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Chapter 1Dynami Systems1.1 What is a Dynami System?Consider a partile of onstant mass m moving on a line so that at time t it isat a point Pt at a distane x(t) from a point O, (Fig. 1.1). Suppose that a fore
O PtFigure 1.1: A partile moving in simple harmoni motion on a line.

F = κ
−−→
PtO (κ > 0) is ating on the partile. Then aording to Newton's seondlaw the equation of motion of the partile is
m

d2x

dt2
= −κx. (1.1)The behaviour of the partile when governed by this equation is alled simpleharmoni motion.When onvenient we shall use the `dot' notation to signify di�erentiationwith respet to time.1 Thus

dx

dt
= ẋ(t),

d2x

dt2
= ẍ(t)and the onvenient forms for (1.1) are now the one seond-order equation

ẍ(t) + ω2x(t) = 0, (1.2)or the pair of oupled �rst-order equations
ẋ(t) = v(t), v̇(t) = −ω2x(t), (1.3)where ω2 = κ/m and v(t) is the veloity of the partile. This is a simple ase1For derivatives of higher than seond order this notation beomes umbersome and willnot be used. 1
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Figure 1.2: The trajetory in phase spae for a partile moving with simpleharmoni motion.of a dynami system with two degrees of freedom (x, v). Given that the state ofthe system at some time t = 0 is given by (x0, v0) = (x(0), v(0)), then the state
(x(t), v(t)) at time t will be given by solving (1.2) (or equivalently (1.3)). Thethe set of states for all t will be represented by a path or trajetory parameterizedby t in the phase spae Γ2 of the variables (x, v).The auxiliary equation for (1.2) is

λ2 + ω2 = 0, with roots λ = ±iω. (1.4)with solution
x(t) = A cos(ωt) + B sin(ωt). (1.5)The motion is periodi with angular frequeny ω. The period T is the time forit to perform one omplete yle. This is given by ω(t + T ) = ωt + 2π. So

T = 2π/ω.If the initial onditions are x(0) = a, ẋ(0) = 0, then the solution beomes
x(t) = a cos(ωt), with the veloity v(t) = −aω sin(ωt). (1.6)The partile osillates about the origin. In the phase spae Γ2 its path is theellipse
x2

a2
+

v2

(aω)2
= 1, (1.7)with motion in the lokwise diretion (Fig. 1.2). The time for the phase point

(x, v) to pass around the ellipse one is the period T .



1.2. HAMILTONIAN SYSTEMS 3We shall now give some more general de�nitions:A dynami system with d degrees of freedom is a set of d variables
x1, x2, . . . , xd (usually, but not always with some partiular signi�ane) to-gether with a set of equations whih give a deterministi mathematial pre-sription for the evolution of the variables with time t. The evolution of thestate (x1(t), x2(t), . . . , xd(t)) of the system with time is given by a trajetoryin the d-dimensional phase spae Γd of the variables.We shall be onerned mainly with systems governed by �rst-order ordinarydi�erential equations. The standard form for a system with d degrees of freedomis then

ẋ1(t) = F1(x1, x2, . . . , xd; t),

ẋ2(t) = F2(x1, x2, . . . , xd; t),... ...
ẋd(t) = Fd(x1, x2, . . . , xd; t).

(1.8)
Equations (1.3) are of this type with d = 2. It is often onvenient to expressequations (1.8) in vetor form as

ẋ(t) = F (x; t), (1.9)where x = (x1, x2, . . . , xd)
T is an d-dimensional olumn vetor2 in the phasespae Γd and F is a family of vetor �elds on Γd parameterized by t.A dynami system of the type (1.8) is non-linear if one or more of thefuntions F1, F2, . . . , Fd is non-linear in one or more of the variables x1, . . . , xd.1.2 Hamiltonian SystemsA dynami system with 2d degrees of freedom and variables

x1, . . . , xd, p1, . . . , pd is a Hamiltonian system if there exists a Hamiltonianfuntion H(x1, . . . , xd, p1, . . . , pd; t) and the evolution is given by the equations
ẋℓ(t) =

∂H

∂pℓ
,

ṗℓ(t) = −∂H
∂xℓ

,

ℓ = 1, 2 . . . , d. (1.10)2Our default notation for vetors will be in olumn form. A supersript `T' (meaningtranspose) is used to translate between row and olumn forms.



4 CHAPTER 1. DYNAMIC SYSTEMSFrom (1.10), the rate of hange of H along a trajetory is given by
dH

dt
=

d∑

ℓ=1

{
∂H

∂xℓ
ẋℓ(t) +

∂H

∂pℓ
ṗℓ(t)

}

+
∂H

∂t
,

=

d∑

ℓ=1

{
∂H

∂xℓ

∂H

∂pℓ
− ∂H

∂pℓ

∂H

∂xℓ

}

+
∂H

∂t
,

=
∂H

∂t
. (1.11)If the system is autonomous (∂H/∂t = 0, see Set. 1.5) the value of H does nothange along a trajetory. It is said to be a onstant of motion. In the aseof many physial systems the value of the Hamiltonian is the total energy thesystem.1.3 Conservative SystemsAs we have already seen in the ase d = 2, a system with d variables x1, x2, . . . , xddetermined by seond-order di�erential equations, given in vetor form by

ẍ(t) = G(x; t), (1.12)where
x(t) =








x1(t)
x2(t)...
xd(t)







, G(x; t) =








G1(x; t)
G2(x; t)...
Gd(x; t)







, (1.13)is equivalent to the 2d-th order dynamial system

ẋ(t) = 1
m

p(t), ṗ(t) = mG(x; t), (1.14)where
p(t) =








p1(t)
p2(t)...
pd(t)








= m








ẋ1(t)
ẋ2(t)...
ẋd(t)







. (1.15)If there exists a potential funtion V (x; t), suh that

G(x; t)m = −∇V (x; t), (1.16)the system is said to be onservative. This is equivalent to the ondition that
V (x; t) = −

∫ x(t)

x(0)

mG(x; t).dr, (1.17)



1.4. DISCRETE-TIME SYSTEMS 5where the line integral in Γd from x(0) to x(t) is independent of the path taken.By de�ning
H(x,p; t) = 1

2m
p2 + V (x; t), (1.18)we see that a onservative system is also a Hamiltonian system. In a physi-al ontext this system an be taken to represent the motion of a set of 1

3
dmoving in three-dimensional spae, with position and momentum oordinates

x1, x2, . . . , xd and p1, p2, . . . , pd respetively. Then 1
2m

p2 and V (x; t) are respe-tively the kineti and potential energies.A rather more general ase is when, for the system de�ned by (1.9), there existsa salar �eld U(x; t) with
F (x; t) = −∇U(x; t). (1.19)1.4 Disrete-Time SystemsAlthough our main interest will be in dynami systems de�ned by di�erentialequations, it is worth referring to the ase where the system is de�ned by adi�erene equation. This simply orresponds to the situation where `time' ismade disrete and beomes a variable de�ned on the ountable set n = 0, 1, 2, . . ..Then (1.9) is replaed by3
x(n+ 1) = F[x(n);n], n = 0, 1, 2, . . . . (1.20)In fat, of ourse, numerial solutions of systems of di�erential equations arenormally alulated by onsidering the orresponding di�erene equation. Thederivative ẋ(t) is replaed by a two (or possibly more) point numerial approx-imation. Suppose we take t = nε, with ε > 0 and x(t) = x(nε) = x(n) in (1.9)and use the forward two-point derivative
dx

dt
≃ x({n+ 1}ε) − x(nε)

ε
=

x(n+ 1) − x(n)

ε
. (1.21)Then

εF (x(nε);nε) = x(n+ 1) − x(n). (1.22)This is a di�erene equation like (1.20) with
εF (x(nε);nε) = F[x(n);n] − x(n), (1.23)and ε as an independent parameter. Di�erent hoies of ε may lead to very dif-ferent behaviours for the equations. Intuitively one may suppose that hoosing

ε as small as possible will lead to behaviour lose to that of the underlying dif-ferential equation, but there is, of ourse, a pratial limit on auray with any3To distinguish between disrete-time and ontinuous time system we shall use the sameletters but a di�erent font.



6 CHAPTER 1. DYNAMIC SYSTEMSomputing systems and going beyond this will lead to rounding errors. Thereare also questions of stability. It may be the ase that di�erenes in ε, howeversmall they are, lead to large hanges in the evolution of (1.23), with none au-rately representing the analyti solution of (1.9) whih would orrespond to thelimit ε→ 0.1.5 Autonomous SystemsA dynami system of the type (1.8) is autonomous (sometimes alled `sta-tionary') if none of the funtions F1, F2, . . . , Fd is an expliit funtion of t. Thetime dependene of F in this ase enters through the dependene of the variables
x1(t), . . . , xd(t) on t.It is lear that (1.3) is an autonomous dynami system. Autonomous sys-tems have the important property that, if the system is at (x

(0)
1 , . . . , x

(0)
d ) attime t0 and (x

(1)
1 , . . . , x

(1)
d ) at t1 then the values x(1)

1 , . . . , x
(1)
d are dependent on

x
(0)
1 , . . . , x

(0)
d and t1 − t0 but not on t0 and t1 individually.In fat being autonomous is not suh a severe restraint. A non-autonomoussystem an be made equivalent to an autonomous system by the following trik.We inlude the time dimension in the phase spae by adding the time line Υto Γd. The path in the (d + 1)-dimensional spae Γd × Υ is then given by thedynamial system

ẋ(t) = F (x, xt), ẋt(t) = 1. (1.24)This is alled a suspended system.1.6 Equilibrium Points and Their StabilityIn general the determination of the trajetories in phase spae, even for au-tonomous systems, an be a di�ult problem. However, we an often obtain aqualitative idea of the phase pattern of trajetories by onsidering partiularlysimple trajetories. The most simple of all are the equilibrium points.4 Theseare trajetories whih onsist of one single point. If the phase point starts atan equilibrium point it stays there. The ondition for x∗ to be an equilibriumpoint of the autonomous system
ẋ(t) = F (x), (1.25)is
F (x∗) = 0. (1.26)For the system given by (1.19) it is lear that a equilibrium point is a stationarypoint of U(x) and for the onservative system given by (1.13)�(1.16) equilibrium4Also alled, �xed points, ritial points or nodes.



1.7. DAMPED AND FORCED SIMPLE HARMONIC OSCILLATORS 7points have p = 0 and are stationary points of V (x). An equilibrium point isuseful for obtaining information about phase behaviour only if we an determinethe behaviour of trajetories in its neighbourhood. This is a matter of thestability of the equilibrium point, whih in formal terms an be de�ned in thefollowing way:The equilibrium point x∗ of (1.25) is said to be stable (in the sense ofLyapunov) if there exists, for every ε > 0, a δ(ε) > 0, suh that any solution
x(t), for whih x(t0) = x(0) and

|x∗ − x(0)| < δ(ε), (1.27)satis�es
|x∗ − x(t)| < ε, (1.28)for all t ≥ t0. If no suh δ(ε) exists then x∗ is said to be unstable (in thesense of Lyapunov). If x∗ is stable and
lim

t→∞
|x∗ − x(t)| = 0. (1.29)it is said to be asymptotially stable. If the equilibrium point is stable and(1.29) holds for every x(0) then it is said to be globally asymptotially stable.In this ase x∗ must be the unique equilibrium point.There is a warning you should note in relation to these de�nitions. In some textsthe term stable is used to mean what we have alled `asymptotially stable' andequilibrium points whih are stable (in our sense) but not asymptotially stableare alled onditionally or marginally stable.An asymptotially stable equilibrium point is a type of attrator. Other typesof attrators an exist. For example, a lose (periodi) trajetory to whih allneighbouring trajetories onverge. These more general questions of stabilitywill be disussed in Chap. 3. We now illustrate the ideas desribed here byreturning to the simple harmoni osillator.1.7 Damped and Fored Simple Harmoni Osil-latorsIt is not di�ult to see that the simple harmoni system with equations ofmotion (1.3) is a autonomous Hamiltonian system with momentum p = mv and

H(x, p) =
1

2m
p2 +

1

2
ω2x2. (1.30)It is also a onservative system with V (x) = ω2x2/2.The point x = v = 0 is a stable equilibrium point, but not an asymptotiallystable equilibrium point. A trajetory whih begins lose to the equilibrium



8 CHAPTER 1. DYNAMIC SYSTEMSpoint will perform an ellipse about the point without onverging to the point ormoving away.1.7.1 A Damped Simple Harmoni OsillatorNow suppose that motion of the simple harmoni osillator is slowed down(damped) by a fore like visosity, whih is proportional to the veloity. Theequation of motion is modi�ed to
mẍ(t) = −ℓv(t) − κx(t),or equivalently (1.31)
ẍ(t) + 2βẋ(t) + ω2x(t) = 0,where β = ℓ/(2m) > 0. The auxiliary equation is

λ2 + 2βλ+ ω2 = 0, with roots λ = −β ±
√

β2 − ω2. (1.32)We must onsider three ases:(i) β > ω. Then both roots of the auxiliary are real and the solution is
x(t) = A exp(−[β + γ]t) + B exp(−[β − γ]t) (1.33)where γ =

√

β2 − ω2. With the initial onditions are x(0) = a, ẋ(0) = 0,the solution beomes
x(t) =

a

2γ
exp(−βt) {(γ − β) exp(−γt) + (γ + β) exp(γt)} ,with the veloity (1.34)

v(t) =
a(β2 − γ2)

2γ
exp(−βt) {exp(−γt) − exp(γt)} ,As t → ∞ the solution onverges to x = v = 0, whih is now an asymp-totially stable equilibrium point. The path in Γ2, for a = 1, ω = 0.6,

β = 0.7, is shown in Fig. 1.3.(ii) ω > β. Then both roots of the auxiliary equation are omplex. You aneither re-derive the solution from srath or make the substitution γ = iξin (1.34), where ξ =
√

ω2 − β2. This gives
x(t) =

a

ξ
exp(−βt) {ξ cos(ξt) + β sin(ξt)} ,with the veloity (1.35)

v(t) =
a(β2 + ξ2)

ξ
exp(−βt) sin(ξt).In the limit β → 0, ξ → ω, we reover the undamped solution (1.6). When

β > 0, the solution osillates with an exponentially dereasing amplitude.
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Figure 1.3: The path begins at (a, 0) by following the undamped solution (shownby a broken line) but then onverges to the origin.The path in Γ2, for a = 1, ω = 0.6, β = 0.1, is shown in Fig. 1.4.Again the origin in Γ2 is an asymptotially stable equilibrium point butthe trajetory approahes it in a spiral.(iii) ω = β. Then the roots of the auxiliary are both λ = −β and the solutionis
x(t) = [A + Bt] exp(−βt). (1.36)With the initial onditions are x(0) = a, ẋ(0) = 0, the solution beomes

x(t) = a(1 + βt) exp(−βt),with the veloity (1.37)
v(t) = −β2at exp(−βt).The path in Γ2, for a = 1, β = 2, is shown in Fig. 1.5. Again the originis a asymptotially stable equilibrium point.1.7.2 A Fored, Damped Simple Harmoni OsillatorWe now onsider a ase of the situation where the damped harmoni osillatoris subjet to a periodi foring term. The equation of motion (1.31) beomes
ẍ(t) + 2βẋ(t) + ω2x(t) = c cos(χt). (1.38)
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Figure 1.4: The path begins at (a, 0) by following the undamped solution (shownby a broken line) but then spirals into the origin.The omplementary funtion for this equation is just the same as in the ases wehave treated. We shall onentrate on the ase ω > β where the omplementaryfuntion (unfored part of the solution) is periodi
xc(t) = exp(−βt) {A cos(ξt) + B sin(ξt)} , ξ =

√

ω2 − β2. (1.39)The trial funtion for the partiular integral is
T(t) = C cos(χt) + D sin(χt), (1.40)and substituting into (1.38) gives the partiular solution
xp(t) =

c

φ

{
(ω2 − χ2) cos(χt) + 2βχ sin(χt)

}
, (1.41)where

φ = ω4 + χ4 + 2χ2(2β2 − ω2). (1.42)Now we apply the initial onditions x(0) = a and ẋ(0) = 0 to evaluate A and Bso that the omplementary funtion beomes
xc(t) =

exp(−βt)
ξφ

{
ξ[aφ+ c(χ2 − ω2)] cos(ξt) + β[aφ− c(χ2 + ω2)] sin(ξt)

}(1.43)When β > 0 the solution
x(t) = xc(t) + xp(t), with v(t) = ẋc(t) + ẋp(t) (1.44)
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Figure 1.5: The path begins at (a, 0) by following the undamped solution (shownby a broken line) and then onverges to the origin as in Fig. 1.3, but in thisase the onvergene is delayed by the linear t terms.has a part xc(t) whih tends to zero as t → ∞. This is alled the transientontribution and a part xp(t) whih does not attenuate. This is alled thepersistent ontribution. In the long-time limit the system tends to an osillationof the fored frequeny. In Γ2 the solution begins at the point(a, 0) on the ellipseof the `natural motion' of the osillator and then onverges on the ellipse
x2

(ω2 − χ2)2
+

v2

4β2χ2
=
c2

φ2
. (1.45)Figure 1.6 shows the ase where a = 1, c = 2, ω = 0.6, β = 0.7 and

chi = 0.5. The origin in Γ2 is no longer an equilibrium point but the ellipse(1.45) is an attrator.1.7.3 A Fored, Undamped Simple Harmoni OsillatorWe now onsider the speial ase β = 0, when the solution simpli�es to
x(t) =

{

a+
c

(χ2 − ω2)

}

cos(ωt) +
c

(ω2 − χ2)
cos(χt), (1.46)

v(t) = −ω
{

a+
c

(χ2 − ω2)

}

sin(ωt) − χ
c

(ω2 − χ2)
sin(χt). (1.47)It is lear that the amplitude of the osillations tends to in�nity as χ is `tuned'to approah ω. This phenomenon is known as resonane. For the ase χ = ω we
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Figure 1.6: A damped fore simple harmoni osillator. The path begins at (a, 0)on the natural ellipse and then onverges onto the fored ellipse as t→ ∞.should have taken a di�erent trial funtion ontaining a linear term in t. Thenwe would have obtained the solution
x(t) =

1

2ω
[2aω cos(ωt) + ct sin(ωt)], (1.48)

v(t) =
1

2
[−2aω sin(ωt) + ct cos(ωt)], (1.49)in whih the amplitude of the periodi solution inreases linearly with t. Awayfrom the resonane ase we have, in equations (1.46) and (1.47) a solution whihinvolves ontributions with two di�erent angular frequenies ω and χ and periods

TN = 2π/ω and TF = 2π/χ. The possible behaviour divide into two types:(i) There exist integers n1 and n2 suh that
n1TN = n2TF or, equivalently n2ω = n1χ. (1.50)Then the period of the solution is n1TN = n2TF, where now n1 and n2 arethe smallest pair of integers whih satisfy (1.50). Equation (1.50) an, ofourse, always we satis�ed if ω and χ are rational numbers (frations orintegers) and the ase where a = 1, c = 2, ω = 7

10
, χ = 1

2
is shown in Fig.1.7.(ii) There do not exist integers n1 and n2 suh that (1.50) is satis�ed. For thisto be the ase one or both of ω and χ must be irrational. The urve in
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Figure 1.7: An undamped fore simple harmoni osillator where the frequeniesare rationally related and the solution is periodi.

–20

–10

0

10

20

v

–30 –20 –10 10 20 30
x

Figure 1.8: An undamped fore simple harmoni osillator where the frequeniesare not rationally related and the solution is quasi-periodi.
Γ2 now never loses. This solution is said to be quasi-periodi. The asewhere a = 1, c = 2, ω = 1√

2
, χ = 1√

3
is shown in Fig. 1.8.



14 CHAPTER 1. DYNAMIC SYSTEMS1.8 One-Variable Autonomous SystemsWe �rst onsider a �rst-order autonomous system. In general a system mayontain a number of adjustable parameters a, b, c, . . . and it is of interest toonsider the way in whih the equilibrium points and their stability hangewith hanges of these parameters. We onsider the equation
ẋ(t) = F (a, b, c, . . . , x), (1.51)where a, b, c, . . . are some (one or more) independent parameters. An equilibriumpoint x∗(a, b, c, . . .) is a solution of
F (a, b, c, . . . , x∗) = 0. (1.52)Aording to the Lyapunov riterion it is stable if, when the phase point isperturbed a small amount from x∗, it remains in a neighbourhood of x∗, as-ymptotially stable if it onverges on x∗ and unstable if it moves away from x∗.We shall, therefore, determine the stability of equilibrium points by linearizingabout the point.5Example 1.8.1 Consider the one-variable non-linear system given by
ẋ(t) = a− x2. (1.53)The parameter a an vary over all real values and the nature of equilibriumpoints will vary aordingly.The equilibrium points are given by x = x∗ = ±√

a. They exist only when
a ≥ 0 and form the paraboli urve shown in Fig. 1.9. Let x = x∗ + △x andsubstitute into (1.53) negleting all but the linear terms in △x. This gives
d△x
dt

= a− (x∗)2 − 2x∗△x. (1.54)The right-hand side of (1.54) an be understood either as a Taylor expansion,as far as the linear term, of the right-hand side of (1.53) about x = x∗, or as theexpansion of the quadrati (x∗ + △x)2 with the term (△x)2 negleted.6 Sine
a = (x∗)2 this gives
d△x
dt

= −2x∗△x, (1.55)whih has the solution
△x = C exp(−2x∗t). (1.56)Thus the equilibrium point x∗ =

√
a > 0 is asymptotially stable (denoted by aontinuous line in Fig. 1.9) and the equilibrium point x∗ = −√

a < 0 is unstable5A theorem establishing the formal relationship between this linear stability and the Lya-punov riteria will be stated below.6Of ourse, in ases where the right-hand side of the di�erential equation is not of somesimple polynomial form we shall have to use a Taylor expansion.
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a

x

x2 = a

0

Figure 1.9: The bifuration diagram for Example 1.8.1. The stable and unstableequilibrium solutions are shown by ontinuous and broken lines and the diretionof the �ow is shown by arrows. This is an example of a simple turning pointbifuration.(denoted by a broken line in Fig. 1.9). When a ≤ 0 it is lear that ẋ(t) < 0so x(t) dereases monotonially from its initial value x(0). In fat for a = 0equation (1.53) is easily solved:
∫ x

x(0)

x−2dx = −
∫ t

0

dt (1.57)gives
x(t) =

x(0)

1 + tx(0)
, ẋ(t) = −

{
x(0)

1 + tx(0)

}2

. (1.58)Then
x(t) →

{
0, as t→ ∞, if x(0) > 0,
−∞, as t→ 1/|x(0)|, if x(0) < 0. (1.59)In eah ase x(t) dereases with inreasing t. When x(0) > 0 it takes `forever'to reah the origin. For x(0) < 0 it attains minus in�nity in a �nite amount of



16 CHAPTER 1. DYNAMIC SYSTEMStime and then `reappears' at in�nity and dereases to the origin as t→ ∞. Thelinear equation (1.55) annot be applied to determine the stability of x∗ = 0 asit gives (d△x/dt)∗ = 0. If we retain the quadrati term we have
d△x
dt

= −(△x)2. (1.60)So inluding the seond degree term we see that d△x/dt < 0. If △x > 0, x(t)moves towards the equilibrium point and, if △x < 0, it moves away. In thestrit Lyapunov sense the equilibrium point x∗ = 0 is unstable. But it is `lessunstable' that x∗ = −√
a, for a > 0, sine there is a path of attration. Itis at the boundary between the region where there are no equilibrium pointsand the region where there are two equilibrium points. It is said to be on themargin of stability. The value a = 0 separates the stable range from the unstablerange. Suh equilibrium points are bifuration points. This partiular type ofbifuration is variously alled a simple turning point, a fold or a saddle-nodebifuration. Fig.1.9 is the bifuration diagram.Example 1.8.2 The system with equation

ẋ(t) = x{(a+ c2) − (x− c)2} (1.61)has two parameters a and c.The equilibrium points are x = 0 and x = x∗ = c±
√
a+ c2, whih exist when

a+ c2 > 0. Linearizing about x = 0 gives
x(t) = C exp(at) (1.62)The equilibrium point x = 0 is asymptotially stable if a < 0 and unstable for
a > 0. Now let x = x∗ + △x giving
d△x
dt

= −2△xx∗(x∗ − c)

= ∓2△x
√

a+ c2
[

c±
√

a+ c2
]

. (1.63)This has the solution
△x = C exp

[

∓2t
√

a+ c2
(

c±
√

a+ c2
)]

. (1.64)We onsider separately the three ases:
c = 0.Both equilibrium points x∗ = ±√

a are stable. The bifuration diagram forthis ase is shown in Fig.1.10. This is an example of a superritial pithforkbifuration with one stable equilibrium point beomes unstable and two newstable solutions emerge eah side of it. The similar situation with the stabilityreversed is a subritial pithfork bifuration.
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x2 = a

0

Figure 1.10: The bifuration diagram for Example 1.8.2, c = 0. The stable andunstable equilibrium solutions are shown by ontinuous and broken lines and thediretion of the �ow is shown by arrows. This is an example of a superritialpithfork bifuration.
a

x

x2 − 2cx = a

c

−c2

0

Figure 1.11: The bifuration diagram for Example 1.8.2, c > 0. The stable andunstable equilibrium solutions are shown by ontinuous and broken lines andthe diretion of the �ow is shown by arrows. This gives examples of both simpleturning point and transritial bifurations.
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c > 0.The equilibrium point x = c +

√
a+ c2 is stable. The equilibrium point x =

c −
√
a+ c2 is unstable for a < 0 and stable for a > 0. The point x = c,

a = −c2 is a simple turning point bifuration and x = a = 0 is a transritialbifuration. That is the situation when the stability of two rossing lines ofequilibrium points interhange. The bifuration diagram for this example isshown in Fig.1.11.
c < 0.This is the mirror image (with respet to the vertial axis) of the ase c > 0.Example 1.8.3
ẋ(t) = cx(b− x). (1.65)This is the logisti equation.The equilibrium points are x = 0 and x = b. Linearizing about x = 0 gives
x(t) = C exp(cbt) (1.66)The equilibrium point x = 0 is stable or unstable aording as if cb <,> 0. Nowlet x = b+ △x giving
d△x
dt

= −cb△x. (1.67)So the equilibrium point x = b is stable or unstable aording as cb >,< 0. Nowplot the equilibrium points with the �ow and stability indiated:
• In the (b, x) plane for �xed c > 0 and c < 0.
• In the (c, x) plane for �xed b > 0, b = 0 and b < 0.You will see that in the (b, x) plane the bifuration is easily identi�ed as trans-ritial but in the (c, x) plane it looks rather di�erent.Now onsider the di�erene equation orresponding to (1.65). Writing x(n) =

x(nε) and using the two-point forward derivative,
x(n+ 1) = x(n)[(εcb+ 1) − cεx(n)]. (1.68)Now substituting
x =

(1 − εcb)y + εcb

cε
(1.69)into (1.68) gives

y(n+ 1) = ay(n)[1 − y(n)], (1.70)where
a = 1 − εcb. (1.71)



1.9. DIGRESSION: THE EIGEN-PROBLEM 19(1.70) is the usual form of the logisti di�erene equation. The equilibriumpoints of (1.70), given by setting y(n+ 1) = y(n) = y∗ are
y∗ = 0 −→ x∗ = b,

y∗ = 1 − 1/a −→ x∗ = 0.
(1.72)Now linearize (1.70) by setting y(n) = △y(n) + y∗ to give

△y(n+ 1) = a(1 − 2y∗)△y(n). (1.73)The equilibrium point y∗ is stable or unstable aording as |a(1− 2y∗)| <,> 1.So
• y∗ = 0, (x∗ = b) is stable if −1 < a < 1, (0 < εcb < 2).
• y∗ = 1 − 1/a, (x∗ = 0) is stable if 1 < a < 3, (−2 < εcb < 0).Sine the di�erential equation orresponds to small, positive ε, these stabilityonditions agree with those derived for the di�erential equation (1.65). Youmay know that the whole piture for the behaviour of the di�erene equation(1.70) involves yles, period doubling and haos.7 Here, however, we are justonerned with the situation for small ε when

y ≃ (cε)x, a = 1 − (cε)b. (1.74)The whole of the (b, x) plane is mapped into a small retangle entred around
(1, 0) in the (a,y) plane, where a transritial bifuration ours between theequilibrium points y = 0 and y = 1 − 1/a.1.9 Digression: The Eigen-ProblemBefore onsidering systems of more than variable we need to revise our knowl-edge of matrix algebra. A d× d matrix A is said to be singular or non-singularaording as the determinant of A, denoted by Det{A}, is zero or non-zero. Therank of any matrix B, denoted by Rank{B}, is de�ned, whether the matrix issquare or not, as the dimension of the largest non-singular (square) submatrixof B. For the d× d matrix A the following are equivalent:(i) The matrix A is non-singular.(ii) The matrix A has an inverse denoted by A−1.(iii) Rank{A} = d.(iv) The set of d linear equations

Ax = c, (1.75)7Ian Stewart,Does God Play Die?, Chapter 8, Penguin (1990)
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x =











x1

x2...
xd











, c =











c1

c2...
cd











, (1.76)has a unique solution for the variables x1, x2, . . . , xd, for any numbers
c1, c2, . . . , cd, given by
x = A−1c. (1.77)(Of ourse, when c1 = c2 = · · · = cd = 0 the unique solution is the trivialsolution x1 = x2 = · · · = xd = 0.)When A is singular we form the d×(d+1) augmented matrixmatrixA′ by addingthe vetor c as a �nal olumn. Then the following results an be established:(a) If

Rank{A} = Rank{A′} = m < d (1.78)then (1.75) has an in�nite number of solutions orresponding to making anarbitrary hoie of d−m of the variables x1, x2, . . . , xd.(b) If
Rank{A} < Rank{A′} ≤ d (1.79)then (1.75) has no solution.Let A be a non-singular matrix. The eigenvalues of A are the roots of the

d-degree polynomial
Det{A − λI} = 0, (1.80)in the variable λ. Suppose that there are d distint roots λ(1), λ(2), . . . , λ(d).Then Rank{A−λ(k)I} = d−1 for all k = 1, 2, . . . , d. So there is, orrespondingto eah eigenvalue λ(k), a left eigenvetor v(k) and a right eigenvetor u(k) whihare solutions of the linear equations
[v(k)]TA = λ(k)[v(k)]T, Au(k) = u(k)λ(k). (1.81)The eigenvetors are unique to within the hoie of one arbitrary omponent.Or equivalently they an be thought of as unique in diretion and arbitrary in



1.9. DIGRESSION: THE EIGEN-PROBLEM 21length. If A is symmetri it is easy to see that the left and right eigenvetorsare the same.8 Now
[v(k)]TAu(j) = λ(k)[v(k)]Tu(j) = [v(k)]Tu(j)λ(j) (1.82)and sine λ(k) 6= λ(j) for k 6= j the vetors v(k) and u(j) are orthogonal. In fatsine, as we have seen, eigenvetors an always be multiplied by an arbitraryonstant we an ensure that the sets {u(k)} and {v(k)} are orthonormal bydividing eah for u(k) and v(k) by √

u(k) · v(k) for k = 1, 2, . . . , d. Thus
u(k) · v(j) = δKr(k − j), (1.83)where
δKr(k − j) =

{
1, k = j,
0, k 6= j,

(1.84)is alled the Kroneker delta funtion. Now form the matrix
V =









[v(1)]
T

[v(2)]
T...

[v(d)]
T  , (1.85)whih has the left eigenvetors v(k), k = 1, 2, . . . , d as its rows. In a similar way

U = (u(1) u(2) · · · u(d)) (1.86)has the right eigenvetors as its olumns. From the orthonormality ondition(1.84)
V U = I. (1.87)This means that
V = U−1, U = V −1. (1.88)If A is symmetri U = V T. So the inverse of U (or V ) is its transpose. A matrixwith this property is alled orthogonal. Now, if we take all the eigenvetorstogether in (1.81), it an be written
V A = ΛV , AU = UΛ, (1.89)where Λ is the d × d diagonal matrix with the eigenvalues λ(1), λ(2), . . . , λ(d)along the diagonal. From (1.88) and (1.89),
V AU = U−1AU = Λ. (1.90)The matrix A is diagonalized by the transformation with U (or V ). When Ais symmetri this is an orthogonal transformation.8The vetors referred to in many texts simply as `eigenvetors' are usually the right eigen-vetors. But it should be remembered that non-symmetri matries have two distint sets ofeigenvetors. The left eigenvetors of A are of ourse the right eigenvetors of A

T and vieversa.



22 CHAPTER 1. DYNAMIC SYSTEMS1.10 Linear Autonomous SystemsThe autonomous system (1.25) is linear if
F = Ax − c, (1.91)for some d× d matrix A and a vetor c of onstants. Thus we have
ẋ(t) = Ax(t) − c, (1.92)An equilibrium point x∗, if it exists, is a solution of
Ax = c. (1.93)As we saw in Set. 1.9 there an be either no solution points, one solution oran in�nite number of solutions. We shall onentrate on the ase where A isnon-singular and there is a unique solution given by
x∗ = A−1c. (1.94)As in the ase of the �rst-order system we onsider a neighbourhood of theequilibrium point by writing
x = x∗ + △x. (1.95)Substituting into (1.92) and using (1.94) gives
d△x

dt
= A△x. (1.96)Of ourse, in this ase, the `linearization' used to ahieve (1.96) was exat be-ause the original equation (1.92) was itself linear.As in Set. 1.9 we assume that all the eigenvetors of A are distint and adoptall the notation for eigenvalues and eigenvetors de�ned there. The vetor △xan be expanded as the linear ombination

△x(t) = w1(t)u
(1) + w2(t)u

(2) + · · · + wd(t)u
(d), (1.97)of the right eigenvetors of A, where, from (1.83),

wk(t) = v(k) · △x(t), k = 1, 2, . . . , d. (1.98)Now
A△x(t) = w1(t)Au(1) + w2(t)Au(2) + · · · + wd(t)Au(d)

= λ(1)w1(t)u
(1) + λ(2)w2(t)u

(2) + · · · + λ(d)wd(t)u
(d) (1.99)and

d△x

dt
= ẇ1(t)u

(1) + ẇ2(t)u
(2) + · · · + ẇd(t)u

(d). (1.100)Substituting from (1.99) and (1.100) into (1.96) and dotting with v(k) gives
ẇk(t) = λ(k)wk(t), (1.101)
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wk(t) = C exp

(

λ(k)t
)

. (1.102)So △x will grow or shrink in the diretion of u(k) aording as ℜ{λ(k)
}
>, < 0.The equilibrium point will be unstable if at least one eigenvalue has a positivereal part and stable otherwise. It will be asymptotially stable if the real partof every eigenvalue is (stritly) negative. Although these onlusions are basedon arguments whih use both eigenvalues and eigenvetors, it an be seen thatknowledge simply of the eigenvalues is su�ient to determine stability. Theeigenvetors give the diretions of attration and repulsion.Example 1.10.1 Analyze the stability of the equilibrium points of the linearsystem

ẋ(t) = y(t), ẏ(t) = 4x(t) + 3y(t). (1.103)The matrix is
A =

(
0 1

4 3

)

, (1.104)with Det{A} = −4 and the unique equilibrium point is x = y = 0. Theeigenvalues of A are λ(1) = −1 and λ(2) = 4. The equilibrium point is unstablebeause it is attrative in one diretion but repulsive in the other. Suh anequilibrium point is alled a saddle-point.For a two-variable system the matrix A, obtained for a partiular equilibriumpoint, has two eigenvalues λ(1) and λ(2). Setting aside speial ases of zero orequal eigenvalues there are the following possibilities:(i) λ(1) and λ(2) both real and (stritly) positive. △x grows in all diretions.This is alled an unstable node.(ii) λ(1) and λ(2) both real with λ(1) > 0 and λ(2) < 0. △x grows in all dire-tions, apart from that given by the eigenvetor assoiated with λ(2). This,as indiated above, is alled a saddle-point.(iii) λ(1) and λ(2) both real and (stritly) negative.△x shrinks in all diretions.This is alled a stable node.(iv) λ(1) and λ(2) onjugate omplex with ℜ{λ(1)} = ℜ{λ(2)} > 0.△x grows inall diretions, but by spiraling outward. This is alled an unstable fous.(v) λ(1) = −λ(2) are purely imaginary. Close to the equilibrium point, the lengthof △x remains approximately onstant with the phase point performing alosed loop around the equilibrium point. This is alled an entre.(vi) λ(1) and λ(2) onjugate omplex with ℜ{λ(1)} = ℜ{λ(2)} < 0. △x shrinksin all diretions, but by spiraling inwards. This is alled an stable fous.



24 CHAPTER 1. DYNAMIC SYSTEMSExample 1.10.2 Analyze the stability of the equilibrium points of the linearsystem
ẋ(t) = 2x(t) − 3y(t) + 4, ẏ(t) = −x(t) + 2y(t) − 1. (1.105)This an be written in the form
ẋ(t) = Ax(t) − c, (1.106)with
x =

(
x

y

)

, A =

(
2 −3

−1 2

)

, c =

(
−4

1

)

. (1.107)The matrix is
A =

(
2 −3

−1 2

)

, (1.108)with Det{A} = 1, has inverse
A−1 =

(
2 3

1 2

)

. (1.109)So the unique equilibrium point is
x∗ =

(
2 3

1 2

)(
−4

1

)

=

(
−5

−2

)

. (1.110)Linearizing about x∗ gives an equation of the form (1.96). The eigenvalues of
A are 2 ±

√
3. Both these numbers are positive so the equilibrium point is anunstable node.1.11 MAPLE for Systems of Di�erential EquationsIn the disussion of systems of di�erential equations we shall be onerned lesswith the analyti form of the solutions than with their qualitative struture.As we shall show below, a lot of information an be gained by �nding theequilibrium points and determining their stability. It is also useful to be able toplot a trajetory with given initial onditions. MAPLE an be used for this intwo (and possibly three) dimensions. Suppose we want to obtain a plot of thesolution of

ẋ(t) = x(t) − y(t), ẏ(t) = x(t), (1.111)over the range t = 0 to t = 10, with initial onditions x(0) = 1, y(0) = −1.The MAPLE routine dsolve an be used for systems with the equations andthe initial onditions enlosed in urly brakets. Unfortunately the solution isreturned as a set {x(t) = · · · , y(t) = · · ·}, whih annot be fed diretly into



1.12. LINEARIZING NON-LINEAR SYSTEMS 25the plot routine. To get round this di�ulty we set the solution to somevariable (Fset in this ase) and extrat x(t) and y(t) (renamed as fx(t) and
fy(t)) by using the MAPLE funtion subs. These funtions an now be plottedparametrially. The omplete MAPLE ode and results are:
> Fset:=dsolve(
> {diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t),x(0)=1,y(0)=-1},
> {x(t),y(t)}):
> fx:=t->subs(Fset,x(t)):
> fx(t);
1

3
e
(1/2 t) (3 cos(

1

2
t
√

3) + 3
√

3 sin(
1

2
t
√

3))

> fy:=t->subs(Fset,y(t)):
> fy(t);
1

3
e
(1/2 t) (3

√

3 sin(
1

2
t
√

3) − 3 cos(
1

2
t
√

3))

> plot([fx(t),fy(t),t=0..10℄);
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–20 20 40 60 80 100 120 140 160It is not di�ult to see that the eigenvalues of the matrix for the equilibriumpoint x = y = 0 of (1.111) are 1
2 (1 ± i

√
3). The point is an unstable fous asshown by the MAPLE plot.1.12 Linearizing Non-Linear SystemsConsider now the general autonomous system (1.25) and let there by an equi-librium point given by (1.26). To investigate the stability of x∗ we again make



26 CHAPTER 1. DYNAMIC SYSTEMSthe substitution (1.95). Then for a partiular member of the set of equations
d△xℓ

dt
= Fℓ(x

∗ + △x)

=
d∑

k=1

(
∂Fℓ

∂xk

)∗

△xk + O(△xi△xj), (1.112)where non-linear ontributions in general involve all produes of pairs of theomponents of △x. Negleting nonlinear ontributions and taking all the set ofequations gives
d△x

dt
= J∗△x, (1.113)where J∗ = J(x∗) is the stability matrix with

J(x) =












∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xd
∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xd... ... . . . ...
∂Fd

∂x1

∂Fd

∂x2
· · · ∂Fd

∂xd












. (1.114)Analysis of the stability of the equilibrium point using the eigenvalues of J∗proeeds in exatly the same way as for the linear ase. In fat it an berigorously justi�ed by the following theorem (also due to Lyapunov):Theorem 1.12.1 The equilibrium point x∗ is asymptotially stable if the realparts of all the eigenvalues of the stability matrix J∗ are (stritly) negative. Itis unstable if they are all non-zero and at least one is positive.It will be see that the ase where one or more eigenvalues are zero or purelyimaginary is not overed by this theorem (and by linear analysis). This wasthe ase in Example 1.8.1 at a = 0, where we needed the quadrati term todetermine the stability.Example 1.12.1 Investigate the stability of the equilibrium point of
ẋ(t) = sin[x(t)] − y(t), ẏ(t) = x(t). (1.115)The equilibrium point is x∗ = y∗ = 0. Using the MLaurin expansion of sin(x) =
△x+O(△x3) the equations take the form (1.113), where the stability matrix is
J∗ =

(
1 −1

1 0

)

. (1.116)This is the same stability matrix as for the linear problem (1.111) and theequilibrium point is an unstable fous.
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ẋ(t) = −y(t) + x(t)[a − x2(t) − y2(t)], (1.117)
ẏ(t) = x(t) + y(t)[a− x2(t) − y2(t)]. (1.118)The only equilibrium point for (1.117)�(1.118) is x = y = 0. Linearizing aboutthe equilibrium point gives an equation of the form (1.113) with
J∗ =

(
a −1
1 a

)

. (1.119)The eigenvalues of J∗ are a± i. So the equilibrium point is stable or unstableaording as a < 0 or a > 0. When a = 0 the eigenvalues are purely imaginary,so the equilibrium point is a entre.We an �nd two integrals of (1.117)�(1.118). If (1.117) is multiplied by xand (1.118) by y and the pair is added this gives
x

dx

dt
+ y

dy

dt
= (x2 + y2)(a− x2 − y2). (1.120)With r2 = x2 + y2, if the trajetory starts with r = r0 when t = 0,

2

∫ t

0

dt =







1

a

∫ r

r0

{
1

a− r2
+

1

r2

}

d(r2), a 6= 0,
−
∫ r

r0

1

r4
d(r2), a = 0, (1.121)giving

r2(t) =







ar20
r20 + exp(−2at){a− r20}

, a 6= 0,
r20

1 + 2tr20
, a = 0. (1.122)This gives

r(t) −→







0, a ≤ 0,
√
a, a > 0. (1.123)Now let x = r cos(θ), y = r sin(θ). Substituting into (1.117)�(1.118) and elimi-nating dr/dt gives

dθ

dt
= 1. (1.124)If θ starts with the value θ(0) = θ0 then

θ = t+ θ0. (1.125)
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y

x(a)
y

x

x2 + y2 = a(b)Figure 1.12: A Hopf bifuration with (a) a ≤ 0, (b) a > 0.When a < 0 trajetories spiral with a onstant angular veloity into the origin.When a = 0 linear analysis indiates that the origin is a entre. However, the fullsolution shows that orbits onverge to the origin as t→ ∞, with r(t) ≃ 1/
√

2t,whih is a slower rate of onvergene than any exponential.When a > 0, if r(0) = r0 =
√
a, r(t) =

√
a. The irle x2 + y2 = a is invariantunder the evolution of the system. The irle x2 +y2 = a is a new type of stablesolution alled a limit yle. Trajetories spiral, with a onstant angular veloitytowards the limit yle irle, either from outside if r0 > √

a or from inside if
r0 <

√
a see Fig. 1.12. The hange over in behaviour at a = 0 is an example ofthe Hopf bifuration. If the behaviour is plotted in the three-dimensional spaeof {a, x, y} then it resembles the superritial pithfork bifuration (Fig. 1.13).Example 1.12.3

ẍ(t) = a− x2(t), (1.126)whih an be written as
ẋ(t) = y(t), (1.127)
ẏ(t) = a− x2(t). (1.128)The equilibrium points for (1.127)�(1.128) are given by x = x∗ = ±√

a, y = 0,when a ≥ 0 and there are no equilibrium points when a < 0.Before onsidering the stability of the equilibrium point we obtain an integralof the equations (1.127)�(1.128). Sine
x2 dx

dt
+ y

dy

dt
= ay = a

dx

dt
, (1.129)it follows that a trajetory lies on a urve

1
3
x3 +

1
2
y2 − ax = c. (1.130)
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a

y

x

Figure 1.13: A Hopf bifuration in the spae of {a, x, y}.for some �xed value of c. The urves are symmetri about the x�axis. Trajeto-ries with c < 0 do not ut the y�axis, the trajetory with c = 0 passes throughthe origin and trajetories with c > 0 ut the y�axis at y = ±
√

2c. Curves with
a 6= 0 ut the x�axis with a vertial tangent. We now onsider separately thethree ranges of a:
a < 0. In this ase there are no equilibrium points and ẏ(t) < 0 for all x and y.A trajetory uts the x�axis at the roots of x3 − 3ax− 3c = 0. For negative athis ubi has no extrema so a trajetory ut the x�axis only one. Also as |y|inreases from zero on a trajetory it follows from (1.130) that x must dereaseso the trajetories must be onvex to the right. The phase pattern for a = −1an be plotted using MAPLE :
> with(plots):
> f:=(x,y,a)->x^3/3+y^2/2-a*x:
> urve:=impliitplot(
> {f(x,y,-1)=-1,f(x,y,-1)=0,f(x,y,-1)=1}, x=-3..1.5,y=-3..3,
> grid=[100,100℄,labelfont=[TIMES,ITALIC,12℄):
> text:=plots[textplot℄(
> {[-0.8,0.55,`=-1`℄, [-0.32,1,`=0`℄, [-0.8,2.25,`=1`℄},
> align={ABOVE,RIGHT}, font=[TIMES,ITALIC,14℄):
> plots[display℄({urve,text});
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c = 1

c = 0
c = –1

–3

–2

–1

1

2

3

y

–2 –1.5 –1 –0.5 0.5x

(First run the MAPLE program without the labelling c = −1, 0, 1 on the urves.Then add the labels by reading o� from the plot the best plae for them to beput.)
a = 0. In this ase there is one equilibrium point. Curves with c 6= 0 are verysimilar to those for a < 0. The urve with c = 0 is given by 1

3x
3+ 1

2y
2 = 0 whihhas a usp at the origin rather than a vertial tangent. A MAPLE program likethe one given above an be used to obtain the plot:

c = 0
c = –1

c = 1

–3

–2

–1

1

2

3

y

–2 –1 1x
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a > 0. In this ase there are two equilibrium points x = x∗ = ±√

a, y = 0. Lin-earizing about the equilibrium point (x∗, 0) gives equations of the form (1.113)with
J∗ = J(x∗, 0) =

(
0 1
−2x∗ 0

)

. (1.131)The equilibrium point (
√
a, 0) has eigenvalues λ(1,2) = ±iτ , where τ = (4a)1/4,so it is a entre. The equilibrium point (−√

a, 0) has eigenvalues λ(1) = τ ,
λ(2) = −τ , with orresponding right eigenvetors (1, τ)T and (−1, τ)T. So it isa saddle-point and the line along whih it is attrative is given by (△x,△y) ∼
(−1, τ). Now the trajetory whih passes through (−√

a, 0) is, from (1.130)
1
3x

3 +
1
2y

2 − ax =
2
3a

√
a. (1.132)Di�erentiating

ẏ(t) =
a− x2

y
= ± a− x2

√
4
3a

√
a+ 2ax− 2

3x
3
. (1.133)At the equilibrium point x = −√

a this expression is unde�ned and we mustsubstitute x = △x−√
a. This gives

ẏ(t) =
a− x2

y
= ± 2

√
a△x− (△x)2

√

2
√
a(△x)2 − 2

3 (△x)3
≃ ±τ △x

|△x| . (1.134)So one of the branhes of the urve through the equilibrium point is in the stablediretion. The MAPLE plot is:
c = –1 c = 0

c = 0

c = 1

c = 2/3

–3

–2

–1

1

2

3

y

–3 –2 –1 1 2x
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The losed part of the orbit (1.132), whih begins at the saddle-point (−√

a, 0)and returns to the same point, has two important properties:
• It separates the losed orbits from the trajetories whih go o� to in�nityand is thus alled a separatrix.
• It onnets the saddle-point to itself. Suh a trajetory is alled homo-lini. (A trajetory onneting di�erent saddle-points together is alledheterolini.)In general the points where a trajetory uts the x�axis are given, from (1.130),by

f(x) = 1
3x

3 − ax− c = 0. (1.135)
f(x) has a maximum at x = −√

a with f(−√
a) = 2

3a
√
a − c and a minimum

x =
√
a with f(

√
a) = − 2

3a
√
a − c. So, when 2

3a
√
a > c > − 2

3a
√
a, an orbituts the x�axis at three points. The upper limit of this range is the separatrixand the ase c = 0 orresponds to the losed orbit through the origin. As

c→ − 2
3a

√
a the losed orbit ontrats to a point on the entre (

√
a, 0). We analulate the period around a losed orbit from (1.127) and (1.130).

ẋ(t) =
√

2c+ 2ax− 2
3x

3. (1.136)If this orbit uts the x�axis at x1 and x2 (x1 < x2) then the period T aroundthe orbit is
T = 2

∫ x2

x1

dx
√

2c+ 2ax− 2
3x

3
. (1.137)The integrand has a singularity at x = x1 = −√

a on the separatrix; so T → ∞on this urve, whih is the limit of the losed orbits.Example 1.12.4 The equation of motion of a simple pendulum of length ℓswinging under gravity g is
θ̈(t) = −a sin[θ(t)], (1.138)where θ is the angle the pendulum makes with the downward vertial and a = g/ℓ.Using the angular veloity ω this equation of motion an be written
θ̇(t) = ω(t), (1.139)
ω̇(t) = −a sin[θ(t)]. (1.140)The equilibrium points for (1.139)�(1.140) are ω = 0, θ = nπ, n = 0,±1,±2. . . ..



1.13. CONSERVATIVE SYSTEMS 33Equations (1.139)�(1.140) an be integrated to give the family of urves
ω2 = 2a{cos(θ) − c} (1.141)in the phase spae Γ2 of the variables {θ, ω} parameterized by c. At the equi-librium point (θ∗, 0)

J∗ =

(
0 1
−a cos(θ∗) 0

) (1.142)So the eigenvalues are λ(1) = i
√

a cos(θ∗) and λ(2) = −i
√

a cos(θ∗). The equilib-rium points θ = 2nπ, n = 0,±1,±2, . . ., where the eigenvalues are purely imag-inary, are entres and the equilibrium points θ = (2n + 1)π, n = 0,±1,±2, . . .,where the eigenvalues are real and of opposite sign, are saddle-points. A traje-tory given by (1.141) uts the θ�axis at a periodi sequene of points if |c| ≤ 1and is the heterolini separatrix passing through the saddle-points if c = −1.If c = 1 it ollapses into a set of points at the entres. Again using a MAPLEprogram, like that given above, we obtain urves of (1.141) with a = 0:
c = –1

c = –2

c = 0

–2

–1

0

1

2

ω

–10 –5 5 10
θ

The period of a losed orbit around the origin whih uts the θ�axis at θ =
±θ0 = ± arccos(c) is given by
T = 2

∫ θ0

−θ0

dθ
√

2a(cos(θ) − c)
. (1.143)This integral an be expressed in terms of a omplete ellipti integral of the �rstkind (Drazin, p. 28) and the usual formula T = 2π/

√
c = 2π

√

ℓ/g for smallosillations an be reovered in the limit c→ 1.1.13 Conservative SystemsFor a onservative system with equation
ẍ(t) = −V ′(x), (1.144)



34 CHAPTER 1. DYNAMIC SYSTEMSwe follow the proedure of Set. 1.3 and take
ẋ(t) = y(t), (1.145)
ẏ(t) = −V ′(x). (1.146)The equilibrium points are the turning points of V (a, b, c, . . . , x), appearing inthe spae Γ2 of {x, y} on the x�axis. Now linearize about the equilibrium point
(x∗, 0).
d△x
dt

= △y, (1.147)
d△y
dt

= −△xV ′′(x∗). (1.148)The eigenvalues of the stability matrix are ±i
√

V ′′(x∗). So x∗ is a entre if
V ′′(x∗) > 0 and a saddle-point if V ′′(x∗) < 0. These two onditions orre-spond respetively to the potential funtion V (x) having a loal minimum andmaximum respetively at x = x∗. From (1.145)�(1.146),
y
dy

dt
= −yV ′(x) = −dx

dt
V ′(x). (1.149)Integrating this gives

1
2y

2 + V (x) = E, (1.150)for onstant E. In mehanial terms this is the energy integral for a partileof unit mass, loation x and speed y moving under the in�uene of a potential
V (x) with onstant energy E. From (1.150)
y = ±

√

2Y (x), (1.151)where
Y (x) = E − V (x). (1.152)The zeros of Y (x) are the points in Γ2 where the urve given by (1.150) utsthe x�axis. Let x̃ be suh a point about whih Y (x) has the Taylor expansion
Y (x) = (x− x̃)Y ′(x̃) +

1
2(x− x̃)2Y ′′(x̃)

+ O((x− x̃)3),

= −(x− x̃)V ′(x̃) − 1
2(x− x̃)2V ′′(x̃)

+ O((x− x̃)3). (1.153)Then, if V ′(x̃) 6= 0,
y2 ≃ −2(x− x̃)V ′(x̃), (1.154)in a neighbourhood of (x̃, 0). The urve (1.150) is paraboli; onvex in thepositive x�diretion if V ′(x̃) > 0 and in the negative x�diretion if V ′(x̃) < 0.



1.13. CONSERVATIVE SYSTEMS 35These ases orrespond to extremities of losed orbits of the urve (1.150). Nowsuppose V ′(x̃) = 0 and assume V ′′(x̃) 6= 0. From (1.151) and (1.145),
y ≃ ±i(x− x̃)

√

V ′′(x̃), (1.155)
x(t) ≃ x̃+ c exp{±it

√

V ′′(x̃)}. (1.156)where c is a onstant. When V ′′(x̃) > 0 (1.156) again on�rms the linear analysisof periodi orbits about a entre. When V ′′(x̃) < 0 the hoie of signs in (1.156)gives the stable and unstable diretions from the saddle-point, with the phasepoint taking an in�nite amount of time to reah the saddle-point in the stablediretion. This is the same result as the divergene of the integral (1.143) as
θ → arccos(c).Now onsider a possible plot (Fig. 1.14) of Y (x) given by (1.152) against x.

A

B

Y (x)

x

x̃1 x̃2 x̃3

Figure 1.14: A possible plot of Y (x) against x. The shape of parts of trajetories(in the {x, y} plane) are shown by broken lines.The zeros x̃1, x̃2, . . . on the x�axis are points like x̃ with Y ′(x̃) = −V ′(x̃) 6= 0.The points x̃1 and x̃3 are plaes where V ′(x̃) = −Y ′(x̃) > 0, so they or-respond to right-hand extremities of losed orbits, while x̃2 orresponds toa left-hand extremity. The minimum at A is a point where V ′(x) = 0 and
V ′′(x) = −Y ′′(x) < 0, so it is a saddle-point, whereas the maximum at Bis a entre. If A approahes the x�axis x̃1 and x̃2 oalese at a point where
Y ′(x̃) = −V ′(x̃) = 0, Y ′′(x̃) = −V ′′(x̃) > 0 and the two trajetories merge toprodue a rossing point like those shown in the MAPLE plot on page 33, at oddmultiples of π. If B approahes the x�axis x̃2 and x̃3 oalese at a point where
Y ′(x̃) = −V ′(x̃) = 0, Y ′′(x̃) = −V ′′(x̃) < 0 and the orbit between x̃2 and x̃3loses in on the entre like those shown in the MAPLE plot on page 33, at evenmultiples of π.Given that there is a losed orbit between x̃2 and x̃3, it follows from thesymmetry of (1.150) that the time taken between x̃2 and x̃3 is half the omplete



36 CHAPTER 1. DYNAMIC SYSTEMSperiod. Sine Y (x) > 0 in the interval (x̃2, x̃3) the period T for the orbit isgiven, from (1.151), by
T = 2

∫ x̃3

x̃2

dx
√

2Y (x)
. (1.157)Problems 11) Find out as muh as you an about the one-dimensional dynami systems:(i) ẋ(t) = x(t)[a− c− ab x(t)],(ii) ẋ(t) = a x(t) − b x2(t) + c x3(t),You may assume that a and b are non-zero but you an onsider the ase

c = 0. You should be able to(a) Find the equilibrium points and use linear analysis to determine theirstability.(b) Draw the bifuration diagrams in the {x, a}�plane for the di�erent rangesof b and c.() Solve the equations expliitly.2) Verify that the system
ẋ(t) = x(t) + sin[y(t)],

ẏ(t) = cos[x(t)] − 2 y(t) − 1has an equilibrium point at x = y = 0 and determine its type.3) Find all the equilibrium points of
ẋ(t) = −x2(t) + y(t),

ẏ(t) = 8 x(t) − y2(t)and determine their type.4) Show that the system given by
ẋ(t) = −y +

x(1 − x2 − y2)
√

x2 + y2
, ẏ(t) = x+

y(1 − x2 − y2)
√

x2 + y2
,has a stable limit yle given by x = cos(θ0 + t), y = sin(θ0 + t).



1.13. CONSERVATIVE SYSTEMS 375) A partile moves around a smooth irular wire of radius ℓ whih is �xedrelative to a vertial plane. Gravity g ats on the partile and the planerotates with onstant angular veloity Ω about a vertial diameter of theirle. The motion of the partile on the irle is given by
θ̈(t) = Ω2 sin(θ){cos(θ) − a},where θ is the angle the radius to the partile makes with the downwardvertial and a = g/(Ω2ℓ) > 0. Find the equilibrium points in the plane of
{θ, ω} where ω(t) = θ̇(t) and give a sketh of the bifuration diagram inthe {a, θ} plane indiating the stability of the equilibrium lines. Find outanything else you an about this problem.6) Show that the system
ẋ(t) = −y + x{f(x, y) − a2}n, ẏ(t) = x+ y{f(x, y) − a2}n,where n is a positive integer and f(x, y) is ontinuous, an be transformedto
ṙ(t) = r{f(r cos(θ), r sin(θ)) − a2}n, θ̇(t) = 1,in terms of polar oordinates given by x = r cos(θ), y = r sin(θ). Deduethat the equilibrium solution r = 0 is stable or unstable aording as
{f(0, 0)− a2}n <,> 0.With f(x, y) = x2 + y2 show that the limit yle r = a is unstable if n is oddand semistable if n is even, where `semistable' means that it is stable fromone side and unstable from the other.7) A system is given by
ż(t) = iz + zf(|z|),where z = x+ iy. Express this formula in polar form. Show that, when
f(r) =

{
sin{1/(r2 − 1)} r 6= 1,
0 r = 1.the system has limit yles r = 1 and r =

√

1 + 1
nπ for n = ±1,±2, . . ..Determine the stability of the limit yles and of the equilibrium point r = 0.8) Consider the equation

ż(t) = a+ z(b− |z|2),



38 CHAPTER 1. DYNAMIC SYSTEMSwhere z is a omplex funtion of t and a and b are real. Expressing z in theusual polar form z = r exp(iθ) show that
ṙ(t) = a cos(θ) + r(b − r2), θ̇(t) = −a sin(θ)

r
.Investigate the steady solutions and their stability and sketh their urves inthe plane of {b, r} for �xed positive, zero and negative a.



Chapter 2Bifurations and CatastropheTheory2.1 The Classi�ation of BifurationsWe onsider an d-dimensional autonomous system whih evolves aording tothe equation
ẋ(t) = F (a,x), (2.1)where x = (x1, x2, . . . , xd)

T and a = (a1, a2, . . . , aη)T is a vetor of independentparameters. The equilibrium points for �xed a are solutions of (2.1) for whih
ẋ(t) = 0; that is they are the roots of
F (a,x) = 0. (2.2)The ondition (2.2) orresponds to d surfaes in Γd whih, will in general inter-set in one or more points. If the η omponents of a vary over their allowedranges then the equilibrium solutions form an η�dimensional equilibrium surfaeor surfaes in the (d + η)�dimensional spae Λd+η = Πη × Γd, where Πη is thespae of the parameters a.A bifuration point or branh point is a solution (x0,a0) of (2.2) suhthat the number of solutions x of (2.2) in a small neighbourhood of x0 hangeswhen a varies within a small neighbourhood of a0.2.1.1 The One-Dimensional, One-Parameter CaseIn this ase d = 1 with one variable x(t) and η = 1 with one parameter a. Then(2.1) beomes
ẋ(t) = F (a, x), (2.3)39



40 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYTo disuss the possible bifurations in this ase the following de�nition andtheorem will be needed:If there exist P (a′, x′) and Q(a′, x′), suh that
F (a′ + δa, x′ + δx) = F (a′, x′)

+P (a′, x′)δa+Q(a′, x′)δx

+ θ(a′, x′, δa, δx)δa

+ψ(a′, x′, δa, δx)δx, (2.4)with
θ(a′, x′, δa, δx) → 0

ψ(a′, x′, δa, δx) → 0
as (δa, δx) → (0, 0) (2.5)then F (a, x) is di�erentiable at (a′, x′) with

P (a′, x′) =

(
∂F

∂a

)

a=a′,x=x′

= Fa(a′, x′),

Q(a′, x′) =

(
∂F

∂x

)

a=a′,x=x′

= Fx(a′, x′).

(2.6)The Impliit Funtion Theorem: If F (a, x) is di�erentiable and hasontinuous partial derivatives with Fx(a, x) 6= 0 in the losed retangle a1 ≤ a ≤
a2, x1 ≤ x ≤ x2 and if F (a0, x0) = 0 at the point (a0, x0) in the open retangle
a1 < a < a2, x1 < x < x2, then there exists an interval (a′, a′′) ontaining a0within whih F (a, x) = 0 de�nes x as a ontinuous and di�erentiable funtionof a with
dx

da
= −Fa(a, x)

Fx(a, x)
. (2.7)Suppose that (a0, x0) is a point on the urve of equilibrium points given by

F (a, x) = 0. (2.8)If (a0, x0) is a bifuration point then a small positive or negative hange (onebut not both) in a will inrease the number of solutions in x of (2.8). Thismeans that x0 must be a multiple root of F (a0, x) = 0 and so a neessary,but not su�ient, ondition for (a0, x0) to be a bifuration point is that it is asimultaneous solution of (2.8) and
Fx(a, x) = 0. (2.9)



2.1. THE CLASSIFICATION OF BIFURCATIONS 41In priniple the solutions of the pair of equations (2.8)�(2.9) will give the bifur-ation set. Thus for Example 1.8.2 the bifuration set is given by solving
x(x2 − 2xc− a) = 0

3x2 − 4xc− a = 0.
(2.10)These equations give x = −a/c and a(a + c2) = 0, yielding the transritialbifuration at a = x = 0 and the simple turning point at a = −c2, x = c (seeFig. 1.11).That these onditions are not su�ient to yield a bifuration is illustratedby the ase F (a, x) = (a − x)2. Any values of a and x on the line x = a willsatisfy (2.8) and (2.9) but there is no bifuration. This is the degenerate aseof a transritial bifuration disappearing when the rossing pair of solutionsmerge into eah other.We now onsider di�erent types of points whih an our on the equilibriumurve. These will inlude all the simple types of bifuration. We assume that

F (a, x) is in�nitely di�erentiable in both variables. Then the Taylor expansionabout (a0, x0) in the two variables a and x is
F (a, x) = +(a− a0)Fa(a0, x0) + (x− x0)Fx(a0, x0)

+ 1
2
(x− x0)

2Fxx(a0, x0)

+ (x− x0)(a− a0)Fax(a0, x0)

+ 1
2
(a− a0)

2Faa(a0, x0) + · · · . (2.11)
(a0, x0) is regular point on the equilibrium urve if F (a0, x0) = 0 andone or both of Fa(a0, x0) and Fx(a0, x0) is non-zero. All other points on theequilibrium urve are singular points. If (a0, x0) is a singular point on theequilibrium urve then it is alled a higher-order singularity if Fxx(a0, x0) =

Faa(a0, x0) = Fax(a0, x0) = 0.Exluding the ase where (a0, x0) is a higher-order singularity there are the fol-lowing possibilities:
• (a0, x0) is a regular point and:
Fx(a0, x0) 6= 0. Then, aording to the impliit funtion theorem, (2.8)and (2.11) give the equilibrium urve as an expression for x as a ontinuousfuntion of a in a neighbourhood around a0, with dx/da given by (2.7).
Fx(a0, x0) = 0. The roles of a and x in the impliit funtion theoreman now be reversed and the equilibrium urve is given as a expressed as aontinuous funtion of x in a neighbourhood of x0. From (2.7) da/dx = 0at x = x0, so the equilibrium urve of x as a funtion of a has a horizontaltangent at (a0, x0). The is alled a regular or simple turning point and it isthe only type of bifuration whih is not a singular point. The bifurationat the origin in Example 1.8.1 is a ase of this.
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• (a0, x0) is a singular point with [Fax(a0, x0)]

2 > Faa(a0, x0)Fxx(a0, x0).(2.11) as far as quadrati terms has the form
F (a, x) = {α1(a− a0) + β1(x − x0)}{α2(a− a0) + β2(x− x0)}, (2.12)where all the oe�ients are real and

2α1α2 = Faa(a0, x0),

2β1β2 = Fxx(a0, x0),

α1β2 + α2β1 = Fax(a0, x0).

(2.13)The equilibrium urve has two distint branhes through (a0, x0) withtangents given by the linear fators in (2.12) and (a0, x0) is a double point.Now suppose β1 6= 0 and β2 6= 0 and onsider the loal stability ofthe �rst fator at a point
x∗ = x0 − α1(a− a0)/β1. (2.14)With x = x∗ + △x, from (2.3) and (2.12),
d△x
dt

= △x(a− a0){α2β1 − α1β2}. (2.15)The urve with tangent α1(a− a0) + β1(x − x0) = 0 hanges its stabilityas a inreases through a0 from stable to unstable if α2β1 > α1β2 andunstable to stable if α2β1 < α1β2. Sine the stability of the seond fatoris given by reversing the subsripts 1 and 2, it is lear that the stabilityis also reversed and the bifuration is a transritial point. This analysisinludes the ase where either one but not both of α1 or α2 is zero. Thenone member of the pair of tangents is the vertial line x = x0 as in the aseof the transritial bifuration at the origin in Example 1.8.2 for c 6= 0.Now suppose β1 = 0 and β2 6= 0. This is the limiting ase of theprevious situation where the �rst tangent line is horizontal. The ompleteurve plotted for a as a funtion of x has a turning point at (a0, x0) andthe bifuration is alled a singular turning point. The preise form for thisbifuration is revealed by taking higher-order fators. One possibility isthe pithfork bifuration of Example 1.8.2, with c = 0, when the leadingterms in F (a, x) about the origin are x(a − x2). The linear fator is avertial line and the fator with a horizontal tangent is quadrati.
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• (a0, x0) is a singular point with [Fax(a0, x0)]

2 < Faa(a0, x0)Fxx(a0, x0).In this ase the set of leading quadrati terms has omplex roots and an-not be resolved into real linear fators. There are no points on an equilib-rium urve in a neighbourhood of (a0, x0) whih is an isolated equilibriumpoint alled a onjugate point.
• (a0, x0) is a singular point with [Fax(a0, x0)]

2 = Faa(a0, x0)Fxx(a0, x0).In this ase the leading term is a produt of two idential linear fators.In general
F (a, x) = {α(a− a0) + β(x − x0)}2 + g(a, x), (2.16)where g(a, x) has a zero at (a0, x0) and is of at least ubi degree in thevariables (a − a0), (x − x0). Equation (2.8) has a solution only when
g(a, x) < 0 and, if g(a, x) hanges sign along the line α(a − a0) + β(x −
x0) = 0 at (a0, x0), the equilibrium urve has a usp at (a0, x0). A simpleexample is
F (a, x) = {(a− 1) + 2(x− 3)}2 + 7(a− 1)3, (2.17)The urve F (a, x) = 0 an be plotted by the following MAPLE ode:
> with(plots):
> f:=(x,a)->((a-1)+2*(x-3))^2+7*(a-1)^3:
> urve:=impliitplot(f(x,a)=0,x=0..5,
> a=0..4,grid=[100,100℄, labelfont=[TIMES,ITALIC,12℄):
> text:=plots[textplot℄
> ([3,1,`(3,1)`℄,align={ABOVE,RIGHT}, font=[TIMES,ROMAN,12℄):
> plots[display℄
> ({urve,text});
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This is a usp-point bifuration.



44 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORY2.1.2 The One-Dimensional, Two Parameter CaseIn this ase (2.3) is replaed by
ẋ(t) = F (a, b, x), (2.18)and the equilibrium solutions form a surfae (or surfaes) in the spae Λ3 of
{a, b, x}. With b set at a �xed value we are taking a slie through the equilibriumsurfae and on the resulting urve of equilibrium points in the {a, x} planewe may see any of the bifurations desribed above for a one-dimensional oneparameter system. In this situation the parameter b is passive or irrelevant to theourrene of the bifuration in the sense that it plays no role in the ourreneof the bifuration. A simple example of this would be the modi�ation
ẋ(t) = a+ b− x2, (2.19)to Example 1.8.1. There is now a simple turning point bifuration at a = −b,
x = 0 whih gives a piture like Fig. 1.9 in any plane parallel to the x�axis. Ina similar way the parameter c is an irrelevant parameter in Examples 1.52 and1.53.We now onsider an example of a new type of bifuration whih an ouronly beause of the presene of two parameters.Example 2.1.1
ẋ(t) = 4x3 − 2ax+ b. (2.20)The equilibrium points for (2.20) lie on the ubi urve
F (a, b, x) = 4x3 − 2ax+ b = 0. (2.21)Taking �xed values of a and b there will in general be three solutions or onesolution in x to (2.21) (Fig. 2.1). The boundaries between these regions aregiven by the urves on the surfae where, for �xed a, the tangent is parallel tothe x�axis. These urves form lines of simple turning point bifurations, whihfrom (2.21) are given by
∂b

∂x
= 2a− 12x2 = 0. (2.22)This gives x = ±

√
a

6
. Now let x = ±

√
a

6
+ △x and, substituting bak into(2.20),

d△x
dt

= 4(△x)3 ± 12

√
a

6
(△x)2 + b∓ 4a

3

√
a

6
. (2.23)Negleting the ubi term this beomes a similar situation to that disussed inExample 1.8.1 with a simple turning point bifuration ourring at

b∓ 4a

3

√
a

6
= 0, whih is 27b2 = 8a3. (2.24)
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x

x

(a)
(b)

F (a, b, x) = 0

a

a b

bone solutionone solutionthree solutionsFigure 2.1: (a) The surfae F (a, b, x) = 0 given by (2.21). (b) The usp bifur-ation set in the plane of {a, b}.The urve in the {a, b} plane given by (2.24) whih is the bifuration set for thisexample has a usp at the origin. Both the variables a and b are needed or arerelevant for the ourrene of this usp. It is important to distinguish betweenthis usp in the bifuration set in two parameter spae and the usp bifurationat a single point in the spae of the equilibrium urves whih is shown in theMAPLE �gure on page 43.2.2 Co-Dimension, Co-Rank and StruturalStability2.2.1 Co-DimensionAs we have seen the parameters of a system near to a bifuration an be dividedinto two sets, those whih are relevant to the ourrene of the bifuration andthose whih are not. The number of members of the �rst set is alled the o-dimension of the bifuration. The simple turning point of Example 1.8.1 is thusan example of a bifuration of o-dimension one and the usp of Example 2.1.1is a bifuration of o-dimension two. Another way of understanding this idea isto think of the bifuration as a geometrial objet of dimension d in the spae
Πη of parameters {a, b, c, . . .}. The o-dimension of the bifuration is then the



46 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYnumber of equations needed to speify the bifuration. In general this numberis η− d. Thus for the simple turning point in Example 1.8.1 η = 1, d = 0 givingo-dimension one. In Example 2.1.1 the lines of turning points have η = 2, d = 1so again the o-dimension is one. For the usp bifuration, whih terminates thelines of turning points in Example 2.1.1, η = 2 and d = 0 so the o-dimensionfor this is two.2.2.2 Co-RankJust as we an divide the parameters of a system at a bifuration into a relevantset and an irrelevant set, we an do the same for the variables. The number ofrelevant variables is alled the o-rank of the bifuration. In this ase we anbe more preise by supposing that x = x∗(a) is an equilibrium point for the
d�dimensional system given by (2.1). As in Set. 1.12 we an linearize about
x∗(a) for a partiular value of a to give
d△x

dt
= J∗△x, (2.25)where J∗ is the stability matrix given by (1.114). With V and U as the d× dmatries ontaining the left and right eigenvetors of J∗ as rows and olumnsrespetively, as explained in Set. 1.9, andΛ the d×d diagonal matrix ontainingthe eigenvalues

J∗ = UΛV . (2.26)Substituting into (2.25) and operating on the left with V gives
dΨ

dt
= ΛΨ, (2.27)where

Ψ = V △x. (2.28)The d = 1 ase of this analysis orresponds to the situation where
J = λ(a, x) =

∂F

∂x
. (2.29)and, as we saw Set. 2.1.1, the bifuration set orresponds to the simultaneoussolution of F (a, x) = 0 and λ(a, x) = 0. This means that the dimension of thebifuration set is η + d− 2 = 1 + 1 − 2 = 0. That is a single point.For the general ase the matrix J has d eigenvalues λ(k)(a,x), k = 1, 2, . . . , d.At a bifuration some number ρ (≤ d) of these eigenvalues will be zero. Thehange of variables from △r to Ψ is a linear approximation to a hange ofvariables of whih ρ have zero eigenvalues. This means that ρ independentombination of the variables x1, x2, . . . , xd are relevant to the bifuration. Theo-rank of the bifuration is thus the number ρ of zero eigenvalues at the bifur-ation1.1Sine the rank of an d×d matrix is the number of independent rows, whih is the numberof non-zero eigenvalues, o-rank = d − rank.



2.2. CO-DIMENSION, CO-RANK AND STRUCTURAL STABILITY 472.2.3 Strutural StabilityWe �rst onsider the one-dimensional ase of a funtion V (a, b, c, . . . , x) whihis a polynomial of degree µ in x with oe�ients a, b, c, . . .. By linear andmultipliative saling of V we an eliminate the onstant term and set theoe�ient of xµ to 1/µ. For any V (a, b, c, . . . , x) of this type we now de�ne aset of perturbed polynomials
Ṽp(ε, a, b, . . . , x) =

εxp

p
+ V (a, b, c, . . . , x). (2.30)Then V (a, b, c, . . . , x) is said to be struturally stable if, for all p > 0 and forsmall ε, Ṽp(ε, a, b, . . . , x) has the same x-dependent harater (having a non-zerogradient or a maximum or a minimum or a point of in�etion) in a neighbour-hood of x = a = b = · · · = 0 as V (a, b, c, . . . , x) does at x = a = b = c = · · · = 0.For eah value of µ we begin building a struturally stable polynomial by addingterms to

V (x) =
xµ

µ
. (2.31)For µ even this has a minimum at x = 0, for µ = 1 it is a straight line throughthe origin and for µ ≥ 3 and odd there is a point of in�etion at the origin.Consider

Ṽp(ε, x) =
εxp

p
+
xµ

µ
, p ≥ µ. (2.32)This perturbation does not a�et the degree of the root at the origin sine the�rst non-zero derivative is still the µ�th with value one. If p = µ the only e�etis a trivial hange of oe�ient. If p > µ the large x�value is hanged. With

p and µ of di�erent parity, or of the same parity with ε negative, this involvesnew roots far from the origin.Now onsider the possibilities for destabilization with monomial terms with
p < µ. (We start with µ = 2 sine there is no sope for adding terms for µ = 1,whih is struturally stable in a trivial sense.)

• µ = 2, Ṽ1(ε, x) = εx + 1
2x

2. This simply shifts the minimum to x = −εso x2/2 is struturally stable.
• µ = 3, Ṽ1(ε, x) = εx + 1

3x
3. The point of in�etion at x = 0 in V (x)has been eliminated leaving no turning points when ε > 0 or split into amaximum and minimum if ε < 0. So x3/3 is struturally unstable. Nowonsider

V (a, x) = 1
3x

3 + ax. (2.33)It is lear that this potential is not destabilized by εx whih now just shiftsthe funtion a distane ε in the a diretion. What about
Ṽ2(ε, a, x) = 1

2εx
2 + 1

3x
3 + ax? (2.34)



48 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYThis an be rewritten as
Ṽ2(ε, a, x) = 1

3

(
x+ 1

2ε
)3

+
(
a− 1

4ε
2
) (
x+ 1

2ε
)

+ 1
12ε(ε

2 − 6a). (2.35)So a small shift of origin will restore the polynomial to the form (2.33). Itfollows that (2.33) is struturally stable.Are there any general onlusions we an draw at this stage? Suppose we want,for some value of µ, to onstrut the the struturally stable polynomial withminimum o-dimension, that is with the minimum number of parameters asoe�ients. It is lear that
V (a1, a2, . . . , aµ−1, x) =

xµ

µ
+

µ−1
∑

k=1

ak
xk

k
(2.36)is struturally stable sine addition of a perturbation of degree k ≤ µ will justshift the parameter ak by ε. It is also not di�ult to see that the degree µ− 1monomial an, as in the ase µ = 3, be eliminated by a shift in all the remainingparameters and in V and x. It follows that

V (a1, a2, . . . , aµ−2, x) =
xµ

µ
+

µ−2
∑

k=1

ak
xk

k
(2.37)is struturally stable and the minimum o-dimension for a µ�degree polynomialis not more that µ − 2. In fat it turns out that (2.37) with degree µ has themaximum degree for a polynomial of o-rank one and o-dimension µ− 2. Weshall not prove this general result, but it is worth onsidering

V (a, b, x) = 1
4x

4 + 1
2ax

2 + bx. (2.38)We know that this polynomial is unstable if a = b = 0. But is it still stable withone but not both of a or b zero? With V (a, x) = V (a, 0, x)

Ṽ1(ε, a, x) = εx+ 1
4x

4 + 1
2ax

2. (2.39)The turning points of Ṽ1(ε, a, x) are given by
∂Ṽ1

∂x
= ε+ x(x2 + a) = 0. (2.40)For the unperturbed ase (ε = 0) and with

F (a, x) = −∂V
∂x

, (2.41)
V (a, x) an just be regarded as the potential for the pithfork (c = 0) ase ofExample 1.8.2 and (apart from a trivial reversal of sign for a) the pattern ofmaxima and minima derived from (2.40) with ε = 0 are just the unstable andstable urves plotted in Fig. 1.11. Now inlude a small non-zero ε. The piturehanges ompletely and the pithfork bifuration struture of potential turning
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a

x0

Figure 2.2: The plot of the urves of (2.40) with small positive ε.points is broken into two disonneted branhes (Fig. 2.2). So the funtion(2.38) is not struturally stable with b = 0. With V (b, x) = V (0, b, x)

Ṽ1(ε, b, x) = 1
2εx

2 + 1
4x

4 + bx. (2.42)The turning points of Ṽ1(ε, b, x) are given by
∂Ṽ1

∂x
= εx+ (x3 + b) = 0. (2.43)In this ase the potential does not orrespond to any kind of bifuration sinefor ε = 0 there is only one branh of the urve with a point of in�etion at theorigin (as a plot of b as a funtion of x). With non-zero ε the point of in�etionis removed to be replaed by a maximum and a minimum. So the funtion(2.38) is not struturally stable with a = 0 and with the two parameters aand b it is the struturally stable quarti one-variable polynomial with smallesto-dimension. In a similar way

V (a, b, c, x) = 1
5x

5 + 1
3ax

3 + 1
2bx

2 + cx, (2.44)
V (a, b, c, d, x) = 1

6x
6 + 1

4ax
4 + 1

3bx
3 + 1

2cx
2 + dx, (2.45)an be shown to be the lowest degree o-rank one polynomials with o-dimensionthree and four. If the o-rank is allowed to inrease then there are three morestruturally stable polynomials with o-dimension not greater than four:

V (a, b, c, x, y) = 1
3x

3 + 1
3y

3 + cxy − ax− by, (2.46)
V (a, b, c, x, y) = 1

3x
3 − xy2 + c(x2 + y2) − ax− by, (2.47)

V (a, b, c, d, x, y) = x2y + 1
4y

4 + cx2 + dy2 − ax− by, (2.48)
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a

x0

Figure 2.3: The plot of the urves of (2.52) with a small positive ε.giving in all seven struturally stable polynomials with o-dimension less thanor equal to four and degree greater than two. We have seen that the simpleturning point bifuration has the struturally stable potential (2.33) and it islear that the usp bifuration of Example 2.1.1 has the potential
V (a, b, x) = −x4 + ax2 − bx, (2.49)whih with slight hanges of parameterization is equivalent (2.38). Thus the uspbifuration has a struturally stable potential. We have already seen that thepithfork bifuration is not stable and by impliation the transritial bifurationwith
F (a, x) = x(a− x), (2.50)
V (a, x) = 1

3x
3 − 1

2ax
2, (2.51)is struturally unstable. This an be seen learly if we add a term εx to (2.51).Then the equilibrium diagram is given by

x(a− x) − ε = 0. (2.52)With ε = 0 the transritial bifuration ours with the lines x = 0 and x = arossing at the origin and exhanging stability. With ε 6= 0, however small,the bifuration is removed and the equilibrium points form two non-intersetingbranhes (Fig. 2.3).



2.3. BIFURCATIONS IN MORE THAN ONE DIMENSION 512.3 Bifurations in More Than One DimensionIn Set. 2.1 we onsidered bifurations with one variable x and up to two para-meters. Here we indiate brie�y the situation for a system evolving aordingto (2.1) where d > 1. Suppose (a0,x0) is an equilibrium point in the (η + d)�dimensional spae Λη+d of all the variables and parameters. Then
F (a0,x0) = 0 (2.53)and the vetorial form of the Taylor expansion (2.11) is
F (a,x) = J(a0,x0)(x − x0) + A(a0,x0)(a − a0)

+ O(|x− x0||a − a0|)
+ O(|x− x0|2) + O(|a − a0|2). (2.54)where

J(a,x) =
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∂x2
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∂xd... ... . . . ...
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. (2.55)is a d× d matrix and
A(a,x) =













∂F1

∂a1

∂F1

∂a2
· · · ∂F1

∂aη

∂F2

∂a1

∂F2

∂a2
· · · ∂F2

∂aη... ... . . . ...
∂Fd

∂a1

∂Fd

∂a2
· · · ∂Fd

∂aη













. (2.56)is a d×η matrix. The di�erential element dx of the equilibrium urve at (a0,x0)for a di�erential hange da in the parameters is given, from (2.54), by taking
x − x0 → dx, a − a0 → da and negleting non-linear terms. This gives
J(a0,x0)dx = −A(a0,x0)da. (2.57)If J(a0,x0) is non-singular then (a0,x0) is a regular point on the equilibriumurve with tangent element
dx = −[J(a0,x0)]

−1A(a0,x0)da. (2.58)and, if J(a0,x0) is singular, but A(a0,x0) has an inverse,
da = −[A(a0,x0)]

−1J(a0,x0)dx. (2.59)



52 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYThis is the multi-dimensional version of a regular turning point. Otherwise
(a0,x0) is a singular point. As in the ase d = 1 bifurations arise both fromsingular points and regular turning points. They satisfy
Det{J(a0,x0)} = 0. (2.60)The d equations (2.53) and (2.60) are (d − 1)-dimensions surfaes in the spae
Λd+η. Their intersetion is the (d+ η − d− 1 = η − 1)�dimensional bifurationset. Whih is simply to say that we an (in priniple) eliminate the d variables
x1, x2 . . . , xd between the d + 1 equations to give one relationship between the
η parameters a1, a2, . . . , aη whih is an (η − 1)�dimensional surfae in the η�dimensional spae of parameters. An example, for d = 1, η = 2, is the uspbifuration set in Fig. 2.1(b).Example 2.3.1
F (a, x, y) =

(
y − x

ax− y − x2y

) (2.61)The equilibrium points for (2.61) lie on the urve in the three-dimensional spaewhih is the intersetion of the surfaes
y − x = 0, ax− y − x2y = 0 (2.62)and
J(a, x, y) =

(
−1 1

a− 2xy −(1 + x2)

) (2.63)The equilibrium urve lies in the plane x = y in the spae of the variables
{a, x, y} and in this plane is given by
(a− 1)x− x3 = 0, (2.64)whih is a pithfork. From (2.60) and (2.63) the bifuration set is given bysolving (2.62) with
(1 + x2) − (a− 2xy) = 0, (2.65)whih gives the bifuration set a = 1.Example 2.3.2 The system with potential (2.46) has equilibrium set given by
−∂V
∂x

= −x2 − cy + a = 0,

−∂V
∂y

= −y2 − cx+ b = 0,

(2.66)and the bifuration set is given by eliminating x and y between these equationsand
det{J(a, x, y)} =

∣
∣
∣
∣

−2x −c
−c −2y

∣
∣
∣
∣
= 4xy − c2 = 0. (2.67)
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Figure 2.4: The urve V (a, x) = 1
3x

3 − ax for (a) a > 0, (b) a = 0, () a < 0.2.4 Catastrophe TheoryThis subjet, whih was initiated by René Thom2, has been applied to allkinds of situations (on�its, biologial morphogenesis, phase transitions et.)in whih sudden hanges our.Catastrophe theory is onerned with systems with a set of state variablesdenoted by x1, x2, . . . , xd and a set of ontrol variables denoted by a1, a2, . . . , aη.Sine time does not enter expliitly into the theory one may suppose that thestate variables have reahed temporal equilibrium and their values are thensmooth funtions of the ontrol variables. Changes in the state variables arenow aused by hanges in the ontrol variables. In general small hanges in theontrol variables lead to small hanges in the state variables. However, for somevalues of the ontrol variables, there is the possibility of a atastrophe ourringwhen a small hange in one or more of the ontrol variables leads to a large anddisontinuous hange in one or more of the state variables. Catastrophe theoryis onerned with the lassi�ation of the di�erent ways these disontinuoushanges an our. As a simple example of a atastrophe onsider a system inwhih a partile is free to roll on the urve
V (a, x) = 1

3x
3 − ax. (2.68)When a > 0 the urve has a loal minimum at x =

√
a and the partile an sitat rest at this minimum (Fig. 2.4(a)). While a remains positive a small hangein a will lead to only a small hange in the loation of the partile. However,at a = 0 the maximum and minimum of V (a, x) merge at x = 0. The stateof the partile beomes prearious (Fig. 2.4(b)) and, when a beomes negative,the atastrophe ours and the partile is tipped o� and falls down to x = −∞(Fig. 2.4()).Of ourse we an see that what we are really talking about here is the simpleturning point bifuration, with

−∂V
∂x

= a− x2. (2.69)2Strutural Stability and Morphogenesis, Benjamin, 1975; for an introdution see P.T.Saunders, An Introdution to Catastrophe Theory, Cambridge, 1980.



54 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYThe maximum and minimum of the potential V (a, x) are the unstable andstable equilibrium states of the partile. The partile moves downwards alongthe right-hand branh of the parabola in Fig. 1.9 as a is dereased and �nally`drops o�' at a = 0.This example gives a ase where a bifuration at x = 0, a = 0 gives aatastrophe. Now we generalize by onsidering a smooth potential funtion
V (a,x), whih an be represented approximately in a neighbourhood of theorigin by a polynomial and whih is linear in the ontrol variables a1, a2, . . . , aη.With
F (a,x) = −∇V (a,x), (2.70)we have a dynami system
ẋ(t) = F (a,x). (2.71)When the system has reahed equilibrium we an think of its state as a partilelying at a loal minimum on the surfae of V plotted in the (d+1)�dimensionalspae of the variables {V, x1, x2, . . . , xd}. Now the point x = 0, a = 0 is aatastrophe if there are paths whih an be traed out by varying a near to
a = 0 whih lead to disontinuous hanges in the equilibrium value of x. Inthe ase d = 1, η = 1 we have already seen that the path through a = 0 forthe potential (2.68) leads to a disontinuous hange in equilibrium state. For
d = 1, η = 2 we an think of the path as a small irle around the origin inthe plane of the ontrol variables {a, b}. A disontinuous hange in x meansthat the funtion F (a, b, x) = 0 plotted as a surfae of x against a and b has abranh-point at the origin, with the equilibrium state hanging disontinuouslyfrom one branh to another. In Set. 2.1 we saw that a bifuration point isjust a branh-point. So atastrophes are bifurations. But are all bifurationsatastrophes? The answer is `no' and we an already produe two examples witho-dimension one, the transritial bifuration with F (a, x) = x(a− x) and thepithfork bifuration with F (a, x) = x(a−x2) where passing through a = 0 doesnot produe a disontinuous hange in x. These are not atastrophes in theirown right.3 On the other hand the usp bifuration of Example 2.1.1 does givea disontinuous hange in x on a small losed path about the origin in the {a, b}plane, either at b =

√

8a3/27 or b = −
√

8a3/27 depending on the orientationof the path. So we have two examples of atastrophes:
• The fold atastrophe with o-dimension one and o-rank one, whih is thesimple turning point bifuration with F (a, x) = −a−x2 (this is just (1.53)with the sign of a reversed) and potential (2.33).
• The usp atastrophe with o-dimension two and o-rank one, whih is theusp bifuration with F (a, b, x) = −x3 − ax − b (this is just (2.21) withthe signs of a, b and x reversed) and potential (2.38).3Although they do make a guest appearane; see Problem Sheet 4.



2.4. CATASTROPHE THEORY 55The distinguishing features of these two ases is that they are struturally stable.In fat it an be shown that all the strutural stable polynomial forms giveatastrophes. We have already listed these for o-dimension up to four. We annow given them their names as atastrophes.
• (2.44) is the swallow's tail atastrophe.
• (2.45) is the butter�y atastrophe.
• (2.46) is the hyperboli umbili atastrophe.
• (2.47) is the ellipti umbili atastrophe.
• (2.48) is the paraboli umbili atastrophe.The swallow's tail and the butter�y are of o-rank one and o-dimensions threeand four respetively. Their names derive from resemblanes seen in their bi-furation sets. The umbilis are of o-rank two with the hyperboli and elliptibeing of o-dimension three and the ellipti being of o-dimension four.2.4.1 Bifuration Sets Using MAPLEGiven the potential V (a, b, . . . , x) for a atastrophe of o-rank one, the bifura-tion set is given by eliminating x between the two equations

∂V

∂x
= 0,

∂2V

∂x2
= 0. (2.72)For the swallow's tail V (a, b, c, x) is given by (2.44) and the bifuration set isobtained by �nding the values of a, b and c for whih the polynomials

x4 + ax2 + bx+ c = 0,

4x3 + 2ax+ b = 0
(2.73)have a ommon solution for x. The simplest way to solve this problem is toonstrut the Sylvester determinant

S(a, b, c) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 a b c 0 0
0 1 0 a b c 0
0 0 1 0 a b c
4 0 2 a b 0 0 0
0 4 0 2 a b 0 0
0 0 4 0 2 a b 0
0 0 0 4 0 2 a b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.74)The bifuration set is then given by
S(a, b, c) = 0. (2.75)Solving this determinant and plotting the results is a fairly ompliated task.The easiest way to do it is to use MAPLE. The following is the reord of a



56 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYMAPLE session whih on�rms the formula (2.24) for the bifuration set of theusp atastrophe and alulates the bifuration set for the swallow's tail plottingslies through the surfae.
> with(linalg,det,matrix):
> with(plots,impliitplot,impliitplot3d):
> # This is the matrix of the Sylvester determinant
> # for the usp.
> S:=(a,b)->matrix([[4,0,-2*a,b,0℄,[0,4,0,-2*a,b℄,[12,0,-2*a,0,0℄,[0,1
> 2,0,-2*a,0℄,[0,0,12,0,-2*a℄℄):
> S(a,b); 266664 4 0 −2 a b 0

0 4 0 −2 a b

12 0 −2 a 0 0
0 12 0 −2 a 0
0 0 12 0 −2 a

377775
> s:=(a,b)->simplify(det(S(a,b))):
> s(a,b);

−512 a3 + 1728 b2

> #This is the bifuration set for the usp.
> # It an be plotted in the {a,b} plane using:
> impliitplot(27*b^2=8*a^3,b=-2..2,a=-0.5..2,grid=[50,50℄);
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1
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–1.5 –1 –0.5 0 0.5 1 1.5b

> # This is the matrix of the Sylvester determinant
> # for the swallow's tail.



2.4. CATASTROPHE THEORY 57
> Sst:=(a,b,)->matrix([[1,0,a,b,,0,0℄,[0,1,0,a,b,,0℄,[0,0,1,0,a,b,℄
> ,[4,0,2*a,b,0,0,0℄,[0,4,0,2*a,b,0,0℄,[0,0,4,0,2*a,b,0℄,[0,0,0,4,0,2*a,
> b℄℄):
> Sst(a,b,); 2666666664 1 0 a b c 0 0

0 1 0 a b c 0
0 0 1 0 a b c

4 0 2 a b 0 0 0
0 4 0 2 a b 0 0
0 0 4 0 2 a b 0
0 0 0 4 0 2 a b

3777777775
> sst:=(a,b,)->simplify(det(Sst(a,b,))):
> sst(a,b,);

16 c a4
− 4 b2 a3

− 128 c2 a2 + 144 b2 c a − 27 b4 + 256 c3

> # This is the bifuration set for the swallow's tail.
> # We an plot various slies through the surfae.
> ssta1:=(b,)->simplify(sst(1,b,)):
> ssta1(b,);

16 c − 128 c2 + 144 b2 c + 256 c3
− 4 b2

− 27 b4

> impliitplot(ssta1(b,)=0,b=-2..2,=-0.5..2,grid=[100,100℄);

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c

–2 –1 1 2
b

> ssta2:=(b,)->simplify(sst(-2,b,)):
> ssta2(b,);

256 c − 512 c2
− 288 b2 c + 256 c3 + 32 b2

− 27 b4

> impliitplot(ssta2(b,)=0,b=-2..2,=-2..2,grid=[100,100℄);
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0

0.5

1

1.5

2

c

–1 –0.5 0.5 1b

So we see that the bifuration set for the swallow's tail is given by
4ca4 − b2a3 − 32c2a2 + 36b2ca− 27

4 b
4 + 64c3 = 0. (2.76)This surfae is symmetri under interhange of the sign of b and uts the b = 0plane in the lines

c = 0, c = 1
4
a2. (2.77)As we an see from the MAPLE session given above, its intersetion with theplane a = 1 is given by

256c3 − 128c2 + 16c+ 4(36c− 1)b2 − 27b4 = 0. (2.78)This urve passes through b = c = 0 and is of a basin shape. Although thepoint b = 0, c = 1
4 , given by (2.77) is a solution of (2.78) it is an isolated pointwhen a > 0. Again from the MAPLE session, we see that the intersetion of thesurfae (2.78) with the plane a = −2 is given by

256c3 − 512c2 + 256c+ 32(1 − 9c)b2 − 27b4 = 0. (2.79)This urve passes through b = c = 0, but is now also satis�ed by the seondsolution of (2.77) b = 0, c = 1, whih is a point where the urve intersets itself.The urve has the shape whih gives the bifuration set its name.



2.4. CATASTROPHE THEORY 59Problems 21) Consider the roots of F (ε, a, x) = 0, where
F (ε, a, x) = εx2 + x3 − ax,Show that the pithfork bifuration at the origin in the plane of {a, x} when
ε = 0 beomes a transritial bifuration for small ε 6= 0 and that there is aturning point at a = − 1

4ε
2, x = − 1

2ε. Sketh the equilibrium urves in the
{a, x} plane for ε > 0.2) A system is given by
ẋ(t) = x3 − 2ax2 − (b − 3)x+ c.Find the equation for the bifuration set, whih is the surfae in the spaeof {a, b, c} satisfying F (a, b, c, x) = Fx(a, b, c, x) = 0. Show that in the plane
a = 1 the bifuration set is the urve
(27c− 18b+ 38)2 = 4(3b− 5)3Prove that it has a usp at b = 5

3 , c = − 8
27 and sketh the urve. Tryskething urves for other �xed values of a to see how the usp is a�eted byvariation of a.3) Show that the usp bifuration with

V (a, b, x) = 1
4
x4 + 1

2
ax2 + bxhas pithfork and transritial bifurations in speial planes in the {a, b, x}spae. (For the seond of these you may �nd it helpful to note that the systemonsidered in Example 1.7.2 has a transritial bifuration.)4) A two-dimensional system is given by

ẋ(t) = −x2 + y2 − 2cx+ a, ẏ(t) = 2xy − 2cy + b.Show that the bifuration set is given by eliminating x between the polyno-mials
2x2 + 2xc− a− c2 = 0,

4x4 − 8x3c+ 8c3x+ b2 − 4c4 = 0.Either by hard work or by using MAPLE arry out this proess and showthat the bifuration set an be expressed in the form
27c8 − 18c4(a2 + b2) + 8c2a(a2 − 3b2) − (a2 + b2)2 = 0.



60 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYShow that in terms of the polar oordinates a = r cos(θ), b = r sin(θ) thisformula an be expressed in the form
(r + c2)(3c2 − r)3 + 8c2r3{cos(3θ) − 1} = 0.Sketh the intersetion with a plane of onstant c showing that there areusps at r = 3c2, θ = 0, 2π

3 ,
4π
3 .5) Find the equilibrium points of the system

ẋ(t) = −y − z, ẏ(t) = x+ y, ż(t) = c+ z(x− a).and determine the onditions for their existene. Determine the onditionsfor the existene of a bifuration and identify its type.



Chapter 3Stability3.1 The Stability of TrajetoriesThis hapter will be onerned solely with the stability properties of autonomoussystems. In fat, as we saw in Set. 1.5, this is not a severe restrition, sine anon-autonomous system an be represented as a suspended autonomous system.In this setion we onsider the general stability properties of a solution x(t) ofthe dynamial system
ẋ(t) = F (a,x). (3.1)With x(t0) = x(0) speifying the solution at time t0, x(t) de�nes a trajetory1in the spae Γd of the d variables {x1, x2, . . . , xd}.The map φt: Γd → Γd for all t ≥ 0 is de�ned by
φt[x(t0)] = x(t0 + t) (3.2)and the set of maps {φt : t ≥ 0} is alled a �ow. Sine
φt1 [φt2 [x(t0)]] = x(t0 + t1 + t2) t1, t2 ≥ 0 (3.3)the �ow satis�es the onditions
φt1φt2 = φt1+t2 = φt2φt1 . (3.4)It thus has all the properties of an Abelian (ommutative) group apart from thepossible non-existene of an inverse; it is therefore an Abelian semigroup.An important question onerning a solution x(t) of (3.1) is whether it isstable. There are many di�erent de�nitions of stability in the literature. Weshall give two of the most ommon ones:1Also alled the path or orbit. 61



62 CHAPTER 3. STABILITYThe solution x(t) to (3.1), with x(t0) = x(0), is said to be uniformly stableor stable in the sense of Lyapunov if there exists, for every ε > 0, a δ(ε) > 0,suh that any other solution x̃(t), for whih x̃(t0) = x̃(0) and
|x(0) − x̃(0)| < δ(ε), (3.5)satis�es
|x(t) − x̃(t)| < ε, (3.6)for all t ≥ t0. If no suh δ(ε) exists then x(t) is said to be unstable in thesense of Lyapunov. If x(t) is uniformly stable and
lim

t→∞
|x(t) − x̃(t)| = 0. (3.7)it is said to be asymptotially stable in the sense of Lyapunov.The solution x(t) to (3.1), with x(t0) = x(0), is said to be orbitally stableor stable in the sense of Poinaré if there exists, for every ε > 0, a δ(ε) > 0,suh that, for any other solution x̃(t), with x̃(t1) = x̃(1) and

|x(0) − x̃(1)| < δ(ε), (3.8)there exists a t2(t) with
|x(t) − x̃(t2)| < ε, (3.9)for all t ≥ t0. If no suh δ(ε) exists then x(t) is said to be unstable in thesense of Poinaré. If x(t) is orbitally stable and
lim

t→∞
|x(t) − x̃(t2(t))| = 0. (3.10)it is said to be asymptotially stable in the sense of Poinaré.It is lear that Lyapunov stability is more restritive than Poinaré stability,whih it implies with t1 = t0 and t2(t) = t. Lyapunov stability ould be hara-terized by saying that the two solutions are fored to lie in a `tube' of thikness

ε, for t > t0, by the initial ondition (3.5) (Fig. 3.1(a)). A ross-setion of thetube represents the same time instant on eah trajetory. They an be saidto have same histories on the same time sale. The piture is very similar forPoinaré stability (Fig. 3.1(b)) but in this ase the time sales, marked on thetrajetories may be di�erent. The two solutions have the same histories, but notneessarily on the same time sale. Unless otherwise stated we shall heneforthin the disussion of stability mean stable in the sense of Lyapunov.For later referene we inlude at this point the following de�nitions:



3.1. THE STABILITY OF TRAJECTORIES 63
(a)

(b)x̃
(1)

x(0)

δ(ε)ε

x̃(t2)

x(t)

x̃
(0)

x(0)

δ(ε)ε

x̃(t)

x(t)

Figure 3.1: Neighbouring trajetories whih are stable in (a) the sense of Lya-punov, (b) the sense of Poinaré. Dots on the trajetories indiate equal unitsof time.The solution x(t) to (3.1), with x(t0) = x(0), is a periodi solution ofperiod T if, x(t + T ) = x(t), for all t > t0, and there does not exist a T ′ < Twith x(t+ T ′) = x(t), for all t > t0.A luster (or limit) point x∞ of the solution x(t) to (3.1), with x(t0) =
x(0), is suh that, for all τ > 0 and ε > 0, there exists a t1(ε) > τ with
|x∞ − x(t1)| < ε. (3.11)The set of luster points is alled the ω-limit set of the trajetory.Given that the solution x(t) to (3.1) is de�ned for all (positive and negative)
t and x(0) = x(0) the reverse trajetory xR(t) is de�ned by xR(t) = x(−t).The set of luster points of the reverse trajetory is alled the α-limit set ofthe trajetory x(t).It is lear that the existene of a luster point x∞ implies the existene of asequene t1 < t2 < · · · < tn → ∞ suh that, for the spei�ed trajetory,

x(tn) → x∞, as n→ ∞. (3.12)



64 CHAPTER 3. STABILITYLet A be the ω-limit set of a partiular solution x(t) to (3.1). If there existsa region D(A), in Γd, whih ontains A and for whih the trajetories with
x(0) = x(0), for all x(0) in D(A), have A as their ω-limit set, then A is alled anattrator with basin (or domain) D(A). An α-limit with the same propertyfor reverse trajetories is alled a repellor.3.2 The Stability of Equilibrium PointsIn Set. 1.6 we de�ned the stability of an equilibrium point x∗. It is now learthat that de�nition was just for the speial ase of the stability of a trajetorywhih onsists of the single point x∗. An asymptotially stable equilibrium pointhas a neighbourhood suh that every trajetory with x(0) = x(0), and x(0) inthe neighbourhood, has x∗ as its unique luster point (and thus the ω-limit set).An asymptotially stable equilibrium point is therefore an attrator with basinonsisting of some neighbourhood. Of ourse, as we shall see, not all attratorsare asymptotially stable equilibrium points.3.2.1 The Lyapunov Diret MethodAn interesting method for establishing the stability of an equilibrium point isgiven by Lyapunov's �rst theorem for stability:Theorem 3.2.1 Let x∗ be an equilibrium point of (3.1). Suppose that thereexists a ontinuous di�erentiable funtion L(x) suh that

L(x∗) = 0 (3.13)and, for some µ > 0,
L(x) > 0, when 0 < |x∗ − x| < µ. (3.14)Then x∗ is(i) stable if

F (a,x).∇L(x) ≤ 0, when 0 < |x∗ − x| < µ, (3.15)(ii) asymptotially stable if
F (a,x).∇L(x) < 0, when 0 < |x∗ − x| < µ, (3.16)(iii) unstable if
F (a,x).∇L(x) > 0, when 0 < |x∗ − x| < µ. (3.17)



3.2. THE STABILITY OF EQUILIBRIUM POINTS 65Proof: From (3.1) along a trajetory
dL(x)

dt
= ∇L(x).

dx

dt
= F (a,x).∇L(x). (3.18)From (3.13) and (3.14), x∗ is a loal minimum of L(x). So we an �nd an R > 0,with µ ≥ R, suh that, for all R > |x∗ − x1| > |x∗ − x2| > 0, L(x1) > L(x2).Then if (3.15) applies, it follows from (3.18) that a trajetory annot movefurther from x∗ and, given any ε > 0, (1.28) an be satis�ed by hoosing δ(ε)in (1.27) to be the smaller of ε and R. If the strit inequality (3.16) applies itfollows from (3.18) that the trajetory must onverge to x∗. The ondition for

x∗ to be unstable is established in a similar way.A funtion L(x) whih satis�es (3.15) is alled a Lyapunov funtion and whihsatis�es (3.16) a strit Lyapunov funtion. The method of establishing stabilityof an equilibrium point by �nding a Lyapunov funtion is alled the Lyapunovdiret method.Suppose the dynamial system is given by (2.70)�(2.71) and the funtion
V (a,x) has a loal minimum at x∗, for some �xed a = a∗. Then the hoie
L(x) = V (a∗,x) − V (a∗,x∗), (3.19)satis�es (3.13) and (3.14), with
F (a∗,x).∇L(x) = −|∇V (a∗,x)|2 < 0. (3.20)So a loal minimum of V (a,x) is, as we might expet, an asymptotially stableequilibrium point. To establish that a loal maximum is an unstable equilibriumpoint simply make the hoie
L(x) = V (a∗,x∗) − V (a∗,x). (3.21)Example 3.2.1 Show that (0, 0) is a stable equilibrium point of
ẋ(t) = −2x− y2, ẏ(t) = −y − x2. (3.22)Try
L(x, y) = αx2 + βy2. (3.23)For α and β positive (3.13) and (3.14) are satis�ed and
F (x, y).∇L(x, y) = −{2αx(2x+ y2) + 2βy(y + x2)}

= −2x2(2α+ βy) − 2y2(β + 2αx). (3.24)So in the neighbourhood |x| < β/(2α), |y| < 2α/β of the origin (3.15) is satis�edand the equilibrium point is stable.The problem in this method is to �nd a suitable Lyapunov funtion. This ingeneral an be quite di�ult. There are, however, two ases where the hoie isstraightforward:



66 CHAPTER 3. STABILITYA onservative system given by ,
ẍ(t) = −∇V (a,x), (3.25)whih in terms of the 2d variables {x1, . . . , xd, v1, . . . , vd} an be expressed inthe form
ẋ(t) = v, v̇(t) = −∇V. (3.26)An equilibrium point with a = a∗ is given by v = 0 and a value x = x∗ whihsatis�es ∇V = 0. Now try
L(x,v) = 1

2v.v + V (a∗,x) − V (a∗,x∗). (3.27)With
∇L(x) =

(
∇V
v

) (3.28)
F (a∗,x).∇L(x) = 0. (3.29)Sine, from (3.27), L(x∗, 0) = 0 it follows from (3.29) that the equilibrium pointis stable (but not asymptotially stable) if (3.14) holds. From (3.27) this willertainly be the ase if x∗ is a loal minimum of V (a∗,x). Aording to theanalysis of Set. 1.3 suh a minimum of the potential is a entre, whih is stablein the sense of Lyapunov.A Hamiltonian system given by (1.10) , in terms of the 2d variables
{x1, . . . , xd, p1, . . . , pd}. If the system is autonomous and we have an equilibriumpoint (x∗,p∗) then, with
L(x,p) = H(x,p) −H(x∗,p∗) (3.30)we have, from (1.11)
dL

dt
=

dH

dt
= F (x,p).∇L(x,p) = 0. (3.31)The equilibrium point is stable if it is a loal minimum of the Hamiltonian. Anexample where this is true is the equilibrium point at the origin for the simpleharmoni osillator with Hamiltonian (1.30). Even when the equilibrium pointis not a loal minimum of the Hamiltonian, its form an often be a guide to�nding an appropriate Lyapunov funtion.Example 3.2.2 Consider the stability of the equilibrium point at the origin forthe system with Hamiltonian

H(a, x1, x2, p1, p2) = 1
2{x2

1 + x2
2 + p2

1 + p2
2} + a{p1x2 − p2x1}. (3.32)



3.2. THE STABILITY OF EQUILIBRIUM POINTS 67From (1.10) the equations of motion for this system are
ẋ1(t) =

∂H

∂p1
= p1 + ax2, ṗ1(t) = − ∂H

∂x1
= −x1 + ap2,

ẋ2(t) =
∂H

∂p2
= p2 − ax1, ṗ2(t) = − ∂H

∂x2
= −x2 − ap1.

(3.33)The origin is learly an equilibrium point. However in the plane x2 = p1 = 0
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2H

∂x2
1

∂2H

∂x1∂p2

∂2H

∂p2∂x1

∂2H

∂p2
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 − a2. (3.34)So the origin is a saddle point in this plane when |a| > 1. However, the funtion
L(x1, x2, p1, p2) = H(0, x1, x2, p1, p2) (3.35)has a minimum at the origin with
F (a, x1, x2, p1, p2).∇L(x1, x2, p1, p2) = 0. (3.36)So we have found a Lyapunov funtion whih establishes the stability of theequilibrium point.3.2.2 LinearizationThe Lyapunov riterion for stability of an equilibrium point given by (1.27)�(1.29) is loal in the sense that a trajetory will wander near to the equilibriumpoint only in ases where it begins su�iently lose by. In Sets. 1.10 and 1.12we examined the stability of equilibrium points for systems linearized aboutan equilibrium point. The riteria for stability that we developed, whih arerelated to the types of eigenvalues of the stability matrix (1.114) at the equilib-rium point, apply globally to the linearized equation (1.113) and apply to thefull equations (2.1) for in�nitesimal disturbanes from the equilibrium point.The onnetion between these onditions for linear or in�nitesimal stability andthe stability onditions given by (1.27)�(1.29) was provided by Thm. 1.12.1.This theorem allows us to use linear analysis to determine the stability (in theLyapunov and not just the in�nitesimal sense) whenever all the eigenvalues havenon-zero real parts. Thus it leaves open the question of the stability of a en-tre. Suh a ase is the simple harmoni osillator with equations of motion(1.3). The stability matrix for equilibrium point at the origin has eigenvalues
±iω/

√
m. We have, however, shown, using the Lyapunov diret method, thatthis equilibrium point is stable. Another ase of interest is Example 1.12.2,where for a = 0 the point x = y = 0 is a entre. The omplete solution shows aslow onvergene to the origin. The funtion

L(x, y) = 1
2
(x2 + y2) (3.37)



68 CHAPTER 3. STABILITYhas a minimum at the origin where it is zero and, from (1.117)�(1.118), with
a = 0,
F (x, y).∇L(x, y) = −{x2 + y2}2. (3.38)So aording to Thm. 3.2.1 the origin is asymptotially stable.We now review and extend our disussion in Set. 1.12 of two-dimensionalautonomous systems given by
ẋ(t) = F (x, y), ẏ(t) = G(x, y). (3.39)The family of trajetories in the plane Γ2 of {x, y} is given by solving (if it ispossible) the di�erential equation
dy

dx
=
G(x, y)

F (x, y)
. (3.40)Now suppose that there is an equilibrium point, whih, using if neessary atranslation in the variables, an be taken to be at the origin. Linearizing aboutthe equilibrium point

F (x, y) = ax+ by + O(x2 + y2), G(x, y) = cx+ dy + O(x2 + y2). (3.41)Retaining only linear terms and assuming a normal mode solution of the form
x(t) = u1 exp(λt), y(t) = u2 exp(λt), gives the right eigenproblem
J∗u = uλ, (3.42)with
u =

(
u1

u2

)

J∗ =

(
a b
c d

)

, (3.43)disussed in Set. 1.9. The general solution to the linearized equations is of theform
x = C(+)u

(+)
1 exp{λ(+)t} + C(−)u

(−)
1 exp{λ(−)t},

y = C(+)u
(+)
2 exp{λ(+)t} + C(−)u

(−)
2 exp{λ(−)t},

(3.44)where
λ(±) = 1

2
{p±

√

p2 − 4q}, (3.45)with
p = Trace{J∗} = a+ d, q = Det{J∗} = ad− bc, (3.46)are the eigenvalues of J∗ with orresponding right eigenvetors
u(±) = (u

(±)
1 , u

(±)
2 )T. It is lear from (3.44) that the topologial nature of thetrajetories in a neighbourhood of the origin in the {x, y} plane is determinedby the eigenvalues and right eigenvetors of J∗. An equilibrium point for whih



3.2. THE STABILITY OF EQUILIBRIUM POINTS 69eah eigenvalue has a non-zero real part is alled a hyperboli point; an equi-librium point for whih eah eigenvalue is purely imaginary is alled an elliptipoint. Sine in two dimensions the eigenvalues are either real or a onjugateomplex pair, the only alternative to either a hyperboli or ellipti point iswhere the eigenvalues are real and one or both are zero. As we have seen abovethis normally orresponds to a bifuration.When p2 > 4q, the eigenvalues are real and unequal. with eigenvetorswith real omponents. There are two diretions through the equilibrium pointwhih give straight line trajetories for the linear system. These are given bythe two eigenvetors and orrespond to taking C(−) = 0 and C(+) = 0 in (3.44),giving the lines
xu

(+)
2 = yu

(+)
1 , (3.47)

xu
(−)
2 = yu

(−)
1 . (3.48)We assume, without loss of generality, that a > d. Then, if b = c = 0, u(−)

1 =

u
(+)
2 = 0 and the lines (3.47) and (3.48) beome respetively the x and y axes.If c = 0, but b 6= 0, then u(−)

1 = 0 but u(+)
2 6= 0; (3.48) is the y axis but (3.47)is not the x axis. The onverse is the ase if b = 0, c 6= 0. Within the lass ofreal unequal eigenvalues there are a number of ases:(i) q > 0 > p, giving 0 > λ(+) > λ(−). From (3.44)

x

y
=

u
(+)
1 + (C(−)/C(+)u

(−)
1 exp{(λ(−) − λ(+))t}

u
(+)
2 + (C(−)/C(+)u

(−)
2 exp{(λ(−) − λ(+))t}

→ u
(+)
1

u
(+)
2

, as t→ ∞. (3.49)So the ultimate approah to the equilibrium point is tangential tothe priniple diretion (3.47), whih is alled the strong diretion.This applies to all trajetories in a neighbourhood of the equilibriumpoint exept those lying on the priniple diretion (3.48) (C(+) = 0)(alled the weak diretion). An equilibrium point of this kind is astable node, (Fig. 3.2a).(ii) q > 0, p > 0 giving λ(+) > λ(−) > 0. The result (3.49) applies tothe linearized equations for all trajetories exept for those lyingon the weak diretion line whih tend to in�nity on that line. Allother trajetories approah the strong line asymptotially at largedistanes. This predition applies only to the linearized equations.Non-linear terms in the full equations will probably modify the largedistane behaviour. Close to the equilibrium point the trajetorieshave the same topology as that of the stable mode exept that thediretion of the �ow is reversed. This is an unstable mode.
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(f) (g)
(e)
() (d)
(a) (b)

Figure 3.2: Trajetories in a neighbourhood of an equilibrium point: (a) stablenode, (b) improper stable node, () saddle-point, (d) in�eted stable node, (e)perfet stable node, (f) stable fous, (g) entre.



3.2. THE STABILITY OF EQUILIBRIUM POINTS 71(iii) q = 0, p < 0 giving λ(+) = 0, λ(−) = p < 0. In this ase it followsfrom (3.44) that the trajetories are straight lines whih approahthe line (3.47) as t→ ∞. This is an improper stable node (Fig. 3.2b).(iv) q = 0, p > 0 giving λ(+) = p > 0, λ(−) = 0. In this ase it followsfrom (3.44) that the trajetories are straight lines whih retreat fromthe line (3.48) as t inreases. This is an improper unstable node.(v) q < 0 giving λ(+) > 0 > λ(−). This is similar to the ase of anunstable mode exept that the weak diretion is now a diretion ofapproah to the equilibrium point and trajetories near to this linewill �rst be in�uened by its attrative power before experieningthe repulsive a�et of the strong diretion. This is a saddle-point(Fig. 3.2). Again the form of the trajetories may be modi�ed bynon-linear terms.When p2 = 4q, the eigenvalues are real and equal. Within this lassthere are a number of ases:(i) p < 0, not both b = 0 and c = 0 giving λ(+) = λ(−) < 0. This asebe regarded as the limiting ase q → p2/4 of a stable node. Thelines (3.47)�(3.48) degenerate into one linear trajetory of approah.This is alled an in�eted stable node (Fig. 3.2d).(ii) p > 0, not both b = 0 and c = 0 giving λ(+) = λ(−) > 0. This asebe regarded as the limiting ase q → p2/4 of a unstable node. Thelines (3.47)�(3.48) degenerate into one linear trajetory of retreat.This is alled an in�eted unstable node.(iii) p < 0, both b = c = 0. In this ase the equations for x and y areindependent and every radial line through the origin is a linear di-retion of approah. This is alled a sink or perfet stable node (Fig.3.2e).(iv) p > 0, both b = c = 0. Again every radial line is a linear trajetorybut now it is a diretion of retreat. This is alled a soure or perfetunstable node.When p2 < 4q, the eigenvalues are a onjugate omplex pair. λ(±) =
1
2
(p+ iθ), where θ =

√

4q − p2. Equations (3.44) still apply but the elements ofthe eigenvalues are no longer real. However, sine x and y are real the solutionmust be of the form
x = C1 exp(pt/2) cos(γ1 + θt/2),

y = C2 exp(pt/2) cos(γ2 + θt/2),
(3.50)where C1, C2, γ1, γ2 are onstants. There are a number of ases:



72 CHAPTER 3. STABILITY(i) p < 0. In this ase the trajetories spiral into the origin. This isalled a stable fous (Fig. 3.2f).(ii) p > 0. In this ase the trajetories spiral out from the origin. Thisis alled a unstable fous.(iii) p = 0. In this ase the trajetories form periodi urves around theorigin. This is a entre (Fig. 3.2g).A summary of the types of equilibrium points for di�erent regions of the {p, q}plane are shown in (Fig. 3.3). The only ases not shown are the sink and soure

UNSTABLE

q

p

p2
= 4q

ASYMPTOTICALLY STABLE UNSTABLEINFLECTED STABLE NODES(ON CURVE) INFLECTED UNSTABLE NODES(ON CURVE)STABLE NODES UNSTABLE NODESSTABLE FOCICENTREUNSTABLE FOCIIMPROPER STABLE NODES IMPROPER UNSTABLE NODES
←− SADDLE POINTS −→

Figure 3.3: Summary in the {p, q} plane of the types of equilibrium points.whih also lie on the stable and unstable branhes of p2 = 4q.3.3 Poinaré MapsFor the autonomous system (3.1) a trajetory annot meet or ross itself in
Γd unless it is a periodi solution when it forms a simply-onneted urve.This is not the ase for the non-autonomous, sine for a partiular a and xit is possible that F (a,x; t1) 6= F (a,x; t2) giving ẋ(t1) 6= ẋ(t2) for the samepoint in spae at di�erent times. This situation is simpli�ed by reating the



3.3. POINCARÉ MAPS 73(autonomous) suspended system, desribed in Se. 1.5, so the these two pointson the trajetory are at di�erent loations with xt = t1 and xt = t2 in the spae
Γd × Υ. Heneforth in this setion we shall onsider only autonomous systems.This ourse is mainly onerned with di�erential equations, although manybooks on the subjet also disuss di�erene equations (Drazin, Chap. 3). Wehave already seen that the di�erene equation
x(n+ 1) = F[a, x(n)], n = 0, 1, . . . , (3.51)an be obtained from the di�erential equation (3.1) by quantizing time. The`trajetory' in Γd will then onsist of a sequene of points. An equilibrium point
x∗ of (3.51), usually alled a �xed point, satis�es x∗ = F[a, x∗] and there analso be p-yles x(1) → x(2) → · · · → x(p) → x(1).An alternative method of deriving a disrete time map from a ontinuoustime system is using the Poinaré map or setion. In the spae Γd take the
(d− 1)�dimensional hypersurfae de�ned by the ondition
Π(x) = 0. (3.52)Now suppose that a partiular trajetory uts the hypersurfae (3.52) at times
t0, t1, t2, . . .. In ases where an expliit solution an be obtained to the dif-ferential system so that we know x(tn) for all n = 0, 1, 2, . . ., we an de�ne
x(n) = x(tn), whih then gives us a di�erene map x(0) → x(1) → · · ·. If thesuession of points are restrited to those whih orrespond to passages throughthe hypersurfae in the same sense the onstrution is alled the Poinaré �rst-return map.Example 3.3.1 Take the Poinaré setion y = 0 of the system
ẋ(t) = −y + x(a− x2 − y2), ẏ(t) = x+ y(a− x2 − y2). (3.53)This system was investigated in Example 1.12.2. In polar oordinates
x = r cos(θ), y = r sin(θ) the solution to this system is given by (1.122) and(1.125).2 For a 6= 0

r(t) =

√

ar2(0)
r2(0) + exp(−2at)

{
a− r2(0)

} ,

θ(t) = t.

(3.54)The trajetory uts the plane y = 0 at times tn = nπ, n = 0,±1,±2 . . .. Wenow de�ne θ(n) = θ(tn), r(n) = r(tn) giving x(n) = r(n) cos[θ(n)] = r(n)(−1)n.The di�erene equation relating x(n+ 1) and x(n) an be obtained from (3.54)by replaing r(0) by r(n) and t by π. So
x(n+ 1) = −x(n)

√
a

x2(n) + exp(−2aπ)
{
a− x2(n)

} . (3.55)2Sine the system is autonomous we an, without loss of generality, take t0 = 0 and also
θ(0) = 0.



74 CHAPTER 3. STABILITYThe �rst-return map an be taken to be those points where the trajetory utsthe plane moving in the positive y diretion. From the seond of equations(3.53) these all our when x > 0 and they ould be `aptured' by taking thehalf-plane x > 0, y = 0. For x > 0, θ = θ(tn) = 2nπ and (3.55) is modi�ed to
x(n+ 1) = x(n)

√
a

x2(n) + exp(−4aπ)
{
a− x2(n)

} . (3.56)If an equilibrium point of the di�erential system lies on (3.52) then it will be a�xed point of the disrete map. A periodi trajetory will ut a hypersurfaewithout edges an even number of times and generate a 2p-yle in the Poinarémap. In the �rst-return map it will generate a p-yle.Consider now the ase of a system where the phase point move on a torus,given in terms the variables 0 ≤ θ < 2π, 0 ≤ φ < 2π by
x = cos(θ){a+ b cos(φ)},

y = sin(θ){a+ b cos(φ)},

z = b sin(φ),

(3.57)(Fig. 3.4). Suppose now a trajetory is given by θ = αt and φ = βt. This
φ

θ

Figure 3.4: A torus in the {x, y, z} spae.trajetory winds around the torus. Now onsider the �rst-return map obtain byutting the torus with the half-plane y = 0, x > 0. The suessive values of θwhen the trajetories ut this plane are
θ = 2nπ, n = 0, 1, 2, . . . . (3.58)The orresponding suessive values of φ are
φ =

(
β

α

)

θ = 2nπ

(
β

α

)

. (3.59)



3.4. THE STABILITY OF PERIODIC SOLUTIONS 75The trajetory will be periodi only if, when α = 2πp′ for some integer p′
β = 2πq′ for some integer q′. This is simply the ondition
α

β
=
p′

q′
=
p

q
, where p = p′/s and q = q′/s are oprime integers. (3.60)Meaning that α/β is a rational number. Suh a periodi trajetory uts theplane y = 0 x > 0 at the points

x = a+ b cos(2nπq/p), z = b sin(2nπq/p). (3.61)It, therefore, generates a p-yle in the �rst-return map. When α/β is irrational
x(θ, φ), with omponents given by (3.57), is periodi in eah of its arguments,but not periodi. The periods are inommensurate and the funtion is alledquasi-periodi. It is not di�ult to show that the points of the Poinaré mapare dense on the irle (3.61)3.4 The Stability of Periodi SolutionsIn Example 1.12.2 we investigated the Hopf bifuration at whih a stable limityle emerged from a stable equilibrium point. It is lear that a limit yle isa type of periodi orbit but we have yet to give a more formal de�nition. Thisan be done using the de�nitions of stability of trajetories given in Set. 3.1.The periodi solution x(t) to (3.1) is a stable limit yle if it is asymptot-ially stable and an unstable limit yle if it is unstable.Just as for trajetories in general the terms stable and unstable an be quali�edby the phase `in the sense of Lyapunov' or `in the sense of Poinaré' with theformer implying the latter. Unless otherwise stated we shall use Lyapunovstability and we shall also onentrate on the autonomous ase (3.1). We developfor periodi solutions the analogue of the linearization method of equilibriumpoints. This is known as Floquet theory.Suppose x̊(t) is a periodi solution of (3.1) with period T . Thus x̊(t) =
x̊(t + T ). Now onsider the trajetory x(t), 0 ≤ t ≤ T , where x(0) is near to
x̊(0) and de�ne △x(t) = x(t) − x̊(t). Then, from (3.1)
d△x(t)

dt
= F (a,x(t)) − F (a, x̊(t)). (3.62)The Taylor expansion of the right-hand side of (3.62) at �xed t gives

F (a,x(t)) − F (a, x̊(t)) = J(a, x̊(t))△x(t) + O(|△x(t)|2), (3.63)where J(a,x(t)) is given by (2.55). Retaining only linear terms,
d△x(t)

dt
= J(a, x̊(t))△x(t). (3.64)



76 CHAPTER 3. STABILITYFixing and suppressing referene to a, we write
J̊(t) = J(a, x̊(t)). (3.65)Solving (3.64) is equivalent to looking for a solution w(t) to
ẇ(t) = J̊(t)w(t). (3.66)In partiular we are interested in the existene of a periodi solution (period T )to (3.66). If suh exists then it yields (at least to linear order) a periodi solution
x(t) to (3.1) with x(0) lose to x̊(0). To proeed we need a number of resultsfrom the theory of di�erential equations. These will be stated without proofs,whih are given in many texts on the theory of ordinary di�erential equations3.(i) The set of solutions w(1)(t),w(2)(t), . . . ,w(r)(t) to (3.66) is linearlyindependent if there exist no onstants c(1), c(2), . . . , c(r), whih arenot all zero and for whih c(1)w(1)(t)+ c(2)w(2)(t)+ · · ·+ c(r)w(r)(t)is identially zero for any t.(ii) If the elements of J̊(t) are ontinuous for all t then there exists a setof independent solutions w(1)(t),w(2)(t), . . . ,w(d)(t) to (3.66). Thisis alled a fundamental set of solutions and every solution is a linearombination of the members of a fundamental set.(iii) The set of d-dimensional olumn vetorsw(1)(0),w(2)(0), . . . ,w(d)(0)form an orthogonal set and by hoosing suitable linear ombinationswe an onstrut a new fundamental set of solutions

q(1)(t), q(2)(t), . . . , q(d)(t), where, for ℓ = 1, 2, . . . , d, q(ℓ)(0) is theunit vetor with zeros everywhere apart from one in the ℓ-th plae.(iv) The d× d matrix
Q(t) = (q(1)(t), q(2)(t), . . . , q(d)(t)), (3.67)satis�es
Q̇(t) = J̊(t)Q(t), Q(0) = I, (3.68)and
Det{Q(t2)} = Det{Q(t1)} exp

{∫ t2

t1

Trace{J̊(s)}ds
}

, (3.69)whih is Liouville's formula.3e.g. D. A. Sánhez, Ordinary Di�erential Equations and Stability Theory: An Introdu-tion, W. H. Freeman, 1968.



3.4. THE STABILITY OF PERIODIC SOLUTIONS 77(v) The solution w(t) to (3.66) whih satis�es w(0) = w0, for some w0,an be written
w(t) = Q(t)w0. (3.70)None of these results depends on the periodi property

J̊(t+ T ) = J̊(t), (3.71)of J̊(t), whih follows from (3.65) and the fat that x̊(t) is a periodi solutionof period T . Using that property we an now make the following dedutions:
• Sine the olumns of Q(t) form a fundamental set of solutions of (3.66)

Det{Q(t)} 6= 0 and Det{Q(t + T )} 6= 0. Thus the olumns of Q(t + T )also form a fundamental set of solutions and, sine any solution is a linearombination of a fundamental set,
Q(t+ T ) = Q(t)C, (3.72)for some onstant d × d matrix. From (3.72) with t = 0 and (3.69) with
t = T ,
Det{C} = exp

{
∫ T

0

Trace{J̊(s)}ds
}

6= 0. (3.73)
• Suppose that λ(k), k = 1, 2, . . . , d are the eigenvalues of C with righteigenvetors u(k). Thus

Cu(k) = u(k)λ(k), k = 1, 2, . . . , d. (3.74)From (3.66), (3.68) and (3.70)
w(k)(t) = Q(t)u(k), k = 1, 2, . . . , d, (3.75)are solutions of (3.66) with w(k)(0) = u(k).

• From (3.72) and (3.75)
w(k)(t+ T ) = Q(t+ T )u(k) = Q(t)Cu(k) = λ(k)Q(t)u(k)

= λ(k)w(k)(t). (3.76)The onverse of the development leading to (3.76) is that if, for somesolution w(t) of (3.66),
w(t+ T ) = λw(t), (3.77)then λ is an eigenvalue of C. The proposition that (3.66) with J̊(t) ontin-uous and satisfying (3.71) has at least one non-trivial solution satisfying(3.77) with λ 6= 0 is Floquet's theorem.



78 CHAPTER 3. STABILITY
• Although the matrix C was de�ned, by (3.72), using the fundamentalsolution matrix Q(t), the eigenvalues are not dependent on this hoie.Suppose S(t) is another fundamental solution matrix. There must exist anon-singular matrix Z with S(t) = Q(t)Z and

S(t+ T ) = Q(t+ T )Z = Q(t)CZ

= S(t)Z−1CZ. (3.78)Comparing (3.78) with (3.72) we see that C has been replaed by Z−1CZ,whih has the same set of eigenvalues.
• Let
λ(k) = exp

(

σ(k)T
)

. (3.79)The numbers σ(1), σ(2), . . . , σ(d) are alled the harateristi or Floquetexponents of the linear system (3.66).
• For the solution w(k)(t) to (3.64), de�ned by (3.75), let

w(k)(t) = y(k)(t) exp
(

σ(k)t
)

. (3.80)Then, substituting into (3.76),
y(k)(t+ T ) exp

(

σ(k){t+ T }
)

= λ(k)y(k)(t) exp
(

σ(k)t
) (3.81)and from the de�nition of σ(k)

y(k)(t+ T ) = y(k)(t). (3.82)When w(k)(t) is given the form (3.80), y(k)(t) is periodi, period T .
• Sine

Det{C} =

m∏

k=1

λ(k), (3.83)it follows, from (3.73) and (3.79), that
m∑

k=1

σ(k) ≡ 1

T

∫ T

0

Trace{J̊(s)}ds mod (2πi/T ). (3.84)



3.4. THE STABILITY OF PERIODIC SOLUTIONS 79This development now allows us to disuss the stability of the periodi solution
x̊(t) of (3.1). To do so we suppose that the eigenvetors u(k), k = 1, 2, . . . , d of
C form a basis of Γd. Then, for any solution △x(t) of (3.64), there exists a setof onstants c(k), k = 1, 2, . . . , d with
△x(0) =

d∑

k=1

c(k)u(k). (3.85)From (3.75)�(3.76) and (3.79),
△x(nT ) =

d∑

k=1

exp
(

nσ(k)T
)

c(k)u(k), n = 1, 2, . . . . (3.86)It follows that:(i) If ℜ{σ(k)} < 0, for k = 1, 2, . . . , d, △x(nT ) → △x(0) as n→ ∞, forall hoies of {c(k)}, and x̊(t) is an asymptotially stable periodisolution, that is a stable limit yle.(ii) If ℜ{σ(k)} > 0, for some k then there exists a hoie of {c(k)} forwhih △x(nT ) → ∞, as n → ∞. x̊(t) is an unstable periodisolution, that is a unstable limit yle.(iii) If for some k′, σ(k′) = 0 then the hoie of △x̊(0) with c(k) = 0 for
k 6= k′ gives a periodi orbit lose to x̊(t).(iv) Purely imaginary Floquet exponents lead to periodi orbits, withperiods whih are multiples of T , or quasi-periodi orbits rather likethose on the torus disussed in Set. 3.3.Example 3.4.1 Suppose that, for d = 2, the linearized equations have the form

d△x
dt

= △y, d△y
dt

= −ω(t)△x, (3.87)where ω(t) is a real-valued, ontinuous, periodi funtion of period T .4Then
J̊(t) =

(
0 1

−ω(t) 0

) (3.88)and
Trace{J̊(t)} = 0. (3.89)From (3.84) the Floquet exponents are related by
σ(1) + σ(2) ≡ 0 mod (2πi/T ). (3.90)4This system is equivalent to Hill's equation z̈(t) + ω(t)z(t) = 0.



80 CHAPTER 3. STABILITYIt annot be the ase that both Floquet exponents have negative real part andthe periodi solution of a system whih leads to the linearized form (3.87) annotbe a stable limit yle. The alternatives are:(i) Floquet exponents with real parts of opposite signs whih gives anunstable limit yle.(ii) Purely imaginary Floquet exponents σ(1) = σ(2) = nπi/T , whihgives a periodi solution, period T , if n is even and 2T , if n is odd.(iii) Purely imaginary Floquet exponents with other than these speialvalues whih give a quasi-period solution.3.4.1 Periodi Solutions in Two DimensionsWe now onsider the ase of periodi solutions for two-dimensional autonomoussystems given by (3.39), with (3.39) having a unique solution at all points in
{x, y} whih are not equilibrium points (F (x, y) = G(x, y) = 0). We state twoimportant results for suh systems. The seond of these, whih is the Poinaré-Bendixson theorem will be shown to be a onsequene of the �rst result, whihis stated without proof.Theorem 3.4.1 If a trajetory of (3.39) has a bounded ω-set, then that set iseither an equilibrium point or a periodi trajetory.Theorem 3.4.2 Let C be a losed, bounded (i.e. ompat) subset of the {x, y}plane. If there exists a solution γ = {x(t), y(t)} of (3.39), whih is ontainedin C for all t ≥ 0, then it tends either to an equilibrium point or to a periodisolution as t→ ∞.Proof: Consider the in�nite sequene (x(t0 + nε), y(t0 + nε)) of points of γ,with t0 > 0, ε > 0, n = 0, 1, 2, . . .. All these points lie in the ompat set
C so it follows from the Bolzano-Weierstrass theorem that the sequene has atleast one limit point. This point must belong to the ω-limit set of γ, whih isthus non-empty. From Thm. 3.4.1 this ω-limit set is an equilibrium point or aperiodi solution to whih γ tends.It follows from the Poinaré-Bendixson theorem that the existene of a traje-tory γ of the type desribed in the theorem guarantees the existene of eithera periodi trajetory or an equilibrium point in C. It is lear that a periodisolution whih is the ω-set of γ annot be an unstable limit yle, but it alsoneed not be a stable limit yle.Example 3.4.2
ẋ(t) = x(t) − y(t) − x(t)[x2(t) + 2y2(t)],

ẏ(t) = x(t) + y(t) − y(t)[x2(t) + y2(t)].
(3.91)



3.4. THE STABILITY OF PERIODIC SOLUTIONS 81In polar oordinates (3.91) take the form
dr

dt
= r − r3

{

1 + 1
4

sin2(2θ)
}

, (3.92)
dθ

dt
= 1 + r2 sin2(θ) cos(θ). (3.93)From (3.92)

r − 5
4
r3 ≤ dr

dt
≤ r − r3, for all θ, (3.94)and thus

ṙ(t) < 0, for all θ, if r > r1 = 1,
ṙ(t) > 0, for all θ, if r < r2 = 2/

√
5. (3.95)So any trajetory with (x(0), y(0)) in the annulus

C = {(x, y) : r2 ≤
√

x2 + y2 ≤ r1} (3.96)remains in this region for all t > 0. The minimum value of 1 + r2 sin2(θ) cos(θ)as θ varies at onstant r is 1 − 2r2/(3
√

3) and thus
θ̇(t) > 1 − 2r22

3
√

3
= 1 − 8

15
√

3
≃ 0.69208. (3.97)So θ̇(t) is never zero and there are no equilibrium points in C. Thus, from thePoinaré-Bendixson theorem there is at least one periodi orbit.Problems 31) Systems are given by(i) ẋ(t) = −x− 2y2, ẏ(t) = xy − y3,(ii) ẋ(t) = y − x3, ẏ(t) = −x3.Using a trial form of L(x, y) = xn + αym for the Lyapunov funtion show(by a judiious hoie of n, m and α) that, in eah ase the equilibrium point

x = y = 0 is asymptotially stable.2) A system is given by
ẋ(t) = x2y − xy2 + x3, ẏ(t) = y3 − x3Show that x = y = 0 is the only equilibrium point and, using a trial form of
L(x, y) = x2+αxy+βy2 for the Lyapunov funtion, show that it is unstable.



82 CHAPTER 3. STABILITY3) Express
ẍ(t) + x(t){1 − a|x(t)|} = 0as a two-dimensional system in the variables x�y and show that
1
2
{x2 + y2} − 1

3
a|x|3 = E (3.98)is a onstant of motion for any value of the parameter E. Find the equilib-rium points and the ranges of a for whih they exist. Use linear analysis todetermine their types and sketh the bifuration diagram in the x�a plane.Using (3.98) sketh trajetories in the x�y plane for typial values of a, show-ing that periodi solutions exist for all a and that the period of the osillationwith amplitude ζ is

T = 4

∫ ζ

0

dx
√

ζ2 − 2
3aζ

3 − x2 + 2
3ax

3
.4) Express

ẍ(t) + 2aẋ(t) + x(t) + bx3(t) = 0as a two-dimensional system in the variables x�y and, for a > 0, �nd theequilibrium points for both signs of b. Use linear analysis to determine theirtypes.For b > 0 and a > 0, use the Lyapunov funtion
L(x, ẋ) = 1

2
ẋ2 + 1

2
x2 + 1

4
bx4,to show that x(t) → 0, as t→ ∞, for all initial onditions.5) Show diretly from the de�nitions that the periodi solution x(t) = a cos(t),

y(t) = −a sin(t) to the system
ẋ(t) = y(t), ẏ(t) = −x(t)is stable in the Lyapunov sense.6) Show that the system
ẍ(t) + b[ẋ2(t) + x2(t) − a]ẋ(t) + x(t) = 0,an be expressed in the form
ṙ = b(a− r2)r sin2(θ), θ̇ = 1

2
b(a− r2) sin(2θ) − 1,



3.4. THE STABILITY OF PERIODIC SOLUTIONS 83where x = r cos(θ), ẋ = r sin(θ). Dedue that, for a > 0, there is a periodisolution r =
√
a, θ = t0−t of period 2π and show that the sum of the Floquetexponents is −ab. (This suggests but doesn't prove that the periodi solutionis stable if b > 0.) Now show that, with △r = r −√

a,
d△r
dt

= −b△r(△r +
√
a)(△r + 2

√
a) sin2(t0 − t).Hene prove that the periodi solution is stable in the sense of Lyapunov if

b > 0.7) Consider the system
ẋ(t) = F (x, y), ẏ(t) = G(x, y),where F and G are ontinuous funtions of x and y. For the ases(i) F (x, y) = x+ y − x(x2 + 2y2), G(x, y) = −x+ y − y(x2 + 2y2),(ii) F (x, y) = −x− y + x(x2 + 2y2), G(x, y) = x− y + y(x2 + 2y2),show that the origin is the only equilibrium point and determine its type.Express the equations in polar form and show that the system has at leastone periodi solution. Determine, using the Poinaré-Bendixson theorem, orotherwise, whether it is stable.
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Chapter 4Weakly Nonlinear Systems4.1 The Lindstedt-Poinaré MethodIn Sets. 1.3 and 1.13 we onsidered the ase of onservative systems. Usingdi�erent variables for the ase d = 2

η̇(t) = ξ, ξ̇(t) = −V ′(η). (4.1)The equilibrium points are the turning points of V (η) appearing in the spaeof {η, ξ} on the η�axis. Suppose η = η∗ is suh an equilibrium point. Thenexpanding about the η = η∗

V ′(η) = (η − η∗)V ′′(η∗) + ψ(η − η∗), (4.2)where V ′′(η∗) > 0 and ψ(z) = O(z2). Let x = η − η∗, y = ξ and ω2
0 = V ′′(η∗).Then

ẋ(t) = y, ẏ(t) = −ω2
0x− ψ(x). (4.3)If the non-linear term ψ(x) were negleted then we should have a simple har-moni osillator with all solutions of period 2π/ω0. We now suppose that

ψ(x) = ω2
0f(ε, x), (4.4)where f(0, x) = 0. Thus

ẋ(t) = y, ẏ(t) = −ω2
0{x+ f(ε, x)}. (4.5)We look for a periodi solution to (4.5) of period 2π/ω(ε). The �rst step is toreplae t by τ = ω(ε)t where ω(ε) = ω0g(ε). This gives

dx

dτ
= ỹ, {g(ε)}2 dỹ

dτ
= −{x+ f(ε, x)}, (4.6)85



86 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSwhere ỹ = y/ω(ǫ). Let
x(ε, τ) = x0(τ) + εx1(τ) + ε2x2(τ) + O(ε3), (4.7)
ỹ(ε, τ) = ỹ0(τ) + εỹ1(τ) + ε2ỹ2(τ) + O(ε3), (4.8)
g(ε) = 1 + εg1 + ε2g2 + O(ε3), (4.9)

f(ε, x(τ, ε)) = εfε(τ) + ε2x1(τ)fεx(τ) +
1
2ε

2fεε(τ) + O(ε3). (4.10)where
fε(τ) =

∂f

∂ε
(0, x0(τ)), fεx(τ) =

∂2f

∂ε∂x
(0, x0(τ)),

fεε(τ) =
∂2f

∂ε2
(0, x0(τ)). (4.11)Substituting into (4.6) and equating powers of ε the ε0 terms give

dx0

dτ
= ỹ0,

dỹ0
dτ

= −x0 (4.12)and the ε1 terms give
dx1

dτ
= ỹ1, 2g1

dỹ0
dτ

+
dỹ1
dτ

= −x1 − fε(τ). (4.13)The general solution to (4.12) is
x0 = a0 cos(τ) + b0 sin(τ),

ỹ0 = b0 cos(τ) − a0 sin(τ),
(4.14)but for simpliity we shall take b0 = 0. Then substituting into (4.13)

dx1

dτ
= ỹ1,

dỹ1
dτ

= −x1 − fε(τ) + 2g1a0 cos(τ). (4.15)Let us suppose a solution to (4.15) of the form
x1 = a1 cos(τ) + b1 sin(τ) +X(τ),

ỹ1 = b1 cos(τ) − a1 sin(τ) +X ′(τ).
(4.16)Then the partiular integral X(τ) is a solution of

X ′′(τ) +X(τ) = −fε(τ) + 2g1a0 cos(τ). (4.17)To proeed further we need a partiular form for fε(τ). Suppose, as an example,that f(ε, x) = εcx3. Then (4.17) beomes
X ′′(τ) +X(τ) = a0

[

2g1 − 3
4
ca2

0

]

cos(τ) − 1
4
ca3

0 cos(3τ). (4.18)



4.1. THE LINDSTEDT-POINCARÉ METHOD 87For whih the solution is
X(τ) = a0

[

g1 − 9
32
ca2

0

]

cos(τ) + 1
32
ca3

0 cos(3τ) + a0

[

g1 − 3
8
ca2

0

]

τ sin(τ). (4.19)Substituting from (4.19) into (4.16) we see that the solution will be periodionly if the �nal term in (4.19) disappears, for whih we need,
g1 = 3

8
ca2

0. (4.20)We impose the ondition that x(ε, 0) = a0, ỹ(ε, 0) = 0 and then, from (4.7)�(4.9), (4.14), (4.16), (4.19)�(4.20),
x(ε, t) = a0 cos(ωt) + ε 1

32
ca3

0{cos(3ωt) + 3 cos(ωt)} + O(ε2), (4.21)where
ω(ε) = ω0

{

1 + 3
8
εca2

0 + O(ε2)
}

. (4.22)We have sueeded in obtaining a periodi solution to the equations
ẋ(t) = y, ẏ(t) = −ω2

0x{1 + εcx2}, (4.23)by perturbing the simple harmoni solution. Some insight into this proedurean be gained from the �rst integral onstant of motion. From (4.23)
ω2

0x
dx

dt
+ y

dy

dt
= −ω2

0εcx
3y = −ω2

0εcx
3 dx

dt
, (4.24)giving

ω2
0x

2
{

1
2

+ 1
4
εcx2

}

+ 1
2
y2 = E. (4.25)It is onvenient to keep ε ≥ 0 with c = ±1. Then with c = 1, the onlyequilibrium point of (4.23) is x = y = 0. Aording to (4.22) the frequeny isinreased with inreasing ε. Curves for (4.25) an be obtained using MAPLEode similar to that given on page 30. Curves of with c = 1, E = ω2

0 are of theform
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[1] [2]

–1

–0.5

0

0.5

1
y

–1.5 –1 –0.5 0.5 1x

with (1) ε = 0 and (2) ε = 0.1. The e�et of small non-zero ε is to ontratthe urves in the x�diretion. When c = −1, (4.22) have saddle-points on the
x�axis at x = 1/

√−cε. The set of urves (4.25) has a separatrix through thesaddle-points with E = ω2
0/(−4cε). Curves have the form

[3] [2] [1]

–3

–2

–1

1

2

3

y

–4 –2 2 4x

where (1) ε = 0.0, E = ω2
0 , (2) ε = 0.1, E = ω2

0 . Now the e�et of small ε isto dilate the urve in the x�diretion. Curve (3) is the separatrix for ε = 0.1



4.2. THE HOPF BIFURCATION 89whih has E = 5ω2
0/2.This important point about the Lindstedt-Poinaré method is that it allowsfor perturbations in the angular frequeny ω. Without suh a perturbationterms of the form t sin(ωt) would have been present, preventing the perturbedsolution from being periodi. The method an be generalized in various ways.We may for example inlude a y dependene in the perturbation, so that wehave f(ǫ, x, y) in (4.5).4.2 The Hopf BifurationAs we saw in Example 1.12.2 a Hopf bifuration ours when the stability of afous hanges from stable to unstable (superritial) or unstable to stable (sub-ritial) with the emergene of a limit yle, whih is stable in the superritialase and unstable in the subritial ase. We now onsider the system given by

ẋ(t) = −y + ax+ xy2, ẏ(t) = x+ ay − x2. (4.26)The linear terms are the same as those of (1.117)�(1.118) so we might antiipatethe ourrene of a Hopf bifuration, leading to a periodi solution. Sine, as inExample 1.12.2, the equilibrium point at (0, 0) is stable or unstable aordingas a < 0 and a > 0, the Hopf bifuration will be superritial if the periodiorbit ours for a > 0 and subritial if it ours for a < 0.We investigate this using a version on the Lindstedt-Poinaré method. Indoing so we an, without loss of generality, impose the ondition ẋ(0) = 0. Let
τ = ωt and ε =

√
a. Then (4.26) beome

ω
dx

dτ
= −y + ε2x+ xy2, ω

dy

dτ
= x+ ε2y − x2. (4.27)Now substitute the expansions

x(ε, τ) = εx1(τ) + ε2x2(τ) + ε3x3(τ) + O(ε4), (4.28)
y(ε, τ) = εy1(τ) + ε2y2(τ) + ε3y3(τ) + O(ε4), (4.29)
ω(ε) = 1 + εω1 + ε2ω2 + ε3ω3 + O(ε4), (4.30)into (4.27) and ompare oe�ients. For ε1,

dx1

dτ
= −y1,

dy1
dτ

= x1, (4.31)giving
x1(τ) = a1 cos(τ), y1(τ) = a1 sin(τ). (4.32)For ε2,
ω1

dx1

dτ
+

dx2

dτ
= −y2, ω1

dy1
dτ

+
dy2
dτ

= x2 − x2
1, (4.33)



90 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSand substituting from (4.32)
dx2

dτ
= −y2 + ω1a1 sin(τ), (4.34)

dy2
dτ

= x2 − a2
1 cos2(τ) − ω1a1 cos(τ). (4.35)Let

x2(τ) = a2 cos(τ) +X(τ). (4.36)Then, from (4.34),
y2(τ) = a2 sin(τ) −X ′(τ) + ω1a1 sin(τ), (4.37)and, substituting into (4.35),
X ′′(τ) +X(τ) = 1

2
a2
1{1 + cos(2τ)} + 2ω1a1 cos(τ). (4.38)Thus, from (4.36) and (4.38),

x2(τ) = a2 cos(τ) + a1ω1{cos(τ) + τ sin(τ)} + 1
6
a2
1{3 − cos(2τ)}. (4.39)This solution will not be periodi unless ω1 = 0 and applying this ondition itfollows from (4.39) and (4.37) that

x2(τ) = a2 cos(τ) + 1
6
a2
1{3 − cos(2τ)}

y2(τ) = a2 sin(τ) − 1
3
a2
1 sin(2τ).

(4.40)For ε3,
dx3

dτ
+ ω2

dx1

dτ
= −y3 + x1 + x1y

2
1 , (4.41)

dy3
dτ

+ ω2
dy1
dτ

= x3 + y1 − 2x1x2. (4.42)Substituting from (4.32) and (4.40)
dx3

dτ
= −y3 + a1 cos(τ) + a1ω2 sin(τ) + a3

1 sin2(τ) cos(τ), (4.43)
dy3
dτ

= x3 + a1 sin(τ) − a1ω2 cos(τ) − 2a1a2 cos2(τ)

− 1
3
a3
1 cos(τ){3 − cos(2τ)}. (4.44)Solving these equations for x3(τ) gives

x3(τ) = a3 cos(τ) + 1
8
a1τ cos(τ){a2

1 + 8} + 1
12
a1τ sin τ{12ω2 + 5a2

1}

− 2
3
a1a2{cos2(τ) − 2} − 1

48
a3
1{cos(τ) cos(4τ)

+ sin(τ) sin(4τ) − 12 sin(τ) + 24 cos(τ) + 4 sin(τ) sin(2τ)

+ 18 sin(τ) cos2(τ)}. (4.45)



4.3. THE KRYLOV, BOGOLIUBOVANDMITROPOLSKYAVERAGINGMETHOD91For the solution to be periodi we must have a1 = 2
√

2i, ω2 = 10/3. Theimaginary value of a1 means that ε is also imaginary and the periodi solutionappear for a < 0, whih means that it is subritial. To leading order the limityle is given by
x(a, t) ≃

√
−8a cos(ωt), y(a, t) ≃

√
−8a sin(ωt), (4.46)where

ω ≃ 1 +
10
3
a. (4.47)4.3 The Krylov, Bogoliubov and MitropolskyAveraging MethodIn Set. 4.1 we onsidered the ase of a simple harmoni osillator perturbed bya term whih was a funtion of the spatial variable x. In partiular we investi-gated the ase where the perturbation was εcx3. In this setion we onsider aperturbation whih is a funtion of x(t) and ẋ(t). That is

ẍ(t) + εf (x(t), ẋ(t)) + x(t) = 0. (4.48)This inludes the ase where f(x, ẋ) = ẋ. Then the perturbation is proportionalto the speed of the `partile' and, for ε > 0 it, ats to slow the partile down.This is the way visosity ats when a partile is moving in a visous medium,like a simple pendulum swinging in air (or even more so in treale). This isalled damping. We ould also onsider negative damping, when ε < 0. With
y(t) = ẋ(t), (4.48) beomes
ẋ(t) = y, ẏ(t) = −x− εf(x, y). (4.49)In polar oordinates

dr

dt
= −ε sin(θ)f(r cos(θ), r sin(θ)), (4.50)

d(θ + t)

dt
=

dθ

dt
+ 1 = −ε cos(θ)

r
f(r cos(θ), r sin(θ)). (4.51)It an be seen that, when ε is small, r(t) and θ(t) + t both vary slowly with t.So the motion is lose to simple harmoni motion with a irular orbit in the

{x, y} plane and an angular veloity −1. The KBM averaging method onsistsin going bak to (4.48) and supposing that:(i) x(ε, t) = r cos(θ) + εu(1)(r, θ) + ε2u(2)(r, θ) + · · · , (4.52)where u(k)(r, θ + 2π) = u(k)(r, θ) and
∫ 2π

0

u(k)(r, θ) cos(θ)dθ =

∫ 2π

0

u(k)(r, θ) sin(θ)dθ = 0,

k = 1, 2, . . . . (4.53)
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ṙ(t) = εA(1)(r) + ε2A(2)(r) + · · · , (4.54)
θ̇(t) = −1 + εB(1)(r) + ε2B(2)(r) + · · · . (4.55)The k-th order KBM method onsists in retaining terms up to εk. We shallnow derive the formulae for the �rst-order method. Substituting into (4.48) andretaining terms up to O(ε) gives
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) + 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ f(r cos(θ), r sin(θ)) = 0. (4.56)Multiplying (4.56) by sin(θ) integrating over [0, 2π] using (4.53), and then doingthe same with cos(θ) gives
A(1)(r) = − 1

2π

∫ 2π

0

sin(θ)f(r cos(θ), r sin(θ))dθ, (4.57)
B(1)(r) = − 1

2rπ

∫ 2π

0

cos(θ)f(r cos(θ), r sin(θ))dθ. (4.58)It will be seen that (4.57)�(4.58) are equivalent to the results obtained by re-plaing the right-hand sides of (4.50)�(4.51) by their averages over [0, 2π]. The�nal task to omplete the �rst-order approximation is to determine a partiularintegral for (4.56). The omplementary funtion will orrespond to substitutingthe results obtained from integrating (4.54)�(4.55) into the �rst tem of (4.52).Example 4.3.1
ẍ(t) + 2εẋ(t) + x(t) = 0, (4.59)So
f(r cos(θ), r sin(θ)) = 2r sin(θ). (4.60)From (4.57)�(4.58),
A(1)(r) = − r

π

∫ 2π

0

sin2(θ)dθ = −r, (4.61)
B(1)(r) = − 1

π

∫ 2π

0

sin(θ) cos(θ)dθ = 0. (4.62)Substituting results into (4.54)�(4.55) gives, with the initial ondition r(0) = r0,
r(t) = r0 exp(−εt), θ(t) = −t. (4.63)



4.4. LIÉNARD'S EQUATION 93It is now neessary to solve the equation
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) = 0 (4.64)whih has a solution

u(1)(r, θ) = 0, (4.65)giving
x(ε, t) = r0 exp(−εt) cos(t). (4.66)This is an example whih an be solved exatly. It just orresponds to the ase
a = 0, b = 1, c = −1, d = −2ε of the linear analysis of Set. 3.2.2. From (3.45)the eigenvalues of the stability matrix are
λ(±) = −ε±

√

ε2 − 1. (4.67)With −1 < ε < 1, this gives, from (3.44),
x(ε, t) = r0 exp(−εt) cos

(

t
√

1 − ε2
)

. (4.68)We see that the �rst-order KBM method orretly produes the exponentialdamping and the fat that the linear ε term in θ is zero. An indiation of theauray of the �rst-order method is given by the following theorem due toBogoliubov and Mitropolsky.Theorem 4.3.1 If the R(ε, t) and ϕ(ε, t) satisfy the equations
dR

dt
= εF (ε,R, ϕ),

dϕ

dt
= Ω(ε,R) + εG(ε,R, ϕ), (4.69)where F (ε,R, ϕ+ 2π) = F (ε,R, ϕ) and G(ε,R, ϕ+ 2π) = G(ε,R, ϕ) and S(ε, t)satis�es

dS

dt
=

ε

2π

∫ 2π

0

F (0, R, ϕ)dϕ, S(0) = R(0), (4.70)then there exists a onstant C and a su�iently small value of ε suh that
|S(t) −R(t)| < Cε, for all 0 ≤ t ≤ 1/ε. (4.71)4.4 Liénard's EquationThe generi type of the seond-order equations onsidered in this hapter isLiénard's equation
d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0, (4.72)where f(x) and g(x) are ontinuous funtions. For this equation we have thetheorem:
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F (x) =

∫ x

0

f(s)ds, (4.73)(4.72) has a unique periodi solution, whih is asymptotially orbitally stable(asymptotially stable in the sense of Poinaré) if the following onditions aresatis�ed.(i) g(x) is an odd funtion with xg(x) > 0 for all x 6= 0.(ii) f(x) is an even funtion.(iii) There exists an a > 0 suh that:(a) F (x) < 0 for 0 < x < a.(b) F (x) > 0 for x > a.() F (x) = 0 only at x = 0,±a.4.5 Du�ng's EquationDu�ng's equation
d2x

dt2
+ ε

{

cx3 + 2µ
dx

dt

}

+ x = 0, (4.74)does not satisfy the onditions of Thm. 4.4.1 so we do not antiipate the exis-tene of an asymptotially stable periodi solution. It is, however, a onvenientexample for the appliation of the KBM average method. For µ = 0 it givesthe ase of the non-linear osillator onsidered in Set. 4.1 using the Lindstedt-Poinaré method and for c = 0, µ = 1 it gives the ase of the damped osillatorof Set. 4.3. With y(t) = ẋ(t), (4.74) gives
ẋ(t) = y, ẏ(t) = −x− ε(cx3 + 2µy). (4.75)There is an equilibrium point at x = y = 0 with eigenvalues
λ(±) = −µε±

√

µ2ε2 − 1, (4.76)for all values of the parameters. For
• µε > 1 it is a stable node,
• µε = 1 it is an in�eted stable node,
• 1 > µε > 0 it is a stable fous,
• µε = 0 it is a entre,
• 0 > µε > −1 it is a unstable fous,
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• µε = −1 it is an in�eted unstable node,
• −1 > µε it is an unstable node.When εc < 0 there are also equilibrium points at x = ±1/

√−εc, y = 0 witheigenvalues
λ(±) = −µε±

√

µ2ε2 + 2. (4.77)Sine the eigenvalues are real and of opposite sign for all values of µε, theseequilibrium points are saddle points.In the notation used in Set. 4.3
f(r cos(θ), r sin(θ)) = cr3 cos3(θ) + 2µr sin(θ). (4.78)Substituting into (4.57)�(4.57),
A(1)(r) = −µr, B(1)(r) = −3

8
cr2. (4.79)Substituting into (4.54)�(4.55) with the initial onditions r(0) = r0, θ(0) = 0gives

r(t) = r0 exp(−µεt),

θ(t) = −t− 3
16

cr20
µ

{1 − exp(−2µεt)}.
(4.80)Substituting into (4.56)

∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) = 1

4
cr3 cos(θ){3 − 4 cos2(θ)}. (4.81)whih has the solution

u(1)(r, θ) = 1
8
cr3 cos3(θ). (4.82)Thus, from (4.52),

x(ε, t) = r0 exp(−µεt) cos

(

t+ 3
16

cr20
µ

{1 − exp(−2µεt)}
)

+ 1
8
εcr30 exp(−3µεt) cos3

(

t+ 3
16

cr20
µ

{1 − exp(−2µεt)}
)

. (4.83)With c = 0, µ = 1 we reover the result (4.66) for the damped osillator.Expanding the exponentials for small µ and retaining ontributions of O(ε)gives
x(ε, t) = r0 cos(ωt) + 1

32
εcr30{3 cos(ωt) + cos(3ωt)}. (4.84)where

ω = 1 + 3
8
εcr20 (4.85)This agrees (with ω0 = 1) with the results (4.21)-(4.22) obtained by the Lindstedt-Poinaré method.



96 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS4.6 The Van der Pol and Rayleigh EquationsIn modelling an eletrial iruit with a thermioni valve van der Pol derivedan equation of the form
d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = 0 (4.86)and Rayleigh modelled non-linear vibrations with the equation

d2w

dt2
+ ε

{

1
3

(
dw

dt

)3

− dw

dt

}

+ w = 0. (4.87)Di�erentiating this equation with respet to t gives
d3w

dt3
+ ε

{(
dw

dt

)2

− 1

}

d2w

dt2
+

dw

dt
= 0 (4.88)and setting x(t) = ẇ(t) reovers (4.86). With f(x) = ε(x2−1) and the de�nition(4.73), F (x) = εx(x2 − 3)/3. So, when ε > 0, van der Pol's equation satis�esthe onditions of Thm. 4.4.1 with a =
√

3 and an asymptotially stable periodisolution exists. With y(t) = ẋ(t), (4.86) gives
ẋ(t) = y, ẏ(t) = −x− ε(x2 − 1)y. (4.89)There only equilibrium point is at x = y = 0 with eigenvalues
λ(±) = 1

2
{ε±

√

ε2 − 4}. (4.90)This is
• a stable node when ε < −2,
• an in�eted stable node when ε = −2,
• a stable fous when −2 < ε < 0,
• a entre when ε = 0,
• an unstable fous when 0 < ε < 2,
• an in�eted unstable node when ε = 2,
• an unstable node for ε > 2.In a damped system like (4.59) there is a loss of energy due to frition, whihauses an exponential approah to the equilibrium point at x = ẋ = 0. Thisis the ase for van der Pol's equation when ε < 0. However, when ε > 0 the`frition term' is negative for |x| < 1 and the origin is an unstable equilibriumpoint. When the system is disturbed it self-exites and it it only the presene ofthe x2 term, leading to positive frition when |x| > 1, whih prevents it havingjust an uninteresting exponential growing solution.



4.7. FORCED OSCILLATIONS 97We antiipate that the destabilization of the equilibrium point at the originas ε inreases through zero is aompanied by the emergene of a limit yle.Comparing (4.48) and (4.86) we have
f(r cos(θ), r sin(θ)) = r sin(θ){r2 cos2(θ) − 1}. (4.91)Substituting into (4.57)�(4.58) gives
A(1)(r) = 1

2
r − 1

8
r3, B(1)(r) = 0. (4.92)Substituting into (4.54)�(4.55) with the initial onditions r(0) = r0, θ(0) = 0gives

r(t) =
2r0 exp(εt/2)

√

4 + r20{exp(εt) − 1}
, (4.93)

θ(t) = −t. (4.94)From (4.56),
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) + 1

4
r3 sin(3θ) = 0, (4.95)Whih has the solution

u(1)(r, θ) = 1
32
r3 sin(3θ) (4.96)and

x(ε, t) = r cos(t) − 1
32
εr3 sin(3t). (4.97)It follows from (4.93) that r(t) → 2 as t → ∞. The stable limit yle, to O(ε)is r = 2 and the period is 2π. Approah to the limit yle is from inside if

r0 < 2 and from outside if r0 > 2. If the KBM averaging approximation wereperformed to seond-order, the period would aquire an ε dependene and thelimit yle would loose its irularity.In this model we have an example of a hange of stability of an equilibriumpoint and the emergene of a limit yle as a parameter passes through a speialvalue. However, this di�ers from the Hopf bifuration where the limit ylegrows from nothing. Here the limit yle springs into existene fully-formedwith a radius of the order of two.4.7 Fored OsillationsThe generi type of equation for a system undergoing free osillations is Lié-nard's equation (4.72). In this setion we onsider ases of the non-autonomousmodi�ation,
d2x

dt2
+ f(x)

dx

dt
+ g(x) = F (t), (4.98)



98 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSof this equation, where the F (t) = F (t+ 2π/Ω) is a periodi foring term. Wean think of this as the model for a partile osillating with possibly dampingand non-linear e�ets, whih is subjet to an outside periodi fore F (t).The following mathematial results will be useful in our alulations:
• A partiular integral of
d2x

dt2
+ 2γ

dx

dt
+ α2x = C cos(βt), (4.99)where α > 0 and β > 0, is

x(p)(t) =
C{(α2 − β2) cos(βt) + 2βγ sin(βt)}

(α2 − β2)2 + 4β2γ2
, (4.100)if α 6= β or γ 6= 0, and

x(p)(t) =
Ct sin(βt)

2β
, (4.101)if α = β and γ = 0.

• For any positive integer n,
cos2n(θ) =

1

22n

{
n−1∑

k=0

2

(
2n
k

)

cos(2[n− k]θ) +

(
2n
n

)}

,

cos2n−1(θ) =
1

22n−2

{
n−1∑

k=0

(
2n− 1
k

)

cos([2n− 2k − 1]θ)

}

,

(4.102)
sin2n(θ) =

1

22n

{
n−1∑

k=0

2(−1)n−k

(
2n
k

)

cos(2[n− k]θ) +

(
2n
n

)}

,

sin2n−1(θ) =
1

22n−2

{
n−1∑

k=0

(−1)n+k−1

(
2n− 1
k

)

cos([2n− 2k − 1]θ)

}

.

(4.103)
Example 4.7.1
d2x

dt2
+ ω2

0x = Γ cos(Ωt). (4.104)This is just the ase of a fored simple harmoni osillator. Taking, without lossof generality, ω0 > 0 and Ω > 0, the general solution, if Ω 6= ω0, is
x(t) = A cos(ω0t) +B sin(ω0t) +

Γ cos(Ωt)

ω2
0 − Ω2

. (4.105)If Ω is not a rational multiple of ω0 this solution is quasi-periodi. If Ω/p =
ω0/q, where p and q are oprime integers, the system is periodi with period
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2πp/Ω = 2πq/ω0. The �rst two terms in (4.105) orrespond to the naturalosillations of the system and the �nal term is the response of the system toforing. Suppose we are able to tune the foring term by hanging its frequeny.Then as Ω → ω0 the amplitude of the response grows without bound. Thesystem approahes resonane. Supposing that A > 0 then if Ω approahes ω0from below the response is in phase with the natural osillations of the systembut if it approahes ω0 from above the response is out of phase by a phase fatorof π. When Ω = ω0 (4.105) is replaed by
x(t) = A cos(ω0t) +B sin(ω0t) +

Γt sin(ω0t)

2ω0
. (4.106)The response is now a seular term whih grows without bound as t inrease,but whih is �nite at any given value of t.Example 4.7.2 We now modify (4.104) by inluding the damping term of Ex-ample 4.3.1. Thus

d2x

dt2
+ 2ε

dx

dt
+ ω2

0x = Γ cos(Ωt). (4.107)As we saw in Example 4.3.1 the omplementary part of the solution of (4.107)is
x(c)(t) = exp(−εt)

{

A cos

(

t
√

ω2
0 − ε2

)

+B cos

(

t
√

ω2
0 − ε2

)}

. (4.108)and the partiular integral is
x(p)(Ω, t) =

Γ{(ω2
0 − Ω2) cos(Ωt) + 2εΩ sin(Ωt)}

(ω2
0 − Ω2)2 + 4ε2Ω2

, (4.109)with
x(t) = x(c)(t) + x(p)(Ω, t). (4.110)For ε > 0 the omplementary funtion is alled the transient part of the solutionas it deays with time leaving only the response to foring given by the partiularintegral. This term has a resonane peak, with amplitude Γ/(2ω0ε), when Ωis tuned to the natural frequeny1 of ω0. We now onsider the appliationof expansion methods, with expansions in terms of a small parameter ε forequations with a foring term. We distinguish between two ases: hard foringwhere the foring term does does not involve ε and soft or weak foring wherethe foring term is O(ε).1Stritly speaking the parameter for whih we usually use the symbol ω or Ω is the angularfrequeny with the atual frequeny for an osillation of period T being 1/T = ω/2π. Weshall, however, when there is no risk of onfusion simply use `frequeny' to denote quantitieslike ω.



100 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS4.7.1 The Du�ng Equation with a Hard Foring TermWe use the Lindstedt-Poinaré method to investigate the Du�ng equation, witha hard foring term, no damping and a natural unperturbed frequeny ω0.Thus
d2x

dt2
+ ω2

0

{
x+ εcx3

}
= Γ cos(Ωt), (4.111)and with y(t) = ẋ(t) this equation beomes

ẋ(t) = y, ẏ(t) = −ω2
0{x+ εcx3} + Γ cos(Ωt). (4.112)Apart from the presene of the foring term these formulae are the speial ase

f(ε, x) = εcx3 of (4.5) and we proeed with the method in the same way. Welook for a periodi solution of period 2π/ω(ε). Let
τ = Ωω(ε)t/ω0, ω(ε) = ω0g(ε), ỹ = yω0/{Ωω(ε)},

α = ω0/Ω, Γ̃ = Γ/Ω2.
(4.113)Then (4.112) beome

dx

dτ
= ỹ, {g(ε)}2 dỹ

dτ
= −α2{x+ εcx3} + Γ̃ cos(τ/g(ε)). (4.114)Let

x(ε, τ) = x0(τ) + εx1(τ) + ε2x2(τ) + O(ε3), (4.115)
ỹ(ε, τ) = ỹ0(τ) + εỹ1(τ) + ε2ỹ2(τ) + O(ε3), (4.116)
g(ε) = 1 + εg1 + ε2g2 + O(ε3) (4.117)and substituting into (4.114) the terms of O(ε0) give

d2x0

dτ2
+ α2x0 = Γ̃ cos(τ). (4.118)As in Set. 4.1 we impose the ondition dx/dt = 0 at t = 0. This onditionapplies separately to eah of the terms in the expansion (4.115) and (4.118) hasthe solution

x0(τ) =







a0 cos(ατ) +
Γ̃ cos(τ)

α2 − 1
, α 6= 1,

a0 cos(τ) +
Γ̃τ sin(τ)

2
, α = 1. (4.119)The terms of O(ε1) give

dx1

dτ
= ỹ1,

dỹ1
dτ

+ 2g1
dỹ0
dτ

= −α2(x1 + cx3
0) + Γ̃g1τ sin(τ). (4.120)



4.7. FORCED OSCILLATIONS 101From (4.118)�(4.120), x1(τ) satis�es the equation
d2x1

dτ2
+ α2x1 = g1

{

2α2a0 cos(ατ) +
2Γ̃ cos(τ)

α2 − 1
+ Γ̃ sin(τ)

}

−α2c

{

a0 cos(ατ) +
Γ̃ cos(τ)

α2 − 1

}3

, if α 6= 1, (4.121)
d2x1

dτ2
+ x1 = g1{2a0 cos(τ) + Γ̃τ sin(τ)} − c

{

a0 cos(τ) +
Γ̃τ sin(τ)

2

}3

,if α = 1. (4.122)We see that at eah stage of the expansion proess the omplementary fun-tion obtained at the previous stage will generate new seular terms (of the form
τ cos(ατ)) unless either the onstant (in this ase a0) is set to zero or the oe�-ients g1, g2, . . . in the expansion of the angular frequeny are set to values whiheliminate these terms. From (4.102) cos3(ατ) = {3 cos(ατ) + cos(3ατ)}/4. Sothe oe�ient of cos(ατ) on the right-hand side of (4.121) is 2α2a0g1−3α2ca3

0/4.For this to be zero we must have either a0 = 0 or
g1 = 3

8
ca2

0, (4.123)This is ondition (4.20) of Set. 4.1. In the solution of (4.122) the seular termsgenerated by fators with cos(τ) on the right-hand side are also eliminated bythe ondition (4.123). Rather than the strategy indiated by (4.123) we shall,for simpliity set the onstants a0 = a1 = · · · = 0 in the solution. This simplymeans that the system starts from rest with x(0) = 0 and is driven by theforing term from whih it aquires the same frequeny. This is known as asynhronous osillation. For this situation we do not need perturbations to theangular frequeny and g1 = g2 = · · · = 0. Then (4.119) beomes
x0(τ) =







Γ̃ cos(τ)

α2 − 1
, α 6= 1,

Γ̃τ sin(τ)

2
, α = 1, (4.124)and x1(t) is the solution of

d2x1

dτ2
+ α2x1 =







−α
2cΓ̃3{3 cos(τ) + cos(3τ)}

4(α2 − 1)3
, if α 6= 1,

− 1
32
cΓ̃3τ3{3 sin(τ) − sin(3τ)}, if α = 1. (4.125)From (4.99)�(4.101) we see that in solving (4.125) we must now distinguishtwo speial ases α = 1, as before, but also α = 3. Eah of these will yield a



102 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSresonane ontribution in the form of a seular term whih beomes large forlarge τ . In fat if we pursue this method to higher orders in ε a resonane termwill arise if α = 3n, (ω0 = 3nΩ), for some n = 0, 1, 2, . . .. A resonane of theform ω0 = pΩ, for p = 2, 3, . . ., is alled ultraharmoni. That p = 3n in this aseis obviously due to the ubi perturbation. Reverting to the original notationand olleting terms up to O(ε), when ω0 6= 3nΩ,
x(ε, t) =

Γ cos(Ωt)

ω2
0 − Ω2

− εcΓ3ω2
0

4(ω2
0 − Ω2)3

{
3 cos(Ωt)

ω2
0 − Ω2

+
cos(3Ωt)

ω2
0 − 9Ω2

}

. (4.126)4.7.2 The Du�ng Equation with a Soft Foring TermWe use the Lindstedt-Poinaré method to investigate the Du�ng equation, witha soft foring term, no damping and a natural unperturbed frequeny ω0. Thus
d2x

dt2
+ ω2

0

{
x+ εcx3

}
= εΓ cos(Ωt), (4.127)and with y(t) = ẋ(t) this equation beomes

ẋ(t) = y, ẏ(t) = −ω2
0{x+ εcx3} + εΓ cos(Ωt). (4.128)Using the notation de�ned in (4.113),

dx

dτ
= ỹ, {g(ε)}2 dỹ

dτ
= −α2{x+ εcx3} + εΓ̃ cos(τ/g(ε)). (4.129)With the expansions given in (4.115)�(4.117) the terms of O(ε0) in (4.129) give

d2x0

dτ2
+ α2x0 = 0. (4.130)Again we impose the ondition ẋ(0) = 0 and (4.130) has the solution

x0(τ) = a0 cos(ατ). (4.131)The terms of O(ε1) give
dx1

dτ
= ỹ1,

dỹ1
dτ

+ 2g1
dỹ0
dτ

= −α2(x1 + cx3
0) + Γ̃ cos(τ). (4.132)From (4.130)�(4.132), x1(τ) satis�es the equation

d2x1

dτ2
+ α2x1 = Γ̃ cos(τ) + α2a0 cos(ατ)

{

2g1 − 3
4
ca2

0

}

− 1
4
α2ca3

0 cos(3ατ).(4.133)The term in cos(ατ) on the right-hand side of (4.133) will lead to seular on-tributions to the solution.



4.7. FORCED OSCILLATIONS 103If α 6= 1 this term an be eliminated by taking
g1 = 3

8
ca2

0, (4.134)when (4.133) beomes
d2x1

dτ2
+ α2x1 = Γ̃ cos(τ) − 1

4
α2ca3

0 cos(3ατ), (4.135)with the solution
x1(τ) = a1 cos(ατ) +

Γ̃ cos(τ)

α2 − 1
+ 1

8
ca3

0 cos(3ατ). (4.136)If α = 1 then the foring term has the same frequeny as the natural frequenyof the system. Terms in cos(τ) an be eliminated by taking
Γ = 1

4
ω2

0a0{3ca2
0 − 8g1}, (4.137)giving the solution

x1(τ) = a1 cos(τ) + 1
32
ca3

0 cos(3τ). (4.138)Then, translating bak to the original variables,
x(ε, t) = (a0 + εa1) cos(ωt) + 1

32
εca3

0 cos(3ωt) + O(ε2), (4.139)where
ω(ε) = ω0

{

1 + ε

(

3
8
ca2

0 −
Γ

2ω2
0a0

)

+ O(ε2)

}

. (4.140)Curves of ω(ε)/ω0 (denoted by w in the plot) against a0 at �xed Γ, c and ε anbe obtained using MAPLE . Here we take c = 1 and ε = 0.1 and the urves arelabelled with their value of Γ/ω2
0.

> with(plots):
> w:=(epsilon,a0,g,)->1+epsilon*(3**a0^2/8-g/(2*a0)):
> text:=plots[textplot℄(
> {[-1.0,1.2,`2`℄,
> [0.9,1.2,`-2`℄,[0.9,0.8,`2`℄,[-1.2,0.8,`-2`℄,
> [0.25,1.025,`0`℄},align={ABOVE,RIGHT},font=[TIMES,ROMAN,12℄):
> urve:=plot(
> {w(0.1,a0,2,1),w(0.1,a0,0,1),w(0.1,a0,-2,1)},
> a0=-4..4,w=0..2,labelfont=[TIMES,ITALIC,12℄):
> plots[display℄({urve,text});
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a0For Γ = 0 the branhes a0 = 0 and a0 =

√

8(ω − ω0)/(3εcω0) form a pithforkbifuration. When Γ 6= 0 the urve breaks into two branhes, one giving a0 > 0and one a0 < 0 (f. Fig. 2.2).4.7.3 The Van der Pol Equation with a Weak ForingTermWe use the KBM averaging method to investigate the van der Pol equation witha weak foring term and natural frequeny ω0. Thus
ẍ(t) + ε(x2 − 1)ẋ(t) + ω2

0x(t) = εΓ cos(Ωt). (4.141)With ẋ(t) = ω0y(t) this beomes
ẋ(t) = ω0y, ẏ(t) = −ω0x+ ε

{

(1 − x2)y +
Γ cos(Ωt)

ω0

}

. (4.142)We now make the same assumptions (4.52)�(4.54) as we did for the autonomousase and replae (4.55) and (4.56) by
θ̇(t) = −ω0 + εB(1)(r) + ε2B(2)(r) + · · · , (4.143)
ω0

{
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ)

}

+ 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ r sin(θ){r2 cos2(θ) − 1} =
Γ cos(Ωt)

ω0
. (4.144)



4.7. FORCED OSCILLATIONS 105In the autonomous ase we obtained A(1)(r) and B(1)(r) by using the orthogo-nality property (4.53). However, now we have a term whih is expliitly depen-dent on t. A way of solving this in the ase where the system is not lose toresonane is to write
u(1)(r, θ) = ũ(1)(r, θ) +

Γ cos(Ωt)

ω2
0 − Ω2

. (4.145)Inserting this form into (4.144) replaes u(1)(r, θ) by ũ(1)(r, θ) and eliminates theterm Γ cos(Ωt)/ω0. If we now assume that ũ(1)(r, θ) satis�es the orthogonalityondition (4.53) the method proeeds as in the autonomous ase with the onlydi�erenes being the extra term in u(1)(r, θ) and the presene of ω0. Using (4.97)the solution is now
x(ε, t) = r cos(ω0t) − 1

32
εr3 sin(3ω0t) +

εΓ cos(Ωt)

ω2
0 − Ω2 . (4.146)The more interesting and di�ult ase is near resonane when Ω ≃ ω0. Thissolution is dominated by the foring term and the phenomenon is alled en-trainment. To deal with this situation a di�erent approah is needed.We de�ne φ = Ωt+ θ, whih varies slowly with time near to resonane sine,from (4.143),

dφ

dt
= Ω +

dθ

dt
= Ω − ω0 + εB(1)(r) + O(ε2) ≃ εB(1)(r). (4.147)Then

cos(Ωt) = cos(φ− θ) = cos(φ) cos(θ) + sin(φ) sin(θ) (4.148)and substituting this into (4.144) and, as for the autonomous ase, multiplyingsuessively by sin(θ) and cos(θ) and integrating over [0, 2π] gives
A(1)(r) = − 1

2π

∫ 2π

0

r sin2(θ)[r2 cos2(θ) − 1]dθ +
Γ sin(φ)

2ω0
,

= 1
8
r(4 − r2) +

Γ sin(φ)

2ω0
, (4.149)

B(1)(r) = − 1

2π

∫ 2π

0

sin(θ) cos(θ)[r2 cos2(θ) − 1]dθ +
Γ cos(φ)

2rω0
,

=
Γ cos(φ)

2rω0
. (4.150)From (4.54) and (4.143)

dr

dt
= 1

8
ε

{
4Γ sin(φ)

ω0
+ 4r − r3

}

, (4.151)
dφ

dt
= Ω +

dθ

dt
= Ω − ω0 +

εΓ cos(φ)

2rω0
. (4.152)
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ω0

{
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ)

}

+ 1
4
r3 sin(3θ) = 0, (4.153)whih has the solution

u(1)(r, θ) =
r3 sin(3θ)

32ω0
. (4.154)Sine cos(θ) = cos(φ − Ωt) it follows from (4.52) that

x(ε, t) = ξ(t) cos(Ωt) + ζ(t) sin(Ωt) +
εr3 sin(3θ)

32ω0
+ O(ε2), (4.155)where

ξ(t) = r cos(φ), ζ(t) = r sin(φ), (4.156)are alled the van der Pol variables. From (4.151)�(4.152)
dξ

dt
= −1

2
εσζ + 1

8
εξ{4 − ξ2 − ζ2}, (4.157)

dζ

dt
= 1

2
εσξ + 1

8
εζ{4 − ξ2 − ζ2} + εγ. (4.158)where

Ω − ω0 = 1
2
εσ, γ =

Γ

2ω0
. (4.159)The equilibrium points in the van der Pol plane of the variables {ξ, ζ} are givenby

1
2
ζσ − 1

8
ξ{4 − ξ2 − ζ2} = 0, (4.160)

1
2
ξσ + 1

8ζ{4 − ξ2 − ζ2} = −γ. (4.161)Squaring and adding these equations gives
f(σ, ρ) = σ2ρ+ ρ(1 − ρ)2 = γ2, (4.162)where
ρ = 1

4
{ξ2 + ζ2}. (4.163)Periodi trajetories in the van der Pol plane are now given by the positiveroots of (4.162). Suppose that (ξ̊, ζ̊) is a point on a periodi solution. That is

ρ̊(σ, γ) = {ξ̊2 + ζ̊2}/4 is a root of (4.162) and (ξ̊, ζ̊) satisfy (4.160)�(4.161). Let
△ξ = ξ − ξ̊, △ζ = ζ − ζ̊. Substituting into (4.157)�(4.158) and linearizing
d△ξ
dt

= 1
4
ε△ξ(2 − 2ρ̊− ξ̊2) − 1

4
ε△ζ(2σ + ξ̊ζ̊), (4.164)

d△ζ
dt

= 1
4
ε△ξ(2σ − ξ̊ζ̊) + 1

4
ε△ζ(2 − 2ρ̊− ζ̊2). (4.165)



4.7. FORCED OSCILLATIONS 107Then the periodi orbit stability matrix is
J̊(t) =





1
4
ε(2 − 2ρ̊− ξ̊2) −1

4
ε(2σ + ξ̊ζ̊)

1
4
ε(2σ − ξ̊ζ̊) 1

4
ε(2 − 2ρ̊− ζ̊2)



 . (4.166)The eigenvalues of this matrix are
λ(±) = 1

2

{

p±
√

p2 − 4q
}

, (4.167)where
p = ε(1 − 2ρ̊), q = 1

4
ε2
{
σ2 + 1 − 4ρ̊+ 3ρ̊2

}
,

p2 − 4q = ε2(ρ̊2 − σ2).
(4.168)Sine these eigenvalues determine the stability of the whole periodi solution,they are, as might be expeted dependent only on σ and ρ̊ and not individuallyon ξ̊ and ζ̊. Using (4.167)�(4.168) the {σ, ρ} plane an be divided into regionsorresponding to the type of the equilibrium solution Fig. 4.1. When q < 0 theequilibrium point is a saddle-point and the urve q = 0 separates the regionof saddle-points from other types of equilibrium solutions. In the latter regionthe parts with p < 0 and p > 0 orrespond respetively to stable and unstablesolutions and the region is further divided between foii and nodes aording as

p2 < 4q and p2 > 4q.The value of ρ̊, for partiular σ and γ is given by a solution of (4.162). Theubi funtion f(σ, ρ), plotted against ρ passes through the origin and tends toin�nity for large ρ. It therefore uts the horizontal line at γ2 either one or threetimes for positive ρ. The ondition for three positive roots of (4.162) is thatthe two turning points of f(σ, ρ) are at positive values of ρ and lie on oppositessides of the line γ2. Now
∂f

∂ρ
= σ2 + 1 − 4ρ+ 3ρ2, (4.169)with roots

ρ(±) = 1
3
{2 ±

√

1 − 3σ2}, (4.170)where
f
(

σ, ρ(±)
)

=
2
27

{

1 + 9σ2 ± (3σ2 − 1)
√

1 − 3σ2
}

. (4.171)The ubi f(σ, ρ) will have real turning points if 3σ2 < 1 and a point of in�etionif 3σ2 = 1. The former will lead to three positive roots of (4.162) if
2
27

{

1 + 9σ2 − [1 − 3σ2]3/2
}

< γ2 <
2
27

{

1 + 9σ2 + [1 − 3σ2]3/2
}

. (4.172)This band of values of γ2 giving three periodi solutions develops as σ is reduedthrough 1/
√

3 with γ2 = 8/27 and there will be three roots on the σ = 0 axis
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8/27

1
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pxp=4q

4/27

1/4

q=0
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USN USF

SF
SP

0

0.5

1

1.5

2

ρ

0.5 1 1.5 2σFigure 4.1: The {σ, ρ} plane divided into regions by the lines q = 0, p = 0 and
p2 = 4q. These regions orrespond to the stability types (SN) stable node, (SF)stable fous, (USF) unstable fous, (USN) unstable node and (SP) saddle point,of the periodi solutions in the fored van der Pol equation. Solution urves for(4.162), parameterized and labelled by γ2, are shown by broken lines.if γ2 <

4
27 . Solution urves for ρ̊ plotted against σ and parameterized by γ2are shown by broken lines in Fig. 4.1. The unfored ase is obtained by setting

σ = γ = 0 in (4.162). This yields the non-zero solution ρ̊ = 1, whih gives r = 2agreeing with the result of Set. 4.6. Sine this solution lies on the urve q = 0it is an improper stable node.



4.7. FORCED OSCILLATIONS 1094.7.4 Subharmoni SolutionsIn Set. 4.7.1 we onsider the Du�ng equation for a system with natural fre-queny ω0 and a hard foring term of frequeny Ω. We showed that the preseneof the ubi term of O(ε) led to an expansion in powers of ε whih ontainedharmoni terms of wavelength 2π/(pΩ) for p = 3n, n = 1, 2, . . .. In this setionwe again onsider the same forms (4.111)�(4.112) for Du�ng's equation but wenow ask under what onditions on ω0, c and Γ the solution may ontain sub-harmoni terms with wavelengths 2πm/Ω, for some integer values of m. With
τ = Ωt and ỹ = y/Ω (4.112) gives
dx

dτ
= ỹ, Ω2 dỹ

dτ
= −ω2

0{x+ εcx3} + Γ cos(τ). (4.173)Let
x(ε, τ) = x0(τ) + εx1(τ) + ε2x2(τ) + O(ε3), (4.174)
ỹ(ε, τ) = ỹ0(τ) + εỹ1(τ) + ε2ỹ2(τ) + O(ε3), (4.175)

Ω(ε) = Ω0 + εΩ1 + ε2Ω2 + O(ε3) (4.176)and substituting into (4.173) the terms of O(ε0) give
Ω2

0

d2x0

dτ2
+ ω2

0x0 = Γ cos(τ). (4.177)whih has the solution
x0(τ) = a0 cos(ω0τ/Ω0) + b0 sin(ω0τ/Ω0) +

Γ cos(τ)

ω2
0 − Ω2

0

. (4.178)In terms of the time variable t this solution will have period 2πm/Ω, for m > 1,if Ω0 = mω0 giving
x0(τ) = a0 cos(τ/m) + b0 sin(τ/m) − G(m) cos(τ). (4.179)where
G(m) =

Γ

ω2
0(m

2 − 1)
. (4.180)The terms of O(ε1) give

2mω0Ω1
d2x0

dτ2
+m2ω2

0

d2x1

dτ2
= −ω2

0{x1 + cx3
0} (4.181)and substituting from (4.179) gives

d2x1

dτ2
+
x1

m2
=

2Ω1

m3ω0

{
a0 cos(τ/m) + b0 sin(τ/m) −m2G(m) cos(τ)

}

− c

m2
{a0 cos(τ/m) + b0 sin(τ/m) − G(m) cos(τ)}3

. (4.182)



110 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSSeular terms will our in the solution unless the oe�ients of cos(τ/m) and
sin(τ/m) on the right of (4.182) are zero. To determine these oe�ients weneed to expand the �nal ubi term. In general this is quite ompliated beausewe need not only to redue all terms to a form with only a single sine or osine,but we must take into aount the fat that, for example 1 − 2/m = 1/m,when m = 3. As an example we onsider the partiular ase m = 3. Then theonditions for the oe�ients on the right-hand side of (4.182) to be zero are
a0

{

a2
0 + b20 +

Γ2

32ω4
0

− 8ω0Ω1

9c

}

=
Γ(a2

0 − b20)

8ω2
0

, (4.183)
b0

{

a2
0 + b20 +

Γ2

32ω4
0

− 8ω0Ω1

9c

}

= −Γa0b0
4ω2

0

. (4.184)Equation (4.184) has one solution b0 = 0 for whih (4.183) gives a0 = 0 or as aroot of the quadrati
a2
0 −

Γa0

8ω2
0

+
Γ2

32ω4
0

− 8ω0Ω1

9c
= 0. (4.185)If b0 6= 0 then by subtrating a0× (4.184) from b0× (4.183) we have b0 = ±

√
3a0.Then a0 is a root of the quadrati

4a2
0 +

Γa0

4ω2
0

+
Γ2

32ω4
0

− 8ω0Ω1

9c
= 0, (4.186)whih an be expressed in the form

(−2a0)
2 − Γ(−2a0)

8ω2
0

+
Γ2

32ω4
0

− 8ω0Ω1

9c
= 0. (4.187)So if (ã

(±)
0 , 0) are the solutions obtained from (4.185) when b0 = 0, the solutionsobtained from (4.186) are (−2ã

(±)
0 ,∓2

√
3ã

(±)
0 ). In eah ase the nature of thesolutions are the same and depend on ω0, Ω1, c and Γ.Problems 41) Consider the equation

ẍ(t) + x(t)[1 − εx(t)] = 0,for an asymmetri spring. Find the equilibrium points and identify theirtypes. Sketh the bifuration diagram in the {ε, x} plane. Use(a) the Lindstedt-Poinaré method,(b) the KBM averaging method,to �nd terms up to O(ε) in the expansion of the periodi solution x(ε, t) forwhih ẋ(ε, 0) = 0 and x(ε, 0) ≃ a0 + εa1.



4.7. FORCED OSCILLATIONS 1112) Calulate the synhronous ontribution to the solution of
ẍ(t) + ω2

0{x(t) − εx4(t)} = Γ cos(Ωt),to order O(ε1), when ω0 6= Ω, 2Ω, 4Ω, indiating the signi�ane of thesespeial values.(The method to use is the Lindstedt-Poinaré method, exept that, as we sawin Set. 5.4.1, if only the synhronous part is required, no expansion termsare needed for the frequeny.)3) Use the Lindstedt-Poinaré method to �nd to O(ε1) the solution of the equa-tion
ẍ(t) + ω2

0{x(t) − εx4(t)} = εΓ cos(Ωt),when ẋ(0) = 0.4) Consider the equation
ẍ(t) + ω2

0{x(t) + εx2(t)} = Γ cos(Ωt).By using the expansion Ω = Ω0 + εΩ1 + . . ., and looking for subharmonisolutions with Ω0 = 2ω0, �nd a solution of the form
x(t) = A(ε) +B(ε) cos

(
1
2Ωt

)

+ C(ε) cos(Ωt) + +D(ε) cos
(

3
2Ωt

)

+ E(ε) cos(2Ωt),evaluating the oe�ients to O(ε).5) Desribe the assumptions involved in the appliation of theKrylov-Bogoliubov-Mitropolsky averaging method to the equation
ẍ(t) + εf(x, ẋ) + x(t) = εΓ cos(Ωt),where ε is small and positive.Implement this proedure in the ase van der Pol's equation where
f(x, ẋ) = (x2 − 1)ẋand show that, if x(0) = r0 + O(ε), ẋ(0) = O(ε), where r0 is a onstant and
Ω is not lose to unity, the solution to O(ε) is
x(ε, t) = r cos(t) − 1

32
εr3 sin(3t) +

εΓ cos(Ωt)

1 − Ω2
,where r is given by

r20(4 − r2)

r2(4 − r20)
= exp(−εt).
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Chapter 5Time Series and Chaos5.1 The Analysis of Time SeriesA time series is just sequene of values x(t0), x(t0 + △t), x(t0 + 2△t), . . ., of
x(t), for some △t > 0. The sequene is often the output of some experiment,or the data olleted by some ompany or survey. As an example, Fig. 5.1shows the reords of a telephone ompany for the number of newly installedlines, reorded in monthly periods over nine years. As might be expeted thereis a gradual upward drift of the yearly average and also a roughly periodibehaviour over eah yearly period. We should also expet there to be a ertainrandom element (possibly based on global or national eonomi fators) in thedistribution. In fat most work on time series is onerned with systems with astohasti omponent. In our disussion we shall, however, be onerned entirelywith deterministi systems and those for whih the graph of the output data hasthe overall appearane of some sort of periodiity. This ould be something verysimple like measuring the displaement of pendulum at regular time intervals
△t. In this ase we know that, if the displaement is fairly small, the datawill �t the urve A cos{ω(t0 + n△t)} for some A, ω and t0. We have seen inSet. 4.7 that if the simple harmoni osillator has natural frequeny ω0 and issubjet to a foring term of frequeny Ω then, if ω0 6= Ω, the solution (4.105)ontains terms of frequeny ω0 and Ω. If pω0 = qΩ, where p and q are oprimeintegers the solution is periodi of period 2πp/Ω = 2πq/ω0, but if this is notthe ase the system will be quasi-periodi. When the system is non-linear andsatis�es Du�ng's equation we have seen that the response to a foring termof the form Γ cos(Ωt), whether it is hard or soft, is to generate terms in thesystem response whih are of frequeny rΩ for positive integers r, whih areultraharmoni terms. We have also seen that subharmoni terms of frequeny
Ω/r an also be generated by perturbing the foring.Suppose now that, instead of trying to �nd analyti properties of the solu-tion of a non-linear equation, we applied methods of numerial integration toalulate the values of the dependent variable x(t) along a trajetory subjet113
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b1961 1962 1963 1964 1965 1966 1967 1968 1969YearFigure 5.1: The numbers of new lines installed by the Tomasek telephone om-pany in monthly periods from 1961 to 1969.to ertain initial onditions. The result of this proess would be a sequeneof values x(t0), x(t0 + △t), x(t0 + 2△t), . . .. In other words we will have ob-tained a time series, no di�erent in kind from that obtained by measuring datafrom an experiment. The fat that we started with a partiular equation wouldbe largely irrelevant. Our task is to analyze the data, based on the generalobservation that it has an overall periodi-type struture.A useful approah to analyzing time series is to use Fourier analysis. This useof Fourier methods is a little di�erent from the problem to whih suh methodsare usually applied. In standard appliations we are given the analyti form of afuntion of time f(t), whih we know to be of period T . That is f(t+T ) = f(t),for all t. We want to resolve f(t) into its harmoni omponents of periods T/n.That is
f(t) = 1

2
A0 +

∞∑

n=1

{

An cos

(
2πnt

T

)

+Bn sin

(
2πnt

T

)}

. (5.1)The unknowns in this formula are the oe�ients A0, An, Bn, n = 1, 2, . . .. Butsine
1

T

∫ T

0

cos

(
2πnt

T

)

dt = δ(Kr)(n, 0), (5.2)
1

T

∫ T

0

sin

(
2πnt

T

)

dt = 0, (5.3)
1

T

∫ T

0

cos

(
2πnt

T

)

sin

(
2πmt

T

)

dt = 0, (5.4)
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Figure 5.2: A time series plotted over 100 se.
1

T

∫ T

0

cos

(
2πnt

T

)

cos

(
2πmt

T

)

dt = 1
2
δ(Kr)(n,m), (5.5)

1

T

∫ T

0

sin

(
2πnt

T

)

sin

(
2πmt

T

)

dt = 1
2
δ(Kr)(n,m), (5.6)it follows that

1

T

∫ T

0

cos

(
2πnt

T

)

f(t)dt = 1
2
An, n = 0, 1, 2, . . . , (5.7)

1

T

∫ T

0

sin

(
2πnt

T

)

f(t)dt = 1
2
Bn, n = 1, 2, . . . . (5.8)In the ase of time series analysis we have a sequene of data points rather than afuntional form and, although we may have indiations of periodi behaviour wehave no �rm knowledge of the period. Indeed the series may be quasi-periodior haoti. Consider, as an example, the graph in Fig. 5.2. It has a generalperiodi struture and seems to have a period of around 55 se. but this maybe deeptive. It may have a muh longer period or possibly be quasi-periodi.In fat, I an reveal that, in this partiular ase, the graph was plotted1 from adata �le obtained from alulating the values of the funtion

x(t) = 11 sin(t/9) + 20 cos(3t) + 6 cos(5t) + 8 sin(13t), (5.9)1The graphs for Figs. 5.2 and 5.3 were obtained using FORTRAN 90 programs.



116 CHAPTER 5. TIME SERIES AND CHAOSat intervals of△t = 1
10 se. The periods of the suessive terms in this expressionare T0 = 18π, T1 = 2π/3, T2 = 2π/5 and T3 = 2π/13. Sine T0 = 27T1 =

45T2 = 117T3, the period of x(t) is T0 ≃ 56.549 se., quite lose to our estimateand (5.9) an be written in the form
x(t) = 11 sin

(
2πt

T0

)

+20 cos

(
2π27t

T0

)

+6 cos

(
2π45t

T0

)

+8 sin

(
2π117t

T0

)

.(5.10)Thus if we know the wavelength of the time series we an use the Fourier methodof (5.1), (5.7)�(5.8) to extrat the oe�ients of the harmoni ontributions. Inthis ase the only non-zero oe�ients are B1 = 11, B117 = 8, A27 = 20 and
A45 = 6. Of ourse, in pratie, we will not have the funtional form (otherwisewe'd know the answer before we started), but only a data set. The integrationwill be numerial with a ertain amount of error. This question is disussed inmore detail below. Of ourse, we ould still attempt to use this approah if wehad an approximate estimate of the period. In this ase, however, we would �ndit di�ult to detet ontributions whih were not lose to harmoni omponentsof the approximate period.Instead of attempting to use methods based on an assumed period, we nowoutline a proedure whih relies on data being olleted over a long period oftime. Consider the transformed funtion
γ(τ ;ω) =

1

τ

∫ τ

0

exp{iωt}x(t)dt. (5.11)Now
1

τ

∫ τ

0

cos(ω1t) sin(ω2t)dt =







[

cos{(ω1 − ω2)τ}
2τ(ω1 − ω2)

− ω2

τ(ω2
1 − ω2

2)

]

− cos{(ω1 + ω2)τ}
2τ(ω1 + ω2)

, ω1 6= ω2,
1
2

{

1
τ − cos{2ω1τ}

2τω1

}

, ω1 = ω2, (5.12)
1

τ

∫ τ

0

cos(ω1t) cos(ω2t)dt =







sin{(ω1 − ω2)τ}
2τ(ω1 − ω2)

+
sin{(ω1 + ω2)τ}

2τ(ω1 + ω2)
, ω1 6= ω2,

1
2

{

1 +
sin{2ω1τ}

2τω1

}

, ω1 = ω2,(5.13)
1

τ

∫ τ

0

sin(ω1t) sin(ω2t)dt =







sin{(ω1 − ω2)τ}
2τ(ω1 − ω2)

− sin{(ω1 + ω2)τ}
2τ(ω1 + ω2)

, ω1 6= ω2,
1
2

{

1 − sin{2ω1τ}
2τω1

}

, ω1 = ω2

(5.14)and we suppose that τ is large. Then the integral (5.12) is O(τ−1) even when
ω1 = ω2. However, (5.13) and (5.14) both have an O(τ0) term of 1

2 when
ω1 = ω2. Sine
sin{(ω1 − ω2)τ}

2τ(ω1 − ω2)
≃ 1

2
− 1

6
(ω1 − ω2)

2τ2, when ω1 ∼ ω2, (5.15)



5.1. THE ANALYSIS OF TIME SERIES 117there will be a `spread', with width ∼ 1/τ , around the maximum of 1
2 at ω1 = ω2.With this information we an onsider the funtion γ(τ ;ω) omputed using

x(t) of (5.9). As long as τ is su�iently large we expet both the real andimaginary parts of γ(τ ;ω) to be almost zero everywhere exept near to peaksof height 10 at ω = 3 and 3 at ω = 5 in the real part, and near to peaks ofheight 5.5 at ω = 1
9 and 4 at ω = 13 in the imaginary part. Results omputeddiretly from the funtional form with τ = 100 an be obtained using MAPLE .The ode for omputing real and imaginary parts is:

> v1:=t->11*sin(t/9):
> w1:=(tau,omega)->int(v1(t)*os(omega*t)/tau,t=0..tau):
> u1:=(tau,omega)->int(v1(t)*sin(omega*t)/tau,t=0..tau):
> v2:=t->20*os(3*t):
> w2:=(tau,omega)->int(v2(t)*os(omega*t)/tau,t=0..tau):
> u2:=(tau,omega)->int(v2(t)*sin(omega*t)/tau,t=0..tau):
> v3:=t->6*os(5*t):
> w3:=(tau,omega)->int(v3(t)*os(omega*t)/tau,t=0..tau):
> u3:=(tau,omega)->int(v3(t)*sin(omega*t)/tau,t=0..tau):
> v4:=t->8*sin(13*t):
> w4:=(tau,omega)->int(v4(t)*os(omega*t)/tau,t=0..tau):
> u4:=(tau,omega)->int(v4(t)*sin(omega*t)/tau,t=0..tau):
> ww:=(tau,omega)->w1(tau,omega)+w2(tau,omega)+w3(tau,omega)+w4(tau,omega):
> uu:=(tau,omega)->u1(tau,omega)+u2(tau,omega)+u3(tau,omega)+u4(tau,omega):The plot for ℜ{γ(100, ω)} is then given by:
> plot(ww(100,w),w=0..20,labelfont=[SYMBOL,12℄);
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and for ℑ{γ(100, ω)} by:
> plot(uu(100,w),w=0..20,labelfont=[SYMBOL,12℄);
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It will be seen that the dominant peaks in these graphs are at the pointspredited. There are also weaker peaks from the sine ontributions in the plotof the ℜ{γ(100, ω)} and the osine ontributions in the plot of ℑ{γ(100, ω)}.



5.1. THE ANALYSIS OF TIME SERIES 119These arise from the �rst term in the integral (5.12). Sine this term hangessign as ω2 passes through the value ω1 we observe that the funtion has negativeand positive values in this region. A more aurate guide to the nature of thefuntion x(t) is the graph of |γ(τ, ω)|. This is alled the spetral funtion andits peaks give the spetrum of x(t). The spetral funtion |γ(100, ω)| an beobtained using:
> :=(tau,omega)->sqrt(ww(tau,omega)*ww(tau,omega)+uu(tau,omega)*uu(tau,omega)):
> plot((100,w),w=0..20,labelfont=[SYMBOL,12℄);
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Of ourse, the integral form for γ(τ ;ω) given by (5.11) is not appropriate to theanalysis of a time series sine the only information is a data set2 x(0), x(△t),
x(2△t), . . . , x([N − 1]△t). We need to replae t by n△t and τ by (N − 1)△t in(5.11) and approximate the integral by a sum. This gives
γ(N,△t;ω) =

1

N

N−1∑

n=0

exp(iωn△t)x(n△t). (5.16)In Fig. 5.3 |γ(1000, 1/10;ω)| is plotted from a data �le obtained from the fun-tion (5.9) rather than by integrating the funtional form. Comparison withthe MAPLE plot for the spetral funtion on page 119 and Fig. 5.3 shows thatnone of the essential properties of the spetrum is lost by using the time se-ries rather than the analyti form. However, use of the formula (5.16) means2Without loss of generality, the starting time t0 an be set to zero.
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Figure 5.3: The plot of the spetral funtion |γ(1000, 1/10, ω)|, omputed froma data �le for (5.9).that γ(N,△t;ω) is periodi in ω with period 2π/△t. The period in this ase is
20π = 62.83 as an be learly seen in Fig. 5.3. If the range of ω were extended inthe MAPLE plots derived from the integral formula (5.11) then suh periodiitywould be seen.Further onsideration of time series will be neessary in relation to the detetionof haoti behaviour in dynami system.5.2 Chaos in Dynami SystemsThere are three things to be onsidered in relation to haos:

• We need a de�nition of haos.
• We need some methods for deteting if a system, either theoretialor experimental, is behaving haotially.
• We need some idea of what kinds of systems will have the possibilityof behaving haotially.In fat there are very few attempts in the literature to de�ne haos in amathematial sense. The learest one I know is that given by Devaney3 for3R. L. Devaney, 1989, Introdution to Chaoti Dynami Systems, Addison Wesley, 2nd Ed.p. 50.



5.2. CHAOS IN DYNAMIC SYSTEMS 121a disrete map x(n) → x(n + 1) = F[x(n)] on a spae V . Aording to thisde�nition f is haoti on V if:(i) It has sensitive dependene on initial onditions.(ii) It is topologially transitive.(iii) Periodi points are dense in V .Sensitive dependene on initial onditions is just another way of desribing un-preditability and this ondition is the most important both for disrete and on-tinuous systems. Topologial transitivity simply means that for any U ,W ⊂ Vthere will be, under su�ient number of iterations, images of points of U in
W . Periodi points our only for disrete maps (see box below). However, ananalogue does exist in the ourrene of subharmoni periodi solutions whihgive rise to periodi points on a Poinaré setion.At a meeting on Chaos sponsored by the Royal Soiety in London in 1986,there was4 a ertain unwillingness to ome up with a de�nition of haos. Even-tually the de�nition proposed was:Stohasti behaviour ourring in a deterministi system.In other words the output of the system looks as if it is random in spite of thefat that the system, or equation, generating the output is entirely deterministi.The best way to detet haoti output from a system is to observe howthe nature of the solution hanges when parameters of the system are hanged.For these purposes we normally suppose that we have waited a su�iently longperiod of time so that transient omponents of the output have disappeared.This means that the trajetory has reahed its attrator. We have already seenthat equilibrium points and periodi solutions are attrators and in Example1.12.2 we saw an example of a Hopf bifuration between the two. In Example3.3.1 we onsidered quasi-periodi motion on a torus and saw that the olletionof suh trajetories on the torus ould be the attrator of a dynami system. We,therefore, have disovered three types of attrators, equilibrium points, perioditrajetories and quasi-periodi trajetories, none of whih is haoti. What othertypes of attrators an exist? Aording to Devaney's de�nition the haotiattrator of a di�erene equation is a region whih is topologially transitiveand in whih periodi points are dense. Below we give a brief disussion of thelogisti map
x(n+ 1) = ax(n)[1 − x(n)] (5.17)whih maps the unit interval into itself when 0 ≤ a ≤ 4. As we shall explain,after a sequene of bifurations, the behaviour beomes haoti at a = 3.569946.We are, however, in this ourse onerned with di�erential equations and wespeulate about how ompliated a di�erential system needs to be to exhibit4Aording to Ian Stewart 1989, Does God Play Die? Penguin.



122 CHAPTER 5. TIME SERIES AND CHAOShaoti solutions. In Example 1.8.3 we showed that the di�erential logistiequation
ẋ(t) = cx(b− x), (5.18)an be approximated to the logisti map (5.17) with a = 1 − εcb, where ε issmall. This means that a is lose to one, and thus outside the haoti range. Thisserves to suggest that it may be more di�ult, or perhaps impossible, to �ndhaoti solutions for one-dimensional autonomous systems. That we an restritour attention to autonomous systems follows from the disussion in Set. 1.5,where we showed that an d-dimensional non-autonomous system an be madeequivalent to a suspended (d+1)-dimensional autonomous system. A trajetorywhose attrator is an equilibrium point, a periodi solution or a quasi-periodisolution is preditable and therefore not haoti. However, aording to thePoinaré-Bendixson theorem (see Set. 3.4.1) all solutions of a two-dimensionalautonomous system whih for t ≥ t0, for some t0, are ontained in a ompat setof the {x, y} plane tend to a periodi solution or an equilibrium point. This es-tablishes5 that haoti trajetories annot exist for two-dimensional autonomoussystems. This result also holds, of ourse, for one-dimensional autonomous andnon-autonomous systems. We must, therefore, onsider, two-dimensional non-autonomous systems or (at least) three-dimensional autonomous systems. Thetype of attrators of haoti trajetories are strange attrators. Their de�ningharateristi is that they have a non-integer fratal dimension. We shall nothave time for a detailed disussion of fratals.6 However, it may be useful toinlude the de�nition of fratal dimension (see box).In fat it is `almost possible' to de�ne haos as motion to a strange attrator,exept that there is some indiation that a strange attrator an sometimes beassoiated with non-haoti motion7 and Hamiltonian systems, although theyan be haoti, do not have attrators.8As we have seen with any time series it is often quite di�ult to detet itsharater just by visual inspetion of the graph. We need some other meansof `�ltering out' the important qualities assoiated with di�erent types of be-haviour. We have already seen in Set. 5.1 that a useful tool in this respet isthe spetral funtion. As we shall see it an be used not only to determine thefrequenies of periodi omponents but also indiate the presene of haos. Inaddition to this an important test of the presene of haos is to alulate theLyapunov exponents.5.2.1 Lyapunov ExponentsChaos in a deterministi system implies a sensitive dependene on initial ondi-tions. This means that if two trajetories start lose together they will in most5Subjet to the restrition of having to onsider trajetories ontained in a ompat set.6A good introdution is that of Hans Lauwerier, 1987, Fratals, Penguin.7See F.C. Moon 1992, Chaoti and Fratal Dynamis, Wiley, for referenes.8See E. Ott 1993, Chaos in Dynami Systems, Cambridge, Chapter 7.



5.2. CHAOS IN DYNAMIC SYSTEMS 123Suppose S is a set of points in d�dimensional spae. Let N(ℓ) be the minimumnumber of hyperubes of edge-length ℓ needed to over S. Then the frataldimension of S is
D(S) = lim

ℓ→0

ln{N(ℓ)}
ln{1/ℓ} . (5.19)Try this out for a 1 × 1 square. The number of squares of side 1/n needed toover it is n2. So D = ln(n2)/ ln(n) = 2. In this ase you don't even need to takethe limit to get the required result. Now onsider the ase of the Sierpinskigasket or sieve.
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This is onstruted by suessive removal of the entral 1
4 from an equilateraltriangle. In this ase if the lengths of the sides of the overing squares goes downby a fator of 1

2 the number of suh squares goes up by a fator of 3. Thus, with
ℓ =

(
1
2

)n, N(ℓ) = 3n and the fratal dimension is ln(3)/ ln(2) ≃ 1.5849.We an de�ne a fratal as an objet with non-integer fratal dimension.ases move exponentially away from eah other on a small time sale. Thus if
d(t0) is a measure of the distane between the phase points on the trajetoriesat time t = t0 and d(t) is the distane at a small, but later, time t
d(t) = d(t0) exp[λL(t− t0)]. (5.20)If the system is a di�erene equation then (5.20) is replaed by
d(n) = d(0) exp[λLn]. (5.21)The divergene of haoti orbits must be only a loal property beause if thesystem is bounded, as it is in the ase of most physial experiments, d(t) annotgo to in�nity. Thus to de�ne a measure of divergene we must average theexponential growth at a sequene of points along a trajetory. We de�ne the



124 CHAPTER 5. TIME SERIES AND CHAOSsequene t0, t1, t2, . . . , tN , where tn = t0 + n△t. Then
d(tN )

d(t0)
=

d(tN )

d(tN−1)

d(tN−1)

d(tN−2)
· · · d(t1)

d(t0)
(5.22)and, from (5.20),

λL =
1

tN − t0

N∑

n=1

ln

{
d(tn)

d(tn−1)

}

. (5.23)Using a similar argument
λL =

1

N

N∑

n=1

ln

{
d(n)

d(n− 1)

}

, (5.24)for a di�erene equation. With the map of the form x(n) → x(n+ 1) = F[x(n)]this beomes,
λL ≃ 1

N

N∑

n=1

ln

∣
∣
∣
∣

dF[x]

dx

∣
∣
∣
∣
x=x(n)

, as N → ∞. (5.25)Lyapunov exponents give a means of lassifying the dilating and ontratingharateristis of attrators. For a one-dimensional system the ondition forhaos is λL > 0, whih, as we have seen, an be the ase only for di�ereneequations. In general, in a d�dimensional system, there will be d independentLyapunov exponents, whih measure dilation or ontration in the d independentdiretions in spae and a neessary ondition for haos is that at least oneLyapunov exponent is positive. It must also be the ase that at least oneLyapunov is negative, otherwise the set ould not be an attrator. For d = 3 wehave one more exponent whih is along the trajetory. It is normally supposedthat points on the same trajetory do not diverge from eah other. This impliesa Lyapunov exponent of zero in the diretion of the trajetory and we have�xed the parity of all three Lyapunov exponents. Before disussing in detailthe alulation of Lyapunov exponents for di�erential systems, we onsider thesimple ase of the logisti equation.5.2.2 The Logisti MapBeause this ourse is intended to be restrited to ontinuous systems we shallnot spend time in a detailed analysis of this system but just summarize themain results. For those of you not familiar with the analysis of disrete systemsthe main mathematial results are listed here.



5.2. CHAOS IN DYNAMIC SYSTEMS 125For the disrete map x(n) → x(n+ 1) = F[x(n)]:(i) A �xed point x∗ of the mapping is given by x∗ = F[x∗].(ii) The �xed point x∗ is stable if |dF/dx|∗ < 1, unstable if
|dF/dx|∗ > 1 and marginal if |dF/dx|∗ = 1.(iii) A periodi point x̊(i) of period p is a member of a set x̊(1) → x̊(2) →
· · · → x̊(p) → x̊(1). This set of points is alled a p-yle. x̊(i) is a�xed point of the iterated mapping
x =

p times
︷ ︸︸ ︷

FF · · · FF(x).Using this information it is simple to show that the logistial map has thefollowing properties:(i) In the range 0 < a < 1 the map has a single stable �xed point x = 0.(ii) A transritial bifuration ours at a = a0 = 1 between the �xedpoints x = 0 and
x∗ = 1 − 1

a
. (5.26)(Of ourse, for a < 1, x∗ < 0.)(iii) The �xed point x∗ is stable for a0 < a < a1 = 3, when a bifurationours to a two-yle given by

x(±) =
1 + a±

√

(a+ 1)(a− 3)

2a
. (5.27)(iv) The two-yle is stable for a1 < a < a2 = 1+

√
6, when a bifurationto a four-yle ours.(v) When a = 4 the substitution

x = sin2(πθ) (5.28)gives (5.17) in the form
θ(n+ 1) = NI(2θ(n)), (5.29)where NI denotes `non-integer part'.At this point it stops being `simple to show' and the analysis beomes inreasingdi�ult. However, a mixture of analysis and omputing has established thefollowing:



126 CHAPTER 5. TIME SERIES AND CHAOS(vi) There is a sequene of period-doubling bifurations at the points
a3, a4, a5, . . ., where ak is the bifuration from the 2k−1-yle to the
2k-yle.(vii) lim
k→∞

= a∞ = 3.569946, and, for a∞ < a ≤ 4, the system is haoti.(viii) It was shown by Feigenbaum that, with
δk =

ak − ak−1

ak+1 − ak
, (5.30)

lim
k→∞

δk = δ = 4.6692016. (5.31)The remarkable fat is that the Feigenbaum number δ ours in awide lass of mappings exhibiting period-doubling and not just thelogisti map.(ix) Before a reahes 4, yles of all orders our. It was shown bySharkovskii, that if all the positive integers are ordered like
3 → 5 → 7 → 9 → 11 → · · · →

6 → 10 → 14 → 18 → 22 → · · · →... ... ... ... ... ...
2n3 → 2n5 → 2n7 → 2n9 → 2n11 → · · · →

2n → 2n−1 → · · · → 4 → 2 → 1,then the yles our in the reverse order. The �rst odd yle (ofvery long period) ours at a = 3.6786 and the three-yle, whih islast, ours at a = 3.8284.The bifuration diagram of the logisti equation is shown in Fig. 5.4. The two,four and eight yles are learly visible, as is also the `window' showing theourrene of the three yle.We an determine the onset of haos by alulating the Lyapunov exponent,whih from (5.17) and (5.25) is given, for large N , by
λL ≃ 1

N

N∑

n=1

ln |a[1 − 2x(n)]|. (5.32)A plot of λL with N = 1000 is shown in Fig. 5.5.Bifuration points orrespond to marginal stability with λL = 0 and the�rst point where the exponent rises to touh the value zero is at the bifurationpoint a = a2, when the two-yle beomes unstable. (More struture with a
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Figure 5.4: The bifuration diagram for the logisti map (5.17).
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Figure 5.5: The Lyapunov exponent for the logisti equation.
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Figure 5.6: The spetral funtion for the logisti equation with a = 3.2.
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Figure 5.7: The spetral funtion for the logisti equation a = 3.9.



5.2. CHAOS IN DYNAMIC SYSTEMS 129learer indiation of subsequent bifuration points would have been ahievedby using a larger value of N .) The point where the urve �rst rosses theline λL = 0 orresponds to the onset of haos at a = a∞. Subsequent dipsin value orrespond to the ourrene of a new sequene of yles with thestrong dip in the interval (3.8, 3.9) indiating the presene of the three-yle.An alternative test for the presene of haos an be made by using the spetralfuntion |γ(N,△t;ω)|, whih is shown for a = 3.2 and a = 3.9 in Fig. 5.6 andFig. 5.7.9 In eah ase the sharp maxima orrespond to the presene of yles.The value a = 3.2 is in the two-yle region and the spetral funtion is lose tozero apart from at the yle frequenies. The value a = 3.9 is deep within thehaoti region and the form of the funtion indiates yles of all orders.5.2.3 The Rössler EquationsConsider �rst the equations
ẋ(t) = −y − z, (5.33)
ẏ(t) = x+ ay. (5.34)For any �xed z, they have the single equilibrium point x = −az, y = −z withstability matrix

J∗ =

(
0 −1

1 a

)

, (5.35)with eigenvalues λ(±) = 1
2{a ±

√
a2 − 4}. We shall on�ne out attention tothe ase 0 < a < 2, when the equilibrium point is an unstable fous. Now weintrodue a third equation

ż(t) = b− zc, (5.36)with c > b > 0. In the three-dimensional spae of {x, y, z} the equilibrium pointis now at x = −ab/c, y = −b/c, z = b/c with stability matrix
J∗ =








0 −1 −1

1 a 0

0 0 −c







, (5.37)Two of the eigenvalues are the same as those of the previous ase and the thirdis λ(3) = −c. So the equilibrium point is attrative in the z�diretion. Thegeneral solution to (5.36) is

z = C exp(−ct) + b/c. (5.38)9Again we use △t = 0.1 giving a period in ω of 20π.



130 CHAPTER 5. TIME SERIES AND CHAOSTrajetories onverge towards the plane z = b/c, while at the same time spi-ralling outwards in the x and y diretions. So this is not a partiularly interestingsystem. Suppose that we now modify (5.36) by adding a non-linear term to give
ż(t) = b+ z(x− c). (5.39)Equations (5.33), (5.34) and (5.39) de�ne the Rössler equations. This systemhas two equilibrium points
x(±) = 1

2

{

c±
√

c2 − 4ab
}

, y(±) = −x(±)/a, z(±) = x(±)/a. (5.40)For di�erent values of a, b and c one member of this pair has one real positiveeigenvalue and a omplex pair with negative real part, and the other has onereal negative eigenvalue and a omplex pair with positive real part.Consider (5.39) alone. When the value of x is less than c, z remains stableand this subsystem tends to drive z to a value near to b/(c− x). However, withsmall b, this quantity is small and (5.33)�(5.34), ause the values of x and y tospiral outwards. The growth in x auses the sign of the z(x− c) term in (5.39)to hange. The trajetory leaps upwards. One z is large the −z term in (5.33)omes into play and fores the value of x downwards again. The whole proessthen repeats itself. The overall e�et of the non-linear term is to on�ne theattrator to a region around the origin. It is interesting to ompute trajetoriesfor this system. To do so it is neessary to use the orresponding di�ereneequations. Take x(n) = x(n△t), y(n) = y(n△t) and z(n) = z(n△t) and replae
ẋ(t), ẏ(t) and ż(t) by their two-point �nite equivalents in (5.33), (5.34) and(5.39). This gives
x(n+ 1) = x(n) − y(n)△t− z(n)△t,

y(n+ 1) = x(n)△t+ y(n)[1 + a△t],

z(n+ 1) = b△t+ z(n)[1 + {x(n) − c}△t].

(5.41)Using some small (but not too small) value for △t, trajetories an now beomputed.10 We onsider the ase a = b = 0.2. Then for values of c lessthan about 2.83 the projetion of the trajetory into the {x,y} plane is a simpleperiodi orbit and the output x(n) is a periodi funtion, with a single frequeny(Fig. 5.8(a): a simple yle). When c is inreased through 2.83 the trajetoryjust fails to lose on itself after one iruit and does so after two (Fig. 5.8(b):a two-yle). The period doubles and the frequeny halves to a subharmoni.By c = 4.2 the proess has repeated, leading to an orbit whih loses onto itselfonly after four iruits (Fig. 5.8(): a four-yle). By c = 4.35 (Fig. 5.8(d)) wehave an eight-yle. As c is inreased period-doubling ours with inreasingfrequeny until, at a value between 4.35 and 5.0, the system beomes haoti.The three-dimensional plot of the strange attrator for c = 5.0 is shown in Fig.5.9. You will see that it looks rather like a Möbius strip. On this attrator any10MAPLE is not the most appropriate pakage for doing this. I used FORTRAN 90 with
△t = 0.02. It is neessary to run the iteration for a number (∼ 103, but depending on c) ofiterations to eliminate transient behaviour and to ensure that the trajetory has reahed theattrator.
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c = 2.5; a simple yle.
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c = 3.5; a two-yle.
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-10

-5

0

5

10

0 500 1000 1500 2000 2500 3000 3500 4000

x

t

’ ’

-10

-5

0

5

10

-10 -5 0 5 10

y

x

’’ 

c = 4.35; a eight-yle.Figure 5.8: A period-doubling sequene for the Rössler equations with a = b =
0.2 and inreasing values of c.
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Figure 5.9: The strange attrator for Rössler equations when a = b = 0.2,
c = 5.0.two trajetories starting at nearby points will diverge exponentially. A briefaount of the methods available for alulating Lyapunov exponents for suhsystems will be given later. For a = 0.15, b = 0.2 and c = 10.0 the threeLyapunov exponents are 0.13, 0.0 and −14.1. The leading exponent of 0.13 > 0indiates the system is haoti. The negative exponent is neessary to hold theattrator together, and the zero exponent is for the diretion along a trajetoryand indiated that points on the same trajetory maintain their distanes apart.5.2.4 The Lorentz EquationsIn this ase we have two non-linear terms.
ẋ(t) = −a(x− y), (5.42)
ẏ(t) = ρx− y − zx, (5.43)
ż(t) = −bz + xy. (5.44)For simpliity we shall take a and b as �xed positive quantities and onsidervariations in ρ. It will be seen that the transformation (x, y, z) → (−x,−y, z)leaves the equations unhanged and also there are trajetories whih lie on the
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z�axis (x = y = 0) with z(t) = z(0) exp(−bt). From (5.42) all equilibrium pointsmust lie on the plane x = y and have either x = 0 or z = ρ − 1. In the latterase x2 = bz. So the three equilibrium points are

x = y = 0, z = 0, (5.45)
x = y = ±

√

b(ρ− 1), z = ρ− 1. (5.46)Linearizing about equilibrium point (5.45) gives the stability matrix
J∗ =





−a a 0
ρ −1 0
0 0 −b



 (5.47)with eigenvalues
λ(±) = −1

2

{

1 + a±
√

(1 + a)2 + 4a(ρ− 1)
}

, λ(3) = −b. (5.48)The �rst pair of eigenvalues are for eigenvetors lying in the x�y plane and thethird is in the z�diretion. When ρ < 1 the origin is a proper stable node inthe x�y plane. It beomes an improper stable node when ρ = 1 and a saddle-point when ρ > 1. In all ases sine we have assumed b > 0 it is stable in the
z�diretion. This linear analysis an be supplemented by using the Lyapunovdiret method. Choose the Lyapunov funtion
L(x, y, z) = 1

2
{x2 + ay2 + bz2}. (5.49)This gives

∇L.F (x, y, z) = −1
2
a(1 + ρ)(x − y)2 − 1

2
a(1 − ρ)(x2 + y2) − abz2. (5.50)whih is stritly negative, implying asymptoti stability when ρ < 1.The equilibrium solution (5.46) exists only when ρ ≥ 1 and the stabilitymatrix is

J∗ =









a −a 0

−1 1 ±
√

b(ρ− 1)

∓
√

b(ρ− 1) ∓
√

b(ρ− 1) b









(5.51)and the eigenvalues are solutions of the ubi equation
f(λ) ≡ λ3 + (a+ b+ 1)λ2 + b(a+ ρ)λ+ 2ab(ρ− 1) = 0. (5.52)When ρ > 1 all the oe�ients of this ubi are positive and there are, therefore,no real, positive eigenvalues and there must, of ourse, be one real negativeeigenvalue. The only way for this equilibrium point to be unstable is for thereto be a pair of omplex roots with positive real part. When ρ = 1 (5.52) hasroots λ = 0,−b,−(a+1). Now suppose that ρ is inreased from unity. Sine the�rst eigenvalue is marginal its hange, whih will be of the order of △ρ = ρ− 1,
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Figure 5.10: The strange attrator for the Lorentz equations shown in proje-tions in (a) the {x, y} plane, (b) the {x, z} plane, () the {y, z} plane, with
a = 10, b = 8

3 , ρ = 28.will determine the stability. Substituting λ = α△ρ into (5.52) and solving forthe lowest order terms gives α = −2a/(a + 1). So the equilibrium points arestable. For them to beome unstable, two of the eigenvalues must pass throughvalues where they are purely imaginary. Suppose λ(1) = iω and λ(2) = −iω.Then, sine the sum of all three eigenvalues is equal to minus the quadratioe�ient in (5.52), λ(3) = −(a + b + 1). This must be a root of (5.52) at thevalue ρc of ρ where instability sets in. Substituting into (5.52) gives
ρc =

a(a+ b+ 3)

a− b− 1
. (5.53)Thus instability an our only if a and b are suh that ρc > 1 and then theequilibrium points will be stable for 1 < ρ < ρc. It is of interest to alulatethe eigenvalues of the equilibrium points (5.46) for �xed values of a and b anda range of values of ρ. For a = 10 and b = 8

3 , ρc = 470
19 = 24.737. Sine oneeigenvalue is always negative the interest is in the values of the other pair. At

ρ = 1 one is zero and the other is −11. For ρ near to one all three eigenvaluesare real and negative and (with respet to this pair) the equilibrium points arestable nodes. Between ρ = 1.3 and 1.4 the pair beomes omplex onjugatewith negative real parts. The equilibrium points are stable foii. This haraterpersists up to ρ = ρc = 24.737, when the real parts hange sign and we haveunstable foii. The passage to haos in the Lorentz system is very ompliatedwith both period-doubling and period halving. The strange attrator whih is



5.3. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION 135shown in projetion for a = 10, b = 8
3 in Fig. 5.10 takes the form of a pairof onneted loops around the two equilibrium solutions (5.46). The Lyapunovexponents for a = 16.0, b = 4.0 and ρ = 45.92 are 2.16, 0.0 and −32.4. Thepartiular omplexity of this system is evident from the fat that the strangeattrator makes its appearane at values of ρ slightly less that ρc when theequilibrium points are still stable. It also oexists with limit yles around theequilibrium points whih make their appearane for ertain ranges of ρ.5.3 Lyapunov Exponents and Fratal Dimension5.3.1 The Transformation of VolumesLet Γd be the phase spae of the dynami system

ẋ(t) = F (x; t) (5.54)and suppose µ(x; t) is some density funtion de�ned on Γd. Let Υ(t) ⊂ Γd be avolume whih moves with the �ow of the dynami system and de�ne the volumeintegral
P(t) =

∫

Υ(t)

µ(x; t)dV, (5.55)A well-known theorem, used in a number of areas inluding probability theoryand �uid dynamis, is that
dP(t)

dt
=

∫

Υ(t)

{
∂µ

∂t
+ ∇.[µF ]

}

dV. (5.56)In the speial ase where µ(x; t) = 1, P(t) just measures the size of the volume
Υ(t). It follows that
∇.F (x; t) = 0 (5.57)is a neessary and su�ient ondition for the �ow of the dynami system topreserve volume. In partiular, for the Hamiltonian system de�ned by (1.10),
∇.F (x; t) =

d∑

ℓ=1

{
∂2H

∂xℓ∂pℓ
− ∂2H

∂pℓ∂xℓ

}

= 0. (5.58)So Hamiltonian systems are volume preserving. A system for whih ∇.F (x; t) <
0, meaning that volumes shrink with time, is alled dissipative.5.3.2 The Lyapunov SpetrumWe now generalize the disussion of Lyapunov exponents given in Set. 5.2.1 tosystems of more than one dimension. Consider �rst the d�dimensional di�ereneequation
x(n+ 1) = F[x(n)], (5.59)
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x(n) = (x1(n), x2(n), . . . , xd(n)) ,

F[x] = (F1[x], F2[x], . . . , Fd[x]) .
(5.60)Let △x(n) = x(n) − x(n− 1). Then

△x(n+ 1) = J[x(n− 1)]△x(n) + O(|△x(n)|2), (5.61)where
J[x] =















∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xd

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xd... ... . . . ...
∂Fd

∂x1

∂Fd

∂x2
· · · ∂Fd

∂xd















. (5.62)
Negleting all but the linear term in (5.61),
△x(n+ 1) = S(n)△x(1), (5.63)where
S(n) = J[x(n− 1)]J[x(n− 2)] · · · J[x(0)]. (5.64)Let Σ(n) be the diagonal matrix with the eigenvalues, σ1(n),σ2(n), . . . ,σd(n),of S(n) along the diagonal, ordered aording to desending magnitude, V(n)be the matrix with the orresponding left eigenvetors as rows and U(n) be thematrix with the orresponding right eigenvetors as olumns. From Set. 1.9,
V(n)△x(n+ 1) = Σ(n)V(n)△x(1), (5.65)The magnitudes | σ1 (n)|, | σ2 (n)|, . . . , | σd (n)| measure the dilations and on-trations of the transformation over n steps. As we saw in (5.21) the averageof these sale hanges are measured by the Lyapunov exponents and for the
d�dimensional di�erene equation system desribed here we an de�ne the dLyapunov exponents in desending order by
λ

(ℓ)
L = lim

n→∞

ln{σℓ(n)}
n

, ℓ = 1, 2 . . . , d. (5.66)It will be seen that, in the ase d = 1, this is equivalent to (5.25).In the ase of the d-dimensional ontinuous system
ẋ(t) = F (x), (5.67)we monitor the long-term evolution of an in�nitesimal d-dimensional hyper-sphere of initial onditions. This hypersphere will beome a hyperellipsoid under
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Figure 5.11: The deformation of a sphere of initial onditions under the e�etof the �ow.the e�et of the deforming nature of the �ow. This is shown in Fig. 5.11 for
d = 3. If d(ℓ)(t) is the length of the ℓ�th priniple axis at time t then a suitablegeneralization of (5.20) to the ase of d Lyapunov exponents is
d
(ℓ)(t) = d

(ℓ)(t0) exp[λ
(ℓ)
L (t− t0)], ℓ = 1, 2, . . . , d. (5.68)The implementation of the proedure implied by (5.68) involves de�ning theprinipal axes with an initial hypersphere whih is as small as possible anddetermining their evolution with the non-linear equations. This means deter-mining d neighbouring solutions. As we saw in the one-dimensional ase, toobtain the Lyapunov exponents we need to be able to do this over a long periodof time, whih is not normally pratial for a haoti system.An alternative approah is to obtain the �duial trajetory, whih gives theevolution of the entre of the hypersphere/ellipsoid and then to integrate thelinearized equations for d di�erent initial onditions de�ning an arbitrarily ori-ented set of d orthonormal vetors. Of ourse, over a long period of time, evenjust using the linearized equations, the vetors will diverge in length. Theywill also reorient themselves towards the diretion assoiated with the largestLyapunov exponent. The way to deal with this di�ulty is by the repeated useof Gram-Shmidt renormalization (GSR).Suppose e(1)(0), e(2)(0), . . . , e(d)(0) is a set of orthonormal vetors at time

t = 0 and suppose upon integration over a time period △t they evolve into theset ẽ(1)(△t), ẽ(2)(△t), . . . , ẽ(d)(△t). These vetors, will in general, no longerbe normalized. They will also have all reoriented themselves more towardsthe diretion of the major prinipal axis, assoiated with the largest Lyapunovexponent λ(1)
L . We now apply GSR in suh a way as to leave the diretion of
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ẽ(1)(△t) una�eted. Thus
e(1)(△t) =

ẽ(1)(△t)
|ẽ(1)(△t)| ,

e(2)(△t) =
ẽ(2)(△t) − e(1)(△t)[e(1)(△t).ẽ(2)(△t)]
|ẽ(2)(△t) − e(1)(△t)[e(1)(△t).ẽ(2)(△t)]| ,... ... ...

e(d)(△t) =

ẽ(d)(△t) −
d−1∑

ℓ=1

e(ℓ)(△t)
[

e(ℓ)(△t).ẽ(d)
]

∣
∣
∣
∣
∣
ẽ(d)(△t) −

d−1∑

ℓ=1

e(ℓ)(△t)
[

e(ℓ)(△t).ẽ(d)
]
∣
∣
∣
∣
∣

(5.69)
The vetor e(1)(t) tends to seek out the diretion of most rapid growth and todilate in proportion to exp[λ

(1)
L t]. So

λ
(1)
L ≃ 1

N

N∑

n=1

ln

∣
∣
∣
∣
∣

ẽ(1)(n△t)
ẽ(1)((n− 1)△t)

∣
∣
∣
∣
∣
. (5.70)for large N . The diretion of e(2)(t) is orthogonal to e(1)(t), but ẽ(2)(t) is notneessarily in the diretion of the seond dominant Lyapunov exponent. Toobtain λ(2)

L we either projet ẽ(2)(t) onto the diretion of e(2)(t) or observe thatthe plane of ẽ(1)(t) and ẽ(2)(t) is the same as that of e(1)(t) and e(2)(t). Thesize |ẽ(1)(t) ∧ ẽ(2)(t)| grows in proportion to exp[{λ(1)
L t+ λ

(2)
L t}]. So

λ
(1)
L + λ

(2)
L ≃ 1

N

N∑

n=1

ln

∣
∣
∣
∣
∣

ẽ(1)(n△t) ∧ ẽ(2)(n△t)
ẽ(1)((n− 1)△t) ∧ ẽ(2)((n− 1)△t)

∣
∣
∣
∣
∣

(5.71)for large N . In a similar way the �rst three exponents an be obtained fromthe growth in size of a volume de�ned by a triad of vetors.11 In d�dimensionalspae the volume of a small hypersphere of radius ε is
V (ε) =

{

Γ
(

1
2

)

ε
}d

Γ
(

1
2
d+ 1

) , (5.72)where Γ(x) is the gamma funtion.12 On the attrator this volume deforms ina time t into a hyperellipsoid with
V (ε) → exp{(λ(1)

L + λ
(2)
L + · · · + λ

(d)
L )t}V (ε). (5.73)11A FORTRAN program for implementing this proedure is given by Wolf, A, Swift J. B.,Swinney H. L. and Vastano J. A. (1985) Physia D, 285�317.12With the salient properties x Γ (x) = Γ(x + 1), Γ

�
1
2

�
=

√
π.



5.3. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION 139The sum of the Lyapunov exponents will therefore be zero if the system isvolume preserving and negative if it is dissipative. Sine the basin of attrationof a strange attrator is of the dimension of the spae of the system and theattrator itself has a fratal dimension less than d, haoti systems must bedissipative.5.3.3 The Dimension of Chaoti AttratorsIn Set. 5.2 we de�ned fratal dimension and suggested that one (possibly notertain) indiation of the presene of haos was a non-integer fratal dimen-sion of the attrator. The fratal dimension of an attrator A is D(A) givenby (5.19). In priniple the fratal dimension of A in a spae of dimension dould be alulated by overing the spae with a hyperubi grid of mesh size
ℓ. A trajetory of the system, after transitory fators have disappeared, is thenfollowed and the number N(ℓ) of ells of the grid visited by the trajetory overa long period of time is then ounted. An approximation to D(A) is then givenby − ln{N(ℓ)}/ ln{ℓ}. Suh a proedure is in most ases very di�ult to im-plement. It is also di�ult to get an aurate result beause of the need toapproah in some way the limit of small ℓ.Although the fratal dimension is related to the number of ells of the gridvisited by a trajetory on the attrator, no aount is taken of the numberof times the trajetory visits a partiular ell. A generalization of the frataldimension D(A) of A an be made by introduing a probability measure µ(x)over the spae of the dynami system, where µ(x)△V is the probability of�nding the phase point of the system in a volume△V around the point x. Thenlabel the ells of the grid s = 1, 2, . . . and de�ne ps(µ, ℓ) to be the probability of�nding the phase point in the s�th ell, obtained by integrating µ(x) over thevolume of the ell. The information entropy of the probability measure µ(x) isde�ned by
I(µ, ℓ) = −

N(ℓ)
∑

s=1

ps(µ, ℓ) ln{ps(µ, ℓ)}. (5.74)In information theory this funtion gives the amount of information neessaryto speify the state of the system to within an auray of ℓ. The informationdimension DI(µ; A) is de�ned by
DI(µ; A) = lim

ℓ→0

I(µ, ℓ)

ln{1/ℓ} . (5.75)It is lear that when the probability measure is uniform ps(µ, ℓ) = 1/N(ℓ),
I(µ, ℓ) = ln{N(ℓ)} and the information dimension is equal to the fratal dimen-sion. In general it an be shown that DI(µ; A) ≤ D(A).Suppose we want to alulate the fratal dimension of the haoti attrator
A assoiated with a di�erene equation in two dimensions. We over it in
N(ℓ) squares of side ℓ. The Lyapunov exponents will satisfy the ondition
λ

(1)
L > 0 > λ

(2)
L . Let the map be iterated n times. If we suppose that the



140 CHAPTER 5. TIME SERIES AND CHAOSdilation and ontration ats linearly on eah square, then eah is turned intoa parallelogram of average length exp{nλ(1)
L }ℓ and average width exp{nλ(2)

L }ℓ.Suppose that we had used a �ner grid of squares of side exp{nλ(2)
L }ℓ to overthe attrator. On average we need exp{n[λ

(1)
L − λ

(2)
L )]} of the new squares toover one parallelogram. So we need

N(exp{nλ(2)
L }ℓ) = exp{n[λ

(1)
L − λ

(2)
L )]}N(ℓ), (5.76)squares to over the attrator. Sine, from (5.19),

D(A) ≃ − ln{N(ℓ)}
ln{ℓ} =≃ − ln{N(exp{nλ(2)

L }ℓ)}
ln{exp{nλ(2)

L }ℓ}
, (5.77)it follows, from (5.76) and (5.77), that

D(A) = 1 − λ
(1)
L

λ
(2)
L

. (5.78)Of ourse, this analysis annot be digni�ed by the title of a proper derivation.Apart from anything else it applies only to di�erene maps in two dimensions.However, we shall use it as a motivation for de�ning the Lyapunov dimension
DL(A) = k +

λ
(1)
L + λ

(2)
L + · · · + λ

(k)
L

|λ(k+1)
L |

, (5.79)where k is the largest value for whih λ(1)
L +λ

(2)
L + · · ·+λ

(k)
L ≥ 0. In many asesit appears to be true that DL(A) = DI(A). From the values given in Set. 5.2.3for the Rössler system the dimension of its strange attrator is 2.0092 and forthe Lorentz system disussed in Set. 5.2.4 the dimension is 2.0667.Problems 51) Express the equation

ẍ(t) + µẋ(t) − x(t) + x2(t) = 0,as a pair of equations using the seond variable y(t) = ẋ(t). Find the equi-librium points and determine their linear stability for the di�erent ranges of
µ. Show that, when µ = 0,
1
2
{x2 − y2} = E + 1

3
x3 (5.80)is an integral of the motion for di�erent values of the parameter E. Ei-ther using MAPLE or by hand (and brain) sketh the trajetories given by(5.80). Mark the diretion of �ow and label the urves with their values of

E, identifying the homolini trajetory. Using your intuition rather than



5.3. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION 141undertaking detailed analysis, sketh the form that the orresponding urvestake when µ is small and positive or negative. The breakup of a homolinitrajetory is often assoiated with the onset of haos. This is an example ofthe breakup of a homolini without haos being involved.2) Remember that the equilibrium point x = y =
√

b(ρ− 1), z = ρ − 1 ofthe Lorentz equations beomes unstable as ρ is inreased through the value
ρ = ρc where
ρc =

a(a+ b+ 3)

a− b− 1
,as long as a and b are suh that ρc > 1. With xc = yc =

√

b(ρc − 1),
zc = ρc − 1 de�ne △x = x − xc, △y = y − yc, △z = z − zc and △r =
(△x,△y,△z)T. Show that the Lorentz equations an be expressed, withoutapproximation in the form
ω

d△r

dτ
+ J∗△r = w,where τ = ωt, for some parameter ω and

J∗ =








a −a 0

−1 1 xc

−xc −xc b







, w =








0

(ρ− ρc)(△x+ xc) −△x△z

△x△y







.The matrix J∗ is that given by (5.51) in the notes, but evaluated where ρ =

ρc. Remember at this point the matrix has two purely imaginary eigenvalues
±iωc (say) and a third whih is equal to −(a+ b+ 1). Show that
ωc =

√

2ab(a+ 1)

a− b − 1
.Let v and u be the left and right eigenvetors for the eigenvalue iωc, (withthe orresponding eigenvetors for −iωc being their omplex onjugates vand u). Assume that:(i) The eigenvetors satisfy the usual orthnormality ondition.(ii) |ρ− ρc| = ε, where ε is small.(iii) △r lies in the plane spanned by u and u.(iv) ω and △r have expansions of the form

ω = ωc + εω1 + O(ε2), △r = ε
1
2 p + εq + O

(

ε
3
2

)

.
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p = cu exp(−iωt) + cu exp(iωt),where c is some omplex onstant. Subjet to the assumptions made, thisestablishes the existene of a periodi solution for ρ slightly larger than ρcand shows that as ρ passes through ρc there is a Hopf bifuration.3) Show that the Lorentz equations (5.42)�(5.44) an be expressed in the form
dξ

dτ
= −aεξ − η,

dη

dτ
= −εη − ξζ,

dζ

dτ
= −bεζ + ξη − abε,in terms of the variables ε = 1/

√
ρ, τ = t/ε, ξ = εx, η = ε2ay, ζ = a(ε2z−1).The Lorentz equations in the limit ρ→ ∞ are now obtained by setting ε = 0in these equations. Show that in this limit they have the integrals

1
2
η2 + 1

2
ζ2 = α,

1
2
ξ2 − ζ = β.and that

(
dξ

dτ

)2

= (2α− β2) − 1
4
ξ4 + βξ2.Hene show that, when α = 9

8 , β = 1
2 , there is a periodi solution in the

{ξ, dξ/dτ} plane with a period (measured in terms of the time parameter τ)of
4

∫ 2

−2

dξ
√

(ξ2 + 2)(4 − ξ2)
.4) The baker's map is given by

x(n+ 1) =







τax(n), if y(n) < 1
2
,

(1 − τb) + τbx(n), if y(n) > 1
2
,

y(n+ 1) =







2y(n), if y(n) < 1
2
,

2y(n) − 1, if y(n) > 1
2
,



5.3. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION 143where τa +τb ≤ 1. Given that µ is the probability that the iterated value of yis in the range 0 ≤ y ≤ 1
2 , determine the Lyapunov exponents, showing thatthe system is haoti. Show that the Lyapunov dimension of the attrator is

1 − {µ ln(τa) + (1 − µ) ln(τb)}−1.
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Chapter 6Solutions6.1 Problems 11) (i) The equilibrium points are given by x = 0 and x = x∗ = (a − c)/ab.Linearizing about x = 0

d△x
dt

= (a− c)△x,with solution
△x = C exp[(a− c)t].So this solution is stable if a < c and unstable if a > c. Linearize about
x = x∗

d△x
dt

= (c− a)△x,with solution
△x = C exp[(c− a)t].So this solution is stable if a > c and unstable if a < c. There are �vedi�erent ases:When c = 0, x∗ = 1/b and the lines of equilibrium points are parallelto the a-axis. There is no bifuration but the stability hanges at a = 0.When b > 0 and c > 0, there is a transritial bifuration at x = 0,
a = c on one branh of x = x∗(a). The seond branh is unstable. Thease b < 0, c > 0 is the mirror image of this in the vertial axis.145
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a

x

x = 1/b

0c = 0

a

x

x = 1/b

0

b

c > 0, b > 0

When b < 0 and c < 0, there is a transritial bifuration at x = 0,
a = c on one branh of x = x∗(a). The seond branh is stable. Thease b > 0, c < 0 is the mirror image of this in the vertial axis. Theequation is separable so
∫

dx

x(a− c− abx)
= t+ constant.Using partial frations it is easy to do the integration and the �nalsolution is

x(t) =
C(a− c) exp[(a− c)t]

1 + abC exp[(a− c)t]
,for some onstant C. If a < c, x → 0 as t → ∞ and, if a > c,

x→ (a− c)/ab as t→ ∞.
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a

x

x = 1/b

0
b

c < 0, b < 0

(ii) The equilibrium solutions are x = 0 and
x = x∗ =







a/b, if c = 0,
b±

√
b2 − 4ac

2c
, if c 6= 0,Linearizing about x = 0

d△x
dt

= a△x.So this equilibrium point is stable if a < 0 and unstable if a > 0.Linearizing about x = x∗

d△x
dt

= x∗(2x∗c− b)△x.So x∗ is stable if x∗(2x∗c − b) < 0 and unstable if x∗(2x∗c − b) > 0.When c = 0 these onditions redue to a > 0 and a < 0 respetively.When c = 0 and b > 0, there is a transritial bifuration at theorigin. For c = 0 and b < 0 the bifuration diagram is obtained fromthis by re�etion in the vertial axis.When c > 0 and b > 0, there is a transritial bifuration at theorigin and a turning-point bifuration at x = b/2c, a = b2/4c. The ase
c > 0, b < 0 is obtained from this by re�etion in the vertial axis.When c < 0 and b < 0, there are again a transritial and a turning-point bifuration at the same loations. The ase c < 0 and b > 0 isobtained from this by re�etion in the vertial axis.
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a

x0
b

c = 0, b > 0

a

xb/2c

b2/4c

0

c > 0, b > 0
b

b

Eah of these c 6= 0 systems of bifurations goes into a pithfork bifurationwhen b → 0. Denoting the two branhes of x∗ by x(±), the equation anseparated into
∫

dx

x[x− x(+)][x− x(−)]
= constant + ctDeomposing into partial frations and integrating gives

ln
{

xα[x− x(+)]γ
(+)

[x− x(−)]γ
(−)
}

= C exp(ct).where α = x(+)x(−), γ(±) = x(±)[x(±) − x(∓)]. The limiting behaviour as
t→ ∞ an be obtained by onsidering the various signs of the parameters.2) The right-hand sides of these two equations are both zero when x = y = 0.Now the Taylor expansions of sin(x) and cos(x) give
sin(△x) = △x+ O(△x3), cos(△x) = 1 + O(△x2).
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a

xb/2c

b2/4c

0c < 0, b < 0
b

b

So when linearized to the same form as (⋆) we have
A =

(
1 1
0 −2

)

.This matrix has eigenvalues λ = −2, 1. The equilibrium point is a saddle-point.3) All the equilibrium points are given by the simultaneous solutions of
x2 = y, 8x = y2.This gives x4 = 8x, whih has the solutions
x = 0, implying y = 0, (6.1)
x = 2, implying y = 4. (6.2)For (6.1)
A =

(
0 1
8 0

)

.This matrix has eigenvalues λ = ±
√

8 giving a saddle-point.For (6.2)
A =

(
−4 1

8 −8

)

.This matrix has eigenvalues λ = −6 ± 2
√

3. Both these eigenvalues arenegative so the equilibrium point is a stable node.
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dt
= −xy +

x2(1 − x2 − y2)
√

x2 + y2
,

ydy

dt
= xy +

y2(1 − x2 − y2)
√

x2 + y2
.So with r2 = x2 + y2

1

2

dr2

dt
=
r2(1 − r2)

r
,giving

dr

dt
= (1 − r2). (6.3)There is an equilibrium solution with r = 1 and with r = 1 + △r

d△r
dt

= −2△r.So r = 1 is stable. At the point x = cos(θ), y = sin(θ) on this solution
θ̇(t) = 1, so x = cos(θ0 + t) y = sin(θ0 + t) gives the stable limit yle forany θ0. Equation (6.3) an be solved to give r = tanh(t0 + t).5) θ̇(t) = ω, ω̇(t) = Ω2 sin(θ){cos(θ) − a}.The equilibrium points are given by(a) sin(θ) = 0 for whih θ = 0,±π,±2π, . . ..(b) cos(θ) = a whih, for 1 ≥ a ≥ 0, gives two sets of solutions

θ⋆ = ±θ0(a) + 2nπ, n = 0,±1,±2 . . . ,where θ0(a) → 0, as a→ 1.First linearize about nπ.
sin(nπ + △θ) = △θ (−1)n,

cos(nπ) = (−1)n,

d△θ
dt

= △ω,

d△ω
dt

= Ω2[1 + (−1)n+1a]△θ.So the eigenvalues are ±Ω
√

1 + (−1)n+1a. When a > 1 and n is even theeigenvalues are imaginary and the equilibrium points are entres. Otherwisethe eigenvalues are real and of di�erent signs so the equilibrium points aresaddle points.



6.1. PROBLEMS 1 151Linearizing about θ⋆ = arccos(a) gives
d△θ
dt

= △ω,

d△ω
dt

= −Ω2 sin2(θ⋆)△θ

= −Ω2(1 − a2)△θ.The eigenvalues are ±iΩ
√

1 − a2. Sine these equilibrium points our onlywhen a ≤ 1 the eigenvalues are purely imaginary and the equilibrium pointsare entres.6) xdx

dt
+ y

dy

dt
= 1

2

dr2

dt
= r

dr

dt
.So

dr

dt
= r{f(r cos(θ), r sin(θ)) − a2}n,and using

dx

dt
= cos(θ)

dr

dt
− r sin(θ)

dθ

dt
,gives θ̇(t) = 1. Linearizing about the origin for r

d△r
dt

= △r{f(0, 0) − a2}n.So the solution is stable or unstable aording as {f(0, 0)− a2}n < 0 or > 0.Consider now the limit yle r = a.
ṙ(t) = r(r2 − a2)n.With r = a+ △r

d△r
dt

= a(2a△r)n.If n is odd
d△r
dt

> 0, when △r > 0,

d△r
dt

< 0, when △r < 0.So the limit yle is unstable (in both diretions). If n is even d△r
dt

> 0 forboth signs of △r, so the limit yle is semistable.



152 CHAPTER 6. SOLUTIONS7) z = r exp(iθ).
ż(t) = ṙ(t) exp(iθ) + ir(t)θ̇(t) exp(iθ).So
ṙ(t) + ir(t)θ̇(t) = ir(t) + r(t)f(r)giving
θ̇(t) = 1, ṙ(t) = r(t)f(r).Limit yles are given by
sin

(
1

r2 − 1

)

= 0, with solutions r⋆ =

√

1 +
1

nπ
, n = ±1,±2, . . . .and r = 1. Linearizing about r⋆ for the former gives

d△r
dt

= − 2(r⋆)2△r
[(r⋆)2 − 1]2

cos

(
1

(r⋆)2 − 1

)

= (−1)n+1 2(r⋆)2△r
[(r⋆)2 − 1]2

.So the yles are stable if n is even and unstable if n is odd. The ylenearest the origin is n = −1 whih is unstable. Sine sin(−1) = −0.84 theorigin is stable.8) z = r exp(iθ). So
ż(t) = ṙ(t) exp(iθ) + irθ̇(t) exp(iθ),giving
ṙ(t) + irθ̇(t) = a exp(−iθ) + r(b − r2).Taking real and imaginary parts
ṙ(t) = a cos(θ) + r(b − r2), θ̇(t) = −a sin(θ)

r
.When a = 0 This gives

ṙ(t) = r(b − r2), θ̇(t) = 0.This is just (with b replaing a) the same as the polar form of Example 2.5.1,yielding the Hopf bifuration as shown in Fig. 2.5.



6.1. PROBLEMS 1 153When a 6= 0 From the seond equation θ̇(t) = 0 gives θ = 0 or π. So theequilibrium solutions are
r(b − r2) = −a, θ = 0,

r(b − r2) = a, θ = π.Linearizing about the equilibrium solution (r⋆, θ⋆) gives
d△r
dt

= △r[b − 3(r⋆)2],
d△θ
dt

= −△θ a cos(θ⋆)

(r⋆)2
.The urve in the r�θ plane given by r(b − r2) = ±a is

b = ±a
r

+ r2.We an now divide the equilibrium solutions into two ases:
• When a > 0 and θ = π or a < 0 and θ = 0.It is lear that this solution is unstable in the θ diretion sine
−a cos(θ⋆)

(r⋆)2
> 0.The variable r > 0 and

b =
|a|
r

+ r2.The urve of b as a funtion of r has a turning point given by
0 =

db

r
= −|a|

r2
+ 2r =

r2 − b

r + 2r
=

3r2 − b

r
,Giving b = 3r2. It follows from the linearized equation for △r that theequilibrium point is stable in the r diretion when r >

√

b/3 (giving asaddle point when you take into aount the instability in the θ diretion)and unstable in the r diretion when r <√b/3 (giving an unstabler node.The equilibrium urve is if the form
b

r

SADDLE POINTUNSTABLE NODE
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• When a < 0 and θ = π or a > 0 and θ = 0.It is lear that this solution is stable in the θ diretion sine
−a cos(θ⋆)

(r⋆)2
< 0.The variable r > 0 and

b = −|a|
r

+ r2.The urve of b as a funtion of r does not have a turning point and
b− 3(r⋆)3 = −

[ |a|
r

+ 2(r⋆)2
]

.So the equilibrium point is stable in the r diretion and is thus a stablenode. The equilibrium urve is if the form
b

r

STABLE NODE
6.2 Problems 21) In this problem we have not been given the equation of motion so we an'tdedue the stability. We an, however, if we assume the equation to be ofthe form1

ẋ(t) = F (ε, a, x) = εx2 + x3 − ax.When ε = 0 the solutions to F (0, a, x) = 0 are x = 0 and a = x2. Theline of equilibrium points x = 0 is stable when a > 0 and unstable when
a < 0. The equilibrium points given by a = x2 are all unstable. So wehave a subritial pithfork bifuration. When ε 6= 0 the line of equilibrium1The other possibility is

ẋ(t) = −F (ε, a, x) = −εx2 − x3 + ax,whih will simply reverse the stability.



6.2. PROBLEMS 2 155points x = 0 remain, with the same stability. The parabola is shifted to
a = εx+ x2, with minimum at x = − 1

2ε, a = − 1
4ε

2. Now take x = x⋆ +△x,
a = εx⋆ + (x⋆)2. Then
d△x
dt = −△x[2x⋆ε+ 3(x⋆)2 − a] = (2a− εx⋆)△x.The line a = 1

2xε passes through the origin and the minimum of the parabolaof equilibrium points. Below the line the equilibrium points on the parabolaare stable and above they are unstable. There is a transritial bifurationat the origin and a turning point at x = − 1
2ε, a = − 1

4ε
2. The diagram (with

ε < 0) is like Fig. 1.11 with c = − 1
2ε and the stability reversed.2) Treating the equation as of the form ẋ(t) = F (a, b, c, x), the bifuration setis given by eliminating x between the equations

F (a, b, c, x) = x3 − 2ax2 − (b− 3)x+ c = 0, (1)

Fx(a, b, c, x) = 3x2 − 4ax− (b − 3) = 0. (2)From (2)
x = 1

3{2a± f(a, b)}, (3)where
f(a, b) =

√

4a2 + 3(b− 3).Subtrating x× (2) from 3× (1) gives
0 = −2ax2 − 2(b− 3)x+ 3c.Eliminating x2 between this equation and (2) gives
x[8a2 + 6(b− 3)] = 9c− 2a(b− 3).Substituting the values of x given by (3) gives
±f(a, b){8a2 + 6(b− 3)} = −16a3 + 27c− 18a(b− 3).Squaring and substituting for f(a, b) yields
±{4a2 + 3(b− 3)}{8a2 + 6(b− 3)}2 = {16a3 − 27c+ 18a(b− 3)}2.When a = 1 we have
(27c− 18b+ 38)2 = 4(3b− 5)3.



156 CHAPTER 6. SOLUTIONSThis has a usp when 3b = 5, whih is at b = 5
3 , c = − 8

27 . Now we an useMAPLE to plot c against b for various values of a.
> with(plots,impliitplot):
> f:=(a,b)->4*a^2+3*(b-3):
> g:=(a,b)->8*a^2+6*(b-3):
> h:=(a,b,)->16*a^3-27*+18*a*(b-3):
> p:=(a,b,)->f(a,b)*(g(a,b))^2-(h(a,b,))^2:
> p(a,b,);

(4 a2 + 3 b− 9) (8 a2 + 6 b− 18)2 − (16 a3 − 27 c+ 18 a (b− 3))2

> p(1,b,);
(−5 + 3 b) (−10 + 6 b)2 − (−38 − 27 c+ 18 b)2

> impliitplot(p(1,b,),b=0..4,=-1..1,grid=[100,100℄);

–0.2

0

0.2

0.4

0.6

0.8

1

c

2 2.5 3 3.5 4b

> impliitplot(p(2,b,),b=-6..4,=-4..4,grid=[100,100℄);
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–2

–1

1

2

3

4

c

–2 –1 1 2 3 4
b

> impliitplot(p(3,b,),b=-20..4,=-8..4,grid=[500,100℄);

–8

–6

–4

–2

2

4

c

–8 –6 –4 –2 2 4b

> impliitplot(p(-1,b,),b=-1..4,=-2..4,grid=[100,200℄);
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–2

–1.5

–1

–0.5

0

c

2 2.5 3 3.5 4b

3) F (a, b, c, x) = −∂V
∂x

= −x3 − ax− b (1).The standard form of ubi to produe a pithfork bifuration at x = a = 0in the {x, a} plane is x(x2 + a) = 0. This an be ahieve for (1) in the plane
b = 0.The standard form to give transritial and turning point bifurations is thatgiven in Example 1.8.2 by the right-hand side of equation (1.61) with c 6= 0.It has ubi, quadrati and linear terms but no onstant term. We must nowtransform (1) to this form. Consider
−(x+ α)3 + 2β(x+ α)2 + γ(x+ α) = −x3 + (2β − 3α)x2

+ (4αβ − 3α2 + γ)x

+ (γα+ 2βα2 − α3).So to eliminate the quadrati term on the right β = 3α/2 and
−x3 − ax− b = −(x+ α)3 + 3α(x+ α)2 + γ(x+ α),when α and γ satisfy the relations
3α2 + γ = −a
2α3 + γα = b.



6.2. PROBLEMS 2 159Eliminating γ gives the equation
αa− b = −α3,whih, for any number α, is a plane in the {x, a, b} spae on whih transrit-ial and turning point bifurations will our. To loate these bifurations
(x+ α)3 − 3α(x + α)2 − γ(x+ α) = (x+ α)[x2 − αx + (α2 + a)] = 0.The lines of equilibrium points have two branhes
x = −αand
a = −x2 + αx− α2.The turning point bifuration ours when
x = 1

2α, a = − 3
4α

2, b = 1
4α

3.The transritial bifuration will our when the two branhes ross. Thatis
x = −α, a = −3α2, b = −2α3.If for example we hoose α = 2

3 , then the plane is
18a− 27b+ 8 = 0,the turning point ours at x = 1

3 , a = − 1
3 , b = 2

17 , and the transritialbifuration at x = − 2
3 , a = − 4

3 , b = − 16
27 . We an hek out results usingMAPLE

> with(plots,impliitplot):
> F:=(a,b,x)->-x^3-x*a+b:
> impliitplot({F(a,0,x),x
> },x=-2..2,a=-2..2,grid=[100,100℄);
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–2

–1

1

2

a

–1 –0.5 0.5 1x

> impliitplot({F(a,-(8+18*a)/27,x),x+2/3},
> x=-2..2,a=-2..2,grid=[100,100℄);

–2

–1

1

2

a

–1 –0.5 0.5 1 1.5x

4) For �xed c The equilibrium region is a three-dimensional subspae in thespae {a, b, c, x, y} whih is given by the intersetion of
0 = −x2 + y2 − 2cx+ a, (6.4)
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0 = 2xy − 2cy + b. (6.5)The bifuration set lies in the the equilibrium region and also satis�es theJaobean ondition
∣
∣
∣
∣
∣

−2x− 2c 2y

2y 2x− 2c

∣
∣
∣
∣
∣
= 0,whih is

c2 = x2 + y2. (6.6)Now eliminate y between (6.4) and (6.6) to give
2x2 + 2xc− a− c2 = 0, (6.7)and between (6.5) and (6.6) to give
b2 = 4(x− c)2(c2 − x2).This expands to
4x4 − 8x3c+ 8c3x+ b2 − 4c4 = 0. (6.8)Now the hard work starts sine, to obtain the bifuration set x must be elim-inated between (6.7) and (6.8). This is most easily done using the Sylvesterdeterminant. The MAPLE program is
> with(linalg,det,matrix):
> with(plots,impliitplot):
> S:=(a,b,)->
> matrix([[2,2*,-a-^2,0,0,0℄,[0,2,2*,-a-^2,0,0℄,[0,0,2,2*,-a-^2,0℄,
> [0,0,0,2,2*,-a-^2℄,[4,-8*,0,8*^3,b^2-4*^4,0℄,[0,4,-8*,0,8*^3,b^2-4*^4℄℄):
> S(a,b,);











2 2 c −a− c2 0 0 0
0 2 2 c −a− c2 0 0
0 0 2 2 c −a− c2 0
0 0 0 2 2 c −a− c2

4 −8 c 0 8 c3 b2 − 4 c4 0
0 4 −8 c 0 8 c3 b2 − 4 c4
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> s:=(a,b,)->simplify(det(S(a,b,))/16):
> s(a,b,);

18 a2 c4 − 8 c2 a3 − 27 c8 + b4 + 18 b2 c4 + 2 b2 a2 + 24 b2 a c2 + a4

> # This is different from the answer given
> so
> we hek for equivalene.
> g:=(a,b,)->27*^8-18*^4*(a^2+b^2)
> +8*^2*a*(a^2-3*b^2)-(a^2+b^2)^2;

g := (a, b, c) → 27 c8 − 18 c4 (a2 + b2) + 8 c2 a (a2 − 3 b2) − (a2 + b2)2

> simplify(s(a,b,)+g(a,b,));
0

> # So they are the same.
> # Now we translate into polars.
> spolar:=(r,theta,)->simplify(g(r*os(theta),r*sin(theta),)):
> spolar(r,theta,);

27 c8 − 18 c4 r2 + 32 c2 r3 cos(θ)3 − 24 c2 r3 cos(θ) − r4

> # We again hek for equivalene.
> h:=(r,theta,)->(3*^2-r)^3*(r+^2)
> +8*^2*r^3*(os(3*theta)-1);

h := (r, θ, c) → (3 c2 − r)3 (r + c2) + 8 c2 r3 (cos(3 θ) − 1)

> expand(spolar(r,theta,)-h(r,theta,),trig);
0

> impliitplot(s(a,b,2)=0,a=-7..11,b=-10..10,grid=[100,100℄);
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–10

–5

0

5

10

b

–6 –4 –2 2 4 6 8 10
a

It is lear that
(r + c2)(3c2 − r)3 + 8c2r3{cos(3θ) − 1} = 0 (6.9)has rotational symmetry with period θ = 2π

3 and that when θ = 0, 2π
3 ,

4π
3 ,

r = 3c2. To see that these point are usps we take r = 3c2 + △r and
θ = 2nπ

3 + △θ. Equation (6.9) then gives
(△r)3 + (27c2)[3c2△θ]2 = 0.This is the standard form for a usp in the loal variables (△r, 3c2△θ).5) The equilibrium points are given by
z(x− a) = −c, y = −x, z = x. (6.10)So the x oordinates of the equilibrium points are given by real roots of
x(x − a) + c = x2 − ax+ c =

(

x− 1
2
a
)2

−
(

1
4
a2 − c

)

= 0,whih exist only when a2 ≥ 4c. The bifuration set, if it exists, is given bya single equation relating a and c and is obtained by eliminating x, y and zbetween (6.10) and
∣
∣
∣
∣
∣
∣
∣
∣

0 −1 −1

1 1 0

z 0 (x − a)

∣
∣
∣
∣
∣
∣
∣
∣

= x+ z − a = 0. (6.11)



164 CHAPTER 6. SOLUTIONSThis gives x = z = 1
2a, y = − 1

2a, a2 = 4c. It follows that a bifuration anour only when c ≥ 0. When c = 0 there are two lines of equilibrium pointsin the x�a plane x = a, x = 0, with a transritial bifuration at x = a = 0;when c > 0 the equilibrium urves in the x�a plane are given by
a = x+

c

x
.This is hyperbola with turning point bifurations at a = ±2

√
c, x = ±√

c.6.3 Problems 31) ∇L = (nxn−1, αmym−1). So(i) F .∇L = −nxn − 2nxn−1y2 + αmxym − αmym+2.The aim is to make sure that this expression is negative for all signsof x and y. This means eliminating odd degree terms. So we must getrid of the third term and the only way to do it is by arranging that itanels with the seond term. So n = m = α = 2 and
F .∇L = −2x2 − 4y4 < 0.

L(0, 0) = 0 and L(x, y) has a minimum at (0, 0), so the equilibriumpoint is asymptotially stable.(ii) F .∇L = nxn−1y − nxn+2 − αmym−1x3.Now we arrange for the �rst and third terms to anel by taking n = 4,
m = α = 2. This gives
F .∇L = −4x6 < 0.

L(0, 0) = 0 and L(x, y) has a minimum at (0, 0), so the equilibriumpoint is asymptotially stable.2) For the equilibrium points; from the seond equation x3 = y3 giving x = yand then from the �rst equation x = y = 0.
∇L = (2x+ αy, 2βy + αx).So
F .∇L = (2 − α)x4 + 2βy4 + (α− 2)x2y2 + (2 + α− 2β)x3y.For the �rst three terms to be of only one sign we must take α = 2 and wemust also eliminate the last term; so β = 2. Thus
F .∇L = 4y4 > 0.Also L(0, 0) = 0 and L(x, y) = x2 + 2xy + 2y2 does not hange sign in aneighbourhood of (0, 0), sine x2 + 2xy + 2y2 = 0 has no real roots. It istherefore always positive and thus L(x, y) has a minimum at (0, 0). So theequilibrium point is unstable.



6.3. PROBLEMS 3 1653) ẋ(t) = y(t), ẏ(t) = x(t){a|x(t)| − 1}and
x

dx

dt
+ y

dy

dt
= ax|x|dx

dt
.Integrating

1
2
{x2 + y2} = E +

{ 1
3
ax3, if x > 0,

−1
3
ax3, if x < 0,

1
2
{x2 + y2} − 1

3
a|x|3 = E.The equilibrium points are x = y = 0, for all a, x = ±1/a, y = 0, for a > 0.Linearizing about x = y = 0,

J∗ =

(
0 1

−1 0

)

,whih has eigenvalues ±i. So the origin is a entre.Linearizing about x = ±1/a, y = 0, when a > 0,
J∗ =

(
0 1

1 0

)

,in both ases with eigenvalues ±1. So the eah of these equilibrium pointsis a saddle point.
a

x

SADDLE POINTSADDLE POINT
CENTRE



166 CHAPTER 6. SOLUTIONSCurves are divided, by the separatrix, between losed urves about the entreand open urves with two branhes. Sine the separatrix passes through bothbranh-points, its value of E is given by substituting x = ±1/a, y = 0 into
(∗). This gives E = 1/(6a2). Curves with E ≤ 1/(6A2) ut the x�axis andfor eah value of a onsist of two open branhes and a losed loop. CurvesFor E > 1/(6A2) ut the y�axis and for eah value of a onsist of two openbranhes.
> with(plots):
> f:=(x,y,a,En)->
> x^2/2+y^2/2-a*abs(x^3)/3-En:
> # Try the ase a=1, with E=1/100,1/6,1:
> impliitplot(
> {f(x,y,1,1/100),f(x,y,1,1/6),f(x,y,1,1)},
> x=-2..2,y=-2..2,grid=[100,100℄);
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> # Try the ase a=-1, with E=1/100,1/6,1:
> impliitplot(
> {f(x,y,-1,1/100),f(x,y,-1,1/6),f(x,y,-1,1)},
> x=-2..2,y=-2..2,grid=[100,100℄);
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Periodi solutions (losed urves) exist for all a. Let ζ be the smallest positiveroot of
1
2
x2 − 1

3
ax3 = E.Then

dx

dt
=

√
2
3
ax3 + 2E − x2

=
√

ζ2 − 2
3
aζ3 − x2 + 2

3
ax3.Integrating over [−ζ, ζ] gives T/2 and thus the required result.4) ẋ(t) = y(t), ẏ(t) = −x(t) − bx3(t) − 2ay(t).The equilibrium points are on y = 0 and given by

x(1 + bx2) = 0.So they are x = y = 0, for all values of the parameters, and x = ±1/
√
−b,

y = 0, when b < 0.



168 CHAPTER 6. SOLUTIONSLinearizing about x = y = 0,
J∗ =

(
0 1

−1 −2a

)

,whih has eigenvalues −a±√
a2 − 1. So the origin is

• A stable proper node if a > 1.
• A stable in�eted node if a = 1.
• A stable fous if 0 < a < 1.Linearizing about x = ±1/

√
−b, y = 0,

J∗ =

(
0 1

2 −2a

)

,whih has eigenvalues a ±
√
a2 + 2. So the equilibrium points are saddlepoints.Theorem 1.12.1, on page 26, tells us that for a > 0 the origin is an asymp-totially stable equilibrium point. This an also be established using theLyapunov diret method. With the given form,

L(x, y) = 1
2
[x2 + y2] + 1

4
bx4for the Lyapunov funtion,

∇L = (x+ bx3, y),

F .∇L = −2ay2 < 0.So the origin is an asymptotially stable equilibrium point with x(t) → 0 as
t→ ∞.5) The general solution to the equations is
x(t) = A cos(t) + B sin(t), y(t) = −A sin(t) + B cos(t).Denote the given periodi solution by
x̊(t) = a cos(t), ẙ(t) = −a sin(t).To show that this is stable we must show that, given ε > 0, there exists
δ(ε) > 0 suh that, if
{x(0) − x̊(0)}2 + {y(0) − ẙ(0)}2 = (A − a)2 + B2 < [δ(ε)]2,
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{x(t) − x̊(t)}2 + {y(t) − ẙ(t)}2 = [(A − a) cos(t) + B sin(t)]2

+ [(a− A) sin(t) + B cos(t)]2 < ε2.Expanding this expression gives
(A − a)2 + B2 < ε2.So we just hoose δ = ε.6) With y(t) de�ned as ẋ(t) we have
ẋ(t) = y(t), ẏ(t) = by(t)[a− x2(t) − y2(t)] − x(t).Then
r
dr

dt
= x

dx

dt
+ y

dy

dt
= by2[a− x2 − y2]

= br2 sin2(θ)[a− r2].So
ṙ = br sin2(θ)(a− r2).Sine y(t) = ẋ(t),
r sin(θ) =

d[r cos(θ)]

dt
= ṙ cos(θ) − θ̇ r sin(θ).Substituting for ṙ gives

θ̇ r sin(θ) = br sin2(θ) cos(θ)[a − r2] − r sin(θ).So
θ̇ = 1

2
b sin(2θ)[a− r2] − 1.Substituting r =

√
a into the expressions for ṙ and θ̇ we have ṙ = 0 and

θ̇ = −1. So we have a periodi solution
x̊(t) =

√
a cos(t0 − t), ẙ(t) =

√
a sin(t0 − t),of period 2π. Now let

△x(t) = x(t) − x̊(t), △y(t) = y(t) − ẙ(t).
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d△x
dt

= ẋ−√
a sin(t0 − t)

= y − ẙ

= △y(t).

d△y
dt

= ẏ(t) +
√
a cos(t0 − t)

= by(a− x2 − y2) − x− x̊

= △x+ b(̊y + △y)(a− x̊2 − ẙ2 − 2x̊△x− 2ẙ△y)

= −△x(1 + 2bx̊ẙ] − 2bẙ2△y

= −△x(t)[1 + ab sin(2t0 − 2t)] − 2△y(t)[ab sin2(t0 − t)],from whih
Trace{J̊(t)} = −2ab sin2(t0 − t).So the sum of the Floquet exponents is
σ(1) + σ(2) = − 1

2π

∫ 2π

0

2ab sin2(t0 − t)dt = −ab.Substituting r = △r+
√
a into the di�erential equation for r, with θ = t0− twe obtain the given equation. For b > 0, if △r > 0 then

d△r
dt

≤ 0, over the whole period.If △r < 0 then
d△r
dt

> 0, if |△r| < √
a.So in either ase Lyapunov stability is established for some ε > 0 by hoosing

δ to be the smaller of ε and √
a.7) (i) The equilibrium points are solutions of

0 = x+ y − x(x2 + 2y2), (6.12)
0 = −x+ y − y(x2 + 2y2). (6.13)



6.3. PROBLEMS 3 171Multiplying (6.12) by y and (6.13) by x and subtrating gives x2 +y2 =
0. So the only equilibrium point is x = y = 0. The stability matrix is
J∗ =

(
1 1
−1 1

)

,with eigenvalues λ(±) = 1 ± i. So the origin is an unstable fous. Now
r
dr

dt
= x

dx

dt
+ y

dy

dt
,

= x2 + y2 − (x2 + y2)(x2 + 2y2).So
dr

dt
= r − r3(1 + sin2(θ)). (6.14)Also

dx

dt
= cos(θ)

dr

dt
− r sin(θ)

dθ

dt

= r cos(θ) + r sin(θ) − r cos(θ){r2 + r2 sin2(θ)},giving
dθ

dt
= −1. (6.15)Equation (6.14) an be expressed in the form

ṙ(t) = −r(r2 − 1) − r3 sin2(θ).So on the irle r = 1 + δ for any δ > 0

ṙ(t) < 0.Equation (6.14) an also be expressed in the form
ṙ(t) = 2r

(
1
2
− r2

)

+ r3(1 − sin2(θ)). (6.16)So on the irle r = 1/
√

2 − δ for any 1/
√

2 > δ > 0

dr

dt
> 0.So the annulus

1√
2
− δ ≤ r ≤ 1 + δsatis�es the result of the �rst part of the question and must ontaineither an equilibrium point or a periodi solution. Sine the origin isthe only equilibrium point it must ontain a periodi solution.Sine, from the Poinaré-Bendixson theorem, the trajetory tends tothe periodi solution as t → ∞ it must be stable. Alternatively denote



172 CHAPTER 6. SOLUTIONSthe periodi solution of (6.15) and (6.16) by r = r̊(t) and substitute
r = r̊(t) + △r into (6.16) and linearize to give
d△r
dt

= −{3̊r2[1 + sin2(t)] − 1}△r.But
3̊r2[1 + sin2(t)] − 1 > 3

(
1√
2
− δ

)2

[1 + sin2(t)] − 1 > 0,for su�iently small δ. So the periodi solution is stable.(ii) The equilibrium points are solutions of
0 = −x− y + x(x2 + 2y2), (6.17)
0 = x− y + y(x2 + 2y2). (6.18)Multiplying (6.17) by y and (6.18) by x and subtrating gives x2 +y2 =
0. So the only equilibrium point is x = y = 0. The stability matrix is
J∗ =

(
−1 −1
1 −1

)

,with eigenvalues λ(±) = −1 ± i. So the origin is a stable fous.AT THIS POINT YOU SHOULD REALIZE THAT THIS IS AN AP-PLICATION OF THE POINCARÉ-BENDIXSONTHEOREM IN THE REVERSE TIME DIRECTION.
r
dr

dt
= x

dx

dt
+ y

dy

dt
,

= −x2 − y2 + (x2 + y2)(x2 + 2y2).So
ṙ(t) = −r + r3(1 + sin2(θ)). (6.19)Also
cos(θ)

dr

dt
− r sin(θ)

dθ

dt
= −r cos(θ) − r sin(θ)

+ r cos(θ){r2 + r2 sin2(θ)},giving
θ̇(t) = 1. (6.20)Equation (6.19) an be expressed in the form
ṙ(t) = r(r2 − 1) + r3 sin2(θ).



6.4. PROBLEMS 4 173So on the irle r = 1 + δ for any δ > 0

ṙ(t) > 0.Equation (6.19) an also be expressed in the form
= 2r(r2 − 1

2) + r3(sin2(θ) − 1). (6.21)So on the irle r = 1/
√

2 − δ for any 1/
√

2 > δ > 0

ṙ(t) < 0.So the annulus
1√
2
− δ ≤ r ≤ 1 + δsatis�es the result of the �rst part of the question and must ontaineither an equilibrium point or a periodi solution. Sine the origin isthe only equilibrium point it must ontain a periodi solution.Sine, from the reverse Poinaré-Bendixson theorem, the reverse tra-jetory tends to the periodi solution as t → −∞ it must be unsta-ble. Alternatively denote the periodi solution of (6.20) and (6.21) by

r = r̊(t) and substitute r = r̊(t) + △r into (6.21) and linearize to give
d△r
dt

= {3̊r2[1 + sin2(t)] − 1}△r.But
3̊r2[1 + sin2(t)] − 1 > 3

(
1√
2
− δ

)2

[1 + sin2(t)] − 1 > 0,for su�iently small δ. So the periodi solution is unstable.6.4 Problems 41) With y(t) denoting ẋ(t)
ẋ(t) = y(t), ẏ(t) = −x(t)[1 − εx(t)].The equilibrium points are x = y = 0 and x = 1/ε, y = 0.Linearizing about x = y = 0 the stability matrix is
J∗ =

(
0 1
−1 0

)

,with eigenvalues ±i. So the origin is a entre.



174 CHAPTER 6. SOLUTIONSLinearizing about x = 1/ε, y = 0 the stability matrix is
J∗ =

(
0 1
1 0

)

,with eigenvalues ±1. So this is a saddlepoint.
ε

x

SADDLE POINT
CENTREAlthough you are not asked to do this it is of interest to �nd a �rst integraland plot urves in the x�y plane.

x
dx

dt
+ y

dy

dt
= εx2 dx

dt
,with the integral

1
2
x2 + 1

2
y2 − 1

3
εx3 = E.For a partiular ε the urve passes through the saddle point at x = 1/ε,

y = 0, giving the separatrix with a homolini point, when E = 1/6ε2. Weompute the urves for ε = 1 and E = 1
10 ,

1
6 , 1.

> with(plots):
> f:=(x,y,epsilon,En)->
> x^2/2+y^2/2-epsilon*x^3/3-En:
> # Try the ase epsilon=1, with
> E=1/10,1/6,1:
> impliitplot(
> {f(x,y,1,1/10),f(x,y,1,1/6),f(x,y,1,1)},
> x=-2..2,y=-2..2,grid=[100,100℄);
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(a) Let τ = ω(ε)t. Then the equation beomes
ω2(ε)

d2x

dτ2
+ x− εx2 = 0.Let

x(ε, τ) = x0(τ) + εx1(τ) + O(ε2),

ω(ε) = 1 + ω1ε+ O(ε2).The ε0 ontribution to the equation is
d2x0

dτ2
+ x0 = 0,with solution

x0(τ) = A0 cos(τ) + B0 sin(τ).Sine this ontribution ontains all the O(ε0) part of the solution itfollows from the t = 0 initial onditions that B0 = 0 and A0 = a0. The
ε1 ontribution to the equation is
d2x1

dτ2
+ 2ω1

d2x0

dτ2
+ x1 − x2

0 = 0.Substituting for x0 gives
d2x1

dτ2
+ x1 = 1

2
a2
0[1 + cos(2τ)] + 2ω1a0 cos(τ).



176 CHAPTER 6. SOLUTIONSSuppose the solution is of the form
x1(τ) = A1 cos(τ) + B1 sin(τ) +X(τ).Then
X ′′(τ) +X(τ) = 1

2
a2
0[1 + cos(2τ)] + 2ω1a0 cos(τ).A partiular solution to this equation is

X(t) = 1
2
a0ω1τ [cos(τ) + 2 sin(τ)] + 1

2
a2
0 − 1

6
a2
0 cos(2τ).We are interested in �nding the periodi ontribution. But the �rst pairof terms involves τ cos(τ) and τ sin(τ), whih are not periodi.2 So toensure that the solution is periodi we must take ω1 = 0 so that

ω = 1 + O(ε2).Also from the initial onditions it follows that B1 = 0 and
a1 = A1 + 1

3
a2
0.Thus we have

x(ε, t) = a0 cos(t) + ε
{[

a1 − 1
3
a2
0

]

cos(t) + 1
2
a2
0 − 1

6
a2
0 cos(2t)

}

.(b) Let
x(ε, t) = r cos(θ) + εu(1)(r, θ) + O(ε2),with
∫ 2π

0

u(1)(r, θ) cos(θ)dθ =

∫ 2π

0

u(1)(r, θ) sin(θ)dθ = 0and
ṙ(t) = εA(1)(r) + O(ε2),

θ̇(t) = −1 + εB(1)(r) + O(ε2).Then
ẋ(t) = ṙ(t) cos(θ) − r sin(θ)θ̇(t) + ε

{
∂u(1)

∂θ
θ̇(t) +

∂u(1)

∂r
ṙ(t)

}

ẍ(t) = r̈(t) cos(θ) − 2ṙ(t)θ̇(t) sin(θ) − r cos(θ)[θ̇(t)]2 − r sin(θ)θ̈(t)

+ ε

{
∂2u(1)

∂θ2
[θ̇(t)]2 +

∂u(1)

∂θ
θ̈(t) + 2

∂2u(1)

∂r∂θ
θ̇(t)ṙ(t)

+
∂2u(1)

∂r2
[ṙ(t)]2 +

∂u(1)

∂r
r̈(t).

}2They are alled seular terms.



6.4. PROBLEMS 4 177The �rst line of terms ontain both O(ε0) and O(ε1) ontributions. Whenwe substitute into the equation the O(ε0) ontributions anel and the
O(ε1) terms give
2 sin(θ)A(1)(r) + 2r cos(θ)B(1)(r) +

∂2u(1)

∂θ2
+ u(1) = r2 cos2(θ).Now

A(1)(r) =
1

2π

∫ 2π

0

r2 cos2(θ) sin(θ)dθ = 0,

B(1)(r) =
1

2π

∫ 2π

0

r cos3(θ)dθ = 0.So
∂2u(1)

∂θ2
+ u(1) = r2 cos2(θ),whih has the solution

u(1)(r, θ) = A1 cos(t) + B1 sin(t) + 1
6
r2[3 − cos(2θ)].Sine

ṙ(t) = O(ε2), r = A0 + O(ε2)

θ̇(t) = −1 + O(ε2), θ = C0 − t+ O(ε2)To satisfy the initial onditions B1 − C0 = 0 and
x(ε, t) = A0 cos(t) + ε

{

A1 cos(t) + 1
6
A2

0[3 − cos(2t)]
}

.To satisfy the initial onditions we must now hoose A0 = a0 and A1 =
a1 − 1

3a
2
0.2) As was de�ned in Set. 4.7.1 the synhronous ontribution to the solution toan equation with a foring term is that part with the same frequeny as theforing term. If we are onerned only with this ontribution we an negletperturbations in the frequeny. Let

x(ε, t) = x0(t) + εx1(t).The O(ε0) ontribution satis�es
d2x0

dt2
+ ω2

0x0 = Γ cos(Ωt).The omplementary funtion will not be synhronous sine its frequeny is
ω0 not Ω. So we just take the partiular integral
x0(t) =







Γ cos(Ωt)

ω2
0 − Ω2

, Ω 6= ω0,
Γt sin(Ωt)

2Ω
, Ω = ω0.



178 CHAPTER 6. SOLUTIONSAt the exluded value Ω = ω0 there is a resonane with amplitude growingwith t. The O(ε1) ontribution satis�es
d2x1

dt2
+ ω2

0x1 = ω2
0x

4
0

=
ω2

0Γ
4 cos4(Ωt)

(ω2
0 − Ω2)4

.Sine
cos4(Ωt) = 1

8
{cos(4Ωt) + 4 cos(2Ωt) + 3},

ω0 = 2Ω and 4Ω will also give resonanes. Exluding these values the par-tiular integral is
x1(t) =

ω2
0Γ

4

8(ω2
0 − Ω2)4

{
cos(4Ωt)

ω2
0 − 16Ω2

+
4 cos(2Ωt)

ω2
0 − 4Ω2

+
3

ω2
0

}

,and
x(t) =

Γ cos(Ωt)

ω2
0 − Ω2

+
εω2

0Γ
4

8(ω2
0 − Ω2)4

{
cos(4Ωt)

ω2
0 − 16Ω2

+
4 cos(2Ωt)

ω2
0 − 4Ω2

+
3

ω2
0

}

.3) Let
τ = Ωtω(ε)/ω0, ω(ε) = ω0g(ε),

α = ω0/Ω, Γ̃ = Γ/Ω2.Then the equation transforms to
g2(ε)

d2x

dτ2
+ α2(x− εx4) = εΓ̃ cos[τω0/ω(ε)].Let

x(ε, τ) = x0(τ) + εx1(τ) + O(ε2),

g(ε) = 1 + εg1 + O(ε2).Then the O(ε0) terms satisfy
d2x0

dτ2
+ α2x0 = 0.Using the initial ondition, the solution is

x0(τ) = a0 cos(ατ).



6.4. PROBLEMS 4 179Then the O(ε1) terms satisfy
d2x1

dτ2
+ α2x1 = 2g1a0α

2 cos(ατ) + α2a4
0 cos4(ατ) + Γ̃ cos(τ).Terms with cos(ατ) on the right will give a seular ontribution to the solu-tion. Sine cos4(ατ) unlike cos3(ατ) does not ontain suh a term we musttake g1 = 0 to eliminate a seular ontribution. Then

d2x1

dτ2
+ α2x1 = 1

8
α4a4

0[cos(4ατ) + 4 cos(2ατ) + 3] + Γ̃ cos(τ).Using the trial funtion
f(τ) = A0 + A1 cos(2ατ) + A3 cos(4ατ) + A4 cos(τ)for the partiular solution it follows that
x1(τ) = a1 cos(ατ) +

Γ̃ cos(τ)

α2 − 1
− 1

8
α2a4

0

[
cos(4ατ)

15α2
+

4 cos(2ατ)

3α2
− 3

α2

]

,giving
x(t) = cos(ω0t)[a0 + εa1] +

εΓ cos(Ωt)

ω2
0 − Ω2

− 1
8
a4
0ε
[

1
15

cos(4ω0t) + 4
3

cos(2ω0t) − 3
]

.4) Let τ = Ωt. Then the equation transforms to
Ω2(ε)

d2x

dτ2
+ ω2

0(x + εx2) = Γ cos(τ).Let
x(ε, τ) = x0(τ) + εx1(τ) + O(ε2),

Ω(ε) = Ω0 + εΩ1 + O(ε2).Then the O(ε0) terms satisfy
Ω2

0

d2x0

dτ2
+ ω2

0x0 = Γ cos(τ),with solution
x0(τ) = a0 cos(ω0τ/Ω0) +

Γ cos(τ)

ω2
0 − Ω2

0

.



180 CHAPTER 6. SOLUTIONSIf Ω0 = 2ω0 then
x0(τ) = a0 cos(τ/2) − Γ cos(τ)

3ω2
0

.Then the O(ε1) terms satisfy
2ω0Ω1

d2x0

dτ2
+ 4ω2

0

d2x1

dτ2
+ ω2

0 [x1 + x2
0] = 0.Substituting for x0(τ) gives

d2x1

dτ2
+ 1

4
x1 =

Ω1

8ω0

[

a0ω
2
0 cos(τ/2) − 4

3
Γ cos(τ)

]

− 1
4

[

a0 cos(τ/2) − Γ cos(τ)

3ω2
0

]2

.Expanding the last term gives
d2x1

dτ2
+ 1

4
x1 =

Ω1

8ω0

[

a0ω
2
0 cos(τ/2) − 4

3
Γ cos(τ)

]

− 1
8
a2
0[1 + cos(τ)]

− Γ2

72ω4
0

[1 + cos(2τ)] +
Γa0

6ω2
0

[cos(3τ/2) + cos(τ/2)].To eliminate seular terms we must remove the cos(τ/2) terms from thenon-foring ontribution by setting Ω1 = 4
3
Γ/ω3

0. Then
d2x1

dτ2
+ 1

4
x1 = −1

8
a2
0[1 + cos(τ)] − Γ2

72ω4
0

[1 + −16 cos(τ) + cos(2τ)]

+
Γa0

6ω2
0

cos(3τ/2).This has the solution
x1(τ) = −a2

0

[

2 − 1
6

cos(τ)
]

− Γ2

18ω4
0

[

4 + 16
3

cos(τ) − 1
15

cos(2τ)
]

− Γa0

12ω2
0

cos(3τ/2).Finally we substitute these results for x0(τ) and x1(τ) into the expansion for
x(ε, t) with τ = Ωt and ompare oe�ients with those given in the question.We have
A(ε) = −2

9
ε

[

9a2
0 +

Γ2

ω4
0

]

, B(ε) = a0,

C(ε) = − Γ

3ω2
0

+ 1
6
a2
0ε−

8Γ2ε

27ω4
0

, D(ε) = − εΓa0

12ω2
0

,

E(ε) =
εΓ2

270ω4
0

.



6.4. PROBLEMS 4 1815) To apply the Krylov-Bogoliubov-Mitropolsky averaging method to the equa-tion
d2x

dt2
+ εf

(

x,
dx

dt

)

+ x = εΓ cos(Ωt),we suppose that:(i) x(ε, t) = r cos(θ) + εu(1)(r, θ) + ε2u(2)(r, θ) + · · · ,where u(k)(r, θ + 2π) = u(k)(r, θ) and
∫ 2π

0

u(k)(r, θ) cos(θ)dθ =

∫ 2π

0

u(k)(r, θ) sin(θ)dθ = 0,

k = 1, 2, . . . .(ii)
dr

dt
= εA(1)(r) + ε2A(2)(r) + · · · ,

dθ

dt
= −1 + εB(1)(r) + ε2B(2)(r) + · · · ,The k-th order KBM method onsists in retaining terms up to εk. We nowapply the method to the Van der Pol equation with a weak foring term

d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = εΓ cos(Ωt).where Ω is not lose to unity. Retaining terms to O(ε) it follows from (i) and(ii) that

ε(x2 − 1) = ε{r2 cos2(θ) − 1},

dx

dt
= r sin(θ) + ε

{

A(1)(r) cos(θ) − rB(1)(r) sin(θ) − ∂u(1)

∂θ

}

,

d2x

dt2
= −r cos(θ) + ε

{

2 sin(θ)A(1)(r) + 2r cos(θ)B(1)(r) +
∂2u(1)

∂θ2

}

.Substituting into Van der Pol equation the terms of O(ε0) anel and theterms of O(ε1) give
{
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ)

}

+ 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ r sin(θ){r2 cos2(θ) − 1} = Γ cos(Ωt). (6.22)



182 CHAPTER 6. SOLUTIONSWe must now eliminate the term with expliit t dependene. We do this byde�ning
u(1)(r, θ) = ũ(1)(r, θ) +

Γ cos(Ωt)

1 − Ω2and substituting into (6.22) gives
{
∂2ũ(1)(r, θ)

∂θ2
+ ũ(1)(r, θ)

}

+ 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ r sin(θ){r2 cos2(θ) − 1} = 0. (6.23)Now multiplying suessively by sin(θ) and cos(θ), integrating over [0, 2π]and using the integral results in (i) gives
A(1)(r) = − r

2π

∫ 2π

0

dθ sin2(θ){r2 cos2(θ) − 1} = 1
8
r(4 − r2),

B(1)(r) = − 1

2π

∫ 2π

0

dθ sin(θ) cos(θ){r2 cos2(θ) − 1} = 0.

(6.24)Sine x(0) = r0 + O(ε1), ẋ(0) = O(ε1), r(0) = r0 and θ(0) = 0. From (ii)and (6.24)
dθ

dt
= −1, giving θ = −t,

dr

dt
= 1

8
εr(4 − r2),giving

εt = 8

∫ r

r0

dr

r(4 − r2)
= ln

{
r2(4 − r20)

r20(4 − r2)

}

r20(4 − r2)

r2(4 − r20)
= exp(−εt).Substituting from (6.24) into (6.23) gives

∂2ũ(1)(r, θ)

∂θ2
+ ũ(1)(r, θ) = −1

4
r3{3 sin(θ) − 4 sin3(θ)} = −1

4
r3 sin(3θ).This has the solution

ũ(1)(r, θ) = 1
32
r3 sin(3θ).



6.5. PROBLEMS 5 183So
u(1)(r, θ) = 1

32
r3 sin(3θ) +

Γ cos(Ωt)

1 − Ω2and from (i)
x(ε, t) = r cos(t) − 1

32
εr3 sin(3t) +

εΓ cos(Ωt)

1 − Ω2 .6.5 Problems 51) With ẋ(t) denoted as y(t)
ẋ(t) = y(t),

ẏ(t) = x(t) − µy(t) − x2(t).The equilibrium points are (0, 0) and (1, 0).Linearizing about x = y = 0 the stability matrix is
J∗ =

(
0 1

1 −µ

)

,with eigenvalues 1
2 [−µ±

√

µ2 + 4]. Sine both eigenvalues are real with onepositive and one negative, for all µ, this is a saddle point.Linearizing about x = 1, y = 0 the stability matrix is
J∗ =

(
0 1

−1 −µ

)

,with eigenvalues 1
2 [−µ±

√

µ2 − 4]. So this equilibrium point is
• A stable node if µ > 2.
• A stable in�eted node if µ = 2.
• A stable fous if 0 < µ < 2.
• A entre if µ = 0.
• A unstable fous if −2 < µ < 0.
• A unstable in�eted node if µ = −2.
• A unstable node if µ < −2.
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x
dx

dt
= yx, y

dy

dt
= yx− x2 dx

dt
.So

x
dx

dt
− y

dy

dt
= x2 dx

dt
,giving

1
2
[x2 − y2] = E − 1

3
x3.The homolini trajetory passes through the origin and thus orresponds to

E = 0. A MAPLE plot for some trajetories is
> with(plots):
> f:=(x,y)->(x^2-y^2)/2-x^3/3:
> urve:=
> impliitplot({f(x,y)=-2,f(x,y)=0,f(x,y)=1/9},
> x=-2..3,y=-3.5..3.5,grid=[100,100℄,
> labelfont=[TIMES,ITALIC,12℄,linestyle=5,thikness=1):
> text:=
> plots[textplot℄({[-1.0,0.2,`E=1/9`℄,
> [0.9,0.1,`E=1/9`℄,[1,0.8,`E=0`℄,[1,2.2,`E=-2`℄},
> align={ABOVE,RIGHT},font=[TIMES,ITALIC,10℄):
> plots[display℄({urve,text});
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E=–2

E=0

E=1/9E=1/9

–3

–2

–1

0

1

2

3

y

–2 –1 1 2x

The arrows indiating the diretion of �ow an be added to this diagramusing the fat that ẋ(t) > 0 when y > 0. When µ is small and positivethe entre at (1, 0) hanges to a stable fous. The right-hand part of thehomolini trajetory breaks into a part spiralling into the fous point anda branh oming from in�nity.

–3

–2

–1

0

1

2

3

y

–2 –1 1 2x



186 CHAPTER 6. SOLUTIONSWhen µ is small and negative the �gure is obtained by re�eting this diagramin the x�axis and reversing the diretion of the arrows.2) Substituting x = xc + △x, y = yc + △y, z = zc + △z into the Lorentzequations gives
d△x
dt

= −a(△x−△y),

d△y
dt

= △x−△y − xc△z + (ρ− ρc)(xc + △x) −△x△z,

d△z
dt

= yc△x+ xc△y − b△z + △x△y.These an be expressed in vetor form as
d△r

dt
+ J∗△r = w,where J∗ and w are as given on the question sheet. Now substitute t = τ/ωto give the required equation. The eigenvalue equation of J∗ is

λ3 + (a+ b+ 1)λ2 + b(a+ ρc)λ+ 2ab(ρc − 1) = 0.Having been given one root the ubi an be fatorized and the roots are
λ = −(a+ b+ 1),

λ = ±i
√

b(a+ ρc) = ±i

√

2ab(a+ 1)

a− b− 1
,whih identi�es ωc. Let v and u be the left and right eigenvetors of J∗ witheigenvalue iωc. Then

vTJ∗ = iωcv
T, J∗u = uiωc.Let

p = ua(τ) + ūb(τ)and substitute into the equation. Sine the terms on the right-hand side areof O(ε), the terms of O(ε1/2) give
u

da

dτ
+ ū

db

dτ
+ i[ua− ūb] = 0.



6.5. PROBLEMS 5 187Operating on the left with vT gives
da

dτ
+ ia = 0,

a(τ) = c exp(−iτ),and
db

dτ
− ib = 0,

b(τ) = c′ exp(iτ).Sine p is real c′ = c̄ and we have the required result.3) Substituting t = ετ , ρ = 1/ε2, x = ξ/ε, y = η/(ε2a) and z = (ζ + a)/(ε2a)into the Lorentz equations to ahieve the required forms is straightforward.When ε = 0

dξ

dτ
= η,

dη

dτ
= −ξζ, dζ

dτ
= ξηand thus

η
dη

dτ
+ ζ

dζ

dτ
= 0,giving

1
2
η2 + 1

2
ζ2 = α,and

ξ
dξ

dτ
− dζ

dτ
= 0,giving

1
2
ξ2 − ζ = β.Also
(

dξ

dτ

)2

= 2α2 − ζ2 = 2α−
(

1
2
ξ2 − β

)2

= (2α− β2) − 1
4
ξ4 + βξ2.When α = 9

8 , β = 1
2 ,

(
dξ

dτ

)2

= −1
4
(ξ2 + 2)(ξ2 − 4).



188 CHAPTER 6. SOLUTIONSThe solution is on�ned to the range −2 ≤ ξ ≤ 2 with dxi/dtau = 0 atthe extremities. The period of the solution will be given by integrating over
[−2, 2] and doubling the result. That is
4

∫ 2

−2

dξ
√

(ξ2 + 2)(4 − ξ2)
.We an determine the form of the orbits in the ξ�dξ/dτ plane using MAPLE.

> with(plots):
> f:=(x,y,alpha,beta)->
> 2*alpha-beta^2-x^4/4+beta*x^2-y^2:
> urve:=impliitplot({f(x,y,9/8,1/2)=0,f(x,y,9/8,-1/2)=0
> },
> x=-3..3,y=-2.5..2.5,grid=[100,100℄,labelfont=[TIMES,ITALIC,12℄,
> linestyle=5,thikness=1):
> text:=plots[textplot℄(
> {[0.8,0.5,`b=-1/2`℄,[2.1,0.5,`b=1/2`℄,[1,2.2,`a=9/8`℄},
> align={ABOVE,RIGHT},font=[SYMBOL,10℄):
> plots[display℄({urve,text});

α=9/8

β=1/2β=±1/2
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–0.5
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–2 –1 1 2x
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4) For the given transformation the stability matrix is

J[x,y] =







(
τa 0
0 2

)

, y < 1
2
,

(
τb 0
0 2

)

, y > 1
2
.Suppose that in n iterations the mapping spends p in the region y < 1

2 . Thenthe eigenvalues of S(n) (de�ned by (5.64) are 2n and τp
a τ

n−p
b . Then, from(5.66),

λ
(1)
L = lim

n→∞

ln(2n)

n
= ln(2) > 0,

λ
(2)
L = lim

n→∞

ln(τp
a τ

n−p
b )

n
= µ ln(τa) + (1 − µ) ln(τb) < 0,where

µ = lim
n→∞

( p

n

)

.Sine λ(1)
L > 0 and λ(2)

L < 0 the system is haoti. In formula (5.79) for theLyapunov dimension of the attrator we take k = 1 to give
D(A) = 1 − {µ ln(τa) + (1 − µ) ln(τb)}−1 .


