = 0 is a centre. The complete solution shows a
slow convergence to the origin. The function

L(z,y) = (2 + ) (3.37)
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has a minimum at the origin where it is zero and, from (1.117)—(1.118), with
a=0,

F(z,9).VL(z,y) = {2 + y*}2 (3.38)

So according to Thm. 3.2.1 the origin is asymptotically stable.
We now review and extend our discussion in Sect. 1.12 of two-dimensional
autonomous systems given by

i(t) = Fz,y),  y(t) = G(x,y). (3.39)

The family of trajectories in the plane I'y of {x,y} is given by solving (if it is
possible) the differential equation

dy _ G(z,y)
dz  F(z,y)

(3.40)

Now suppose that there is an equilibrium point, which, using if necessary a
translation in the variables, can be taken to be at the origin. Linearizing about
the equilibrium point

F(z,y) = az + by + O(z* +¢%), G(z,y) = cx +dy + O(z* + ¢?). (3.41)

Retaining only linear terms and assuming a normal mode solution of the form
x(t) = ug exp(At), y(t) = ug exp(At), gives the right eigenproblem

Ju = ul, (3.42)

with

u—<Z;) J*_<Z Z) (3.43)

discussed in Sect. 1.9. The general solution to the linearized equations is of the
form

T = C'(Jr)ug-’_) exp{ APt} + C(f)ug_) exp{\(F)t},
(3.44)
y= C("’)uéﬂ exp{ At} + C(_)uéf) exp{ (Tt}

where

AB) = 2{p+/p? — 44}, (3.45)
with

p = Trace{J"} = a+d, q =Det{J"} = ad — be, (3.46)

are the eigenvalues of J* with corresponding right eigenvectors

ult) = (ugi),ugi))T. It is clear from (3.44) that the topological nature of the
trajectories in a neighbourhood of the origin in the {x,y} plane is determined
by the eigenvalues and right eigenvectors of J*. An equilibrium point for which
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each eigenvalue has a non-zero real part is called a hyperbolic point; an equi-
librium point for which each eigenvalue is purely imaginary is called an elliptic
point. Since in two dimensions the eigenvalues are either real or a conjugate
complex pair, the only alternative to either a hyperbolic or elliptic point is
where the eigenvalues are real and one or both are zero. As we have seen above
this normally corresponds to a bifurcation.

When p? > 4q, the eigenvalues are real and unequal. with eigenvectors
with real components. There are two directions through the equilibrium point
which give straight line trajectories for the linear system. These are given by
the two eigenvectors and correspond to taking C(~) = 0 and C*) = 0in (3.44),
giving the lines

wus? = yui?, (3.47)
aul?) = yug_). (3.48)

We assume, without loss of generality, that a > d. Then, if b =¢ =0, ugf) =
uéﬂ = 0 and the lines (3.47) and (3.48) become respectively the z and y axes.
If ¢ =0, but b # 0, then ugf) =0 but uéﬂ # 0; (3.48) is the y axis but (3.47)
is not the x axis. The converse is the case if b = 0, ¢ # 0. Within the class of

real unequal eigenvalues there are a number of cases:

(i) ¢> 0> p, giving 0 > A(F) > A7) From (3.44)

WP+ (0O /)T exp{(AE) — AD)t}

x
v o uSH + (CO) JCHuST) exp{(A) — AD)t}
e
- Gy astooo (3.49)
Uy

So the ultimate approach to the equilibrium point is tangential to
the principle direction (3.47), which is called the strong direction.
This applies to all trajectories in a neighbourhood of the equilibrium
point except those lying on the principle direction (3.48) (C) = 0)
(called the weak direction). An equilibrium point of this kind is a
stable node, (Fig. 3.2a).

(ii) ¢ >0, p > 0 giving A(*) > A=) > 0. The result (3.49) applies to
the linearized equations for all trajectories except for those lying
on the weak direction line which tend to infinity on that line. All
other trajectories approach the strong line asymptotically at large
distances. This prediction applies only to the linearized equations.
Non-linear terms in the full equations will probably modify the large
distance behaviour. Close to the equilibrium point the trajectories
have the same topology as that of the stable mode except that the
direction of the flow is reversed. This is an unstable mode.
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W\

BN

Figure 3.2: Trajectories in a neighbourhood of an equilibrium point: (a) stable
node, (b) improper stable node, (c) saddle-point, (d) inflected stable node, (e)
perfect stable node, (f) stable focus, (g) centre.
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(iii) ¢ =0, p < 0 giving A(t) = 0, A\(=) = p < 0. In this case it follows
from (3.44) that the trajectories are straight lines which approach
the line (3.47) as t — oco. This is an improper stable node (Fig. 3.2b).

(iv) ¢ =0, p> 0 giving A\H) = p > 0, A\(-) = 0. In this case it follows
from (3.44) that the trajectories are straight lines which retreat from
the line (3.48) as ¢ increases. This is an improper unstable node.

(v) ¢ <0 giving AV > 0 > X). This is similar to the case of an
unstable mode except that the weak direction is now a direction of
approach to the equilibrium point and trajectories near to this line
will first be influenced by its attractive power before experiencing
the repulsive affect of the strong direction. This is a saddle-point
(Fig. 3.2c). Again the form of the trajectories may be modified by
non-linear terms.

When p? = 4q, the eigenvalues are real and equal. Within this class
there are a number of cases:

(i) p <0, not both b= 0 and ¢ = 0 giving A(t) = A(=) < 0. This case
be regarded as the limiting case ¢ — p?/4 of a stable node. The

lines (3.47) (3.48) degenerate into one linear trajectory of approach.
This is called an inflected stable node (Fig. 3.2d).

(ii) p > 0, not both b = 0 and ¢ = 0 giving A(*) = A(=) > 0. This case
be regarded as the limiting case ¢ — p?/4 of a unstable node. The
lines (3.47) (3.48) degenerate into one linear trajectory of retreat.
This is called an inflected unstable node.

(iii) p <0, both b=c¢=0. In this case the equations for z and y are
independent and every radial line through the origin is a linear di-
rection of approach. This is called a sink or perfect stable node (Fig.
3.2e).

(iv) p > 0, both b = ¢ = 0. Again every radial line is a linear trajectory
but now it is a direction of retreat. This is called a source or perfect
unstable node.

When p? < 4q, the eigenvalues are a conjugate complex pair. A\F) =
%(p—i— i), where 8 = \/4q — p?. Equations (3.44) still apply but the elements of
the eigenvalues are no longer real. However, since x and y are real the solution
must be of the form
x = Cy exp(pt/2) cos(y1 + 60t/2),
(3.50)
y = Co exp(pt/2) cos(vya + 60t/2),

where C1, Cs,71,y2 are constants. There are a number of cases:
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(i) p < 0. In this case the trajectories spiral into the origin. This is
called a stable focus (Fig. 3.2f).

(ii) p > 0. In this case the trajectories spiral out from the origin. This
is called a unstable focus.

(iii) p = 0. In this case the trajectories form periodic curves around the
origin. This is a centre (Fig. 3.2g).

A summary of the types of equilibrium points for different regions of the {p, ¢}
plane are shown in (Fig. 3.3). The only cases not shown are the sink and source

ASYMPTOTICALLY STABLE UNSTABLE

INFLECTED STA

(ON CURVE)

UNSTABLE NODES

(ON CURVE)

STABLE NODES STABLE FOCI UNSTABLE FOCI UNSTABLE NODES

UNSTABLE

«<— SADDLE POINTS —

Figure 3.3: Summary in the {p, ¢} plane of the types of equilibrium points.

which also lie on the stable and unstable branches of p? = 4q.

3.3 Poincaré Maps

For the autonomous system (3.1) a trajectory cannot meet or cross itself in
I'y unless it is a periodic solution when it forms a simply-connected curve.
This is not the case for the non-autonomous, since for a particular a and x
it is possible that F(a,x;t1) # F(a,x;t3) giving @(t1) # @(t2) for the same
point in space at different times. This situation is simplified by creating the
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(autonomous) suspended system, described in Sec. 1.5, so the these two points
on the trajectory are at different locations with x; = ¢; and x; = t5 in the space
'y x Y. Henceforth in this section we shall consider only autonomous systems.

This course is mainly concerned with differential equations, although many
books on the subject also discuss difference equations (Drazin, Chap. 3). We
have already seen that the difference equation

x(n + 1) = Fla,x(n)], n=0,1,..., (3.51)

can be obtained from the differential equation (3.1) by quantizing time. The
‘trajectory’ in I'y will then consist of a sequence of points. An equilibrium point
x* of (3.51), usually called a fized point, satisfies x* = F[a,x*] and there can
also be p-cycles x(1) — x(2) — --- — x(p) — x(1).

An alternative method of deriving a discrete time map from a continuous
time system is using the Poincaré map or section. In the space I'y take the
(d — 1) dimensional hypersurface defined by the condition

T(z) = 0. (3.52)

Now suppose that a particular trajectory cuts the hypersurface (3.52) at times
to,t1,t2,.... In cases where an explicit solution can be obtained to the dif-
ferential system so that we know x(t,) for all n = 0,1,2,..., we can define
x(n) = x(t,), which then gives us a difference map x(0) — x(1) — ---. If the
succession of points are restricted to those which correspond to passages through
the hypersurface in the same sense the construction is called the Poincaré first-
return map.

Example 3.3.1 Take the Poincaré section y = 0 of the system
P(t) =~y +a(a—a2®—y?),  yt) =z +yla—2® -y (3.53)

This system was investigated in Example 1.12.2. In polar coordinates
x = rcos(f), y = rsin(f) the solution to this system is given by (1.122) and
(1.125).2 For a # 0

r(t) = 2 ar’(0) 2 )
7%(0) + exp(—2at) {a — r*(0)} (3.54)
6(t) =t.

The trajectory cuts the plane y = 0 at times ¢, = nm, n = 0,+1,+2.... We
now define 0(n) = 0(ty,), r(n) = r(t,) giving x(n) = r(n) cos[f(n)] = r(n)(-1)™.
The difference equation relating x(n + 1) and x(n) can be obtained from (3.54)
by replacing r(0) by r(n) and ¢t by 7. So

x(n +1) = —x(n) \/

x2(n) + exp(—2an) {a - x2(n)} '

(3.55)

2Since the system is autonomous we can, without loss of generality, take to = 0 and also
6(0) = 0.
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The first-return map can be taken to be those points where the trajectory cuts
the plane moving in the positive y direction. From the second of equations
(3.53) these all occur when & > 0 and they could be ‘captured’ by taking the
half-plane z > 0, y = 0. For = > 0, 8 = 0(t,) = 2nm and (3.55) is modified to

x(n+1) = x(n)\/

x%(n) + exp(—4an) {a - x2(n)} '

(3.56)

If an equilibrium point of the differential system lies on (3.52) then it will be a
fixed point of the discrete map. A periodic trajectory will cut a hypersurface
without edges an even number of times and generate a 2p-cycle in the Poincaré
map. In the first-return map it will generate a p-cycle.

Consider now the case of a system where the phase point move on a torus,
given in terms the variables 0 < 6 < 27, 0 < ¢ < 27 by

x = cos(f){a + bcos(¢)},
y = sin(6){a + bcos(¢)}, (3.57)

z = bsin(¢),
(Fig. 3.4). Suppose now a trajectory is given by # = at and ¢ = Ft. This

Figure 3.4: A torus in the {z,y, z} space.

trajectory winds around the torus. Now consider the first-return map obtain by
cutting the torus with the half-plane y = 0, x > 0. The successive values of 6
when the trajectories cut this plane are

0 = 2nm, n=0,1,2,.... (3.58)

The corresponding successive values of ¢ are

(=)
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The trajectory will be periodic only if, when o = 27p’ for some integer p’
B = 2nq’ for some integer ¢’. This is simply the condition

% ===, where p = p'/s and ¢ = ¢'/s are coprime integers.  (3.60)
q q

Meaning that a/f is a rational number. Such a periodic trajectory cuts the

plane y = 0 > 0 at the points

x = a+ bcos(2nwq/p), z = bsin(2nmq/p). (3.61)

It, therefore, generates a p-cycle in the first-return map. When «// is irrational
(6, ¢), with components given by (3.57), is periodic in each of its arguments,
but not periodic. The periods are incommensurate and the function is called
quasi-periodic. It is not difficult to show that the points of the Poincaré map

are dense on the circle (3.61)

3.4 The Stability of Periodic Solutions

In Example 1.12.2 we investigated the Hopf bifurcation at which a stable limit
cycle emerged from a stable equilibrium point. It is clear that a limit cycle is
a type of periodic orbit but we have yet to give a more formal definition. This
can be done using the definitions of stability of trajectories given in Sect. 3.1.

The periodic solution x(t) to (3.1) is a stable limit cycle if it is asymptot-
ically stable and an unstable limit cycle if it is unstable.

Just as for trajectories in general the terms stable and unstable can be qualified
by the phase ‘in the sense of Lyapunov’ or ‘in the sense of Poincaré’ with the
former implying the latter. Unless otherwise stated we shall use Lyapunov
stability and we shall also concentrate on the autonomous case (3.1). We develop
for periodic solutions the analogue of the linearization method of equilibrium
points. This is known as Floquet theory.

Suppose @(t) is a periodic solution of (3.1) with period T. Thus z(t) =
z(t+ T). Now consider the trajectory x(t), 0 < t < T, where (0) is near to
2(0) and define Ax(t) = x(t) — @(¢). Then, from (3.1)

dAx(t)
dt

The Taylor expansion of the right-hand side of (3.62) at fixed ¢ gives

= F(a,z(t)) — F(a,z(t)). (3.62)

F(a,z(t)) — F(a,z(t)) = J(a,z(t)) Az (t) + O(|Az(t)[*), (3.63)
where J(a,z(t)) is given by (2.55). Retaining only linear terms,

dAx(t)
dt

= J(a,z(t))Ax(t). (3.64)
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Fixing and suppressing reference to a, we write

J(t) = J(a, z(t)). (3.65)
Solving (3.64) is equivalent to looking for a solution w(¢) to

w(t) = J(H)w(t). (3.66)

In particular we are interested in the existence of a periodic solution (period T')
to (3.66). If such exists then it yields (at least to linear order) a periodic solution
x(t) to (3.1) with (0) close to £(0). To proceed we need a number of results
from the theory of differential equations. These will be stated without proofs,
which are given in many texts on the theory of ordinary differential equations?.

(i) The set of solutions w™ (¢),w®(t),...,w)(t) to (3.66) is linearly
independent if there exist no constants ¢V, ¢(®) ... ¢ which are
not all zero and for which ¢Mw™ (¢) + cPw@ () + - - + cMw) (1)
is identically zero for any t.

(i) If the elements of J(t) are continuous for all ¢ then there exists a set
of independent solutions w™) (), w® (t), ..., w®(t) to (3.66). This
is called a fundamental set of solutions and every solution is a linear
combination of the members of a fundamental set.

(iii) The set of d-dimensional column vectors w® (0),w?(0), ..., w(® (0)
form an orthogonal set and by choosing suitable linear combinations
we can construct a new fundamental set of solutions
aPt),q?(),...,q9(t), where, for £ = 1,2,...,d, ¢(0) is the
unit vector with zeros everywhere apart from one in the ¢-th place.

(iv) The d x d matrix

Q)= (¢ (), q?(),...,q"" (), (3.67)
satisfies

QM) =JMHRMN), Q) =1, (3.68)
and

Det{Q(t2)} = Det{Q(tl)}exp{/t 2Trace{jf(s)}ds},
(3.69)

which is Liouville’s formula.

3e.g. D. A. Sanchez, Ordinary Differential Equations and Stability Theory: An Introduc-
tion, W. H. Freeman, 1968.
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(v) The solution w(t) to (3.66) which satisfies w(0) = wy, for some wy,
can be written

w(t) = Q(t)wy. (3.70)

None of these results depends on the periodic property

J(t+T)=J(t), (3.71)
of J(t), which follows from (3.65) and the fact that &(t) is a periodic solution
of period T. Using that property we can now make the following deductions:

e Since the columns of Q(t) form a fundamental set of solutions of (3.66)
Det{Q(t)} # 0 and Det{Q(t + T)} # 0. Thus the columns of Q(t + T)
also form a fundamental set of solutions and, since any solution is a linear
combination of a fundamental set,

QE+T)=Q1)C, (3.72)
for some constant d x d matrix. From (3.72) with ¢ = 0 and (3.69) with
t=T,
T o
Det{C} = exp {/ Trace{J(s)}ds} # 0. (3.73)
0

e Suppose that A(*), & = 1,2,...,d are the eigenvalues of C with right

eigenvectors u(®). Thus
Cu®) = yP\F) k=1,2,...,d. (3.74)
From (3.66), (3.68) and (3.70)
w® () =Q)u®,  k=1,2,....d, (3.75)
are solutions of (3.66) with w®)(0) = u(®.
e From (3.72) and (3.75)
wh(t+T) = Qt+T)u® =Qt)Cu®™ =AM Q(t)u®
= ABw® @) (3.76)

The converse of the development leading to (3.76) is that if, for some
solution w(t) of (3.66),

w(t+7T) = w(t), (3.77)

then X is an eigenvalue of C. The proposition that (3.66) with J (¢) contin-
uous and satisfying (3.71) has at least one non-trivial solution satisfying
(3.77) with A # 0 is Floquet’s theorem.
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e Although the matrix C' was defined, by (3.72), using the fundamental

solution matrix Q(t), the eigenvalues are not dependent on this choice.
Suppose S(t) is another fundamental solution matrix. There must exist a
non-singular matrix Z with S(t) = Q(¢)Z and

St+T) = Qt+T)Z=Qt)CZ

Stz 'Ccz. (3.78)

Comparing (3.78) with (3.72) we see that C has been replaced by Z 'CZ,
which has the same set of eigenvalues.

Let,
AF) = exp (O'(k)T> . (3.79)
The numbers o), 0@ ... o(@ are called the characteristic or Floquet

exponents of the linear system (3.66).

For the solution w®)(t) to (3.64), defined by (3.75), let
w® () = y®(t) exp (U(k)t) . (3.80)

Then, substituting into (3.76)

y®(t +T)exp (U(k) {t+ T}) = ABy®) () exp (a(k)t> (3.81)
and from the definition of o(¥)

y®(t+T) = y® (1) (3.82)
When w(*) (t) is given the form (3.80), y*)(¢) is periodic, period T

Since

Det{C} = [[ \*, (3.83)
k=1
it follows, from (3.73) and (3.79), that

- ok = i TTrace J(s)Yds mod (2i/T). 3.84
> 7/, {J(s)} (2mi/T) (3.84)
k=1
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This development now allows us to discuss the stability of the periodic solution
x(t) of (3.1). To do so we suppose that the eigenvectors u®), k = 1,2,...,d of
C form a basis of I'y. Then, for any solution Az(t) of (3.64), there exists a set
of constants ¢®), k=1,2,... d with

d
Am(0) = cMu®. (3.85)
k=1

From (3.75)-(3.76) and (3.79)

d
Ax(nT) = Z exp (na(k)T> BB, n=1,2.... (3.86)
k=1

It follows that:

(i) HR{cW} <0, for k=1,2,...,d, Ax(nT) — A=x(0) as n — oo, for
all choices of {¢®}, and @(t) is an asymptotically stable periodic
solution, that is a stable limit cycle.

(ii) If R{c®} > 0, for some k then there exists a choice of {¢®} for
which Az(nT) — oo, as n — oo. «(t) is an unstable periodic
solution, that is a unstable limit cycle.

(iii) If for some k', o*") = 0 then the choice of A&(0) with ¢*) = 0 for
k # k' gives a periodic orbit close to x(t).

(iv) Purely imaginary Floquet exponents lead to periodic orbits, with
periods which are multiples of T', or quasi-periodic orbits rather like
those on the torus discussed in Sect. 3.3.

Example 3.4.1 Suppose that, for d = 2, the linearized equations have the form
dAx dAy

dt Y dt

where w(t) is a real-valued, continuous, periodic function of period T.*

—w(t)Az, (3.87)

Then

J(t) = < _f(t) ; ) (3.88)
and

Trace{J(t)} = 0. (3.89)

From (3.84) the Floquet exponents are related by
e + 63 =0 mod (271/T). (3.90)

4This system is equivalent to Hill’s equation 2(t) + w(t)z(t) = 0.
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It cannot be the case that both Floquet exponents have negative real part and
the periodic solution of a system which leads to the linearized form (3.87) cannot
be a stable limit cycle. The alternatives are:

(i) Floquet exponents with real parts of opposite signs which gives an
unstable limit cycle.

(ii) Purely imaginary Floquet exponents o) = ¢(2) = nzi/T, which
gives a periodic solution, period T, if n is even and 27, if n is odd.

(iii) Purely imaginary Floquet exponents with other than these special
values which give a quasi-period solution.

3.4.1 Periodic Solutions in Two Dimensions

We now consider the case of periodic solutions for two-dimensional autonomous
systems given by (3.39), with (3.39) having a unique solution at all points in
{z,y} which are not equilibrium points (F(z,y) = G(z,y) = 0). We state two
important results for such systems. The second of these, which is the Poincaré-
Bendizson theorem will be shown to be a consequence of the first result, which
is stated without proof.

Theorem 3.4.1 If a trajectory of (3.89) has a bounded w-set, then that set is
either an equilibrium point or a periodic trajectory.

Theorem 3.4.2 Let C be a closed, bounded (i.e. compact) subset of the {z,y}
plane. If there exists a solution v = {x(t),y(t)} of (3.39), which is contained
in C for all t > 0, then it tends either to an equilibrium point or to a periodic
solution as t — oo.

Proof: Consider the infinite sequence (z(ty + ne),y(to + ne)) of points of ~,
with tg > 0, e > 0, n = 0,1,2,.... All these points lie in the compact set
C so it follows from the Bolzano- Weierstrass theorem that the sequence has at
least one limit point. This point must belong to the w-limit set of ~, which is
thus non-empty. From Thm. 3.4.1 this w-limit set is an equilibrium point or a
periodic solution to which v tends.

It follows from the Poincaré-Bendixson theorem that the existence of a trajec-
tory v of the type described in the theorem guarantees the existence of either
a periodic trajectory or an equilibrium point in C. It is clear that a periodic
solution which is the w-set of v cannot be an unstable limit cycle, but it also
need not be a stable limit cycle.

Example 3.4.2
@(t) = x(t) — y(t) — 2(t)[2*(t) + 25°(1)],

() = x(t) +y() — y(O)[2* (@) + v*(1)].

(3.91)
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In polar coordinates (3.91) take the form

dr 3 1.2
- = — = .92
pr r—r {1+4sm (29)}, (3.92)
de 9 . 9
T - 1 4 r*sin“(0) cos(h). (3.93)
From (3.92)

d
r— %1“3 < d—; <r—r% forall#, (3.94)
and thus

#(t) <0, forall§,ifr>r =1,
(3.95)
7(t) > 0, for all 0, if r < ry = 2//5.

So any trajectory with (2(0),y(0)) in the annulus

C={(z,y):r < Va2+y2 <)} (3.96)

remains in this region for all ¢+ > 0. The minimum value of 1 + 72 sin*(f) cos()
as 0 varies at constant r is 1 — 2r?/(3v/3) and thus
2r32

. 8
o(t) >1— =1—- —— ~0.69208. 3.97
®) 3V3 15v/3 (3:97)

So 9(15) is never zero and there are no equilibrium points in C. Thus, from the
Poincaré-Bendixson theorem there is at least one periodic orbit.

Problems 3

1) Systems are given by

(i) @(t) = —z—2y% () = zy —y°,

(i) #(0) =y —a®, 1) = —a®.

Using a trial form of L(z,y) = 2™ + ay™ for the Lyapunov function show
(by a judicious choice of n, m and «) that, in each case the equilibrium point
x =y = 0 is asymptotically stable.

2) A system is given by

i(t) =2y —xy? + 2%, gt) =y> —a?

Show that x = y = 0 is the only equilibrium point and, using a trial form of
L(z,y) = 22+ axy+ By? for the Lyapunov function, show that it is unstable.
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3) Express
Z(t) + z(t){1 — alz(t)|} =0
as a two-dimensional system in the variables x—y and show that
La? + 9%} Jalel* = B (399)

is a constant of motion for any value of the parameter F. Find the equilib-
rium points and the ranges of a for which they exist. Use linear analysis to
determine their types and sketch the bifurcation diagram in the x—a plane.
Using (3.98) sketch trajectories in the z—y plane for typical values of a, show-
ing that periodic solutions exist for all a and that the period of the oscillation
with amplitude ( is

T

< d
T:4/ .
0 \/<2_ %GCB—I2+ %a:z:g’

4) Express
F(t) + 2a@(t) + 2(t) + b (t) = 0

as a two-dimensional system in the variables z—y and, for a > 0, find the
equilibrium points for both signs of b. Use linear analysis to determine their

types.
For b > 0 and a > 0, use the Lyapunov function

Lz, @) = %332 + %xz + ib:zfl,
to show that z(t) — 0, as t — oo, for all initial conditions.

5) Show directly from the definitions that the periodic solution z(t) = a cos(t)
y(t) = —asin(t) to the system

3

o(t) = y(b), y(t) = —z(t)
is stable in the Lyapunov sense.

6) Show that the system
#(t) + b[22(t) + 22 (t) — a)i(t) + z(t) = 0,
can be expressed in the form

7 = b(a —r?)rsin?(0), 0 = ~b(a —r?)sin(26) — 1,

N [—=
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where & = rcos(f), & = rsin(f). Deduce that, for a > 0, there is a periodic
solution r = v/a, 6 = to—t of period 27 and show that the sum of the Floquet
exponents is —ab. (This suggests but doesn’t prove that the periodic solution
is stable if b > 0.) Now show that, with Ar =r — \/q,

dAr

el —bAT(Ar 4+ Va)(Ar + 24/a) sin® (tg — t).

Hence prove that the periodic solution is stable in the sense of Lyapunov if
b>0.

Consider the system

‘T(t) = F(‘Tvy)a y(t) = G(Iay)v

where F' and G are continuous functions of x and y. For the cases
(i) Flz,y) =z +y—a@®+2y%), Glry) =-—z+y—yl®+2y%),
(i) F(z,y) = -z —y+a@®+2y°), Glay) =2-y+yl®+2°),

show that the origin is the only equilibrium point and determine its type.
Express the equations in polar form and show that the system has at least
one periodic solution. Determine, using the Poincaré-Bendizson theorem, or
otherwise, whether it is stable.
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Chapter 4

Weakly Nonlinear Systems

4.1 The Lindstedt-Poincaré Method

In Sects. 1.3 and 1.13 we considered the case of conservative systems. Using
different variables for the case d = 2

() = &, £(t) = =v'(n). (4.1)

The equilibrium points are the turning points of V(n) appearing in the space
of {n,&} on the n—axis. Suppose n = n* is such an equilibrium point. Then
expanding about the n = n*

V()= —=n)V"(n") +(n—n"), (4.2)

where V”(n*) > 0 and 9(z) = O(2?). Let z = n—n*, y = € and w3 = V" (n*).
Then

i(t) =y, (t) = —whw — (). (4.3)

If the non-linear term ¢ (x) were neglected then we should have a simple har-
monic oscillator with all solutions of period 27/wy. We now suppose that

P(z) = wgf(a,x), (4.4)
where f(0,2) = 0. Thus
&(t) =y, y(t) = —wi{z + f(e,2)}- (4.5)

We look for a periodic solution to (4.5) of period 27 /w(e). The first step is to
replace ¢ by 7 = w(e)t where w(e) = wog(e). This gives

Li EPL =+ fEa) (46)

85
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where § = y/w(e). Let

z(e,7) = xo(7) +exi(T) + 2aa(1) + O(e3), (4.7)

ge,7) = Go(r) +efn(r) +e*Ga(r) + O(e?), (4.8)

ge) = 14eg +e%g2+0(%), (4.9)
fea(r,e)) = efe(r)+%01(r) foal(r) + 2% fee(r) + OE). (4.10)
where

2
) = L), Jealr) = 20,200,
2

fee(r) = %(O,xo(ﬂ). (4.11)

Substituting into (4.6) and equating powers of ¢ the " terms give

dro dgo

i - = 4.12
dr Yo, dr To ( )
and the e! terms give

dzy . dgo  diy

i 4+ L — g = . 4.1
o U 201 -+ 47 r1 — feo(7) (4.13)

The general solution to (4.12) is

2o = ag cos(T) + by sin(7),

(4.14)
Jo = bp cos(T) — ag sin(7),
but for simplicity we shall take by = 0. Then substituting into (4.13)
dz dy
=L —q, - fe(T) + 2g1a0 cos(T). (4.15)
dr dr
Let us suppose a solution to (4.15) of the form
x1 = aj cos(T) + by sin(7) + X (1),
(4.16)
91 = by cos(7) — ay sin(7) + X'(7).
Then the particular integral X (7) is a solution of
X"(1)+ X(1) = — f(7) + 2g1a0 cos(T). (4.17)

To proceed further we need a particular form for f.(7). Suppose, as an example,
that f(e,2) = ecz®. Then (4.17) becomes

X'"1)+ X(1) =ao [291 - %cag} cos(T) — icag cos(37). (4.18)
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For which the solution is
- 9 .2 1.3 3.2 :
X(r)=aop [gl — 35 cao} cos(7) + g5cag cos(37) + ag [gl - gcao} 7sin(r). (4.19)

Substituting from (4.19) into (4.16) we see that the solution will be periodic
only if the final term in (4.19) disappears, for which we need,

g1 = %ca%. (4.20)

We impose the condition that z(e,0) = ag, g(¢,0) = 0 and then, from (4.7)-
(4.9), (4.14), (4.16), (4.19) (4.20)

3 3

z(e,t) = ag cos(wt) + aécag{cos(&ut) + 3cos(wt)} + O(e?), (4.21)
where

_ 3 2 2
w(e) _w0{1+ Sccal +0(e )}. (4.22)

We have succeeded in obtaining a periodic solution to the equations

z(t) =y, y(t) = —wix{l + eca?}, (4.23)

by perturbing the simple harmonic solution. Some insight into this procedure
can be gained from the first integral constant of motion. From (4.23)

2 dx dy 2 2 dx

woxa “+ ya = —w060$3y = —(,(JOECZEBE, (424)
giving
wiz? {% + iac;ﬁ} + %yz - E (4.25)

It is convenient to keep ¢ > 0 with ¢ = +1. Then with ¢ = 1, the only
equilibrium point of (4.23) is * = y = 0. According to (4.22) the frequency is
increased with increasing €. Curves for (4.25) can be obtained using MAPLE
code similar to that given on page 30. Curves of with ¢ =1, E = w3 are of the
form
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with (1) € = 0 and (2) ¢ = 0.1. The effect of small non-zero ¢ is to contract

the curves in the x direction. When ¢ = —1, (4.22) have saddle-points on the

z—axis at x = 1/y/—ce. The set of curves (4.25) has a separatrix through the
saddle-points with E = wo/( 408) Curves have the form

where (1) ¢ = 0.0, E = w3, (2) ¢ = 0.1, E = w?. Now the effect of small ¢ is
to dilate the curve in the z direction. Curve (3) is the separatrix for e = 0.1
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which has E = 5w?/2.

This important point about the Lindstedt-Poincaré method is that it allows
for perturbations in the angular frequency w. Without such a perturbation
terms of the form ¢sin(wt) would have been present, preventing the perturbed
solution from being periodic. The method can be generalized in various ways.
We may for example include a y dependence in the perturbation, so that we
have f(e,z,y) in (4.5).

4.2 The Hopf Bifurcation

As we saw in Example 1.12.2 a Hopf bifurcation occurs when the stability of a
focus changes from stable to unstable (supercritical) or unstable to stable (sub-
critical) with the emergence of a limit cycle, which is stable in the supercritical
case and unstable in the subcritical case. We now consider the system given by

i(t) = —y + ax + zy?, y(t) = x + ay — 22 (4.26)

The linear terms are the same as those of (1.117)—(1.118) so we might anticipate
the occurrence of a Hopf bifurcation, leading to a periodic solution. Since, as in
Example 1.12.2, the equilibrium point at (0,0) is stable or unstable according
as a < 0 and a > 0, the Hopf bifurcation will be supercritical if the periodic
orbit occurs for a > 0 and subcritical if it occurs for a < 0.

We investigate this using a version on the Lindstedt-Poincaré method. In
doing so we can, without loss of generality, impose the condition (0) = 0. Let
7 = wt and € = y/a. Then (4.26) become

d d
Wt = —y+ e’z + ay’, wl =x+e’y—a’. (4.27)
dr dr

Now substitute the expansions

x(e,7) = exi(1) + 2xo(7) + 3x3(7) + O(e?), (4.28)
yle,7) = ey(r) +2ya(r) + 3ys(r) + O(eh), (4.29)
w(e) = 1+ew + 2wy +dws +0(e?), (4.30)

into (4.27) and compare coefficients. For &',

dz, dys _

- 4.31
dr Y1, dr T, ( )
giving
z1(1) = arcos(r),  yi(7) = arsin(7). (4.32)
For €2,

dx dx d d

— 2= wlﬂ ﬂ_l'g—l'%, (4.33)

w1 dr dr
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and substituting from (4.32)

dIQ

5 = “Yxtwiarsin(r), (4.34)
% = @3 — afcos?(1) — wiay cos(7). (4.35)
Let

z2(7) = ag cos(t) + X (7). (4.36)
Then, from (4.34),

y2(7) = agsin(r) — X'(7) + wyay sin(7), (4.37)

and, substituting into (4.35),
X"(7) + X(r) = a3 {1+ cos(27)} + 2wiay cos(r). (4.38)
Thus, from (4.36) and (4.38),
x2(T) = ag cos(7) + aywi{cos(t) + Tsin(7)} + %a%{?) —cos(27)}. (4.39)

This solution will not be periodic unless w; = 0 and applying this condition it
follows from (4.39) and (4.37) that

x2(T) = ag cos(T) + %a%{?) —cos(27)}

(4.40)
y2(7) = agsin(71) — %a% sin(27).
For &3,
d,’Eg dJJl
T twrgs T s + 21 + 2197, (4.41)
d d
s + wzﬂ = z3+y1 —2x129. (4.42)
dr dr
Substituting from (4.32) and (4.40)
d
% = —y3+ aj cos(T) + ajwa sin(7) + a sin?(7) cos(7), (4.43)
-
dys . 2
5 = % + a1 8in(7) — ajwg cos(T) — 2a1az2 cos”(T)
-
- %a? cos(7){3 — cos(27)}. (4.44)

Solving these equations for z3(7) gives
x3(T) = agcos(T)+ %alrcos(r){af + 8} + %aﬂ' sin 7{12ws + 5a3}

- %alaz{cos2(7) -2} — %a?{cos(ﬂ cos(4r)

+ sin(7) sin(47) — 12sin(7) + 24 cos(7) + 4 sin(7) sin(27)
+ 18 sin(7) cos?(7)}. (4.45)
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For the solution to be periodic we must have a1 = 2v/2i, wy = 10/3. The
imaginary value of a1 means that ¢ is also imaginary and the periodic solution
appear for a < 0, which means that it is subcritical. To leading order the limit
cycle is given by

z(a,t) ~ v/—8acos(wt), y(a,t) ~ v—8asin(wt), (4.46)

where

w~1+ 1—30(1. (4.47)

4.3 The Krylov, Bogoliubov and Mitropolsky
Averaging Method

In Sect. 4.1 we considered the case of a simple harmonic oscillator perturbed by
a term which was a function of the spatial variable z. In particular we investi-
gated the case where the perturbation was eca®. In this section we consider a
perturbation which is a function of z(t) and @(¢). That is

() + ef (z(t), &(t)) + z(t) = 0. (4.48)

This includes the case where f(z,#) = &. Then the perturbation is proportional
to the speed of the ‘particle’ and, for € > 0 it, acts to slow the particle down.
This is the way viscosity acts when a particle is moving in a viscous medium,
like a simple pendulum swinging in air (or even more so in treacle). This is
called damping. We could also consider negative damping, when ¢ < 0. With
y(t) = z(t), (4.48) becomes

&(t) =y, y(t) = —z —ef(z,y). (4.49)
In polar coordinates

% = —esin(0) f(r cos(), rsin(h)), (4.50)
d(ed:— ) = j—f +1 = —%S(e)f(r cos(f), rsin(h)). (4.51)

It can be seen that, when ¢ is small, r(¢) and 0(t) + ¢ both vary slowly with ¢.
So the motion is close to simple harmonic motion with a circular orbit in the
{z,y} plane and an angular velocity —1. The KBM averaging method consists
in going back to (4.48) and supposing that:

(i) z(e,t) = rcos() + euV(r,0) + 2u® (r,0) + - - -, (4.52)
where u®) (r, 6 + 27) = u® (r,0) and

27 27
/ a9 (1 0) cos(0)d9 = / u® (r,0) sin(6)d0 = 0,
0 0

k=1,2,.... (4.53)
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it) = eAD()+2AD @)+, (4.54)

0t) = —14+eBYr)+2BA(r)4---. (4.55)

The k-th order KBM method consists in retaining terms up to €. We shall
now derive the formulae for the first-order method. Substituting into (4.48) and
retaining terms up to O(e) gives

82u(1)(7‘, 0)

502 +uM(r,0) + 240 () sin(0) + 2rBY (1) cos(h)
+ f(rcos(8),rsin(g)) = 0. (4.56)

Multiplying (4.56) by sin(f) integrating over [0, 27] using (4.53), and then doing
the same with cos(f) gives

1 27

AW (r) 2, sin(0) f (r cos(#), r sin(0))d#, (4.57)
BW(r) = _2i 27Tcos(@)f(rcos(@),rsin(@))d@. (4.58)
T Jo

It will be seen that (4.57) (4.58) are equivalent to the results obtained by re-
placing the right-hand sides of (4.50)—(4.51) by their averages over [0, 27]. The
final task to complete the first-order approximation is to determine a particular
integral for (4.56). The complementary function will correspond to substituting
the results obtained from integrating (4.54) (4.55) into the first tem of (4.52).

Example 4.3.1

#(t) + 2e3(t) + 2(t) = 0, (4.59)
So
f(rcos(9),rsin(f)) = 2rsin(6). (4.60)

From (4.57) (4.58),

AO@G)y = =L /2ﬂsin2(9)d9:—r, (4.61)
™ Jo

BWY(r) = 1L /%sin((a)cos(e)do_o. (4.62)
™ Jo

Substituting results into (4.54) (4.55) gives, with the initial condition (0) = ro,

r(t) = ro exp(—et), o(t) = —t. (4.63)
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It is now necessary to solve the equation

2*u™M(r,0)

502 +u (r,0) =0 (4.64)
which has a solution
uM(r,0) =0, (4.65)
giving
x(e,t) = ro exp(—et) cos(t). (4.66)

This is an example which can be solved exactly. It just corresponds to the case
a=0,b=1,c=—1,d= —2¢ of the linear analysis of Sect. 3.2.2. From (3.45)
the eigenvalues of the stability matrix are

AE) = e 4 /e2 -1, (4.67)

With —1 < e < 1, this gives, from (3.44),
x(e, t) = roexp(—et) cos (t 1- 52) . (4.68)

We see that the first-order KBM method correctly produces the exponential
damping and the fact that the linear € term in 6 is zero. An indication of the
accuracy of the first-order method is given by the following theorem due to
Bogoliubov and Mitropolsky.

Theorem 4.3.1 If the R(e,t) and p(e,t) satisfy the equations

dR d

= =cFE R, =0 R) +<Gle R ), (4.69)
dt dt

where F(e, R, +27) = F(e, R, ) and G(e, R, o+ 27) = G(e, R, p) and S(e,t)
satisfies

ds e [*™
—_— = — F(0,R, p)d S(0) = R(0 4.70
a2 ), (0, R, p)dep, (0) = R(0), (4.70)

then there exists a constant C and a sufficiently small value of € such that

|S(t) — R(t)| < Ce, for all0 <t <1/e. (4.71)

4.4 Liénard’s Equation
The generic type of the second-order equations considered in this chapter is
Liénard’s equation

d%x dx
FTE) + f(x)=— + g(x) =0, (4.72)

where f(z) and g(x) are continuous functions. For this equation we have the
theorem:
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Theorem 4.4.1 With
F(w)Z/ f(s)ds, (4.73)
0

(4.72) has a unique periodic solution, which is asymptotically orbitally stable
(asymptotically stable in the sense of Poincaré) if the following conditions are
satisfied.

(i) g(x) is an odd function with xg(xz) > 0 for all  # 0.
(ii) f(x) is an even function.
(iii) There exists an a > 0 such that:

(a) F(z) <0 for 0 <z < a.

(b) F(x) >0 for x> a.
(¢) F(x) =0 only at x = 0, +a.

4.5 Duffing’s Equation

Duffing’s equation

d?z 3 dx
@—Fa{cx —I—Zua}—kx—o, (4.74)

does not satisfy the conditions of Thm. 4.4.1 so we do not anticipate the exis-
tence of an asymptotically stable periodic solution. It is, however, a convenient
example for the application of the KBM average method. For p = 0 it gives
the case of the non-linear oscillator considered in Sect. 4.1 using the Lindstedt-
Poincaré method and for ¢ = 0, = 1 it gives the case of the damped oscillator
of Sect. 4.3. With y(t) = %(¢), (4.74) gives

z(t) =y, y(t) = —x — e(cx® + 2uy). (4.75)
There is an equilibrium point at * = y = 0 with eigenvalues

AE) = e+ /p2e2 — 1, (4.76)
for all values of the parameters. For

e se > 11it is a stable node,

e uec =1 it is an inflected stable node,

1 > pe > 0 it is a stable focus,

pe = 0 it is a centre,

0 > pe > —1 it is a unstable focus,
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e ue = —1 it is an inflected unstable node,
e —1 > pe it is an unstable node.

When ec < 0 there are also equilibrium points at * = +1/y/—¢¢, y = 0 with
eigenvalues

AE) = e 4+ /22 + 2. (4.77)

Since the eigenvalues are real and of opposite sign for all values of pe, these
equilibrium points are saddle points.
In the notation used in Sect. 4.3

f(rcos(8),rsin(h)) = cr® cos®(0) + 2ursin(h). (4.78)
Substituting into (4.57) (4.57),
AV (1) = —pr, BW(r) = —%crz. (4.79)

Substituting into (4.54)—(4.55) with the initial conditions (0) = ro, 6(0) = 0
gives

r(t) = ro exp(—puet),

) (4.80)
3 o
0(t) = —t— E7{1 — exp(—2pet)}.
Substituting into (4.56)
2uV(r, 0
% +uM(r,0) = icr?’ cos(0){3 — 4 cos?(0)}. (4.81)
which has the solution
uV(r,0) = %cr?’ cos®(6). (4.82)

Thus, from (4.52),

2
x(e,t) = 1roexp(—puet)cos <t + %W—O{l - exp(—2uet)}>
W

2
1 3 Cr
+ gscrg’ exp(—3puet) cos® (t + Ejo{l - exp(—2u5t)}) . (4.83)

With ¢ = 0, 4 = 1 we recover the result (4.66) for the damped oscillator.
Expanding the exponentials for small x4 and retaining contributions of O(g)
gives

x(e, t) = rocos(wt) + 3—125cr8{3 cos(wt) + cos(3wt)}. (4.84)
where
w=1+ gacrg (4.85)

This agrees (with wy = 1) with the results (4.21)-(4.22) obtained by the Lindstedt-
Poincaré method.



96 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS

4.6 The Van der Pol and Rayleigh Equations

In modelling an electrical circuit with a thermionic valve van der Pol derived
an equation of the form

d?x 9 dx
@4‘8(1‘ —1)E+$=O (4.86)
and Rayleigh modelled non-linear vibrations with the equation
d?w 1 /dw\?® dw
— 2l—=— ] —— =0. 4.87
dt2+€{3(dt) a (v (487)
Differentiating this equation with respect to ¢ gives
dBw dw\? 2w dw

) 1V =122 4.88
dt3+€{<dt> }dt2+dt (4.88)

and setting z(¢) = (t) recovers (4.86). With f(z) = e(2®—1) and the definition
(4.73), F(z) = ex(2® — 3)/3. So, when & > 0, van der Pol’s equation satisfies

the conditions of Thm. 4.4.1 with a = v/3 and an asymptotically stable periodic
solution exists. With y(t) = @(t), (4.86) gives

i(t) =y, y(t) = —z —e(x® — 1)y. (4.89)
There only equilibrium point is at x = y = 0 with eigenvalues

AE) = Lrex /a2 —ay) (4.90)
This is

e a stable node when ¢ < —2,

e an inflected stable node when ¢ = —2,

e a stable focus when —2 < e <0,

e a centre when ¢ = 0,

an unstable focus when 0 < ¢ < 2,
e an inflected unstable node when € = 2,
e an unstable node for € > 2.

In a damped system like (4.59) there is a loss of energy due to friction, which
causes an exponential approach to the equilibrium point at £ = & = 0. This
is the case for van der Pol’s equation when ¢ < 0. However, when ¢ > 0 the
‘friction term’ is negative for |x| < 1 and the origin is an unstable equilibrium
point. When the system is disturbed it self-ezcites and it it only the presence of
the 22 term, leading to positive friction when |z| > 1, which prevents it having
just an uninteresting exponential growing solution.
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We anticipate that the destabilization of the equilibrium point at the origin
as € increases through zero is accompanied by the emergence of a limit cycle.
Comparing (4.48) and (4.86) we have

f(rcos(8),rsin(h)) = rsin(0){r? cos?(9) — 1}. (4.91)
Substituting into (4.57) (4.58) gives
AV =2r -3, BY(r)=o. (4.92)

Substituting into (4.54) (4.55) with the initial conditions (0) = ro, 6(0) = 0
gives

21 exp(et/2)

() — , 4.93
) V4 + r¢{exp(et) — 1} (4.93)

ot) = —t. (4.94)

From (4.56),

W +uM(r,0) + $r°sin(3¢) = 0, (4.95)

Which has the solution

u(r,0) = @T 3 sin(36) (4.96)
and
x(e,t) = rcos(t) — 3%57“3 sin(3t). (4.97)

It follows from (4.93) that r(t) — 2 as ¢ — oo. The stable limit cycle, to O(¢)
is r = 2 and the period is 27w. Approach to the limit cycle is from inside if
ro < 2 and from outside if o > 2. If the KBM averaging approximation were
performed to second-order, the period would acquire an ¢ dependence and the
limit cycle would loose its circularity.

In this model we have an example of a change of stability of an equilibrium
point and the emergence of a limit cycle as a parameter passes through a special
value. However, this differs from the Hopf bifurcation where the limit cycle
grows from nothing. Here the limit cycle springs into existence fully-formed
with a radius of the order of two.

4.7 Forced Oscillations

The generic type of equation for a system undergoing free oscillations is Lié-
nard’s equation (4.72). In this section we consider cases of the non-autonomous
modification,

2.’[] i
T 4 1)+ gla) = (1), (4.98)
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of this equation, where the F(t) = F(t 4+ 27/Q) is a periodic forcing term. We
can think of this as the model for a particle oscillating with possibly damping
and non-linear effects, which is subject to an outside periodic force F'(t).

The following mathematical results will be useful in our calculations:
e A particular integral of

d?z dx 9

- = = 4.
e + 2y I + a“z = C cos(ft), (4.99)
where o« > 0 and 3 > 0, is

_ C{(a? — B%) cos(Bt) + 267 sin(Bt) }
- (a2 — B2)2 + 4322 ’
ifa# (B or vy # 0, and

_ Ctsin(ft)

=25

ifa=pgandy=0.

e For any positive integer n,

cos?™(f) = 2% {nig < Qk” > cos(2[n — k]6) + ( 2: >}

k=0

cos®~1(6) = zzi_2 {Z < 2nk_ 1 > cosllzn =2k = 1]9)},

k=0

2®)(t) (4.101)

(4.102)

Sin?"(0) = s {nf 2(—1ynk ( o ) cos(2[n — k]6) + ( o )}

1’“:0 . (4.103)
sin®" 1 (6) = 533 { (=1 rht ( 2"];1 )cos([2n— 2% — 1]9)}.

Example 4.7.1

SN Q 4104
@—l-wox—Fcos( t). (4.104)
This is just the case of a forced simple harmonic oscillator. Taking, without loss
of generality, wg > 0 and 2 > 0, the general solution, if Q # wy, is

T cos(2t)

. 4105
wi — 02 ( )

x(t) = Acos(wot) + Bsin(wot) +

If © is not a rational multiple of wy this solution is quasi-periodic. If Q/p =
wo/q, where p and ¢ are coprime integers, the system is periodic with period
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2p/Q = 2wq/wy. The first two terms in (4.105) correspond to the natural
oscillations of the system and the final term is the response of the system to
forcing. Suppose we are able to tune the forcing term by changing its frequency.
Then as 2 — wg the amplitude of the response grows without bound. The
system approaches resonance. Supposing that A > 0 then if Q approaches wq
from below the response is in phase with the natural oscillations of the system
but if it approaches wy from above the response is out of phase by a phase factor
of m. When Q = wq (4.105) is replaced by

I'tsi t
(1) = Acos(iot) + Bsinuwot) + o 0t) (4.106)
0

The response is now a secular term which grows without bound as ¢ increase,
but which is finite at any given value of ¢.

Example 4.7.2 We now modify (4.104) by including the damping term of Fux-
ample 4.3.1. Thus

2
((117;: + 25?1—? + wiz = T cos(). (4.107)

As we saw in Example 4.3.1 the complementary part of the solution of (4.107)
is

29 (t) = exp(—et) {A cos <t\/@> + B cos <t\/@> } . (4.108)

and the particular integral is

T{(wg — Q?) cos(Qt) + 2eQsin(Qt)}

®P)(Q,t) = 4.1
with
z(t) = 2 ) + 2P (Q,1). (4.110)

For € > 0 the complementary function is called the transient part of the solution
as it decays with time leaving only the response to forcing given by the particular
integral. This term has a resonance peak, with amplitude I'/(2wpe), when Q
is tuned to the natural frequency! of wg. We now consider the application
of expansion methods, with expansions in terms of a small parameter & for
equations with a forcing term. We distinguish between two cases: hard forcing
where the forcing term does does not involve € and soft or weak forcing where

the forcing term is O(e).

IStrictly speaking the parameter for which we usually use the symbol w or Q is the angular
frequency with the actual frequency for an oscillation of period T being 1/T = w/2w. We
shall, however, when there is no risk of confusion simply use ‘frequency’ to denote quantities
like w.



100 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS

4.7.1 The Duffing Equation with a Hard Forcing Term

We use the Lindstedt-Poincaré method to investigate the Duffing equation, with
a hard forcing term, no damping and a natural unperturbed frequency wg.Thus

d2
d—tf +wj {z +eca®} =T cos(Q), (4.111)

and with y(¢) = @(¢) this equation becomes
(t) =y, y(t) = —wi{x + eca®} + T cos(Q). (4.112)

Apart from the presence of the forcing term these formulae are the special case
f(e,z) = eca® of (4.5) and we proceed with the method in the same way. We
look for a periodic solution of period 27 /w(e). Let

7= Quw(e)t/wo, w(e) =wogle), §=ywo/{Qw(e)},

i (4.113)
a = wy/Q, =T1/02
Then (4.112) become
dez o dy 9 3 -
— =7, {9(e)} = = —a {z +eca”} + T cos(7/g(e)). (4.114)
dr dr
Let
x(e,7) = x0(1) +exi(7) + %x2(1) + O(e3), (4.115)
gle,m) = Go(7) +ei(r) +%Ga(r) + O(?), (4.116)
gle) = 1+egi+e°g2+0(?) (4.117)
and substituting into (4.114) the terms of O(e") give
d2£L'Q 2 ~
I + a”zg = I cos(7). (4.118)

As in Sect. 4.1 we impose the condition dz/dt = 0 at ¢ = 0. This condition
applies separately to each of the terms in the expansion (4.115) and (4.118) has
the solution

r

ap cos(art) + CQL(E), a# 1,

2o (7) = @ (4.119)
P

ag cos(t) + %D(T), =1
The terms of O(e!) give
dx - dy dy ~ .
d—Tl = Y1, dirl + 2gldi7fJ = —a?(wy + cxd) + Tgy7sin(7). (4.120)
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From (4.118)—(4.120), x1(7) satisfies the equation

d? oI _

e T g1 { 202ag cos(at) + 2L cos(r) + I'sin(7)

dr2 a2 —
7 3

—ad’c {ao cos(at) + ZL(?} ) ifa#l, (4.121)

a2 —

d? I'7si ’

3 le +21 = g1{2a0cos(r) 4+ Trsin(r)} — ¢ {ao cos(T) + %H(T)} ,

-

if @ =1. (4.122)

We see that at each stage of the expansion process the complementary func-
tion obtained at the previous stage will generate new secular terms (of the form
7 cos(ar)) unless either the constant (in this case ag) is set to zero or the coeffi-
cients g1, go, . . . in the expansion of the angular frequency are set to values which
eliminate these terms. From (4.102) cos®(a7) = {3 cos(ar) + cos(3ar)}/4. So
the coefficient of cos(at) on the right-hand side of (4.121) is 2aagg1 —3a%cad /4.
For this to be zero we must have either ag = 0 or

g1 = 3cal, (4.123)

This is condition (4.20) of Sect. 4.1. In the solution of (4.122) the secular terms
generated by factors with cos(7) on the right-hand side are also eliminated by
the condition (4.123). Rather than the strategy indicated by (4.123) we shall,
for simplicity set the constants ag = a; = --- = 0 in the solution. This simply
means that the system starts from rest with x(0) = 0 and is driven by the
forcing term from which it acquires the same frequency. This is known as a
synchronous oscillation. For this situation we do not need perturbations to the

angular frequency and g1 = g2 = -+ = 0. Then (4.119) becomes
r
Lew®) oy,
zo(r) =4 (4.124)
P
TS;H(T)7 a=1,

and z1(t) is the solution of

o 3 a2cl3{3 cos2(7-) +3COS(3T)} a4l
1, 2 4(a? -1) (4.125)

—%Cf‘ST?’{?) sin(t) —sin(37)}, fa=1.

From (4.99)—(4.101) we see that in solving (4.125) we must now distinguish
two special cases « = 1, as before, but also a = 3. Each of these will yield a
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resonance contribution in the form of a secular term which becomes large for
large 7. In fact if we pursue this method to higher orders in ¢ a resonance term
will arise if @ = 3", (wg = 3"€Q), for some n = 0,1,2,.... A resonance of the
form wy = pQQ, for p = 2,3, ..., is called ultraharmonic. That p = 3™ in this case
is obviously due to the cubic perturbation. Reverting to the original notation

and collecting terms up to O(e), when wgy # 3",

z(e,t) =

T cos(2) ecl3w? { 3cos(Qt)  cos(30) } _ (4.126)

wg 02 4((.«)8 —02)3 wg — 02 wg — 902

4.7.2 The Duffing Equation with a Soft Forcing Term

We use the Lindstedt-Poincaré method to investigate the Duffing equation, with
a soft forcing term, no damping and a natural unperturbed frequency wy. Thus

d2
d—tf +wj {z +eca®} = el cos(t), (4.127)

and with y(¢t) = @(t) this equation becomes
z(t) =y, y(t) = —wi{r + eca®} + €T cos(t). (4.128)
Using the notation defined in (4.113),

% =7, {g(a)}Q% = —o?{z + eca®} + el cos(1/g(e)). (4.129)

With the expansions given in (4.115)—(4.117) the terms of O(e) in (4.129) give

+a*zg =0. (4.130)
Again we impose the condition #(0) = 0 and (4.130) has the solution

xo(T) = ag cos(ar). (4.131)
The terms of O(e!) give

d dj d )
g W90 D0 200, 4 ead) + Teos(r). (4.132)
dr T T

From (4.130) (4.132), x1(7) satisfies the equation

d? ~
d_3:21 +a?z; = Tcos(r) + a?ag cos(art) {291 - %cag} — ioﬁcag cos(3ar).
-

(4.133)

The term in cos(ar) on the right-hand side of (4.133) will lead to secular con-
tributions to the solution.
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If « #1 this term can be eliminated by taking
g1 = Sedd, (4.134)

when (4.133) becomes

d? ~
dle +a?xy =T cos(T) — ia%ag cos(3ar), (4.135)
with the solution
r
x1(T) = ay cos(at) + ZL(? + éca‘g’ cos(3ar). (4.136)
a2 —

If a =1 then the forcing term has the same frequency as the natural frequency
of the system. Terms in cos(7) can be eliminated by taking

I‘==ia€ao{3ca§——891}7 (4.137)
giving the solution
x1(7) = ay cos(T) + %cag cos(37). (4.138)

Then, translating back to the original variables,

x(e,t) = (ap + €aq) cos(wt) + éaca% cos(3wt) + O(g?), (4.139)
where
_ 3.2 r 2
w(e) =woql+e|geag— 5] +0(E") . (4.140)
QWOGO

Curves of w(e)/wp (denoted by w in the plot) against ag at fixed T, ¢ and € can
be obtained using MAPLE . Here we take ¢ = 1 and € = 0.1 and the curves are
labelled with their value of I'/wd.

> with(plots):

> w:=(epsilon,a0l,g,c)->1+epsilon*(3*c*a0~2/8-g/(2*al)):
> text:=plots[textplot](

> {[-1.0,1.2,¢2¢],

> [0.9,1.2,¢-2¢],[0.9,0.8,¢2¢],[-1.2,0.8,¢-2¢],

> [0.25,1.025,°0¢1},align={ABOVE,RIGHT}, font=[TIMES,ROMAN,12]):

curve:=plot(
> {w(0.1,a0,2,1),w(0.1,a20,0,1),w(0.1,a0,-2,1)3},

\Y

a0=-4..4,w=0..2,labelfont=[TIMES, ITALIC,12]):
plots[display] ({curve,text});
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For I' = 0 the branches ag = 0 and ap = /8(w — wo)/(3ccwp) form a pitchfork
bifurcation. When I' # 0 the curve breaks into two branches, one giving ag > 0
and one ag < 0 (cf. Fig. 2.2).

4.7.3 The Van der Pol Equation with a Weak Forcing
Term

We use the KBM averaging method to investigate the van der Pol equation with
a weak forcing term and natural frequency wg. Thus

B(t) +e(@® — 1)i(t) + wiz(t) = el cos(Q). (4.141)

With &(t) = woy(t) this becomes

z(t) = woy, y(t) = —woxr + ¢ {(1 — 2y + M} . (4.142)

wo

We now make the same assumptions (4.52) (4.54) as we did for the autonomous
case and replace (4.55) and (4.56) by

0(t) = —wo + eBY(r) +2B@(r) + - -, (4.143)
2 (1)
wo {88792’0) +uM(r, 9)} +2AW(r) sin(0) 4+ 2rBM (1) cos(0)
+rsin(0){r® cos*(9) — 1} = M. (4.144)

wo
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In the autonomous case we obtained A (r) and BM(r) by using the orthogo-
nality property (4.53). However, now we have a term which is explicitly depen-
dent on t. A way of solving this in the case where the system is not close to
resonance is to write

T cos(2t)

’U,(l)(’l”, 9) = ’(1(1)(7”, 9) + m

(4.145)
Inserting this form into (4.144) replaces (M (r, 6) by @) (r, #) and eliminates the
term T cos(Qt)/wo. If we now assume that @) (r, §) satisfies the orthogonality
condition (4.53) the method proceeds as in the autonomous case with the only
differences being the extra term in u(!)(r, ) and the presence of wy. Using (4.97)
the solution is now
el cos(§2t)
wh — 0%
The more interesting and difficult case is near resonance when €2 ~ wy. This
solution is dominated by the forcing term and the phenomenon is called en-
trainment. To deal with this situation a different approach is needed.

We define ¢ = Qt + 6, which varies slowly with time near to resonance since,
from (4.143)

x(e,t) = rcos(wot) — Lep? sin(3wot) +

= (4.146)

3

% =0+ j—i =Q —wo+eBY(r) +0(e?) ~eBY(r). (4.147)
Then
cos(Qt) = cos(¢p — 0) = cos(¢) cos(#) + sin(¢) sin(h) (4.148)

and substituting this into (4.144) and, as for the autonomous case, multiplying
successively by sin() and cos(f) and integrating over [0, 27] gives

1 [ 5 Tsin(¢)

1 — in2 2(9) —
AW () o rsin(0)[r” cos” () — 1]d0 + oy
T sin(¢)
1 2
= Lo — 4.14
b+ 250, (4.149)
1 [ T cos(¢)
(€9) _ 2 co0s2(0) — it )
BW(r) o sin(6) cos(6)[r* cos*(#) — 1]d6 + Sy
T cos(¢)
—_—. 4.1
2rwo (4.150)
From (4.54) and (4.143)
dr 1_ [ 4T sin(¢) 3
dr 1 _ 4.151
g 85{ o +4r—r’;, (4.151)
% = Q+%:Q_w +M_ (4.152)

dt dt 0 21wy



106 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS

and from (4.144)

92uM(r, 0 .
wo {% +uM(r, 9)} + irs sin(30) = 0, (4.153)
which has the solution
3 .

1) T sin(36) 4154
u(r, 0) 3w (4.154)
Since cos() = cos(¢ — Q) it follows from (4.52) that

3 sin (36
2(e,1) = E(t) cos() + ¢(t) sin(Q1) + %2() +0(e2), (4.155)
0

where
§(t) =rcos(¢),  ((t) =rsin(¢), (4.156)
are called the van der Pol variables. From (4.151) (4.152)
d¢ 1 1
o = —aeoC+get{4-€ - ¢, (4.157)
K e lea— 4 (4.158)
T 5608 + g&C & —C €Y. .
where
Q 1 L (4.159)

—wp =75 =_—. :

0 2 g, Y 2(4]0

The equilibrium points in the van der Pol plane of the variables {, (} are given
by

300 —g4-E - = o, (4.160)
sEo+ic{a-2-¢ = - (4.161)
Squaring and adding these equations gives

flo,p) =a*p+p(1 = p)* =72, (4.162)
where

p=1{€+} (4.163)

Periodic trajectories in the van der Pol plane are now given by the positive
roots of (4.162). Suppose that (§,§) is a point on a periodic solution. That is
p(o,7) = {€2 + (2} /4 is a root of (4.162) and (£, ) satisfy (4.160) (4.161). Let
AE=¢— ¢ NC = — (. Substituting into (4.157) (4.158) and linearizing

dd—At5 = o062 -2~ £%) - §eA((20 +£0), (4.164)
dd—AtC = i&Af(?U—éé) + i5A<(2—2f3—52). (4.165)
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Then the periodic orbit stability matrix is

0 1£2-2-8) —3e(20+£0)
J(t) = 3 ) : (4.166)
e20—&)  §e2-2p-¢)

The eigenvalues of this matrix are

A® =1 {p +/p? 4q} : (4.167)

where

p=e1-2p), q=72{0®+1—4p+3p%},
(4.168)
p* —dq = *(p* - o?).

Since these eigenvalues determine the stability of the whole periodic solution,
they are, as might be expected dependent only on o and p and not individually
on ¢ and (. Using (4.167)—(4.168) the {0, p} plane can be divided into regions
corresponding to the type of the equilibrium solution Fig. 4.1. When ¢ < 0 the
equilibrium point is a saddle-point and the curve ¢ = 0 separates the region
of saddle-points from other types of equilibrium solutions. In the latter region
the parts with p < 0 and p > 0 correspond respectively to stable and unstable
solutions and the region is further divided between focii and nodes according as
p? < 4q and p? > 4q.

The value of p, for particular o and v is given by a solution of (4.162). The
cubic function f(o, p), plotted against p passes through the origin and tends to
infinity for large p. Tt therefore cuts the horizontal line at 2 either one or three
times for positive p. The condition for three positive roots of (4.162) is that
the two turning points of f(o, p) are at positive values of p and lie on opposites
sides of the line v2. Now

Z_,J; =024+ 1—4p+3p°% (4.169)
with roots

p®) = L2+ /1302, (4.170)
where

f(a,p<i>) = %{1+902i(302—1)\/1—302}. (4.171)

The cubic f(o, p) will have real turning points if 30> < 1 and a point of inflection
if 302 = 1. The former will lead to three positive roots of (4.162) if

o {1 +902 —[1— 302]3/2} <y <2 {1 902 +[1— 302]3/2} . (4.172)
This band of values of 2 giving three periodic solutions develops as o is reduced
through 1/v/3 with 42 = 8/27 and there will be three roots on the o = 0 axis
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Figure 4.1: The {0, p} plane divided into regions by the lines ¢ = 0, p = 0 and
p? = 4q. These regions correspond to the stability types (SN) stable node, (SF)
stable focus, (USF) unstable focus, (USN) unstable node and (SP) saddle point,
of the periodic solutions in the forced van der Pol equation. Solution curves for
(4.162), parameterized and labelled by 72, are shown by broken lines.

if v2 < i. Solution curves for p plotted against o and parameterized by 2
are shown by broken lines in Fig. 4.1. The unforced case is obtained by setting
o =+ =0in (4.162). This yields the non-zero solution p = 1, which gives r = 2
agreeing with the result of Sect. 4.6. Since this solution lies on the curve ¢ =0
it is an improper stable node.
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4.7.4 Subharmonic Solutions

In Sect. 4.7.1 we consider the Duffing equation for a system with natural fre-
quency wg and a hard forcing term of frequency 2. We showed that the presence
of the cubic term of O(g) led to an expansion in powers of € which contained
harmonic terms of wavelength 27/(pQ) for p = 3", n =1,2,.... In this section
we again consider the same forms (4.111)—(4.112) for Duffing’s equation but we
now ask under what conditions on wg, ¢ and I' the solution may contain sub-
harmonic terms with wavelengths 27m/Q, for some integer values of m. With
7=t and § = y/Q (4.112) gives

d d
& 7, 02— —wi{z +eca®} + T cos(T). (4.173)
dr dr
Let
x(e,7) = xo(1) +exi (1) + %a2(1) + O(e), (4.174)
G(e,7) = olT) +eii(r) + *a(7) + O(e?), (4.175)

Qe) = Qo+ +20+0(?) (4.176)
and substituting into (4.173) the terms of O(e%) give

d2I0

Q%F + wizo = I cos(T). (4.177)

which has the solution

r

1130(7') = ap COS(L«)()T/Q()) + bo Sin(wOT/Qo) + QCL@ (4178)
wy — 2

In terms of the time variable ¢ this solution will have period 27m/§, for m > 1,

if Q9 = mwy giving

xo(T) = ag cos(t/m) + bg sin(r/m) — G(m) cos(t). (4.179)
where
r

_ , 4.180
Gm) = o (4.180)
The terms of O(e!) give

2 d2

2mwosh dff + m2w? df; — e+ ead) (4.181)
and substituting from (4.179) gives
d2z T 2Q) .
dT2l m_12 = m%io {ao cos(r/m) + by sin(r/m) — m>G(m) cos(7) }

- # {ag cos(7/m) + by sin(r/m) — G(m) cos(7-)}3 )

(4.182)
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Secular terms will occur in the solution unless the coefficients of cos(7/m) and
sin(7/m) on the right of (4.182) are zero. To determine these coefficients we
need to expand the final cubic term. In general this is quite complicated because
we need not only to reduce all terms to a form with only a single sine or cosine,
but we must take into account the fact that, for example 1 — 2/m = 1/m,
when m = 3. As an example we consider the particular case m = 3. Then the
conditions for the coefficients on the right-hand side of (4.182) to be zero are

2 8w I'(a — b3)
2 2 041 0 0
b - = 0 0 4.183
o {“O Tt 5 T Toe } 802 (4.183)
2 8w Tagbo
bo < a? + b2 — = — . 4.184
0 {ao ACh 32wg 9c 4w ( )

Equation (4.184) has one solution by = 0 for which (4.183) gives ag =0 or as a

root of the quadratic

a2 . % F2 . 80}091
O 8wZ ' 32uwi 9c

=0. (4.185)

If by # 0 then by subtracting agx (4.184) from bgx (4.183) we have by = ++/3ay.
Then ag is a root of the quadratic

FCLO F2 8(.«)091
4at + — — =0 4.186
ao + 4w + 32w 9¢ ’ ( )

which can be expressed in the form

1—‘(—2@0) 1—‘2 _ 8&]091
8w 32w 9c

(—2a0)? — =0. (4.187)

So if (&gi), 0) are the solutions obtained from (4.185) when by = 0, the solutions

obtained from (4.186) are (—2déi), $2\/§déi)). In each case the nature of the
solutions are the same and depend on wq, 1, ¢ and T.

Problems 4

1) Counsider the equation
Z(t) + z(t)[1 —ex(t)] = 0,

for an asymmetric spring. Find the equilibrium points and identify their
types. Sketch the bifurcation diagram in the {e,z} plane. Use

(a) the Lindstedt-Poincaré method,
(b) the KBM averaging method,

to find terms up to O(e) in the expansion of the periodic solution z(e, t) for
which #(e,0) = 0 and x(g,0) ~ ag + €a;.
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2) Calculate the synchronous contribution to the solution of
#(t) + wi{a(t) — ex?(t)} = T cos(Q),

to order O(el), when wg # Q,29Q,4€, indicating the significance of these
special values.

(The method to use is the Lindstedt-Poincaré method, except that, as we saw
in Sect. 5.4.1, if only the synchronous part is required, no expansion terms
are needed for the frequency.)

3) Use the Lindstedt-Poincaré method to find to O(e!) the solution of the equa-
tion

#(t) + wi{a(t) — ez ()} = el cos(Q),
when #(0) = 0.

4) Consider the equation
E(t) + wi{z(t) + ex?(t)} = I cos().

By using the expansion 2 = Qy + € + ..., and looking for subharmonic
solutions with Q¢ = 2wy, find a solution of the form

z(t) = A(e) + B(e) cos (%Qt) + C(e) cos(2t) + +D(e) cos (%Qt) + E(e) cos(20t),

evaluating the coefficients to O(e).

5) Describe the assumptions involved in the application of the Krylov-Bogoliubov-
Mitropolsky averaging method to the equation

Z(t) +ef(z, &) + x(t) = el cos(0),

where ¢ is small and positive.

Implement this procedure in the case van der Pol’s equation where

fla,d) = (@ = Vi

and show that, if 2(0) = ro + O(e), 2(0) = O(e), where r( is a constant and
) is not close to unity, the solution to O(e) is

el cos(Q2t)

x(e,t) = rcos(t) — 3—1257°3 sin(3t) + T

where r is given by

Zggji::%; = exp(—et).
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Chapter 5

Time Series and Chaos

5.1 The Analysis of Time Series

A time series is just sequence of values z(tg), z(to + At), z(tg + 2At),.. ., of
x(t), for some At > 0. The sequence is often the output of some experiment,
or the data collected by some company or survey. As an example, Fig. 5.1
shows the records of a telephone company for the number of newly installed
lines, recorded in monthly periods over nine years. As might be expected there
is a gradual upward drift of the yearly average and also a roughly periodic
behaviour over each yearly period. We should also expect there to be a certain
random element (possibly based on global or national economic factors) in the
distribution. In fact most work on time series is concerned with systems with a
stochastic component. In our discussion we shall, however, be concerned entirely
with deterministic systems and those for which the graph of the output data has
the overall appearance of some sort of periodicity. This could be something very
simple like measuring the displacement of pendulum at regular time intervals
At. In this case we know that, if the displacement is fairly small, the data
will fit the curve Acos{w(to + nAt)} for some A, w and to. We have seen in
Sect. 4.7 that if the simple harmonic oscillator has natural frequency wq and is
subject to a forcing term of frequency €2 then, if wg # Q, the solution (4.105)
contains terms of frequency wg and Q. If pwg = ¢f2, where p and ¢ are coprime
integers the solution is periodic of period 27p/Q = 2mwq/wyp, but if this is not
the case the system will be quasi-periodic. When the system is non-linear and
satisfies Duffing’s equation we have seen that the response to a forcing term
of the form I cos(Qt), whether it is hard or soft, is to generate terms in the
system response which are of frequency r{2 for positive integers r, which are
ultraharmonic terms. We have also seen that subharmonic terms of frequency
Q/r can also be generated by perturbing the forcing.

Suppose now that, instead of trying to find analytic properties of the solu-
tion of a non-linear equation, we applied methods of numerical integration to
calculate the values of the dependent variable z(t) along a trajectory subject

113
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ISR B

1961 1962 1963 1964 1965 1966 1967 1968 1969
Year

Figure 5.1: The numbers of new lines installed by the Tomasek telephone com-
pany in monthly periods from 1961 to 1969.

to certain initial conditions. The result of this process would be a sequence
of values x(to), xz(to + At), x(to + 2At),.... In other words we will have ob-
tained a time series, no different in kind from that obtained by measuring data
from an experiment. The fact that we started with a particular equation would
be largely irrelevant. Our task is to analyze the data, based on the general
observation that it has an overall periodic-type structure.

A useful approach to analyzing time series is to use Fourier analysis. This use
of Fourier methods is a little different from the problem to which such methods
are usually applied. In standard applications we are given the analytic form of a
function of time f(¢), which we know to be of period T'. That is f(t+T) = f(¢),
for all ¢. We want to resolve f(¢) into its harmonic components of periods T'/n.
That is

£(t) = %Ao—l—i{Ancos (@) + B, sin (@)} (5.1)

n=1
The unknowns in this formula are the coefficients Ay, A,, B,, n =1,2,.... But
since
I 27mnt
T/() oS (%) at = §%I(n,0), (5.2)
I 27mnt
7/ sin (”T") dt = o0, (5.3)

Il
=
—

ot
=
=

l/T cos _27mt sin 2mmt de
T J, T T
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t sec.
Figure 5.2: A time series plotted over 100 sec.
e 2t 2mmt
?/0 cos< 7;71 )cos( 7;% )dt = %6(Kr)(n7m)7 (5.5)
1 [T 2mnt 2rmt 1 oK
?/0 sin ( T > sin < T ) dt = 55( D (n,m), (5.6)

it follows that

T T
%/0 cos <¥) f()de

T T
%/0 sin <¥) f(o)de

In the case of time series analysis we have a sequence of data points rather than a
functional form and, although we may have indications of periodic behaviour we
have no firm knowledge of the period. Indeed the series may be quasi-periodic
or chaotic. Consider, as an example, the graph in Fig. 5.2. It has a general
periodic structure and seems to have a period of around 55 sec. but this may
be deceptive. It may have a much longer period or possibly be quasi-periodic.

A,, n=0,1,2,..., (5.7)

N[

1
$B.,  n=12... (5.8)

In fact, I can reveal that, in this particular case, the graph was plotted! from a
data file obtained from calculating the values of the function

x(t) = 11sin(t/9) 4 20 cos(3t) + 6 cos(5t) + 8 sin(13t), (5.9)

IThe graphs for Figs. 5.2 and 5.3 were obtained using FORTRAN 90 programs.
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at intervals of At = % sec. The periods of the successive terms in this expression
are Ty = 187, T = 2n/3, To = 2« /5 and T3 = 27/13. Since Ty = 27T} =
45T, = 11775, the period of z(t) is Ty ~ 56.549 sec., quite close to our estimate

and (5.9) can be written in the form

(t) = 11si 2mt 4920 2m27t 46 2m45t 185 2ml117t (5.10)
z(t) = 11sin T cos T cos T sin T (5.

0 0 0 0

Thus if we know the wavelength of the time series we can use the Fourier method
of (5.1), (5.7) (5.8) to extract the coefficients of the harmonic contributions. In
this case the only non-zero coefficients are By = 11, By17 = 8, As7 = 20 and
Ays = 6. Of course, in practice, we will not have the functional form (otherwise
we’d know the answer before we started), but only a data set. The integration
will be numerical with a certain amount of error. This question is discussed in
more detail below. Of course, we could still attempt to use this approach if we
had an approximate estimate of the period. In this case, however, we would find
it difficult to detect contributions which were not close to harmonic components
of the approximate period.

Instead of attempting to use methods based on an assumed period, we now
outline a procedure which relies on data being collected over a long period of
time. Consider the transformed function

1 T
Y(T3w) = ;/0 exp{iwt}x(t)dt. (5.11)
Now
cos{(wi —wa)T} W
27(w1 — wo) 7(w? — w))
1 (7 ) cos{ (w1 + wa)7}
;/0 cos(wit) sin(wat)dt = N CET w1 # wa, (5.12)
1f1 cos{2wiT} _
2 {? - T ) w1 = wa,
sin{(w; —w2)7} | sin{(w1 + we)7}
L dr(wr —ws) T Zr(wiFws) 0 1T
—/ cos(wit) cos(wat)dt = (5.13)
T Jo 1/ sin{2w;7} _
oVt 2o, ¢ w1 = w2,
sin{(wi —w2)7}  sin{(wi +ws)7}
L dr(wr—ws) | 2r(witws) 0 1T
= / sin(wyt) sin(wqt)dt = (5.14)
T Jo 1 1 sin{2wq7} _
217 " 21wi [ Wi = W2

and we suppose that 7 is large. Then the integral (5.12) is O(7~!) even when
w1 = wy. However, (5.13) and (5.14) both have an O(7°) term of § when
w1 = wa. Since

sin{ (w1 —wa)7} 1
27‘((4)1 — wz) -2

%(wl —wy)?r? when wy ~ wa, (5.15)
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there will be a ‘spread’, with width ~ 1/7, around the maximum of% at w; = wo.

With this information we can consider the function (7;w) computed using
x(t) of (5.9). As long as 7 is sufficiently large we expect both the real and
imaginary parts of y(7;w) to be almost zero everywhere except near to peaks
of height 10 at w = 3 and 3 at w = 5 in the real part, and near to peaks of
height 5.5 at w = % and 4 at w = 13 in the imaginary part. Results computed
directly from the functional form with 7 = 100 can be obtained using MAPLE .
The code for computing real and imaginary parts is:

> vl:=t->11%sin(t/9):

> wl:=(tau,omega)->int(v1(t)*cos(omega*t)/tau,t=0..tau):
> ul:=(tau,omega)->int(v1(t)*sin(omega*t)/tau,t=0..tau):
> v2:=t->20%cos(3*t):

> w2:=(tau,omega)->int (v2(t)*cos(omega*t)/tau,t=0..tau):
> u2:=(tau,omega)->int (v2(t)*sin(omega*t)/tau,t=0..tau):
> v3:=t->6*cos(bx*t):

> w3:=(tau,omega)->int (v3(t)*cos(omega*t)/tau,t=0..tau):
> u3:=(tau,omega)->int (v3(t)*sin(omega*t)/tau,t=0..tau):
> v4:=t->8*sin(13%t):

> w4:=(tau,omega)->int (v4(t)*cos(omega*t)/tau,t=0..tau):
> u4:=(tau,omega)->int(v4(t)*sin(omega*t)/tau,t=0..tau):
> ww:=(tau,omega)->wl(tau,omega)+w2(tau,omega)+w3(tau,omega)+w4(tau,omega) :

> uu:=(tau,omega)->ul(tau,omega)+u2(tau,omega)+u3(tau,omega)+ud(tau,omega) :
The plot for R{~v(100,w)} is then given by:

> plot(ww(100,w) ,w=0..20,labelfont=[SYMBOL,12]);
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and for S{y(100,w)} by:

> plot(uu(100,w) ,w=0..20,labelfont=[SYMBOL,12]);

10 12 14 16 18 20
W

4
s

It will be seen that the dominant peaks in these graphs are at the points
predicted. There are also weaker peaks from the sine contributions in the plot
of the R{~(100,w)} and the cosine contributions in the plot of I{~(100,w)}.
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These arise from the first term in the integral (5.12). Since this term changes
sign as wy passes through the value w; we observe that the function has negative
and positive values in this region. A more accurate guide to the nature of the
function z(t) is the graph of |y(7,w)|. This is called the spectral function and
its peaks give the spectrum of x(t). The spectral function |y(100,w)| can be
obtained using:

> cc:=(tau,omega)->sqrt (ww(tau,omega) *ww (tau,omega) +uu(tau, omega) *uu(tau,omega)) :

> plot(cc(100,w) ,w=0..20,labelfont=[SYMBOL,12]);
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Of course, the integral form for (7;w) given by (5.11) is not appropriate to the
analysis of a time series since the only information is a data set? z(0), z(At),
x(2A¢),...,x([N — 1]At). We need to replace t by nAt and 7 by (N —1)At in
(5.11) and approximate the integral by a sum. This gives

| Nl
v(N, At;w) = N Z exp(iwnAt)z(nAt). (5.16)

n=0

In Fig. 5.3 |7(1000, 1/10;w)| is plotted from a data file obtained from the func-
tion (5.9) rather than by integrating the functional form. Comparison with
the MAPLE plot for the spectral function on page 119 and Fig. 5.3 shows that
none of the essential properties of the spectrum is lost by using the time se-
ries rather than the analytic form. However, use of the formula (5.16) means

2Without loss of generality, the starting time to can be set to zero.
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Figure 5.3: The plot of the spectral function |y(1000,1/10,w)|, computed from
a data file for (5.9).

that v(NN, At;w) is periodic in w with period 27/At. The period in this case is
207 = 62.83 as can be clearly seen in Fig. 5.3. If the range of w were extended in
the MAPLE plots derived from the integral formula (5.11) then such periodicity
would be seen.

Further consideration of time series will be necessary in relation to the detection
of chaotic behaviour in dynamic system.

5.2 Chaos in Dynamic Systems
There are three things to be considered in relation to chaos:
e We need a definition of chaos.

e We need some methods for detecting if a system, either theoretical
or experimental, is behaving chaotically.

e We need some idea of what kinds of systems will have the possibility
of behaving chaotically.

In fact there are very few attempts in the literature to define chaos in a
mathematical sense. The clearest one I know is that given by Devaney® for

3R. L. Devaney, 1989, Introduction to Chaotic Dynamic Systems, Addison Wesley, 2nd Ed.
p. 50.
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a discrete map x(n) — x(n + 1) = F[x(n)] on a space V. According to this
definition f is chaotic on V if:

(i) It has sensitive dependence on initial conditions.
(ii) It is topologically transitive.
(iii) Periodic points are dense in V.

Sensitive dependence on initial conditions is just another way of describing un-
predictability and this condition is the most important both for discrete and con-
tinuous systems. Topological transitivity simply means that for any U, W C V
there will be, under sufficient number of iterations, images of points of ¢/ in
W. Periodic points occur only for discrete maps (see box below). However, an
analogue does exist in the occurrence of subharmonic periodic solutions which
give rise to periodic points on a Poincaré section.

At a meeting on Chaos sponsored by the Royal Society in London in 1986,
there was* a certain unwillingness to come up with a definition of chaos. Even-
tually the definition proposed was:

Stochastic behaviour occurring in a deterministic system.

In other words the output of the system looks as if it is random in spite of the
fact that the system, or equation, generating the output is entirely deterministic.

The best way to detect chaotic output from a system is to observe how
the nature of the solution changes when parameters of the system are changed.
For these purposes we normally suppose that we have waited a sufficiently long
period of time so that transient components of the output have disappeared.
This means that the trajectory has reached its attractor. We have already seen
that equilibrium points and periodic solutions are attractors and in Example
1.12.2 we saw an example of a Hopf bifurcation between the two. In Example
3.3.1 we considered quasi-periodic motion on a torus and saw that the collection
of such trajectories on the torus could be the attractor of a dynamic system. We,
therefore, have discovered three types of attractors, equilibrium points, periodic
trajectories and quasi-periodic trajectories, none of which is chaotic. What other
types of attractors can exist? According to Devaney’s definition the chaotic
attractor of a difference equation is a region which is topologically transitive
and in which periodic points are dense. Below we give a brief discussion of the
logistic map

x(n+1) = ax(n)[1 — x(n)] (5.17)

which maps the unit interval into itself when 0 < a < 4. As we shall explain,
after a sequence of bifurcations, the behaviour becomes chaotic at a = 3.569946.

We are, however, in this course concerned with differential equations and we
speculate about how complicated a differential system needs to be to exhibit

4 According to lan Stewart 1989, Does God Play Dice? Penguin.



122 CHAPTER 5. TIME SERIES AND CHAOS

chaotic solutions. In Example 1.8.3 we showed that the differential logistic
equation

&(t) = cx(b — z), (5.18)

can be approximated to the logistic map (5.17) with a = 1 — ecb, where ¢ is
small. This means that a is close to one, and thus outside the chaotic range. This
serves to suggest that it may be more difficult, or perhaps impossible, to find
chaotic solutions for one-dimensional autonomous systems. That we can restrict
our attention to autonomous systems follows from the discussion in Sect. 1.5,
where we showed that an d-dimensional non-autonomous system can be made
equivalent to a suspended (d+ 1)-dimensional autonomous system. A trajectory
whose attractor is an equilibrium point, a periodic solution or a quasi-periodic
solution is predictable and therefore not chaotic. However, according to the
Poincaré-Bendixson theorem (see Sect. 3.4.1) all solutions of a two-dimensional
autonomous system which for ¢ > tg, for some tg, are contained in a compact set,
of the {z, y} plane tend to a periodic solution or an equilibrium point. This es-
tablishes® that chaotic trajectories cannot exist for two-dimensional autonomous
systems. This result also holds, of course, for one-dimensional autonomous and
non-autonomous systems. We must, therefore, consider, two-dimensional non-
autonomous systems or (at least) three-dimensional autonomous systems. The
type of attractors of chaotic trajectories are strange attractors. Their defining
characteristic is that they have a non-integer fractal dimension. We shall not
have time for a detailed discussion of fractals.® However, it may be useful to
include the definition of fractal dimension (see box).

In fact it is ‘almost possible’ to define chaos as motion to a strange attractor,
except that there is some indication that a strange attractor can sometimes be
associated with non-chaotic motion” and Hamiltonian systems, although they
can be chaotic, do not have attractors.®

As we have seen with any time series it is often quite difficult to detect its
character just by visual inspection of the graph. We need some other means
of ‘filtering out’ the important qualities associated with different types of be-
haviour. We have already seen in Sect. 5.1 that a useful tool in this respect is
the spectral function. As we shall see it can be used not only to determine the
frequencies of periodic components but also indicate the presence of chaos. In
addition to this an important test of the presence of chaos is to calculate the
Lyapunov exponents.

5.2.1 Lyapunov Exponents

Chaos in a deterministic system implies a sensitive dependence on initial condi-
tions. This means that if two trajectories start close together they will in most

5Subject to the restriction of having to consider trajectories contained in a compact set.
6A good introduction is that of Hans Lauwerier, 1987, Fractals, Penguin.

7See F.C. Moon 1992, Chaotic and Fractal Dynamics, Wiley, for references.

8See E. Ott 1993, Chaos in Dynamic Systems, Cambridge, Chapter 7.
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Suppose S is a set of points in d—dimensional space. Let N(¢) be the minimum
number of hypercubes of edge-length ¢ needed to cover S. Then the fractal
dimension of § is

D(S) = 1im V(O}

=0 In{1/6} (5.19)

Try this out for a 1 x 1 square. The number of squares of side 1/n needed to
cover it isn?. SoD = In(n?)/In(n) = 2. In this case you don’t even need to take
the limit to get the required result. Now consider the case of the Sierpinski
gasket or sieve.

This is constructed by successive removal of the central % from an equilateral
triangle. In this case if the lengths of the sides of the covering squares goes down
by a factor of% the number of such squares goes up by a factor of 3. Thus, with

0= (%)n N(¢) = 3" and the fractal dimension is In(3)/ In(2) =~ 1.5849.

We can define a fractal as an object with non-integer fractal dimension.

cases move exponentially away from each other on a small time scale. Thus if
0(to) is a measure of the distance between the phase points on the trajectories
at time ¢t = ¢y and 0(t) is the distance at a small, but later, time ¢

(t) = 0(to) exp[AL(t — to)]. (5.20)
If the system is a difference equation then (5.20) is replaced by

9(n) = 0(0) exp[ALn]. (5.21)
The divergence of chaotic orbits must be only a local property because if the
system is bounded, as it is in the case of most physical experiments, d(¢) cannot

go to infinity. Thus to define a measure of divergence we must average the
exponential growth at a sequence of points along a trajectory. We define the
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sequence tg,t1,ts,...,tN, where t,, = tg +nAt. Then

O(tn) _ d(tn) dtn—1)  t1) (5.22)

D(to) D(thl) D(tN,Q) D(to)

and, from (5.20),

N
A= ! Zm{D?t(j")l)}, (5.23)

tn —to —

Using a similar argument

1 N o(n
AL_N;IH{o(n(i—)l)}’ (5.24)

for a difference equation. With the map of the form x(n) — x(n + 1) = F[x(n)]
this becomes,

, as N — oo. (5.25)

x=x(n)

N
1 dF[x]
~ — |
A N; n} ax

Lyapunov exponents give a means of classifying the dilating and contracting
characteristics of attractors. For a one-dimensional system the condition for
chaos is A, > 0, which, as we have seen, can be the case only for difference
equations. In general, in a d dimensional system, there will be d independent
Lyapunov exponents, which measure dilation or contraction in the d independent
directions in space and a necessary condition for chaos is that at least one
Lyapunov exponent is positive. It must also be the case that at least one
Lyapunov is negative, otherwise the set could not be an attractor. For d = 3 we
have one more exponent which is along the trajectory. It is normally supposed
that points on the same trajectory do not diverge from each other. This implies
a Lyapunov exponent of zero in the direction of the trajectory and we have
fixed the parity of all three Lyapunov exponents. Before discussing in detail
the calculation of Lyapunov exponents for differential systems, we consider the
simple case of the logistic equation.

5.2.2 The Logistic Map

Because this course is intended to be restricted to continuous systems we shall
not spend time in a detailed analysis of this system but just summarize the
main results. For those of you not familiar with the analysis of discrete systems
the main mathematical results are listed here.
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For the discrete map x(n) — x(n+ 1) = F[x(n)]:
(i) A fixed point x* of the mapping is given by x* = F[x*].

(ii) The fixed point x* is stable if |dF/dx|* < 1, unstable if
|dF/dx|* > 1 and marginal if |dF/dx|* = 1.

(iii) A periodic point x\) of period p is a member of a set x() — x(2) —
- — x®) — % This set of points is called a p-cycle. x*) is a
fixed point of the iterated mapping

times
L2
x = FF---FF(x).

Using this information it is simple to show that the logistical map has the
following properties:

(i) In the range 0 < a < 1 the map has a single stable fixed point x = 0.
(ii) A transcritical bifurcation occurs at @ = agp = 1 between the fixed
points x = 0 and

1
=1 -, 5.26
XT=1- (5.26)

(Of course, for a < 1, z* < 0.)

(iii) The fixed point x* is stable for ap < a < a1 = 3, when a bifurcation
occurs to a two-cycle given by

) 1—|—a:|:\/(a—|—1)(a—3).
2a

(5.27)

(iv) The two-cycle is stable for a; < a < az = 14+/6, when a bifurcation
to a four-cycle occurs.

(v) When a = 4 the substitution
x = sin?(76) (5.28)
gives (5.17) in the form
O(n+1) =NZ(20(n)), (5.29)

where N'Z denotes ‘non-integer part’.

At this point it stops being ‘simple to show’ and the analysis becomes increasing
difficult. However, a mixture of analysis and computing has established the
following;:
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(vi) There is a sequence of period-doubling bifurcations at the points
as,ay,as, . . ., where ay, is the bifurcation from the 25~ !-cycle to the
2k_cycle.

(vii) klim = G0 = 3.569946, and, for as < a < 4, the system is chaotic.

(viii) It was shown by Feigenbaum that, with

Sp = ak — a’f—17 (5.30)
Ak4+1 — Ak
klim 0 = 0 = 4.6692016. (5.31)

The remarkable fact is that the Feigenbaum number § occurs in a
wide class of mappings exhibiting period-doubling and not just the
logistic map.

(ix) Before a reaches 4, cycles of all orders occur. It was shown by
Sharkovskii, that if all the positive integers are ordered like

3— 5— 7T — 9 — 11- -+ —

6 — 10 — 14 — 18 — 22— o=

2"3—- 2"5— 2"7T— 29— 2"11 — ... —

2" — nl 4— 2 — 1,
then the cycles occur in the reverse order. The first odd cycle (of
very long period) occurs at a = 3.6786 and the three-cycle, which is
last, occurs at a = 3.8284.

The bifurcation diagram of the logistic equation is shown in Fig. 5.4. The two,
four and eight cycles are clearly visible, as is also the ‘window’ showing the
occurrence of the three cycle.

We can determine the onset of chaos by calculating the Lyapunov exponent,
which from (5.17) and (5.25) is given, for large N, by

N
AL =~ % Z In|a[l — 2x(n)]|. (5.32)

A plot of A, with N = 1000 is shown in Fig. 5.5.

Bifurcation points correspond to marginal stability with A\, = 0 and the
first point where the exponent rises to touch the value zero is at the bifurcation
point a = ag, when the two-cycle becomes unstable. (More structure with a



5.2. CHAOS IN DYNAMIC SYSTEMS 127

lambda_L

3.3 3.4 35 3.6 3.7 3.8 3.9 4

Figure 5.5: The Lyapunov exponent for the logistic equation.
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Figure 5.6: The spectral function for the logistic equation with a = 3.2.
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Figure 5.7: The spectral function for the logistic equation a = 3.9.
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clearer indication of subsequent bifurcation points would have been achieved
by using a larger value of N.) The point where the curve first crosses the
line A\;, = 0 corresponds to the onset of chaos at a = as,. Subsequent dips
in value correspond to the occurrence of a new sequence of cycles with the
strong dip in the interval (3.8,3.9) indicating the presence of the three-cycle.
An alternative test for the presence of chaos can be made by using the spectral
function |y(N, At;w)|, which is shown for ¢ = 3.2 and a = 3.9 in Fig. 5.6 and
Fig. 5.7.9 In each case the sharp maxima correspond to the presence of cycles.
The value a = 3.2 is in the two-cycle region and the spectral function is close to
zero apart from at the cycle frequencies. The value a = 3.9 is deep within the
chaotic region and the form of the function indicates cycles of all orders.

5.2.3 The Rossler Equations

Consider first the equations

L(t) = -y —z, (5.33)
y(t) =z + ay. (5.34)
For any fixed z, they have the single equilibrium point z = —az, y = —z with

stability matrix

0 -1
J' = < ) , (5.35)
1 a

with eigenvalues A = 1{a & v/aZ —4}. We shall confine out attention to
the case 0 < a < 2, when the equilibrium point is an unstable focus. Now we
introduce a third equation

2(t) =b— zc, (5.36)

with ¢ > b > 0. In the three-dimensional space of {x,y, z} the equilibrium point
is now at x = —ab/c, y = —b/c, z = b/c with stability matrix

0o -1 -1
J = 1 a 0o 1, (5.37)
0 0 —c

Two of the eigenvalues are the same as those of the previous case and the third
is \®) = —¢. So the equilibrium point is attractive in the z—direction. The
general solution to (5.36) is

z = Cexp(—ct) + b/c. (5.38)

9 Again we use At = 0.1 giving a period in w of 207.
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Trajectories converge towards the plane z = b/c, while at the same time spi-
ralling outwards in the x and y directions. So this is not a particularly interesting
system. Suppose that we now modify (5.36) by adding a non-linear term to give

2(t) =b+ z(xz — ¢). (5.39)
Equations (5.33), (5.34) and (5.39) define the Rdssler equations. This system

has two equilibrium points
e = % {c +vVeZ - 4ab} , yF) = —2F) /q, ZF) = zH /g, (5.40)

For different values of a, b and ¢ one member of this pair has one real positive
eigenvalue and a complex pair with negative real part, and the other has one
real negative eigenvalue and a complex pair with positive real part.

Consider (5.39) alone. When the value of x is less than ¢, z remains stable
and this subsystem tends to drive z to a value near to b/(c — x). However, with
small b, this quantity is small and (5.33)—(5.34), cause the values of z and y to
spiral outwards. The growth in x causes the sign of the z(z — ¢) term in (5.39)
to change. The trajectory leaps upwards. Once z is large the —z term in (5.33)
comes into play and forces the value of x downwards again. The whole process
then repeats itself. The overall effect of the non-linear term is to confine the
attractor to a region around the origin. It is interesting to compute trajectories
for this system. To do so it is necessary to use the corresponding difference
equations. Take x(n) = z(nAt), y(n) = y(nAt) and z(n) = z(nAt) and replace
#(t), y(t) and 2(t) by their two-point finite equivalents in (5.33), (5.34) and
(5.39). This gives

x(n+1) = x(n) —y(n)At — z(n)At,
yn+1) =x(n)At +y(n)[l + art], (5.41)
z(n 4+ 1) = bAt+ z(n)[1 + {x(n) — c}At].

Using some small (but not too small) value for At, trajectories can now be
computed.'® We consider the case a = b = 0.2. Then for values of ¢ less
than about 2.83 the projection of the trajectory into the {x,y} plane is a simple
periodic orbit and the output x(n) is a periodic function, with a single frequency
(Fig. 5.8(a): a simple cycle). When c is increased through 2.83 the trajectory
just fails to close on itself after one circuit and does so after two (Fig. 5.8(b):
a two-cycle). The period doubles and the frequency halves to a subharmonic.
By ¢ = 4.2 the process has repeated, leading to an orbit which closes onto itself
only after four circuits (Fig. 5.8(c): a four-cycle). By ¢ = 4.35 (Fig. 5.8(d)) we
have an eight-cycle. As c is increased period-doubling occurs with increasing
frequency until, at a value between 4.35 and 5.0, the system becomes chaotic.
The three-dimensional plot of the strange attractor for ¢ = 5.0 is shown in Fig.
5.9. You will see that it looks rather like a Mdbius strip. On this attractor any

IOMAPLE is not the most appropriate package for doing this. I used FORTRAN 90 with
At = 0.02. Tt is necessary to run the iteration for a number (~ 103, but depending on c) of
iterations to eliminate transient behaviour and to ensure that the trajectory has reached the
attractor.
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25
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Figure 5.9: The strange attractor for Rossler equations when a = b = 0.2,
c=5.0.

two trajectories starting at nearby points will diverge exponentially. A brief
account of the methods available for calculating Lyapunov exponents for such
systems will be given later. For ¢ = 0.15, b = 0.2 and ¢ = 10.0 the three
Lyapunov exponents are 0.13, 0.0 and —14.1. The leading exponent of 0.13 > 0
indicates the system is chaotic. The negative exponent is necessary to hold the
attractor together, and the zero exponent is for the direction along a trajectory
and indicated that points on the same trajectory maintain their distances apart.

5.2.4 The Lorentz Equations

In this case we have two non-linear terms.

i(t) = —alz—y), (5.42)
yit) = pr—y-—zz, (5.43)
2(t) = —bz+wxy. (5.44)

For simplicity we shall take a and b as fixed positive quantities and consider
variations in p. It will be seen that the transformation (z,y,z) — (—z, -y, 2)
leaves the equations unchanged and also there are trajectories which lie on the
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z—axis (x = y = 0) with z(¢) = 2(0) exp(—bt). From (5.42) all equilibrium points
must lie on the plane x = y and have either x = 0 or 2 = p — 1. In the latter
case z2 = bz. So the three equilibrium points are

r=y=0, 2=0, (5.45)
x=y==2blp—-1), z=p—1. (5.46)
Linearizing about equilibrium point (5.45) gives the stability matrix

—a a 0
J' = p -1 0 (5.47)
0 0 —b

with eigenvalues

A® = 1 {1 +a+/A+a)?+dalp— 1)} N (5.48)

The first pair of eigenvalues are for eigenvectors lying in the x y plane and the
third is in the z—direction. When p < 1 the origin is a proper stable node in
the x—y plane. It becomes an improper stable node when p = 1 and a saddle-
point when p > 1. In all cases since we have assumed b > 0 it is stable in the
z direction. This linear analysis can be supplemented by using the Lyapunov
direct method. Choose the Lyapunov function

L(x,y,2) = ${a® + ay? + bz}, (5.49)
This gives
VL. F(z,y,z) = —%a(l +p)(x —y)? — %a(l — p)(z* +y?) — abz? (5.50)

which is strictly negative, implying asymptotic stability when p < 1.
The equilibrium solution (5.46) exists only when p > 1 and the stability
matrix is

a —a 0
J = -1 1 +/b(p—1) (5.51)
FVolp—1) FVb(p—-1) b
and the eigenvalues are solutions of the cubic equation

FA) =X+ (a+b+ 1A +bla+ p)A +2ab(p— 1) = 0. (5.52)

When p > 1 all the coefficients of this cubic are positive and there are, therefore,
no real, positive eigenvalues and there must, of course, be one real negative
eigenvalue. The only way for this equilibrium point to be unstable is for there
to be a pair of complex roots with positive real part. When p = 1 (5.52) has
roots A = 0,—b, —(a+1). Now suppose that p is increased from unity. Since the
first eigenvalue is marginal its change, which will be of the order of Ap = p—1,
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Figure 5.10: The strange attractor for the Lorentz equations shown in projec-
tions in (a) the {z,y} plane, (b) the {z,z} plane, (c) the {y, z} plane, with
a=10,b=3, p=28.

will determine the stability. Substituting A = a/\p into (5.52) and solving for
the lowest order terms gives &« = —2a/(a + 1). So the equilibrium points are
stable. For them to become unstable, two of the eigenvalues must pass through
values where they are purely imaginary. Suppose AV = iw and \?) = —jw.
Then, since the sum of all three eigenvalues is equal to minus the quadratic
coefficient in (5.52), A®) = —(a 4+ b+ 1). This must be a root of (5.52) at the
value p. of p where instability sets in. Substituting into (5.52) gives

ala+b+3)
e T (5.53)
Thus instability can occur only if @ and b are such that p. > 1 and then the
equilibrium points will be stable for 1 < p < p.. It is of interest to calculate
the eigenvalues of the equilibrium points (5.46) for fixed values of a and b and
a range of values of p. For ¢ = 10 and b = %, Pe = 41—790 = 24.737. Since one
eigenvalue is always negative the interest is in the values of the other pair. At
p = 1 one is zero and the other is —11. For p near to one all three eigenvalues
are real and negative and (with respect to this pair) the equilibrium points are
stable nodes. Between p = 1.3 and 1.4 the pair becomes complex conjugate
with negative real parts. The equilibrium points are stable focii. This character
persists up to p = p. = 24.737, when the real parts change sign and we have
unstable focii. The passage to chaos in the Lorentz system is very complicated
with both period-doubling and period halving. The strange attractor which is
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shown in projection for ¢ = 10, b = % in Fig. 5.10 takes the form of a pair
of connected loops around the two equilibrium solutions (5.46). The Lyapunov
exponents for ¢ = 16.0, b = 4.0 and p = 45.92 are 2.16, 0.0 and —32.4. The
particular complexity of this system is evident from the fact that the strange
attractor makes its appearance at values of p slightly less that p. when the
equilibrium points are still stable. It also coexists with limit cycles around the
equilibrium points which make their appearance for certain ranges of p.

5.3 Lyapunov Exponents and Fractal Dimension

5.3.1 The Transformation of Volumes
Let T'y be the phase space of the dynamic system
z(t) = F(x;t) (5.54)

and suppose p(x;t) is some density function defined on T'y. Let Y(¢) C T'y be a
volume which moves with the flow of the dynamic system and define the volume
integral

P = | | (5.55)

A well-known theorem, used in a number of areas including probability theory
and fluid dynamics, is that

dP(t) o

In the special case where p(x;t) = 1, P(t) just measures the size of the volume
Y(t). It follows that

V.F(x;t) =0 (5.57)

is a necessary and sufficient condition for the flow of the dynamic system to

preserve volume. In particular, for the Hamiltonian system defined by (1.10),
d

O*H 9*H
V.F(x;t) = ;{axgapg - apgaxg} =0. (5.58)

So Hamiltonian systems are volume preserving. A system for which V.F(x;t) <
0, meaning that volumes shrink with time, is called dissipative.

5.3.2 The Lyapunov Spectrum

We now generalize the discussion of Lyapunov exponents given in Sect. 5.2.1 to
systems of more than one dimension. Consider first the d—dimensional difference
equation

x(n +1) = Fix(n)], (5.59)
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where
x(n) = (x1(n),x2(n), ..., xq4(n)),
(5.60)
Fix] = (Fi[x], F2[x], ..., Fa[x]).
Let Ax(n) =x(n) —x(n —1). Then
Ax(n +1) = Jx(n — 1)]Ax(n) + O(|Ax(n)]?), (5.61)
where
oh oh o Oh
Ox1  Oxa Oxq
Jix] = 8’.‘1 8’.‘2 ‘9’.‘d : (5.62)
OFa OFa = OFa
Ox1  Oxs x4
Neglecting all but the linear term in (5.61),
Ax(n+1) = S(n)Ax(1), (5.63)
where
S(n) = Jx(n — DJx(n = 2)]---J[x(0)]. (5.64)
Let Z(n) be the diagonal matrix with the eigenvalues, o1(n), o2(n),...,c4(n),

of S(n) along the diagonal, ordered according to descending magnitude, V(n)
be the matrix with the corresponding left eigenvectors as rows and U(n) be the
matrix with the corresponding right eigenvectors as columns. From Sect. 1.9,

V(n)Ax(n+ 1) = Z(n)V(n)Ax(1), (5.65)

The magnitudes | 01 (n)|,| 02 (n)|,...,| 04 (n)| measure the dilations and con-
tractions of the transformation over n steps. As we saw in (5.21) the average
of these scale changes are measured by the Lyapunov exponents and for the
d dimensional difference equation system described here we can define the d
Lyapunov exponents in descending order by

A = lim Infoem} 19 a4 (5.66)

n—oo n ’ ’
It will be seen that, in the case d = 1, this is equivalent to (5.25).
In the case of the d-dimensional continuous system
x(t) = F(x), (5.67)

we monitor the long-term evolution of an infinitesimal d-dimensional hyper-
sphere of initial conditions. This hypersphere will become a hyperellipsoid under
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Figure 5.11: The deformation of a sphere of initial conditions under the effect
of the flow.

the effect of the deforming nature of the flow. This is shown in Fig. 5.11 for
d =3. 00 (t) is the length of the /~th principle axis at time ¢ then a suitable
generalization of (5.20) to the case of d Lyapunov exponents is

20) =00 () exp Nt —t0)],  £=1,2,....d. (5.68)

The implementation of the procedure implied by (5.68) involves defining the
principal axes with an initial hypersphere which is as small as possible and
determining their evolution with the non-linear equations. This means deter-
mining d neighbouring solutions. As we saw in the one-dimensional case, to
obtain the Lyapunov exponents we need to be able to do this over a long period
of time, which is not normally practical for a chaotic system.

An alternative approach is to obtain the fiducial trajectory, which gives the
evolution of the centre of the hypersphere/ellipsoid and then to integrate the
linearized equations for d different initial conditions defining an arbitrarily ori-
ented set of d orthonormal vectors. Of course, over a long period of time, even
just using the linearized equations, the vectors will diverge in length. They
will also reorient themselves towards the direction associated with the largest
Lyapunov exponent. The way to deal with this difficulty is by the repeated use
of Gram-Schmidt renormalization (GSR).

Suppose e (0), e (0),...,e@(0) is a set of orthonormal vectors at time
t = 0 and suppose upon integration over a time period At they evolve into the
set e VA1), e (AL),...,eY(At). These vectors, will in general, no longer
be normalized. They will also have all reoriented themselves more towards
the direction of the major principal axis, associated with the largest Lyapunov
exponent /\il). We now apply GSR in such a way as to leave the direction of
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eV (At) unaffected. Thus

e (At)
e(l)(At) ( ,
e (At)]
o) D (ADeD (A6
(at) — L2000 = D (A0 D (AN
(At) — eV (At)[e' (Ar).e ) (At
(5.69)
e (A Ze@ (At) [ J(At). ~<d}
eD(At) = =1

The vector e(M)(t) tends to seek out the direction of most rapid growth and to
dilate in proportion to exp[/\( )t] So

Zl

for large N. The direction of e(®(t) is orthogonal to e (t), but é®(t) is not
necessarily in the direction of the second dominant Lyapunov exponent. To
obtain )\g) we either project €@ (¢) onto the direction of e (t) or observe that
the plane of €V (t) and &®(¢t) is the same as that of e)(¢) and e®(¢). The
size |&V)(t) A & ()| grows in proportion to exp[{ A, My 4 )\(Q)t}] So

e (nAt)

A | (5.70)

@) (4
N
A AP Z

for large N. In a similar way the first three exponents can be obtained from
the growth in size of a volume defined by a triad of vectors.!! In d-dimensional
space the volume of a small hypersphere of radius ¢ is

1 d
()
Vie) = N (5.72)
r(3a+1)
where I'(z) is the gamma function.'> On the attractor this volume deforms in
a time ¢ into a hyperellipsoid with

1)(nAt) A e (nAt)
— DA AeP ((n—1)At)

(5.71)

V(e) — exp{(A" + AP . Ay (e). (5.73)

1A FORTRAN program for implementing this procedure is given by Wolf, A, Swift J. B.,
Swinney H. L. and Vastano J. A. (1985) Physica D, 285 317.
12With the salient properties x ' (z) = Iz 4 1), T (%) =T
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The sum of the Lyapunov exponents will therefore be zero if the system is
volume preserving and negative if it is dissipative. Since the basin of attraction
of a strange attractor is of the dimension of the space of the system and the
attractor itself has a fractal dimension less than d, chaotic systems must be
dissipative.

5.3.3 The Dimension of Chaotic Attractors

In Sect. 5.2 we defined fractal dimension and suggested that one (possibly not
certain) indication of the presence of chaos was a non-integer fractal dimen-
sion of the attractor. The fractal dimension of an attractor 2 is D(A) given
by (5.19). In principle the fractal dimension of 2 in a space of dimension d
could be calculated by covering the space with a hypercubic grid of mesh size
£. A trajectory of the system, after transitory factors have disappeared, is then
followed and the number N (¢) of cells of the grid visited by the trajectory over
a long period of time is then counted. An approximation to D(2l) is then given
by —In{N(¢)}/In{¢}. Such a procedure is in most cases very difficult to im-
plement. It is also difficult to get an accurate result because of the need to
approach in some way the limit of small /.

Although the fractal dimension is related to the number of cells of the grid
visited by a trajectory on the attractor, no account is taken of the number
of times the trajectory visits a particular cell. A generalization of the fractal
dimension D(2A) of A can be made by introducing a probability measure p(x)
over the space of the dynamic system, where u(x)AV is the probability of
finding the phase point of the system in a volume AV around the point . Then
label the cells of the grid s = 1,2, ... and define py(u, £) to be the probability of
finding the phase point in the s—th cell, obtained by integrating p(x) over the
volume of the cell. The information entropy of the probability measure pu(x) is
defined by

N(£)
I(n,0) = = > palp, €) n{ps(1, 0)}- (5.74)

s=1

In information theory this function gives the amount of information necessary
to specify the state of the system to within an accuracy of ¢. The information
dimension Dr(p;A) is defined by

1

D120 = Jim 1) (5.75)
It is clear that when the probability measure is uniform pg(u,¢) = 1/N(¥¢),
I(p, ) = In{N(¢)} and the information dimension is equal to the fractal dimen-
sion. In general it can be shown that Dy(u;A) < D(A).

Suppose we want to calculate the fractal dimension of the chaotic attractor
2 associated with a difference equation in two dimensions. We cover it in
N(?) squares of side £. The Lyapunov exponents will satisfy the condition

/\il) >0 > /\f). Let the map be iterated n times. If we suppose that the
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dilation and contraction acts linearly on each square, then each is turned into
a parallelogram of average length exp{n/\il)}é and average width exp{n/\f)}é.
Suppose that we had used a finer grid of squares of side exp{n)\g)}ﬁ to cover

the attractor. On average we need exp{n[)\g) - )\f))]} of the new squares to
cover one parallelogram. So we need

N(exp{nA}0) = exp{n[\" = AP}V (0), (5.76)

squares to cover the attractor. Since, from (5.19)

CI{N(O} _ W{N(exp{nr’}0)}
n{¢} ln{exp{n)\g)}f} , (5:77)

it follows, from (5.76) and (5.77), that

D(A) ~

DERA)=1- L (5.78)

Of course, this analysis cannot be dignified by the title of a proper derivation.
Apart from anything else it applies only to difference maps in two dimensions.
However, we shall use it as a motivation for defining the Lyapunov dimension

M) AP A
|A£k+1)| ’

D) = k + (5.79)

where k is the largest value for which )\il) + )\g) +---+ )\ik) > 0. In many cases
it appears to be true that Dy, (2() = Dy(). From the values given in Sect. 5.2.3
for the Rossler system the dimension of its strange attractor is 2.0092 and for
the Lorentz system discussed in Sect. 5.2.4 the dimension is 2.0667.

Problems 5

1) Express the equation
E(t) + pa(t) — z(t) + 2%(t) = 0,

as a pair of equations using the second variable y(¢) = %(¢). Find the equi-
librium points and determine their linear stability for the different ranges of
. Show that, when p =0,

${a? =P} = B+ 32° (5.80)

is an integral of the motion for different values of the parameter FE. Ei-
ther using MAPLE or by hand (and brain) sketch the trajectories given by
(5.80). Mark the direction of flow and label the curves with their values of
E, identifying the homoclinic trajectory. Using your intuition rather than
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undertaking detailed analysis, sketch the form that the corresponding curves
take when y is small and positive or negative. The breakup of a homoclinic
trajectory is often associated with the onset of chaos. This is an example of
the breakup of a homoclinic without chaos being involved.

Remember that the equilibrium point z = y = /b(p—1), 2 = p—1 of
the Lorentz equations becomes unstable as p is increased through the value
p = pc where

_ala+b+3)
Pc = a—b_1 "

as long as a and b are such that p. > 1. With 2. = y. = /b(p. — 1),
Ze = pc — 1 define Az =z —xc, Ny =y — Y, Nz = 2 — 2z, and Ar =
(Az, Ay, Az)". Show that the Lorentz equations can be expressed, without
approximation in the form

" dAr
dr

+J*Ar = w,

where 7 = wt, for some parameter w and

a —a 0 0
J=| -1 1 oz |, w=| (p—p)Dzx+z)—Dxlz
—Te —X¢ b AfL'Ay

The matrix J* is that given by (5.51) in the notes, but evaluated where p =
pc. Remember at this point the matrix has two purely imaginary eigenvalues
+iwe (say) and a third which is equal to —(a 4+ b+ 1). Show that

[2ab(a + 1)
We = ———=.
a—b—1
Let v and u be the left and right eigenvectors for the eigenvalue iw., (with

the corresponding eigenvectors for —iw. being their complex conjugates v
and w). Assume that:

(i
(i

) The eigenvectors satisfy the usual orthnormality condition.
)

(iii) Ar lies in the plane spanned by u and w.
)

|p — pc| = €, where ¢ is small.

(iv) w and Ar have expansions of the form

w=wetew +0(E),  Ar=clpieg+0 ().
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Show that
p = cuexp(—iwt) + cuexp(iwt),

where ¢ is some complex constant. Subject to the assumptions made, this
establishes the existence of a periodic solution for p slightly larger than p
and shows that as p passes through p. there is a Hopf bifurcation.

3) Show that the Lorentz equations (5.42)—(5.44) can be expressed in the form

d§

&= —ast -,

dn

D —en-g,

d

de = —be( +&n — abe,
dr

in terms of the variablese = 1/,/p, 7 = t/e, { = ex, n = e%ay, ( = a(e?z—1).
The Lorentz equations in the limit p — oo are now obtained by setting ¢ = 0
in these equations. Show that in this limit they have the integrals

s+ 5 =a,

28 —C=0

and that

2
Cﬁ) = (20— §%) - 36" + 5¢%

Hence show that, when a = %, 8= %, there is a periodic solution in the
{¢,d€/dr} plane with a period (measured in terms of the time parameter 7)

of

2 dé-
4 .
/72 (& +2)(4-¢?)

4) The baker’s map is given by

Tax(n), if y(n) < %,
x(n+1) =

(1—7)+7mx(n), ifyn)> %,

). ity <,
y(n+1)=

2y(n) — 1, ify(n) > 3,
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where 7, +7, < 1. Given that u is the probability that the iterated value of y
is in the range 0 <y < %, determine the Lyapunov exponents, showing that
the system is chaotic. Show that the Lyapunov dimension of the attractor is

1= {pn(ra) + (1 — ) In(n)} "
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Chapter 6

Solutions

6.1 Problems 1

1)

(i) The equilibrium points are given by x = 0 and z = «* = (a — ¢)/ab.

Linearizing about x =0

dAx

ek (a — o)A,

with solution
Az = Cexpl(a — ¢)t].

So this solution is stable if a < ¢ and unstable if ¢ > ¢. Linearize about
T =ux*

dA
d—tx = (¢ —a)Az,
with solution

Az = Cexpl(c — a)t].

So this solution is stable if a > ¢ and unstable if a < ¢. There are five
different cases:

When ¢ =0, z*=1/band the lines of equilibrium points are parallel
to the a-axis. There is no bifurcation but the stability changes at a = 0.

When b >0 and ¢ > 0, thereis a transcritical bifurcation at x = 0,
a = ¢ on one branch of x = 2*(a). The second branch is unstable. The
case b < 0, ¢ > 0 is the mirror image of this in the vertical axis.

145
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|
|
|
a: x=1/b
|
1
|
CZO O | €T
|
|
|
|
1
|
|
|
|
| .
a: tx=1/b
| :
/)
c>0, b>0 T 0 z.-
7
’
/

When b < 0 and ¢ <0, thereis a transcritical bifurcation at x = 0,
a = ¢ on one branch of z = 2*(a). The second branch is stable. The
case b > 0, ¢ < 0 is the mirror image of this in the vertical axis. The
equation is separable so

d
/ @ =t 4 constant.
x(

a—c— abx)

Using partial fractions it is easy to do the integration and the final
solution is

C(a — ¢) exp[(a — ¢)t]

a(t) = 1+ abCexp|(a — c)t]

)

for some constant C. If a < ¢, x — 0 ast — oo and, if a > ¢,
x — (a—c)/ab as t — oco.
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c<0, b<0 —

(ii) The equilibrium solutions are 2 = 0 and

a/b, if c=0,

T=T =Y b4+ V02 —4dac .
B Vam— if c#£0,
C

Linearizing about x =0
— =aluz.

dt
So this equilibrium point is stable if a < 0 and unstable if a > 0.
Linearizing about = = z*
dAz
dt
So z* is stable if 2*(2z*¢c — b) < 0 and unstable if 2*(2z*c — b) > 0.
When ¢ = 0 these conditions reduce to a > 0 and a < 0 respectively.

=z"(2z%c — b)Ax.

When ¢ =0 and b > 0, there is a transcritical bifurcation at the
origin. For ¢ = 0 and b < 0 the bifurcation diagram is obtained from
this by reflection in the vertical axis.

When ¢ > 0 and b > 0, there is a transcritical bifurcation at the
origin and a turning-point bifurcation at x = b/2c, a = b?/4c. The case
¢ >0, b <0 is obtained from this by reflection in the vertical axis.

When ¢ < 0and b < 0, there are again a transcritical and a turning-
point bifurcation at the same locations. The case ¢ < 0 and b > 0 is
obtained from this by reflection in the vertical axis.
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C:O, b>0 10 x
7
7
7
4
7
7
7
4
7
7
7
|
|
|
2 | N
b*/4c, ~.
| AN
AN
| \
| \
0 : \
A}
c>0, b>0 / b/QC \
/ \
/ \
/ \
/ \
/ a \
1 \
/ \
/ \

Each of these ¢ # 0 systems of bifurcations goes into a pitchfork bifurcation
when b — 0. Denoting the two branches of z* by z(+), the equation can
separated into

dr = constant + ct
:C[:C—x(+)][:v—x(—)] = constant + ¢

Decomposing into partial fractions and integrating gives
In {xo‘[x - J:H)]'V(H [ — a:(*)]'y(i)} = Cexp(ct).

where a = (P z(7)| /&) = B[z — 2(F)] The limiting behaviour as
t — oo can be obtained by considering the various signs of the parameters.

2) The right-hand sides of these two equations are both zero when & = y = 0.
Now the Taylor expansions of sin(z) and cos(x) give

sin(Az) = Az + O(Az?), cos(Az) = 1+ O(Az?).
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)

c<0, b<O

b?/4c

So when linearized to the same form as (x) we have

1 1
a1 ).
This matrix has eigenvalues A = —2,1. The equilibrium point is a saddle-
point.

All the equilibrium points are given by the simultaneous solutions of

2 =y, 8z = 1°.

This gives 2* = 8x, which has the solutions

x =0, implying y =0, (6.1)
T =2, implying y = 4. (6.2)
For (6.1)

0 1
A= ( 0l ) |
This matrix has eigenvalues A = +1/8 giving a saddle-point.
For (6.2)

—4 1
A ( vl ) |
This matrix has eigenvalues A = —6 + 2+/3. Both these eigenvalues are
negative so the equilibrium point is a stable node.
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4)

adz a?(1 - 2% —y?) ydy y*(1—2®—y?)

W:_Iy_k— /22 4 2 ﬁzxy—l—— /2 1.2
e +y T +y

So with 72 = 22 + 92

1dr?  r2(1 —1r?)

s -
giving

dr

== r?). (6.3)

There is an equilibrium solution with r =1 and with r =1+ Ar

dAr

— _9Ar.
dt "

So r = 1 is stable. At the point x = cos(f), y = sin(f) on this solution
0(t) =1, so x = cos(fp + t) y = sin(fy + t) gives the stable limit cycle for
any 0y. Equation (6.3) can be solved to give r = tanh(to + t).

0(t) = w, w(t) = Q%sin(h){cos(h) — a}.

The equilibrium points are given by

(a) sin(f) = 0 for which § = 0, £, +2, .. ..
(b) cos(8) = a which, for 1 > a > 0, gives two sets of solutions
0* = +00(a) + 2nm, n=0,+1,4+2 ...,

where 6p(a) — 0, as a — 1.

First linearize about n.

sin(nm + A0) = A6(-1)",
cos(nm) = (—=1)",
dae
&y A
dt “
dAw

— = Q1+ (=1)"Ttd] 0.

¥ 1+ (—1)™* )

So the eigenvalues are £Q+/1 + (—=1)?*1a. When a > 1 and n is even the
eigenvalues are imaginary and the equilibrium points are centres. Otherwise
the eigenvalues are real and of different signs so the equilibrium points are
saddle points.
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Linearizing about 6* = arccos(a) gives

dAd

T

dAw _ 2 i 2%

T = 0 sin (9 )A@
= —0%(1-a?)Ae.

The eigenvalues are £i€2v/1 — a2. Since these equilibrium points occur only
when a < 1 the eigenvalues are purely imaginary and the equilibrium points
are centres.

dz dy 1 dr? dr
dt

Yo Ve T v T @

So

dr . 9 n
i r{f(rcos(9),rsin()) — a*}",
and using

dx dr do

—_— = 0 —_— 1 9 —_—

i cos( )dt 7 sin( )dt’

gives A(t) = 1. Linearizing about the origin for r

ddAtT = Ar{£(0,0) — a®}™.

So the solution is stable or unstable according as {f(0,0) —a?}™ < 0 or > 0.
Consider now the limit cycle r = a.

#(t) = r(r® —a®)™.
With r = a+ Ar

dAr
dt

If nis odd

dAr
dt

dAr
dt

= a(2alr)".

> 0, when Ar >0,

< 0, when Ar < 0.

dA
So the limit cycle is unstable (in both directions). If n is even Wr > 0 for

both signs of Ar, so the limit cycle is semistable.
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7)

z = rexp(if).

2(t) = r7(t) exp(if) + ir(t)8(t) exp(if).

So

7(t) +ir()0(t) = ir(t) +r)f(r)

giving

Limit cycles are given by

1 1
sin =0, with solutions r* =4/1+—, n==+1,42,....
r2 —1 nmw

and r = 1. Linearizing about r* for the former gives

dAr  2(r)2Ar 1 B i1 2(r)2Ar
& e () T

So the cycles are stable if n is even and unstable if n is odd. The cycle
nearest the origin is n = —1 which is unstable. Since sin(—1) = —0.84 the
origin is stable.

z = rexp(if). So
2(t) = 7(t) exp(if) + irf(t) exp(if),
giving

#(t) + irf(t) = aexp(—if) + r(b — r2).

Taking real and imaginary parts

#(t) = acos(8) + r(b —r?), o(t) = —

When a =0 This gives
#(t) = r(b — %), o(t) = 0.

This is just (with b replacing a) the same as the polar form of Example 2.5.1,
yielding the Hopf bifurcation as shown in Fig. 2.5.
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When o # 0 From the second equation 6(t) = 0 gives = 0 or 7. So the
equilibrium solutions are

r(b—1?) = —a, =0,
r(b—r?) =a, 0=m.

Linearizing about the equilibrium solution (r*, 6*) gives

dAr Ao - 30)2, dAg — Afacos(0*)

dt dt (r*)2

The curve in the r—6 plane given by (b — r?) = +a is

b::I:E—I—TQ.
T

We can now divide the equilibrium solutions into two cases:

e Whena>0andd=7mora<0andf=0.

It is clear that this solution is unstable in the 6 direction since
a cos(6*
_# > O
(T*)2

The variable r > 0 and

b:ﬂ—krz.
r

The curve of b as a function of r has a turning point given by
db 2-b 3r2-b
0 = — = —M + 2'{‘ = " = " N
r r2 r+2r r
Giving b = 3r2. It follows from the linearized equation for Ar that the

equilibrium point is stable in the r direction when r > ,/b/3 (giving a
saddle point when you take into account the instability in the 6 direction)

and unstable in the r direction when r < /b/3 (giving an unstabler node.
The equilibrium curve is if the form

SADDLE POINT

N

UNSTABLE NODE

-
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e Whena<0Qandf=mora>0andf =0.

It is clear that this solution is stable in the 6 direction since
a cos(6*
_# < O

(T*)Q

The variable r > 0 and

The curve of b as a function of r does not have a turning point and
b—3(*)3 =— {M + 2(r*)2} .

r

So the equilibrium point is stable in the r direction and is thus a stable
node. The equilibrium curve is if the form

STABLE NODE

6.2 Problems 2

1) In this problem we have not been given the equation of motion so we can’t
deduce the stability. We can, however, if we assume the equation to be of
the form!

i(t) = F(e,a,2) = ex® + 2° — ax.

When ¢ = 0 the solutions to F(0,a,7) = 0 are x = 0 and a = x2. The
line of equilibrium points x = 0 is stable when a > 0 and unstable when
a < 0. The equilibrium points given by a = 2 are all unstable. So we
have a subcritical pitchfork bifurcation. When e # 0 the line of equilibrium

IThe other possibility is
i(t) = —F(e,a,z) = —ex? — 23 + ax,

which will simply reverse the stability.
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points x = 0 remain, with the same stability. The parabola is shifted to
a = ex + 22, with minimum at « = —%5, a= —%52. Now take x = x* + Ax,
a = ex* + (z*)?. Then

dAx

0= —NAzx[2x%e + 3(3:*)2 —a] = (2a — ex™)Ax.

The line a = %;va passes through the origin and the minimum of the parabola
of equilibrium points. Below the line the equilibrium points on the parabola
are stable and above they are unstable. There is a transcritical bifurcation
at the origin and a turning point at z = —%5, a= —is? The diagram (with
e < 0) is like Fig. 1.11 with ¢ = —%5 and the stability reversed.

Treating the equation as of the form @(t) = F(a,b, ¢, z), the bifurcation set
is given by eliminating x between the equations

F(a,b,c,z) = 23 — 2a2? — (b—3)x + ¢ = 0, (1)
F,(a,b,c,x) = 32% — dax — (b—3) = 0. (2)

From (2)

e =42k flab)}, ()

where

fla.b) = /4a? +3(b - 3).

Subtracting xx (2) from 3x (1) gives

0= —2az? — 2(b — 3)x + 3c.

Eliminating 22 between this equation and (2) gives
z[8a* 4+ 6(b — 3)] = 9¢ — 2a(b — 3).

Substituting the values of = given by (3) gives
+f(a,b){8a® + 6(b—3)} = —16a>® + 27¢ — 18a(b — 3).
Squaring and substituting for f(a,b) yields

+{4a® + 3(b — 3)}{8a* + 6(b — 3)}* = {16a® — 27c + 18a(b — 3)}%.
When a =1 we have

(27c — 18b + 38)% = 4(3b — 5)°.
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This has a cusp when 3b = 5, which is at b = . Now we can use

MAPLE to plot ¢ against b for various values o

, C= —
a.

o
5o

> with(plots,implicitplot):

> f:=(a,b)->4%a~2+3*%(b-3):

> g:=(a,b)->8*a~2+6%(b-3):

> h:=(a,b,c)->16%a~3-27*c+18*a*(b-3):

> p:=(a,b,c)->f(a,b)*(g(a,b)) " 2-(h(a,b,c))"2:

> p(a,b,c);

(40> 4+3b—9)(8a>+6b—18)2 — (160> — 27c+ 18a (b — 3))?
> p(1,b,c);

(=5+3b) (—10+6b)> — (=38 — 27+ 18D)?

> implicitplot(p(l,b,c),b=0..4,c=-1..1,grid=[100,100]);

i

0.8

0.6

0.4

o
N (9]
o e b b i

(@]
N
i

(oF
wA

7/
N

|
o
N

> implicitplot(p(2,b,c),b=-6..4,c=-4..4,grid=[100,100]);
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4

3

c24

1
3 a

> implicitplot(p(3,b,c),b=-20..4,c=-8..4,grid=[500,100]);

N

T
N

> implicitplot(p(-1,b,c),b=-1..4,c=-2..4,grid=[100,200]);
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225 b

W

35 4

ov
35 = —2® —azx—b (1)
The standard form of cubic to produce a pitchfork bifurcation at x = a =0

in the {z,a} plane is x(x? +a) = 0. This can be achieve for (1) in the plane
b=0.

3) F(a,b,c,z) =

The standard form to give transcritical and turning point bifurcations is that
given in Example 1.8.2 by the right-hand side of equation (1.61) with ¢ # 0.
It has cubic, quadratic and linear terms but no constant term. We must now
transform (1) to this form. Consider

—(r+a)P+28+a) +y(z+a) = —2°+ (26— 3a)2?
+ (48 — 302 + )z

+ (ya +2Ba* — a®).
So to eliminate the quadratic term on the right 5 = 3a/2 and
-2 —ar —b=—(r+a)® + 3a(z + a)* +v(z + a),
when « and -~y satisfy the relations

302+ =—a
203 + ya = b.
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Eliminating v gives the equation
3

aa —b=—a’,

which, for any number «;, is a plane in the {z, a, b} space on which transcrit-
ical and turning point bifurcations will occur. To locate these bifurcations

(x+a)® =3a(z+a)? =y +a)=(r+a)z?—azr+(a®+a)]=0.

The lines of equilibrium points have two branches

T = —Q
and
a:—x2—|—ozx—a2.

The turning point bifurcation occurs when

a’.

a, a:—%oz, b:i

The transcritical bifurcation will occur when the two branches cross. That
is

If for example we choose a = %, then the plane is

180 —27b+8 =0,

the turning point occurs at = = %, a = —%, b= 1—27, and the transcritical
bifurcation at z = —%7 a= —%, b= —;—g. We can check out results using

MAPLE

> with(plots,implicitplot):
F:=(a,b,x)->-x"3-x*a+b:
implicitplot ({F(a,0,x),x
},x=-2..2,a=-2..2,grid=[100,100]);
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> implicitplot({F(a,-(8+18%a)/27,x),x+2/3},

> x=-2..2,a=-2..2,grid=[100,100]);

2
a 1
-1 —0.5 | 05 x 1 1.5
_1{
/ 5]

4) For fixed ¢ The equilibrium region is a three-dimensional subspace in the
space {a,b,c, z,y} which is given by the intersection of

0 = —a2?+y*—2cx+a, 6.4
Y
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0 = 2xy—2cy+b. (6.5)

The bifurcation set lies in the the equilibrium region and also satisfies the
Jacobean condition

—2z — 2c¢ 2y
2y 2z — 2¢

which is
=z + 9% (6.6)
Now eliminate y between (6.4) and (6.6) to give
2% + 2xc—a—c* =0, (6.7)
and between (6.5) and (6.6) to give
b = 4(z — ¢)*(c? — 2?).
This expands to
4ot — 8x3¢c+ 83 + b2 — 4ct = 0. (6.8)
Now the hard work starts since, to obtain the bifurcation set 2 must be elim-

inated between (6.7) and (6.8). This is most easily done using the Sylvester
determinant. The MAPLE program is

Vv

with(linalg,det,matrix):
with(plots,implicitplot):
> S:=(a,b,c)->

> matrix([[2,2%c,-a-c~2,0,0,0],[0,2,2*%c,-a-c~2,0,0],[0,0,2,2*%c,-a-c~2,0],

[0,0,0,2,2%c,-a-c~2],[4,-8%c,0,8%c~3,b~2-4%c~4,0],[0,4,-8%c,0,8%c~3,b"2-4%c~4]1]1):

S(a,b,c);
2 2¢ —a-—¢ 0 0 0
0 2 2c —a—¢c? 0 0
0 0 2 2c —a—c? 0
0 0 0 2c¢ —a — c?
4 —8c¢ 0 8¢c3 b2 —4ct 0
0 4 —8¢ 0 8¢c3 b2 —4ct
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> s:=(a,b,c)->simplify(det(S(a,b,c))/16):
> s(a,b,c);
18a2c* —8c%a®> — 271 B +bv* + 1802 ¢ +2b%a® + 242 a ? + o*

> # This is different from the answer given
> so

> we check for equivalence.

> g:=(a,b,c)->27*c~8-18%c"~4*(a~2+b"2)

>  +8%c~2*a*x(a~2-3*b~2)-(a"~2+b"2)"2;
g:=(a, b, c) =27 —18¢c* (a* +b*) +8c%a(a® — 3b%) — (a® + b*)?

> simplify(s(a,b,c)+g(a,b,c));

> # So they are the same.
> # Now we translate into polars.
> spolar:=(r,theta,c)->simplify(g(r*cos(theta),r*sin(theta),c)):

> spolar(r,theta,c);
27¢® — 18" r? + 32?13 cos(9)® — 24 ¢ cos() — r?

> # We again check for equivalence.

> h:=(r,theta,c)->(3%c~2-r) 3% (r+c~2)

> +8*c~2*xr~3*(cos(3*theta)-1);
hi=(r0,c)— (3¢ —r)3(r+c*) +8c®r3(cos(36) —1)

> expand(spolar(r,theta,c)-h(r,theta,c),trig);

> implicitplot(s(a,b,2)=0,a=-7..11,b=-10..10,grid=[100,100]);
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It is clear that

(r+c*) (3¢ — )% +8c*r*{cos(30) —1} =0 (6.9)
has rotational symmetry with period 6 = %” and that when 6 = 0, %”, %’T,

r = 3c2. To see that these point are cusps we take r = 3¢? + Ar and
§ = 22% + Af. Equation (6.9) then gives

(A1) 4+ (27¢*)[3200)2 = 0.

This is the standard form for a cusp in the local variables (Ar, 3c2Af).
The equilibrium points are given by

z(x —a) = —c, y = —u, z=x. (6.10)

So the x coordinates of the equilibrium points are given by real roots of

2
az(x—a)—l—c::z:Q—ax—l—c:(x—%a) —(iaz—c):(),

which exist only when a? > 4c. The bifurcation set, if it exists, is given by
a single equation relating a and c and is obtained by eliminating x, y and z
between (6.10) and

0 -1 -1
1 1 0 =rx+z—a=0. (6.11)
z 0 (z—a)
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This gives ¢ = z = %a, y = —%a, a®? = 4c. Tt follows that a bifurcation can

occur only when ¢ > 0. When ¢ = 0 there are two lines of equilibrium points
in the z—a plane x = a, x = 0, with a transcritical bifurcation at x = a = 0;
when ¢ > 0 the equilibrium curves in the  a plane are given by

c
a=x+ —.
x

This is hyperbola with turning point bifurcations at a = +2+/c, x = +./c.

6.3 Problems 3

1) VL = (na" 1, amy™1). So

(i) F.VL = —na" — 2nz""'y% + amay™ — amy™ 2.

The aim is to make sure that this expression is negative for all signs
of z and y. This means eliminating odd degree terms. So we must get
rid of the third term and the only way to do it is by arranging that it
cancels with the second term. Son =m =« =2 and
F.VL =222 —4y* <.
£(0,0) = 0 and L(z,y) has a minimum at (0,0), so the equilibrium
point is asymptotically stable.
(ii) F.VL = na" ty —na"™? — amy™ 123,

Now we arrange for the first and third terms to cancel by taking n = 4,
m = a = 2. This gives
F.VL =—42° <.
L£(0,0) = 0 and L(z,y) has a minimum at (0,0), so the equilibrium
point is asymptotically stable.

2) For the equilibrium points; from the second equation z3 = y3 giving z = y

and then from the first equation x =y = 0.

VL =2z + ay, 20y + ax).
So
FVL=(2-a)2? +28y* + (a — 2)2%y* + (2 + a — 28)2>y.

For the first three terms to be of only one sign we must take @ = 2 and we
must also eliminate the last term; so § = 2. Thus

F.VL =4y* > 0.

Also £(0,0) = 0 and L(z,y) = 22 + 22y + 2y? does not change sign in a
neighbourhood of (0,0), since 22 + 22y + 2y = 0 has no real roots. It is
therefore always positive and thus L(z,y) has a minimum at (0,0). So the
equilibrium point is unstable.
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3) a(t) = y(1), y(t) = z(t){alz(t)] — 1}

and
dz n dy | |d:c
T— — = az|z|—.
ar Yt dt
Integrating
10 g ) %a:z:?’, if x >0,
et +vy = E+§ ]
—ga:v3, if x <0,
1 1
sle® +9y*} - 3alz’ = E.

The equilibrium points are x =y = 0, for all @, x = +1/a, y = 0, for a > 0.
Linearizing about x =y = 0,
0 1
J* = ,
-1 0
which has eigenvalues +i. So the origin is a centre.
Linearizing about z = +1/a, y = 0, when a > 0,

0 1
Jr = ,
1 0

in both cases with eigenvalues +1. So the each of these equilibrium points
is a saddle point.

SADDLE POINT SADDLE POINT

CENTRE
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Curves are divided, by the separatriz, between closed curves about the centre
and open curves with two branches. Since the separatrix passes through both
branch-points, its value of E is given by substituting £ = +1/a, y = 0 into
(x). This gives E = 1/(6a?). Curves with E < 1/(6A4%) cut the z axis and
for each value of a consist of two open branches and a closed loop. Curves
For E > 1/(6A2) cut the y—axis and for each value of a consist of two open
branches.

> with(plots):

f:=(x,y,a,En)->
x~2/2+y~2/2-a*abs(x~3) /3-En:

> # Try the case a=1, with E=1/100,1/6,1:

implicitplot(
{f(X,y,l,l/loo) ,f(X,y,l,l/G) ,f(X,y,l,l)},

> x=-2..2,y=-2..2,grid=[100,100]);

=
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> # Try the case a=-1, with E=1/100,1/6,1:

implicitplot(
{f(X,y,—l,l/loo) ,f(Xsy:_191/6) 9f(X9y:_191)}9

> x=-2..2,y=-2..2,grid=[100,100]);
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<
H

xU1
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!
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Periodic solutions (closed curves) exist for all a. Let ¢ be the smallest positive
root of

d
d_gtc = \/gax3+2E—x2

\/@ — %aC?’ — 22 4 %ax?’.

Integrating over [—(, (] gives T'/2 and thus the required result.

4) (t) = y(t), §(t) = —x(t) — ba®(t) — 2ay(1).

The equilibrium points are on y = 0 and given by
(1 +b2?) = 0.

So they are = y = 0, for all values of the parameters, and z = +1/v/—b,
y =0, when b < 0.
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Linearizing about z =y =0,

0 1
J' = ,
-1 —2a

which has eigenvalues —a + v/a? — 1. So the origin is

e A stable proper node if a > 1.
o A stable inflected node if a = 1.
o A stable focusif 0 < a < 1.

Linearizing about = = +1/v/-b, y =0,

0 1
J' = ,
2 —2a

which has eigenvalues a & Va2 +2. So the equilibrium points are saddle
points.

Theorem 1.12.1, on page 26, tells us that for ¢ > 0 the origin is an asymp-
totically stable equilibrium point. This can also be established using the
Lyapunov direct method. With the given form,

L(z,y) = %[xz + % + ibgc4
for the Lyapunov function,
VL = (z+ba?y),

FVL = —2ay*<0.

So the origin is an asymptotically stable equilibrium point with z(t) — 0 as
t — oo.

The general solution to the equations is

x(t) = A cos(t) + Bsin(t), y(t) = —Asin(t) + B cos(t).
Denote the given periodic solution by

Z(t) = acos(t), y(t) = —asin(t).

To show that this is stable we must show that, given € > 0, there exists
d(e) > 0 such that, if

{z(0) = 2(0)}* + {y(0) = §(0)}* = (A — a)” + B* < [5(¢))*,
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then if

{a(t) — 2} + {y(®) —5(H)}

[(A — a) cos(t) + Bsin(t)]?

+[(a — A)sin(t) + B cos(t)]* < €.
Expanding this expression gives

(A—a)*+B* <

So we just choose § = ¢.

6) With y(¢) defined as &(¢t) we have

(t) = y(b), §(t) = by(t)a — 2*(t) — y*(1)] — a(t)
Then
dr  dw dy 9 9
T& xa ya—by[a—x -y
= br?sin®(0)[a — r?).
So

7 = brsin?(6)(a — r?).
Since y(t) = &(t),

d[r cos(0)]

rsin(f) = g”

= 7 cos(f) — Or sin(0).
Substituting for 7 gives

0 rsin(0) = brsin®(0) cos(8)[a — 2] — rsin().
So

6 = Lbsin(20)[a — %] — 1.

-2

Substituting r = \/a into the expressions for 7 and 0 we have 7 = 0 and
f# = —1. So we have a periodic solution

B(t) = Vacos(to — 1), (t) = Vasin(to - 1),

of period 27w. Now let

Ax(t) = (t) — 2(t), Ay(t) = y(t) — y(b).
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7)

Giving
dAx . .
o - 4 Vasin(tg —t)
= y=y
= Ay(t).
dA
- = 0+ Vacos(to 1)

= bla—2*—y})—z—1

= Ax+ b+ Ay)(a— 32 — 5% = 28Ax — 25 \y)

= —Ax(l+2biy] — 2b5° Ay

= —Ax(t)[1 + absin(2ty — 2t)] — 2Ay(t)[absin®(tg — t)],
from which

Trace{J (t)} = —2absin®(ty — t).

So the sum of the Floquet exponents is
1 2

oM 403 = ——/ 2absin®(ty — t)dt = —ab.
2 0

Substituting r = Ar+ +/a into the differential equation for r, with 6 = ¢ —¢
we obtain the given equation. For b > 0, if Ar > 0 then

dAr
dt —

0, over the whole period.

If Ar <0 then

dAr
dt

> 0, if |Ar| < +/a.
So in either case Lyapunov stability is established for some € > 0 by choosing
d to be the smaller of € and /a.
(i) The equilibrium points are solutions of
0 = z+y—a(@®+2y7), (6.12)

0 = —z+y—y(®+2%. (6.13)
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Multiplying (6.12) by y and (6.13) by z and subtracting gives x> +y? =
0. So the only equilibrium point is = y = 0. The stability matrix is

. (1 1
r=(4)

with eigenvalues A(*) =1 +1i. So the origin is an unstable focus. Now
dr dz dy
r— = r—+Yy—-
dt dt dt’
= ?+y’ = (@ + )" +27).
So
dr 3 . 9
pria (1 4 sin*(h)). (6.14)
Also
dzx dr de

il COS(@)E—TSIH(Q)E

= rcos(f) + rsin(d) — rcos(0){r* 4+ r*sin?(9)},
giving
@ _
dt
Equation (6.14) can be expressed in the form

#(t) = —r(r? —1) — r3sin?(6).

~1. (6.15)

So on the circle r =144 for any § > 0

7(t) < 0.

Equation (6.14) can also be expressed in the form

Ft) = 2r (% - 7"2) +r3(1 — sin(9)). (6.16)

So on the circle r = 1/y/2 — § for any 1/v/2 > 6 >0
dr
dt
So the annulus

1
— —0<r<1+4+4
V2o o T T

> 0.

satisfies the result of the first part of the question and must contain
either an equilibrium point or a periodic solution. Since the origin is
the only equilibrium point it must contain a periodic solution.

Since, from the Poincaré-Bendixson theorem, the trajectory tends to
the periodic solution as ¢ — oo it must be stable. Alternatively denote
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the periodic solution of (6.15) and (6.16) by r = 7(¢t) and substitute
r =1r(t) + Ar into (6.16) and linearize to give

dAr
de
But

= —{372[1 + sin*(t)] — 1} Ar.

2
372[1 +sin(t)] — 1> 3 <% - 5> [1+sin?(t)] — 1 >0,

for sufficiently small §. So the periodic solution is stable.

The equilibrium points are solutions of
0 = —z—y+a(@®+2y%), (6.17)
0 = z—y+y@®+ 2. (6.18)

Multiplying (6.17) by y and (6.18) by = and subtracting gives z? +y? =
0. So the only equilibrium point is « = y = 0. The stability matrix is

« [ -1 -1
r=(33)
with eigenvalues A(&) = —1 4 1. So the origin is a stable focus.

AT THIS POINT YOU SHOULD REALIZE THAT THIS IS AN AP-
PLICATION OF THE POINCARE-BENDIXSON
THEOREM IN THE REVERSE TIME DIRECTION.

e de o dy
a - Y@ TVar

= —2? —y? + (@® + ) (2% + 257).

So
#(t) = —r +r3(1 + sin?(9)). (6.19)
Also
cos(@)% —r sin(ﬁ)% = —rcos(f) — rsin(f)
+7cos(0){r? + r?sin?(0)},
giving
(t) = 1. (6.20)

Equation (6.19) can be expressed in the form

#(t) = r(r? — 1) +r®sin?().
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So on the circle r = 1+ § for any § > 0

7(t) > 0.

Equation (6.19) can also be expressed in the form

= 2(s? — 3) +r(sin(6) - 1). (6.21)
So on the circle r = 1/4/2 — § for any 1/v/2 > 6§ >0

7(t) < 0.

So the annulus

1
— —0<r<1+4+46
N/

satisfies the result of the first part of the question and must contain
either an equilibrium point or a periodic solution. Since the origin is
the only equilibrium point it must contain a periodic solution.

Since, from the reverse Poincaré-Bendixson theorem, the reverse tra-
jectory tends to the periodic solution as t — —oo it must be unsta-
ble. Alternatively denote the periodic solution of (6.20) and (6.21) by
r = r(t) and substitute r = 7(t) + Ar into (6.21) and linearize to give

dAr
dt
But

= {3/%[1 +sin®(t)] — 1}Ar-

2
372[1 +sin®(t)] — 1> 3 (% - 6) [1+sin?(t)] — 1> 0,

for sufficiently small 6. So the periodic solution is unstable.
6.4 Problems 4
1) With y(t) denoting ()
o(t) = y(b), y(t) = —z(B)[1 — ex(t)].

The equilibrium points are t =y =0 and z = 1/¢, y = 0.

Linearizing about x =y =0 the stability matrix is

. (0 1
7=(4 o)

with eigenvalues +i. So the origin is a centre.
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Linearizing about z =1/e, y =0 the stability matrix is

. (01
7=(10)

with eigenvalues +1. So this is a saddlepoint.

SADDLE POINT

CENTRE

Although you are not asked to do this it is of interest to find a first integral
and plot curves in the z—y plane.

xd—x—i— %—sxzd—x
a e T

with the integral

ex® = E.

W=

12,12
52” + 3y

For a particular ¢ the curve passes through the saddle point at z = 1/e,
y = 0, giving the separatrix with a homoclinic point, when E = 1/6c2. We

compute the curves for e =1 and F = %, %, 1.

with(plots):

f:=(x,y,epsilon,En)->
x~2/2+y~2/2-epsilon*x~3/3-En:

# Try the case epsilon=1, with
E=1/10,1/6,1:

implicitplot(

{f(x,y,1,1/10) ,f(x,y,1,1/6) ,f(x,y,1,1)},

vV V.V V.V V V

> x=-2..2,y=-2..2,grid=[100,100]);
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< ]
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I
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(a) Let 7 = w(e)t. Then the equation becomes
d?z

a;§'+-I —-E$2 =0.

w?(e)
Let

x(e,7) = xo(7) + ex1(7) + O(£2),
w(e) =1+ wie + O(e?).
The €° contribution to the equation is
d2$0
dr?

with solution

+:E0:07

xo(T) = Ag cos(T) + Bo sin(7).

Since this contribution contains all the O(g%) part of the solution it
follows from the ¢ = 0 initial conditions that Bo = 0 and Ag = ag. The
e! contribution to the equation is

d2$1 d2$0 2
F+2W1F+I1—IO :0
Substituting for zy gives

d2$1

dr? +a = %aﬁ[l + cos(27)] + 2wrag cos(T).
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Suppose the solution is of the form
21(7) = Ay cos(7) 4+ By sin(7) + X (7).
Then
X"1)+ X(1) = %a%[l + cos(27)] + 2wy ag cos(T).
A particular solution to this equation is
1 2

X(t)= %aowﬁ[cos(r) + 2sin(7)] + %a% — §ag cos(27).

We are interested in finding the periodic contribution. But the first pair
of terms involves 7 cos(7) and 7sin(7), which are not periodic.? So to
ensure that the solution is periodic we must take w; = 0 so that

w=1+0(?).

Also from the initial conditions it follows that By = 0 and
a1 = A1+ %a%.

Thus we have

x(e,t) = agcos(t) + ¢ { [al - %a%} cos(t) + %ag - %a% cos(2t)} .

Let
z(e,t) = rcos(0) + eu (r, 0) + O(e?),
with
2 2
/ WD (7, 0) cos(0)d6 = / uD(r, 0) sin(8)dd = 0
0 0
and

#(t) = e AV (r) + O(e?),

0(t) = =1+ B (r) + O(2).
Then

) L) (D)
z(t) = 7r(t)cos(f) —rsin(0)0(t) + ¢ {%H(t) + %r(t}}

() = #(t)cos(0) — 27(£)0(t) sin(h) — rcos(0)[0()]* — rsin(0)d(t)
+€{a2u(1) : 1 Ou® .. 92y .

TR t)]° + 50 9(t)+2W9(t)f«(t)

?u® o ou)
57 7(t)] + 5 r(t).}

2They are called secular terms.
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The first line of terms contain both O(e") and O(e!) contributions. When
we substitute into the equation the O(g°) contributions cancel and the
O(e!) terms give

2,,(1)
%mwmﬂmq+mamm3®@ﬂf2; +u® =72 cos?(6).
Now
1 27

AV = = 7% cos?(6) sin(0)dd = 0,
2T 0

) 1 27 3

BY(r) = /. rcos”(6)dd = 0.

So

&*ult 1 2., .2

W—FU():T COs (9),

which has the solution

ulD (r,0) = A cos(t) + By sin(t) + 2r%[3 — cos(20)].

Since
P(t) = O(e2), r= A+ 0(e?)
O(t) = —1 + O(e2), 0 =Co—t+0(c?)

To satisfy the initial conditions B; — Cy = 0 and
x(e,t) = Agcos(t) + & {Al cos(t) + %A%[?) - cos(2t)]} .

To satisfy the initial conditions we must now choose Ag = a¢ and A; =

1.2
ayp — §a0.

2) As was defined in Sect. 4.7.1 the synchronous contribution to the solution to
an equation with a forcing term is that part with the same frequency as the
forcing term. If we are concerned only with this contribution we can neglect
perturbations in the frequency. Let
x(e,t) = zo(t) + ex1(¢).

The O() contribution satisfies
d2,’E0
de?

+ wizg = T cos(Qt).

The complementary function will not be synchronous since its frequency is
wp not Q. So we just take the particular integral

T" cos(2t)
o TP
0
zo(t) = ,
It sin(t) 00w
2ESIUY) g

20
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At the excluded value 2 = wy there is a resonance with amplitude growing
with ¢t. The O(e!) contribution satisfies

d2$1
12 —l—w%xl = w%xé
~ wilMcost(Q1)
(w7 — o)t
Since

cos* () = %{605(491%) + 4 cos(29t) + 3},

wo = 20 and 4€) will also give resonances. Excluding these values the par-
ticular integral is

wal? { cos(4Q2t) 4 cos(202) N 3 }

8(w2 — Q2)4 w?

t) =
1 (t) wi — 1692 w2 —49% W

and

T cos(Qt) ewdl? cos(4Qt)  4cos(2Qt) 3
a(t) = — 2 2 +— 2 (-
wi — 2 8w —02)* |wi —1692  wi—492 w3

Let
7 = Qtw(e) /wo, w(e) = woy(e),

Then the equation transforms to

TR 2 4 s
g (<€)d—7_2 + a(z —ex®) = el cos[Twy /w(e)].

Let
2(e,7) = xo(7) + ex1 (1) + O(e?),
g(e) =1+¢eg1 + O(e?).

Then the O(e%) terms satisfy

d2$0

12 + a2x0 =0.

Using the initial condition, the solution is

xo(T) = ag cos(ar).
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Then the O(e!) terms satisfy

d2:E1

0 + a?x1 = 2g1a00? cos(ar) + a?af cos* (ar) 4 T cos(7).

Terms with cos(a7) on the right will give a secular contribution to the solu-
tion. Since cos*(at) unlike cos®(ar) does not contain such a term we must
take g1 = 0 to eliminate a secular contribution. Then

d? .
3 x; + o’z = l044ag[cos(40m') + 4 cos(2ar) + 3] + T cos(7).
-

8
Using the trial function
f(r) = Ao+ Aqcos(2at) + Az cos(dat) + Ay cos(T)

for the particular solution it follows that

B Tcos(T) 1 o 4 [cos(4ar) 4cos(2ar) 3
x1(7) = ay cos(aT) + a7 " 8Y | Tras 32 |
giving
r Qt
x(t) = cos(wot)[ap + €a1] + 15078(92) - %aéa [%5 cos(4dwot) + %cos(2wot) — 3} .
2 _

Let 7 = Qt. Then the equation transforms to

RN 2 2
Q (E)F + wi(x + ex®) =T cos(T).
T

Let
z(e,7) = zo(7) + ex1 (1) + O(e?),
Qe) = Qo + e + O(e?).

Then the O(e") terms satisfy

2
2d Zo

2 dr?

+ wizo = T cos(7),

with solution

T cos(T)

= Q —.
2o(T) = ag cos(wot/o) + o
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If Q¢ = 2wg then

T cos(T)

2o(7) = ag cos(r/2) — 30 8

Then the O(e!) terms satisfy
d?zg ,d?z;
2 0 44w ) + wilz1 + 23] = 0.

Substituting for zo(7) gives

2(.«)091

a2 Q r ?
Fx; + ixl = 8—(.«)10 [aowg cos(7/2) — %l—‘ COS(T)} - % {ao cos(1/2) — %8(7-)
Expanding the last term gives
P’z Y 4 1
12 +371 = 8o [aowg cos(7/2) — 3T COS(T):| - gag[l + cos(7)]
2 Tag
720 =1+ cos(27)] + ﬂ[cos(37'/2) + cos(1/2)].

To eliminate secular terms we must remove the cos(7/2) terms from the
non-forcing contribution by setting €y = %F/wg. Then

d2$1 1 1 92 F2
gz Tam = el s =

—— (1 + —16 cos(7) + cos(27)]

r
+ 6—5(8) cos(37/2).

This has the solution
FQ

r(1) = —ai {2 — %COS(T)} 18w {4 + 3 cos( ) — L cos(27')}

15

Fao
T cos(37/2).
Finally we substitute these results for z¢(7) and z1(7) into the expansion for

z(g,t) with 7 = Qt and compare coefficients with those given in the question.
We have

2
Mo =-delode].  BO-w
Wo
T 1 9 812 _elag
Cle)=-gztew ~ g PO =5
el?
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5) To apply the Krylov-Bogoliubov-Mitropolsky averaging method to the equa-
tion

d’z dx
FTE) +ef (x, E) + x = eI cos(),

we suppose that:

(i) z(e,t) = rcos(8) + euD(r,0) + 2u@ (r,0) + - -,
where u(®) (1,0 + 27) = u¥)(r,0) and

2 2
/ ’U,(k) (’I", 0) Cos(o)de = / ’U,(k) (’I", 0) Sln(@)d@ = O,
0 0

k=12,
(i)
dr M 24
— eAN (r)+ e A (r) + - - -,
dt
j—i = —14+eBY@) +2BO(r) 4 -,

The k-th order KBM method consists in retaining terms up to *. We now
apply the method to the Van der Pol equation with a weak forcing term

d?z

d
Tl +e(2? - 1)—:13 + x = eI cos(2).

dt

where 2 is not close to unity. Retaining terms to O(¢) it follows from (i) and
(ii) that

e(2? — 1) = e{r? cos?() — 1},

1)
% = rsin(f) + ¢ {AU)(T) cos(8) — rBM (r) sin(f) — Ou } :

i 20, (1)
% = —rcos(f) +¢ {2 sin(0) AW (r) + 2r cos(8) BY (1) + 0%u } .

Substituting into Van der Pol equation the terms of O(e°) cancel and the
terms of O(g!) give

2, (1)
{MTQET’H) +uM(r, 9)} +2AW(r) sin(0) 4 2rBD (r) cos(0)

+rsin(0){r? cos®(0) — 1} = I" cos(Q). (6.22)
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We must now eliminate the term with explicit ¢ dependence. We do this by
defining

T" cos(2t)

uV(r,0) = aV(r,0) + T2

and substituting into (6.22) gives

{ 92a™ (r, )

o+ @Y (r, 9)} + 24 (r) sin(0) 4 2rBY (r) cos(6)

+rsin(0){r? cos?(§) — 1} = 0. (6.23)

Now multiplying successively by sin(f) and cos(f), integrating over [0, 27]
and using the integral results in (i) gives

27
A G) == [ dgsin @) (5% cos?(6) — 1} = Er( — ),
™ Jo

e (6.24)

BW(r) = —5- dfsin(0) cos(0){r? cos*(9) — 1} = 0.
™Jo

Since z(0) = ro + O(el), ©(0) = O(el), 7(0) = ry and 0(0) = 0. From (ii)
and (6.24)

j_i =1, giving 0 =—t,

% = %57“(4 —r?),

giving

=3 [ = { o)
;égj — ;)) = exp(—et)

Substituting from (6.24) into (6.23) gives

2*a ™M (r,0)

902 +aV(r,0) = —irg{?) sin(0) — 4sin®(0)} = — 113 sin(36).

4

This has the solution

@M (r,0) = 357" sin(30).
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So

T" cos(2t)

M (r,0) = &3 sin(30) +
u't(r,0) r° sin(36) T

32
and from (i)

el cos(Q2t)
1-9°

x(e,t) = rcos(t) — 3—1257°3 sin(3t) +

6.5 Problems 5

1)

With &(t) denoted as y(t)

a(t) — py(t) — 22 (t).

The equilibrium points are (0,0) and (1,0).

.
—~
~
=
I

Linearizing about x =y =0 the stability matrix is

0 1
Jr = ,
L —p

with eigenvalues %[—u + y/p? + 4]. Since both eigenvalues are real with one
positive and one negative, for all u, this is a saddle point.

Linearizing about x =1, y =0 the stability matrix is

0 1
J* = ,
-1 —pn

with eigenvalues %[—u + /u? — 4]. So this equilibrium point is

o A stable node if p > 2.
A stable inflected node if p = 2.
A stable focus if 0 < p < 2.

A centre if = 0.

A unstable focus if —2 < p < 0.

A unstable inflected node if p = —2.
o A unstable node if p < —2.
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When © =0

xd—x— T d_y_ x—xQd—x
a o Ya =Y dt’

So

dz dy ydz
rT— —Yy— =" —
a Yar at’

giving

1 1
5[962 —y’|=F— 3903.

The homoclinic trajectory passes through the origin and thus corresponds to
E =0. A MAPLE plot for some trajectories is

> with(plots):

> fi=(x,y)->(x"2-y~2)/2-x"3/3:

> curve:=
> implicitplot ({f(x,y)=-2,f(x,y)=0,f(x,y)=1/9},
> x=-2..3,y=-3.5..3.5,grid=[100,100],

> labelfont=[TIMES,ITALIC,12],linestyle=5,thickness=1):

> text:=

> plots[textplot] ({[-1.0,0.2,¢E=1/9¢],

> [0.9,0.1,‘E=1/9¢],[1,0.8,¢E=0°],[1,2.2, ‘E=-2°]},
> align={ABOVE,RIGHT},font=[TIMES,ITALIC,10]):

> plots[display] ({curve,text});
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“
N 3
\\\ S . 1 -5
N — 1 = T
N y2 ] _—
N 1 =0 \
N — i B o \
BRI B VL) \
_‘ _‘ ///0: ™~ = _a / ! ]
2 1 ) ///f,/ ] 17X 2 /
~ - — “
I _
// ////
- _ 3]

The arrows indicating the direction of flow can be added to this diagram
using the fact that &(t) > 0 when y > 0. When p is small and positive
the centre at (1,0) changes to a stable focus. The right-hand part of the
homoclinic trajectory breaks into a part spiralling into the focus point and
a branch coming from infinity.
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When g is small and negative the figure is obtained by reflecting this diagram
in the z—axis and reversing the direction of the arrows.

Substituting z = z. + Az, y = y. + Ay, z = z. + Az into the Lorentz
equations gives

dAzx

. —a(Lz — Ay),
% = Az —Ay—xlz4 (p—pe)(xc + Ax) — DAaxz,
diz = y Az + ANy — bAz+ Nxly.

These can be expressed in vector form as

dA
d—tr +J*Ar = w,

where J* and w are as given on the question sheet. Now substitute t = 7/w
to give the required equation. The eigenvalue equation of J* is

Nt (a+ b4+ DA% 4 bla+ p)X + 2ab(p. — 1) = 0.
Having been given one root the cubic can be factorized and the roots are
A=—(a+b+1),

2ab(a + 1)

A= +ivb ) = iy /224 )
iv/b(a + pe) Y e —

which identifies w.. Let v and u be the left and right eigenvectors of J* with
eigenvalue iw.. Then

v T =iwT, J u = viw,.

Let

p = ua(r) + ub(r)

and substitute into the equation. Since the terms on the right-hand side are
of O(g), the terms of O(/2) give

da _db . _
U —l—ug + i[ua — ub] = 0.
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Operating on the left with v™ gives

d
= tia=0,

a(T) = cexp(—ir),

and

db
L =0
ar ’

b(1) = ¢’ exp(ir).
Since p is real ¢ = ¢ and we have the required result.

3) Substituting t = e7, p = 1/e%, & = /e, y = n/(c%a) and z = ({ + a)/(c%a)
into the Lorentz equations to achieve the required forms is straightforward.
When € =0

d§¢ dn a¢
= p=—f =6
and thus

dnp ~.d¢
B e 0
3 +Cd7’ ’

giving

s’ + 30 =a,

and
e _de_,
dr dr ’
giving
26— ¢=0.
Also

(%)2 =20’ - =20~ (3 - ) = (20— #) - L&' + e
dr 2 4 '

Whenaz%,ﬁz

)

N[

(%) = ke o -a,
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The solution is confined to the range —2 < ¢ < 2 with dai/dtau = 0 at
the extremities. The period of the solution will be given by integrating over
[—2,2] and doubling the result. That is

2 dé—
1, GRSl

We can determine the form of the orbits in the £ d¢/dr plane using MAPLE

> with(plots):
> f:=(x,y,alpha,beta)->

2*alpha-beta~2-x"4/4+beta*x~2-y~2:
curve:=implicitplot ({f(x,y,9/8,1/2)=0,f(x,y,9/8,-1/2)=0
},

> x=-3..3,y=-2.5..2.5,grid=[100,100] ,1abelfont=[TIMES,ITALIC,12],

> linestyle=5,thickness=1):
text:=plots[textplot](
{[0.8,0.5,¢‘b=-1/2¢],[2.1,0.5,‘b=1/2¢],[1,2.2,%a=9/8¢]},

> align={ABOVE,RIGHT},font=[SYMBUL,10]):
> plots[display] ({curve,text});

1 a=9/8
2
T R T
/ S Y1 ™ N

/o 2
/ 0.5 - B=+1/2 \ p=1/2
[ ,‘/ \ \\
| — — |

_\b S X ) ?

‘\\ \ —0.5 1 // /

\ . /
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4) For the given transformation the stability matrix is
T, 0 <1
0 2 Y y 2 )
Th 0 1
(5 9) vot

Suppose that in n iterations the mapping spends p in the region y < % Then
the eigenvalues of S(n) (defined by (5.64) are 2" and 777, ”. Then, from
(5.66),

Jx,u] =

= lim In(2")

n— o0 n

A

=1n(2) > 0,

In(rf7, ")

/\f) = lim

= pIn(7,) + (1 = p) In(m) <0,

where

u= lim (3).

n—oo \ N

Since )\S) > 0 and )\g) < 0 the system is chaotic. In formula (5.79) for the
Lyapunov dimension of the attractor we take k = 1 to give

D) = 1 — {uln(r) + (1 — ) In(m)} .



