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Chapter 1Dynami
 Systems1.1 What is a Dynami
 System?Consider a parti
le of 
onstant mass m moving on a line so that at time t it isat a point Pt at a distan
e x(t) from a point O, (Fig. 1.1). Suppose that a for
e
O PtFigure 1.1: A parti
le moving in simple harmoni
 motion on a line.

F = κ
−−→
PtO (κ > 0) is a
ting on the parti
le. Then a

ording to Newton's se
ondlaw the equation of motion of the parti
le is
m

d2x

dt2
= −κx. (1.1)The behaviour of the parti
le when governed by this equation is 
alled simpleharmoni
 motion.When 
onvenient we shall use the `dot' notation to signify di�erentiationwith respe
t to time.1 Thus

dx

dt
= ẋ(t),

d2x

dt2
= ẍ(t)and the 
onvenient forms for (1.1) are now the one se
ond-order equation

ẍ(t) + ω2x(t) = 0, (1.2)or the pair of 
oupled �rst-order equations
ẋ(t) = v(t), v̇(t) = −ω2x(t), (1.3)where ω2 = κ/m and v(t) is the velo
ity of the parti
le. This is a simple 
ase1For derivatives of higher than se
ond order this notation be
omes 
umbersome and willnot be used. 1
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O a x
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v

Figure 1.2: The traje
tory in phase spa
e for a parti
le moving with simpleharmoni
 motion.of a dynami
 system with two degrees of freedom (x, v). Given that the state ofthe system at some time t = 0 is given by (x0, v0) = (x(0), v(0)), then the state
(x(t), v(t)) at time t will be given by solving (1.2) (or equivalently (1.3)). Thethe set of states for all t will be represented by a path or traje
tory parameterizedby t in the phase spa
e Γ2 of the variables (x, v).The auxiliary equation for (1.2) is

λ2 + ω2 = 0, with roots λ = ±iω. (1.4)with solution
x(t) = A cos(ωt) + B sin(ωt). (1.5)The motion is periodi
 with angular frequen
y ω. The period T is the time forit to perform one 
omplete 
y
le. This is given by ω(t + T ) = ωt + 2π. So

T = 2π/ω.If the initial 
onditions are x(0) = a, ẋ(0) = 0, then the solution be
omes
x(t) = a cos(ωt), with the velo
ity v(t) = −aω sin(ωt). (1.6)The parti
le os
illates about the origin. In the phase spa
e Γ2 its path is theellipse
x2

a2
+

v2

(aω)2
= 1, (1.7)with motion in the 
lo
kwise dire
tion (Fig. 1.2). The time for the phase point

(x, v) to pass around the ellipse on
e is the period T .



1.2. HAMILTONIAN SYSTEMS 3We shall now give some more general de�nitions:A dynami
 system with d degrees of freedom is a set of d variables
x1, x2, . . . , xd (usually, but not always with some parti
ular signi�
an
e) to-gether with a set of equations whi
h give a deterministi
 mathemati
al pre-s
ription for the evolution of the variables with time t. The evolution of thestate (x1(t), x2(t), . . . , xd(t)) of the system with time is given by a traje
toryin the d-dimensional phase spa
e Γd of the variables.We shall be 
on
erned mainly with systems governed by �rst-order ordinarydi�erential equations. The standard form for a system with d degrees of freedomis then

ẋ1(t) = F1(x1, x2, . . . , xd; t),

ẋ2(t) = F2(x1, x2, . . . , xd; t),... ...
ẋd(t) = Fd(x1, x2, . . . , xd; t).

(1.8)
Equations (1.3) are of this type with d = 2. It is often 
onvenient to expressequations (1.8) in ve
tor form as

ẋ(t) = F (x; t), (1.9)where x = (x1, x2, . . . , xd)
T is an d-dimensional 
olumn ve
tor2 in the phasespa
e Γd and F is a family of ve
tor �elds on Γd parameterized by t.A dynami
 system of the type (1.8) is non-linear if one or more of thefun
tions F1, F2, . . . , Fd is non-linear in one or more of the variables x1, . . . , xd.1.2 Hamiltonian SystemsA dynami
 system with 2d degrees of freedom and variables

x1, . . . , xd, p1, . . . , pd is a Hamiltonian system if there exists a Hamiltonianfun
tion H(x1, . . . , xd, p1, . . . , pd; t) and the evolution is given by the equations
ẋℓ(t) =

∂H

∂pℓ
,

ṗℓ(t) = −∂H
∂xℓ

,

ℓ = 1, 2 . . . , d. (1.10)2Our default notation for ve
tors will be in 
olumn form. A supers
ript `T' (meaningtranspose) is used to translate between row and 
olumn forms.



4 CHAPTER 1. DYNAMIC SYSTEMSFrom (1.10), the rate of 
hange of H along a traje
tory is given by
dH

dt
=

d∑

ℓ=1

{
∂H

∂xℓ
ẋℓ(t) +

∂H

∂pℓ
ṗℓ(t)

}

+
∂H

∂t
,

=

d∑

ℓ=1

{
∂H

∂xℓ

∂H

∂pℓ
− ∂H

∂pℓ

∂H

∂xℓ

}

+
∂H

∂t
,

=
∂H

∂t
. (1.11)If the system is autonomous (∂H/∂t = 0, see Se
t. 1.5) the value of H does not
hange along a traje
tory. It is said to be a 
onstant of motion. In the 
aseof many physi
al systems the value of the Hamiltonian is the total energy thesystem.1.3 Conservative SystemsAs we have already seen in the 
ase d = 2, a system with d variables x1, x2, . . . , xddetermined by se
ond-order di�erential equations, given in ve
tor form by

ẍ(t) = G(x; t), (1.12)where
x(t) =








x1(t)
x2(t)...
xd(t)







, G(x; t) =








G1(x; t)
G2(x; t)...
Gd(x; t)







, (1.13)is equivalent to the 2d-th order dynami
al system

ẋ(t) = 1
m

p(t), ṗ(t) = mG(x; t), (1.14)where
p(t) =








p1(t)
p2(t)...
pd(t)








= m








ẋ1(t)
ẋ2(t)...
ẋd(t)







. (1.15)If there exists a potential fun
tion V (x; t), su
h that

G(x; t)m = −∇V (x; t), (1.16)the system is said to be 
onservative. This is equivalent to the 
ondition that
V (x; t) = −

∫ x(t)

x(0)

mG(x; t).dr, (1.17)



1.4. DISCRETE-TIME SYSTEMS 5where the line integral in Γd from x(0) to x(t) is independent of the path taken.By de�ning
H(x,p; t) = 1

2m
p2 + V (x; t), (1.18)we see that a 
onservative system is also a Hamiltonian system. In a physi-
al 
ontext this system 
an be taken to represent the motion of a set of 1

3
dmoving in three-dimensional spa
e, with position and momentum 
oordinates

x1, x2, . . . , xd and p1, p2, . . . , pd respe
tively. Then 1
2m

p2 and V (x; t) are respe
-tively the kineti
 and potential energies.A rather more general 
ase is when, for the system de�ned by (1.9), there existsa s
alar �eld U(x; t) with
F (x; t) = −∇U(x; t). (1.19)1.4 Dis
rete-Time SystemsAlthough our main interest will be in dynami
 systems de�ned by di�erentialequations, it is worth referring to the 
ase where the system is de�ned by adi�eren
e equation. This simply 
orresponds to the situation where `time' ismade dis
rete and be
omes a variable de�ned on the 
ountable set n = 0, 1, 2, . . ..Then (1.9) is repla
ed by3
x(n+ 1) = F[x(n);n], n = 0, 1, 2, . . . . (1.20)In fa
t, of 
ourse, numeri
al solutions of systems of di�erential equations arenormally 
al
ulated by 
onsidering the 
orresponding di�eren
e equation. Thederivative ẋ(t) is repla
ed by a two (or possibly more) point numeri
al approx-imation. Suppose we take t = nε, with ε > 0 and x(t) = x(nε) = x(n) in (1.9)and use the forward two-point derivative
dx

dt
≃ x({n+ 1}ε) − x(nε)

ε
=

x(n+ 1) − x(n)

ε
. (1.21)Then

εF (x(nε);nε) = x(n+ 1) − x(n). (1.22)This is a di�eren
e equation like (1.20) with
εF (x(nε);nε) = F[x(n);n] − x(n), (1.23)and ε as an independent parameter. Di�erent 
hoi
es of ε may lead to very dif-ferent behaviours for the equations. Intuitively one may suppose that 
hoosing

ε as small as possible will lead to behaviour 
lose to that of the underlying dif-ferential equation, but there is, of 
ourse, a pra
ti
al limit on a

ura
y with any3To distinguish between dis
rete-time and 
ontinuous time system we shall use the sameletters but a di�erent font.



6 CHAPTER 1. DYNAMIC SYSTEMS
omputing systems and going beyond this will lead to rounding errors. Thereare also questions of stability. It may be the 
ase that di�eren
es in ε, howeversmall they are, lead to large 
hanges in the evolution of (1.23), with none a

u-rately representing the analyti
 solution of (1.9) whi
h would 
orrespond to thelimit ε→ 0.1.5 Autonomous SystemsA dynami
 system of the type (1.8) is autonomous (sometimes 
alled `sta-tionary') if none of the fun
tions F1, F2, . . . , Fd is an expli
it fun
tion of t. Thetime dependen
e of F in this 
ase enters through the dependen
e of the variables
x1(t), . . . , xd(t) on t.It is 
lear that (1.3) is an autonomous dynami
 system. Autonomous sys-tems have the important property that, if the system is at (x

(0)
1 , . . . , x

(0)
d ) attime t0 and (x

(1)
1 , . . . , x

(1)
d ) at t1 then the values x(1)

1 , . . . , x
(1)
d are dependent on

x
(0)
1 , . . . , x

(0)
d and t1 − t0 but not on t0 and t1 individually.In fa
t being autonomous is not su
h a severe restraint. A non-autonomoussystem 
an be made equivalent to an autonomous system by the following tri
k.We in
lude the time dimension in the phase spa
e by adding the time line Υto Γd. The path in the (d + 1)-dimensional spa
e Γd × Υ is then given by thedynami
al system

ẋ(t) = F (x, xt), ẋt(t) = 1. (1.24)This is 
alled a suspended system.1.6 Equilibrium Points and Their StabilityIn general the determination of the traje
tories in phase spa
e, even for au-tonomous systems, 
an be a di�
ult problem. However, we 
an often obtain aqualitative idea of the phase pattern of traje
tories by 
onsidering parti
ularlysimple traje
tories. The most simple of all are the equilibrium points.4 Theseare traje
tories whi
h 
onsist of one single point. If the phase point starts atan equilibrium point it stays there. The 
ondition for x∗ to be an equilibriumpoint of the autonomous system
ẋ(t) = F (x), (1.25)is
F (x∗) = 0. (1.26)For the system given by (1.19) it is 
lear that a equilibrium point is a stationarypoint of U(x) and for the 
onservative system given by (1.13)�(1.16) equilibrium4Also 
alled, �xed points, 
riti
al points or nodes.



1.7. DAMPED AND FORCED SIMPLE HARMONIC OSCILLATORS 7points have p = 0 and are stationary points of V (x). An equilibrium point isuseful for obtaining information about phase behaviour only if we 
an determinethe behaviour of traje
tories in its neighbourhood. This is a matter of thestability of the equilibrium point, whi
h in formal terms 
an be de�ned in thefollowing way:The equilibrium point x∗ of (1.25) is said to be stable (in the sense ofLyapunov) if there exists, for every ε > 0, a δ(ε) > 0, su
h that any solution
x(t), for whi
h x(t0) = x(0) and

|x∗ − x(0)| < δ(ε), (1.27)satis�es
|x∗ − x(t)| < ε, (1.28)for all t ≥ t0. If no su
h δ(ε) exists then x∗ is said to be unstable (in thesense of Lyapunov). If x∗ is stable and
lim

t→∞
|x∗ − x(t)| = 0. (1.29)it is said to be asymptoti
ally stable. If the equilibrium point is stable and(1.29) holds for every x(0) then it is said to be globally asymptoti
ally stable.In this 
ase x∗ must be the unique equilibrium point.There is a warning you should note in relation to these de�nitions. In some textsthe term stable is used to mean what we have 
alled `asymptoti
ally stable' andequilibrium points whi
h are stable (in our sense) but not asymptoti
ally stableare 
alled 
onditionally or marginally stable.An asymptoti
ally stable equilibrium point is a type of attra
tor. Other typesof attra
tors 
an exist. For example, a 
lose (periodi
) traje
tory to whi
h allneighbouring traje
tories 
onverge. These more general questions of stabilitywill be dis
ussed in Chap. 3. We now illustrate the ideas des
ribed here byreturning to the simple harmoni
 os
illator.1.7 Damped and For
ed Simple Harmoni
 Os
il-latorsIt is not di�
ult to see that the simple harmoni
 system with equations ofmotion (1.3) is a autonomous Hamiltonian system with momentum p = mv and

H(x, p) =
1

2m
p2 +

1

2
ω2x2. (1.30)It is also a 
onservative system with V (x) = ω2x2/2.The point x = v = 0 is a stable equilibrium point, but not an asymptoti
allystable equilibrium point. A traje
tory whi
h begins 
lose to the equilibrium



8 CHAPTER 1. DYNAMIC SYSTEMSpoint will perform an ellipse about the point without 
onverging to the point ormoving away.1.7.1 A Damped Simple Harmoni
 Os
illatorNow suppose that motion of the simple harmoni
 os
illator is slowed down(damped) by a for
e like vis
osity, whi
h is proportional to the velo
ity. Theequation of motion is modi�ed to
mẍ(t) = −ℓv(t) − κx(t),or equivalently (1.31)
ẍ(t) + 2βẋ(t) + ω2x(t) = 0,where β = ℓ/(2m) > 0. The auxiliary equation is

λ2 + 2βλ+ ω2 = 0, with roots λ = −β ±
√

β2 − ω2. (1.32)We must 
onsider three 
ases:(i) β > ω. Then both roots of the auxiliary are real and the solution is
x(t) = A exp(−[β + γ]t) + B exp(−[β − γ]t) (1.33)where γ =

√

β2 − ω2. With the initial 
onditions are x(0) = a, ẋ(0) = 0,the solution be
omes
x(t) =

a

2γ
exp(−βt) {(γ − β) exp(−γt) + (γ + β) exp(γt)} ,with the velo
ity (1.34)

v(t) =
a(β2 − γ2)

2γ
exp(−βt) {exp(−γt) − exp(γt)} ,As t → ∞ the solution 
onverges to x = v = 0, whi
h is now an asymp-toti
ally stable equilibrium point. The path in Γ2, for a = 1, ω = 0.6,

β = 0.7, is shown in Fig. 1.3.(ii) ω > β. Then both roots of the auxiliary equation are 
omplex. You 
aneither re-derive the solution from s
rat
h or make the substitution γ = iξin (1.34), where ξ =
√

ω2 − β2. This gives
x(t) =

a

ξ
exp(−βt) {ξ cos(ξt) + β sin(ξt)} ,with the velo
ity (1.35)

v(t) =
a(β2 + ξ2)

ξ
exp(−βt) sin(ξt).In the limit β → 0, ξ → ω, we re
over the undamped solution (1.6). When

β > 0, the solution os
illates with an exponentially de
reasing amplitude.
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Figure 1.3: The path begins at (a, 0) by following the undamped solution (shownby a broken line) but then 
onverges to the origin.The path in Γ2, for a = 1, ω = 0.6, β = 0.1, is shown in Fig. 1.4.Again the origin in Γ2 is an asymptoti
ally stable equilibrium point butthe traje
tory approa
hes it in a spiral.(iii) ω = β. Then the roots of the auxiliary are both λ = −β and the solutionis
x(t) = [A + Bt] exp(−βt). (1.36)With the initial 
onditions are x(0) = a, ẋ(0) = 0, the solution be
omes

x(t) = a(1 + βt) exp(−βt),with the velo
ity (1.37)
v(t) = −β2at exp(−βt).The path in Γ2, for a = 1, β = 2, is shown in Fig. 1.5. Again the originis a asymptoti
ally stable equilibrium point.1.7.2 A For
ed, Damped Simple Harmoni
 Os
illatorWe now 
onsider a 
ase of the situation where the damped harmoni
 os
illatoris subje
t to a periodi
 for
ing term. The equation of motion (1.31) be
omes
ẍ(t) + 2βẋ(t) + ω2x(t) = c cos(χt). (1.38)
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Figure 1.4: The path begins at (a, 0) by following the undamped solution (shownby a broken line) but then spirals into the origin.The 
omplementary fun
tion for this equation is just the same as in the 
ases wehave treated. We shall 
on
entrate on the 
ase ω > β where the 
omplementaryfun
tion (unfor
ed part of the solution) is periodi

xc(t) = exp(−βt) {A cos(ξt) + B sin(ξt)} , ξ =

√

ω2 − β2. (1.39)The trial fun
tion for the parti
ular integral is
T(t) = C cos(χt) + D sin(χt), (1.40)and substituting into (1.38) gives the parti
ular solution
xp(t) =

c

φ

{
(ω2 − χ2) cos(χt) + 2βχ sin(χt)

}
, (1.41)where

φ = ω4 + χ4 + 2χ2(2β2 − ω2). (1.42)Now we apply the initial 
onditions x(0) = a and ẋ(0) = 0 to evaluate A and Bso that the 
omplementary fun
tion be
omes
xc(t) =

exp(−βt)
ξφ

{
ξ[aφ+ c(χ2 − ω2)] cos(ξt) + β[aφ− c(χ2 + ω2)] sin(ξt)

}(1.43)When β > 0 the solution
x(t) = xc(t) + xp(t), with v(t) = ẋc(t) + ẋp(t) (1.44)
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Figure 1.5: The path begins at (a, 0) by following the undamped solution (shownby a broken line) and then 
onverges to the origin as in Fig. 1.3, but in this
ase the 
onvergen
e is delayed by the linear t terms.has a part xc(t) whi
h tends to zero as t → ∞. This is 
alled the transient
ontribution and a part xp(t) whi
h does not attenuate. This is 
alled thepersistent 
ontribution. In the long-time limit the system tends to an os
illationof the for
ed frequen
y. In Γ2 the solution begins at the point(a, 0) on the ellipseof the `natural motion' of the os
illator and then 
onverges on the ellipse
x2

(ω2 − χ2)2
+

v2

4β2χ2
=
c2

φ2
. (1.45)Figure 1.6 shows the 
ase where a = 1, c = 2, ω = 0.6, β = 0.7 and

chi = 0.5. The origin in Γ2 is no longer an equilibrium point but the ellipse(1.45) is an attra
tor.1.7.3 A For
ed, Undamped Simple Harmoni
 Os
illatorWe now 
onsider the spe
ial 
ase β = 0, when the solution simpli�es to
x(t) =

{

a+
c

(χ2 − ω2)

}

cos(ωt) +
c

(ω2 − χ2)
cos(χt), (1.46)

v(t) = −ω
{

a+
c

(χ2 − ω2)

}

sin(ωt) − χ
c

(ω2 − χ2)
sin(χt). (1.47)It is 
lear that the amplitude of the os
illations tends to in�nity as χ is `tuned'to approa
h ω. This phenomenon is known as resonan
e. For the 
ase χ = ω we
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Figure 1.6: A damped for
e simple harmoni
 os
illator. The path begins at (a, 0)on the natural ellipse and then 
onverges onto the for
ed ellipse as t→ ∞.should have taken a di�erent trial fun
tion 
ontaining a linear term in t. Thenwe would have obtained the solution
x(t) =

1

2ω
[2aω cos(ωt) + ct sin(ωt)], (1.48)

v(t) =
1

2
[−2aω sin(ωt) + ct cos(ωt)], (1.49)in whi
h the amplitude of the periodi
 solution in
reases linearly with t. Awayfrom the resonan
e 
ase we have, in equations (1.46) and (1.47) a solution whi
hinvolves 
ontributions with two di�erent angular frequen
ies ω and χ and periods

TN = 2π/ω and TF = 2π/χ. The possible behaviour divide into two types:(i) There exist integers n1 and n2 su
h that
n1TN = n2TF or, equivalently n2ω = n1χ. (1.50)Then the period of the solution is n1TN = n2TF, where now n1 and n2 arethe smallest pair of integers whi
h satisfy (1.50). Equation (1.50) 
an, of
ourse, always we satis�ed if ω and χ are rational numbers (fra
tions orintegers) and the 
ase where a = 1, c = 2, ω = 7

10
, χ = 1

2
is shown in Fig.1.7.(ii) There do not exist integers n1 and n2 su
h that (1.50) is satis�ed. For thisto be the 
ase one or both of ω and χ must be irrational. The 
urve in
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Figure 1.7: An undamped for
e simple harmoni
 os
illator where the frequen
iesare rationally related and the solution is periodi
.
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Figure 1.8: An undamped for
e simple harmoni
 os
illator where the frequen
iesare not rationally related and the solution is quasi-periodi
.
Γ2 now never 
loses. This solution is said to be quasi-periodi
. The 
asewhere a = 1, c = 2, ω = 1√

2
, χ = 1√

3
is shown in Fig. 1.8.



14 CHAPTER 1. DYNAMIC SYSTEMS1.8 One-Variable Autonomous SystemsWe �rst 
onsider a �rst-order autonomous system. In general a system may
ontain a number of adjustable parameters a, b, c, . . . and it is of interest to
onsider the way in whi
h the equilibrium points and their stability 
hangewith 
hanges of these parameters. We 
onsider the equation
ẋ(t) = F (a, b, c, . . . , x), (1.51)where a, b, c, . . . are some (one or more) independent parameters. An equilibriumpoint x∗(a, b, c, . . .) is a solution of
F (a, b, c, . . . , x∗) = 0. (1.52)A

ording to the Lyapunov 
riterion it is stable if, when the phase point isperturbed a small amount from x∗, it remains in a neighbourhood of x∗, as-ymptoti
ally stable if it 
onverges on x∗ and unstable if it moves away from x∗.We shall, therefore, determine the stability of equilibrium points by linearizingabout the point.5Example 1.8.1 Consider the one-variable non-linear system given by
ẋ(t) = a− x2. (1.53)The parameter a 
an vary over all real values and the nature of equilibriumpoints will vary a

ordingly.The equilibrium points are given by x = x∗ = ±√

a. They exist only when
a ≥ 0 and form the paraboli
 
urve shown in Fig. 1.9. Let x = x∗ + △x andsubstitute into (1.53) negle
ting all but the linear terms in △x. This gives
d△x
dt

= a− (x∗)2 − 2x∗△x. (1.54)The right-hand side of (1.54) 
an be understood either as a Taylor expansion,as far as the linear term, of the right-hand side of (1.53) about x = x∗, or as theexpansion of the quadrati
 (x∗ + △x)2 with the term (△x)2 negle
ted.6 Sin
e
a = (x∗)2 this gives
d△x
dt

= −2x∗△x, (1.55)whi
h has the solution
△x = C exp(−2x∗t). (1.56)Thus the equilibrium point x∗ =

√
a > 0 is asymptoti
ally stable (denoted by a
ontinuous line in Fig. 1.9) and the equilibrium point x∗ = −√

a < 0 is unstable5A theorem establishing the formal relationship between this linear stability and the Lya-punov 
riteria will be stated below.6Of 
ourse, in 
ases where the right-hand side of the di�erential equation is not of somesimple polynomial form we shall have to use a Taylor expansion.
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a

x

x2 = a

0

Figure 1.9: The bifur
ation diagram for Example 1.8.1. The stable and unstableequilibrium solutions are shown by 
ontinuous and broken lines and the dire
tionof the �ow is shown by arrows. This is an example of a simple turning pointbifur
ation.(denoted by a broken line in Fig. 1.9). When a ≤ 0 it is 
lear that ẋ(t) < 0so x(t) de
reases monotoni
ally from its initial value x(0). In fa
t for a = 0equation (1.53) is easily solved:
∫ x

x(0)

x−2dx = −
∫ t

0

dt (1.57)gives
x(t) =

x(0)

1 + tx(0)
, ẋ(t) = −

{
x(0)

1 + tx(0)

}2

. (1.58)Then
x(t) →

{
0, as t→ ∞, if x(0) > 0,
−∞, as t→ 1/|x(0)|, if x(0) < 0. (1.59)In ea
h 
ase x(t) de
reases with in
reasing t. When x(0) > 0 it takes `forever'to rea
h the origin. For x(0) < 0 it attains minus in�nity in a �nite amount of



16 CHAPTER 1. DYNAMIC SYSTEMStime and then `reappears' at in�nity and de
reases to the origin as t→ ∞. Thelinear equation (1.55) 
annot be applied to determine the stability of x∗ = 0 asit gives (d△x/dt)∗ = 0. If we retain the quadrati
 term we have
d△x
dt

= −(△x)2. (1.60)So in
luding the se
ond degree term we see that d△x/dt < 0. If △x > 0, x(t)moves towards the equilibrium point and, if △x < 0, it moves away. In thestri
t Lyapunov sense the equilibrium point x∗ = 0 is unstable. But it is `lessunstable' that x∗ = −√
a, for a > 0, sin
e there is a path of attra
tion. Itis at the boundary between the region where there are no equilibrium pointsand the region where there are two equilibrium points. It is said to be on themargin of stability. The value a = 0 separates the stable range from the unstablerange. Su
h equilibrium points are bifur
ation points. This parti
ular type ofbifur
ation is variously 
alled a simple turning point, a fold or a saddle-nodebifur
ation. Fig.1.9 is the bifur
ation diagram.Example 1.8.2 The system with equation

ẋ(t) = x{(a+ c2) − (x− c)2} (1.61)has two parameters a and c.The equilibrium points are x = 0 and x = x∗ = c±
√
a+ c2, whi
h exist when

a+ c2 > 0. Linearizing about x = 0 gives
x(t) = C exp(at) (1.62)The equilibrium point x = 0 is asymptoti
ally stable if a < 0 and unstable for
a > 0. Now let x = x∗ + △x giving
d△x
dt

= −2△xx∗(x∗ − c)

= ∓2△x
√

a+ c2
[

c±
√

a+ c2
]

. (1.63)This has the solution
△x = C exp

[

∓2t
√

a+ c2
(

c±
√

a+ c2
)]

. (1.64)We 
onsider separately the three 
ases:
c = 0.Both equilibrium points x∗ = ±√

a are stable. The bifur
ation diagram forthis 
ase is shown in Fig.1.10. This is an example of a super
riti
al pit
hforkbifur
ation with one stable equilibrium point be
omes unstable and two newstable solutions emerge ea
h side of it. The similar situation with the stabilityreversed is a sub
riti
al pit
hfork bifur
ation.
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a

x

x2 = a

0

Figure 1.10: The bifur
ation diagram for Example 1.8.2, c = 0. The stable andunstable equilibrium solutions are shown by 
ontinuous and broken lines and thedire
tion of the �ow is shown by arrows. This is an example of a super
riti
alpit
hfork bifur
ation.
a

x

x2 − 2cx = a

c

−c2

0

Figure 1.11: The bifur
ation diagram for Example 1.8.2, c > 0. The stable andunstable equilibrium solutions are shown by 
ontinuous and broken lines andthe dire
tion of the �ow is shown by arrows. This gives examples of both simpleturning point and trans
riti
al bifur
ations.
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c > 0.The equilibrium point x = c +

√
a+ c2 is stable. The equilibrium point x =

c −
√
a+ c2 is unstable for a < 0 and stable for a > 0. The point x = c,

a = −c2 is a simple turning point bifur
ation and x = a = 0 is a trans
riti
albifur
ation. That is the situation when the stability of two 
rossing lines ofequilibrium points inter
hange. The bifur
ation diagram for this example isshown in Fig.1.11.
c < 0.This is the mirror image (with respe
t to the verti
al axis) of the 
ase c > 0.Example 1.8.3
ẋ(t) = cx(b− x). (1.65)This is the logisti
 equation.The equilibrium points are x = 0 and x = b. Linearizing about x = 0 gives
x(t) = C exp(cbt) (1.66)The equilibrium point x = 0 is stable or unstable a

ording as if cb <,> 0. Nowlet x = b+ △x giving
d△x
dt

= −cb△x. (1.67)So the equilibrium point x = b is stable or unstable a

ording as cb >,< 0. Nowplot the equilibrium points with the �ow and stability indi
ated:
• In the (b, x) plane for �xed c > 0 and c < 0.
• In the (c, x) plane for �xed b > 0, b = 0 and b < 0.You will see that in the (b, x) plane the bifur
ation is easily identi�ed as trans-
riti
al but in the (c, x) plane it looks rather di�erent.Now 
onsider the di�eren
e equation 
orresponding to (1.65). Writing x(n) =

x(nε) and using the two-point forward derivative,
x(n+ 1) = x(n)[(εcb+ 1) − cεx(n)]. (1.68)Now substituting
x =

(1 − εcb)y + εcb

cε
(1.69)into (1.68) gives

y(n+ 1) = ay(n)[1 − y(n)], (1.70)where
a = 1 − εcb. (1.71)



1.9. DIGRESSION: THE EIGEN-PROBLEM 19(1.70) is the usual form of the logisti
 di�eren
e equation. The equilibriumpoints of (1.70), given by setting y(n+ 1) = y(n) = y∗ are
y∗ = 0 −→ x∗ = b,

y∗ = 1 − 1/a −→ x∗ = 0.
(1.72)Now linearize (1.70) by setting y(n) = △y(n) + y∗ to give

△y(n+ 1) = a(1 − 2y∗)△y(n). (1.73)The equilibrium point y∗ is stable or unstable a

ording as |a(1− 2y∗)| <,> 1.So
• y∗ = 0, (x∗ = b) is stable if −1 < a < 1, (0 < εcb < 2).
• y∗ = 1 − 1/a, (x∗ = 0) is stable if 1 < a < 3, (−2 < εcb < 0).Sin
e the di�erential equation 
orresponds to small, positive ε, these stability
onditions agree with those derived for the di�erential equation (1.65). Youmay know that the whole pi
ture for the behaviour of the di�eren
e equation(1.70) involves 
y
les, period doubling and 
haos.7 Here, however, we are just
on
erned with the situation for small ε when

y ≃ (cε)x, a = 1 − (cε)b. (1.74)The whole of the (b, x) plane is mapped into a small re
tangle 
entred around
(1, 0) in the (a,y) plane, where a trans
riti
al bifur
ation o

urs between theequilibrium points y = 0 and y = 1 − 1/a.1.9 Digression: The Eigen-ProblemBefore 
onsidering systems of more than variable we need to revise our knowl-edge of matrix algebra. A d× d matrix A is said to be singular or non-singulara

ording as the determinant of A, denoted by Det{A}, is zero or non-zero. Therank of any matrix B, denoted by Rank{B}, is de�ned, whether the matrix issquare or not, as the dimension of the largest non-singular (square) submatrixof B. For the d× d matrix A the following are equivalent:(i) The matrix A is non-singular.(ii) The matrix A has an inverse denoted by A−1.(iii) Rank{A} = d.(iv) The set of d linear equations

Ax = c, (1.75)7Ian Stewart,Does God Play Di
e?, Chapter 8, Penguin (1990)
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x =











x1

x2...
xd











, c =











c1

c2...
cd











, (1.76)has a unique solution for the variables x1, x2, . . . , xd, for any numbers
c1, c2, . . . , cd, given by
x = A−1c. (1.77)(Of 
ourse, when c1 = c2 = · · · = cd = 0 the unique solution is the trivialsolution x1 = x2 = · · · = xd = 0.)When A is singular we form the d×(d+1) augmented matrixmatrixA′ by addingthe ve
tor c as a �nal 
olumn. Then the following results 
an be established:(a) If

Rank{A} = Rank{A′} = m < d (1.78)then (1.75) has an in�nite number of solutions 
orresponding to making anarbitrary 
hoi
e of d−m of the variables x1, x2, . . . , xd.(b) If
Rank{A} < Rank{A′} ≤ d (1.79)then (1.75) has no solution.Let A be a non-singular matrix. The eigenvalues of A are the roots of the

d-degree polynomial
Det{A − λI} = 0, (1.80)in the variable λ. Suppose that there are d distin
t roots λ(1), λ(2), . . . , λ(d).Then Rank{A−λ(k)I} = d−1 for all k = 1, 2, . . . , d. So there is, 
orrespondingto ea
h eigenvalue λ(k), a left eigenve
tor v(k) and a right eigenve
tor u(k) whi
hare solutions of the linear equations
[v(k)]TA = λ(k)[v(k)]T, Au(k) = u(k)λ(k). (1.81)The eigenve
tors are unique to within the 
hoi
e of one arbitrary 
omponent.Or equivalently they 
an be thought of as unique in dire
tion and arbitrary in
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 it is easy to see that the left and right eigenve
torsare the same.8 Now
[v(k)]TAu(j) = λ(k)[v(k)]Tu(j) = [v(k)]Tu(j)λ(j) (1.82)and sin
e λ(k) 6= λ(j) for k 6= j the ve
tors v(k) and u(j) are orthogonal. In fa
tsin
e, as we have seen, eigenve
tors 
an always be multiplied by an arbitrary
onstant we 
an ensure that the sets {u(k)} and {v(k)} are orthonormal bydividing ea
h for u(k) and v(k) by √

u(k) · v(k) for k = 1, 2, . . . , d. Thus
u(k) · v(j) = δKr(k − j), (1.83)where
δKr(k − j) =

{
1, k = j,
0, k 6= j,

(1.84)is 
alled the Krone
ker delta fun
tion. Now form the matrix
V =









[v(1)]
T

[v(2)]
T...

[v(d)]
T  , (1.85)whi
h has the left eigenve
tors v(k), k = 1, 2, . . . , d as its rows. In a similar way

U = (u(1) u(2) · · · u(d)) (1.86)has the right eigenve
tors as its 
olumns. From the orthonormality 
ondition(1.84)
V U = I. (1.87)This means that
V = U−1, U = V −1. (1.88)If A is symmetri
 U = V T. So the inverse of U (or V ) is its transpose. A matrixwith this property is 
alled orthogonal. Now, if we take all the eigenve
torstogether in (1.81), it 
an be written
V A = ΛV , AU = UΛ, (1.89)where Λ is the d × d diagonal matrix with the eigenvalues λ(1), λ(2), . . . , λ(d)along the diagonal. From (1.88) and (1.89),
V AU = U−1AU = Λ. (1.90)The matrix A is diagonalized by the transformation with U (or V ). When Ais symmetri
 this is an orthogonal transformation.8The ve
tors referred to in many texts simply as `eigenve
tors' are usually the right eigen-ve
tors. But it should be remembered that non-symmetri
 matri
es have two distin
t sets ofeigenve
tors. The left eigenve
tors of A are of 
ourse the right eigenve
tors of A

T and vi
eversa.



22 CHAPTER 1. DYNAMIC SYSTEMS1.10 Linear Autonomous SystemsThe autonomous system (1.25) is linear if
F = Ax − c, (1.91)for some d× d matrix A and a ve
tor c of 
onstants. Thus we have
ẋ(t) = Ax(t) − c, (1.92)An equilibrium point x∗, if it exists, is a solution of
Ax = c. (1.93)As we saw in Se
t. 1.9 there 
an be either no solution points, one solution oran in�nite number of solutions. We shall 
on
entrate on the 
ase where A isnon-singular and there is a unique solution given by
x∗ = A−1c. (1.94)As in the 
ase of the �rst-order system we 
onsider a neighbourhood of theequilibrium point by writing
x = x∗ + △x. (1.95)Substituting into (1.92) and using (1.94) gives
d△x

dt
= A△x. (1.96)Of 
ourse, in this 
ase, the `linearization' used to a
hieve (1.96) was exa
t be-
ause the original equation (1.92) was itself linear.As in Se
t. 1.9 we assume that all the eigenve
tors of A are distin
t and adoptall the notation for eigenvalues and eigenve
tors de�ned there. The ve
tor △x
an be expanded as the linear 
ombination

△x(t) = w1(t)u
(1) + w2(t)u

(2) + · · · + wd(t)u
(d), (1.97)of the right eigenve
tors of A, where, from (1.83),

wk(t) = v(k) · △x(t), k = 1, 2, . . . , d. (1.98)Now
A△x(t) = w1(t)Au(1) + w2(t)Au(2) + · · · + wd(t)Au(d)

= λ(1)w1(t)u
(1) + λ(2)w2(t)u

(2) + · · · + λ(d)wd(t)u
(d) (1.99)and

d△x

dt
= ẇ1(t)u

(1) + ẇ2(t)u
(2) + · · · + ẇd(t)u

(d). (1.100)Substituting from (1.99) and (1.100) into (1.96) and dotting with v(k) gives
ẇk(t) = λ(k)wk(t), (1.101)
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wk(t) = C exp

(

λ(k)t
)

. (1.102)So △x will grow or shrink in the dire
tion of u(k) a

ording as ℜ{λ(k)
}
>, < 0.The equilibrium point will be unstable if at least one eigenvalue has a positivereal part and stable otherwise. It will be asymptoti
ally stable if the real partof every eigenvalue is (stri
tly) negative. Although these 
on
lusions are basedon arguments whi
h use both eigenvalues and eigenve
tors, it 
an be seen thatknowledge simply of the eigenvalues is su�
ient to determine stability. Theeigenve
tors give the dire
tions of attra
tion and repulsion.Example 1.10.1 Analyze the stability of the equilibrium points of the linearsystem

ẋ(t) = y(t), ẏ(t) = 4x(t) + 3y(t). (1.103)The matrix is
A =

(
0 1

4 3

)

, (1.104)with Det{A} = −4 and the unique equilibrium point is x = y = 0. Theeigenvalues of A are λ(1) = −1 and λ(2) = 4. The equilibrium point is unstablebe
ause it is attra
tive in one dire
tion but repulsive in the other. Su
h anequilibrium point is 
alled a saddle-point.For a two-variable system the matrix A, obtained for a parti
ular equilibriumpoint, has two eigenvalues λ(1) and λ(2). Setting aside spe
ial 
ases of zero orequal eigenvalues there are the following possibilities:(i) λ(1) and λ(2) both real and (stri
tly) positive. △x grows in all dire
tions.This is 
alled an unstable node.(ii) λ(1) and λ(2) both real with λ(1) > 0 and λ(2) < 0. △x grows in all dire
-tions, apart from that given by the eigenve
tor asso
iated with λ(2). This,as indi
ated above, is 
alled a saddle-point.(iii) λ(1) and λ(2) both real and (stri
tly) negative.△x shrinks in all dire
tions.This is 
alled a stable node.(iv) λ(1) and λ(2) 
onjugate 
omplex with ℜ{λ(1)} = ℜ{λ(2)} > 0.△x grows inall dire
tions, but by spiraling outward. This is 
alled an unstable fo
us.(v) λ(1) = −λ(2) are purely imaginary. Close to the equilibrium point, the lengthof △x remains approximately 
onstant with the phase point performing a
losed loop around the equilibrium point. This is 
alled an 
entre.(vi) λ(1) and λ(2) 
onjugate 
omplex with ℜ{λ(1)} = ℜ{λ(2)} < 0. △x shrinksin all dire
tions, but by spiraling inwards. This is 
alled an stable fo
us.



24 CHAPTER 1. DYNAMIC SYSTEMSExample 1.10.2 Analyze the stability of the equilibrium points of the linearsystem
ẋ(t) = 2x(t) − 3y(t) + 4, ẏ(t) = −x(t) + 2y(t) − 1. (1.105)This 
an be written in the form
ẋ(t) = Ax(t) − c, (1.106)with
x =

(
x

y

)

, A =

(
2 −3

−1 2

)

, c =

(
−4

1

)

. (1.107)The matrix is
A =

(
2 −3

−1 2

)

, (1.108)with Det{A} = 1, has inverse
A−1 =

(
2 3

1 2

)

. (1.109)So the unique equilibrium point is
x∗ =

(
2 3

1 2

)(
−4

1

)

=

(
−5

−2

)

. (1.110)Linearizing about x∗ gives an equation of the form (1.96). The eigenvalues of
A are 2 ±

√
3. Both these numbers are positive so the equilibrium point is anunstable node.1.11 MAPLE for Systems of Di�erential EquationsIn the dis
ussion of systems of di�erential equations we shall be 
on
erned lesswith the analyti
 form of the solutions than with their qualitative stru
ture.As we shall show below, a lot of information 
an be gained by �nding theequilibrium points and determining their stability. It is also useful to be able toplot a traje
tory with given initial 
onditions. MAPLE 
an be used for this intwo (and possibly three) dimensions. Suppose we want to obtain a plot of thesolution of

ẋ(t) = x(t) − y(t), ẏ(t) = x(t), (1.111)over the range t = 0 to t = 10, with initial 
onditions x(0) = 1, y(0) = −1.The MAPLE routine dsolve 
an be used for systems with the equations andthe initial 
onditions en
losed in 
urly bra
kets. Unfortunately the solution isreturned as a set {x(t) = · · · , y(t) = · · ·}, whi
h 
annot be fed dire
tly into



1.12. LINEARIZING NON-LINEAR SYSTEMS 25the plot routine. To get round this di�
ulty we set the solution to somevariable (Fset in this 
ase) and extra
t x(t) and y(t) (renamed as fx(t) and
fy(t)) by using the MAPLE fun
tion subs. These fun
tions 
an now be plottedparametri
ally. The 
omplete MAPLE 
ode and results are:
> Fset:=dsolve(
> {diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t),x(0)=1,y(0)=-1},
> {x(t),y(t)}):
> fx:=t->subs(Fset,x(t)):
> fx(t);
1

3
e
(1/2 t) (3 cos(

1

2
t
√

3) + 3
√

3 sin(
1

2
t
√

3))

> fy:=t->subs(Fset,y(t)):
> fy(t);
1

3
e
(1/2 t) (3

√

3 sin(
1

2
t
√

3) − 3 cos(
1

2
t
√

3))

> plot([fx(t),fy(t),t=0..10℄);
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ult to see that the eigenvalues of the matrix for the equilibriumpoint x = y = 0 of (1.111) are 1
2 (1 ± i

√
3). The point is an unstable fo
us asshown by the MAPLE plot.1.12 Linearizing Non-Linear SystemsConsider now the general autonomous system (1.25) and let there by an equi-librium point given by (1.26). To investigate the stability of x∗ we again make



26 CHAPTER 1. DYNAMIC SYSTEMSthe substitution (1.95). Then for a parti
ular member of the set of equations
d△xℓ

dt
= Fℓ(x

∗ + △x)

=
d∑

k=1

(
∂Fℓ

∂xk

)∗

△xk + O(△xi△xj), (1.112)where non-linear 
ontributions in general involve all produ
es of pairs of the
omponents of △x. Negle
ting nonlinear 
ontributions and taking all the set ofequations gives
d△x

dt
= J∗△x, (1.113)where J∗ = J(x∗) is the stability matrix with

J(x) =












∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xd
∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xd... ... . . . ...
∂Fd

∂x1

∂Fd

∂x2
· · · ∂Fd

∂xd












. (1.114)Analysis of the stability of the equilibrium point using the eigenvalues of J∗pro
eeds in exa
tly the same way as for the linear 
ase. In fa
t it 
an berigorously justi�ed by the following theorem (also due to Lyapunov):Theorem 1.12.1 The equilibrium point x∗ is asymptoti
ally stable if the realparts of all the eigenvalues of the stability matrix J∗ are (stri
tly) negative. Itis unstable if they are all non-zero and at least one is positive.It will be see that the 
ase where one or more eigenvalues are zero or purelyimaginary is not 
overed by this theorem (and by linear analysis). This wasthe 
ase in Example 1.8.1 at a = 0, where we needed the quadrati
 term todetermine the stability.Example 1.12.1 Investigate the stability of the equilibrium point of
ẋ(t) = sin[x(t)] − y(t), ẏ(t) = x(t). (1.115)The equilibrium point is x∗ = y∗ = 0. Using the M
Laurin expansion of sin(x) =
△x+O(△x3) the equations take the form (1.113), where the stability matrix is
J∗ =

(
1 −1

1 0

)

. (1.116)This is the same stability matrix as for the linear problem (1.111) and theequilibrium point is an unstable fo
us.
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ẋ(t) = −y(t) + x(t)[a − x2(t) − y2(t)], (1.117)
ẏ(t) = x(t) + y(t)[a− x2(t) − y2(t)]. (1.118)The only equilibrium point for (1.117)�(1.118) is x = y = 0. Linearizing aboutthe equilibrium point gives an equation of the form (1.113) with
J∗ =

(
a −1
1 a

)

. (1.119)The eigenvalues of J∗ are a± i. So the equilibrium point is stable or unstablea

ording as a < 0 or a > 0. When a = 0 the eigenvalues are purely imaginary,so the equilibrium point is a 
entre.We 
an �nd two integrals of (1.117)�(1.118). If (1.117) is multiplied by xand (1.118) by y and the pair is added this gives
x

dx

dt
+ y

dy

dt
= (x2 + y2)(a− x2 − y2). (1.120)With r2 = x2 + y2, if the traje
tory starts with r = r0 when t = 0,

2

∫ t

0

dt =







1

a

∫ r

r0

{
1

a− r2
+

1

r2

}

d(r2), a 6= 0,
−
∫ r

r0

1

r4
d(r2), a = 0, (1.121)giving

r2(t) =







ar20
r20 + exp(−2at){a− r20}

, a 6= 0,
r20

1 + 2tr20
, a = 0. (1.122)This gives

r(t) −→







0, a ≤ 0,
√
a, a > 0. (1.123)Now let x = r cos(θ), y = r sin(θ). Substituting into (1.117)�(1.118) and elimi-nating dr/dt gives

dθ

dt
= 1. (1.124)If θ starts with the value θ(0) = θ0 then

θ = t+ θ0. (1.125)
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y

x(a)
y

x

x2 + y2 = a(b)Figure 1.12: A Hopf bifur
ation with (a) a ≤ 0, (b) a > 0.When a < 0 traje
tories spiral with a 
onstant angular velo
ity into the origin.When a = 0 linear analysis indi
ates that the origin is a 
entre. However, the fullsolution shows that orbits 
onverge to the origin as t→ ∞, with r(t) ≃ 1/
√

2t,whi
h is a slower rate of 
onvergen
e than any exponential.When a > 0, if r(0) = r0 =
√
a, r(t) =

√
a. The 
ir
le x2 + y2 = a is invariantunder the evolution of the system. The 
ir
le x2 +y2 = a is a new type of stablesolution 
alled a limit 
y
le. Traje
tories spiral, with a 
onstant angular velo
itytowards the limit 
y
le 
ir
le, either from outside if r0 > √

a or from inside if
r0 <

√
a see Fig. 1.12. The 
hange over in behaviour at a = 0 is an example ofthe Hopf bifur
ation. If the behaviour is plotted in the three-dimensional spa
eof {a, x, y} then it resembles the super
riti
al pit
hfork bifur
ation (Fig. 1.13).Example 1.12.3

ẍ(t) = a− x2(t), (1.126)whi
h 
an be written as
ẋ(t) = y(t), (1.127)
ẏ(t) = a− x2(t). (1.128)The equilibrium points for (1.127)�(1.128) are given by x = x∗ = ±√

a, y = 0,when a ≥ 0 and there are no equilibrium points when a < 0.Before 
onsidering the stability of the equilibrium point we obtain an integralof the equations (1.127)�(1.128). Sin
e
x2 dx

dt
+ y

dy

dt
= ay = a

dx

dt
, (1.129)it follows that a traje
tory lies on a 
urve

1
3
x3 +

1
2
y2 − ax = c. (1.130)
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a

y

x

Figure 1.13: A Hopf bifur
ation in the spa
e of {a, x, y}.for some �xed value of c. The 
urves are symmetri
 about the x�axis. Traje
to-ries with c < 0 do not 
ut the y�axis, the traje
tory with c = 0 passes throughthe origin and traje
tories with c > 0 
ut the y�axis at y = ±
√

2c. Curves with
a 6= 0 
ut the x�axis with a verti
al tangent. We now 
onsider separately thethree ranges of a:
a < 0. In this 
ase there are no equilibrium points and ẏ(t) < 0 for all x and y.A traje
tory 
uts the x�axis at the roots of x3 − 3ax− 3c = 0. For negative athis 
ubi
 has no extrema so a traje
tory 
ut the x�axis only on
e. Also as |y|in
reases from zero on a traje
tory it follows from (1.130) that x must de
reaseso the traje
tories must be 
onvex to the right. The phase pattern for a = −1
an be plotted using MAPLE :
> with(plots):
> f:=(x,y,a)->x^3/3+y^2/2-a*x:
> 
urve:=impli
itplot(
> {f(x,y,-1)=-1,f(x,y,-1)=0,f(x,y,-1)=1}, x=-3..1.5,y=-3..3,
> grid=[100,100℄,labelfont=[TIMES,ITALIC,12℄):
> text:=plots[textplot℄(
> {[-0.8,0.55,`
=-1`℄, [-0.32,1,`
=0`℄, [-0.8,2.25,`
=1`℄},
> align={ABOVE,RIGHT}, font=[TIMES,ITALIC,14℄):
> plots[display℄({
urve,text});
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c = 1

c = 0
c = –1

–3

–2

–1

1

2

3

y

–2 –1.5 –1 –0.5 0.5x

(First run the MAPLE program without the labelling c = −1, 0, 1 on the 
urves.Then add the labels by reading o� from the plot the best pla
e for them to beput.)
a = 0. In this 
ase there is one equilibrium point. Curves with c 6= 0 are verysimilar to those for a < 0. The 
urve with c = 0 is given by 1

3x
3+ 1

2y
2 = 0 whi
hhas a 
usp at the origin rather than a verti
al tangent. A MAPLE program likethe one given above 
an be used to obtain the plot:

c = 0
c = –1

c = 1

–3

–2

–1

1

2

3

y

–2 –1 1x
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a > 0. In this 
ase there are two equilibrium points x = x∗ = ±√

a, y = 0. Lin-earizing about the equilibrium point (x∗, 0) gives equations of the form (1.113)with
J∗ = J(x∗, 0) =

(
0 1
−2x∗ 0

)

. (1.131)The equilibrium point (
√
a, 0) has eigenvalues λ(1,2) = ±iτ , where τ = (4a)1/4,so it is a 
entre. The equilibrium point (−√

a, 0) has eigenvalues λ(1) = τ ,
λ(2) = −τ , with 
orresponding right eigenve
tors (1, τ)T and (−1, τ)T. So it isa saddle-point and the line along whi
h it is attra
tive is given by (△x,△y) ∼
(−1, τ). Now the traje
tory whi
h passes through (−√

a, 0) is, from (1.130)
1
3x

3 +
1
2y

2 − ax =
2
3a

√
a. (1.132)Di�erentiating

ẏ(t) =
a− x2

y
= ± a− x2

√
4
3a

√
a+ 2ax− 2

3x
3
. (1.133)At the equilibrium point x = −√

a this expression is unde�ned and we mustsubstitute x = △x−√
a. This gives

ẏ(t) =
a− x2

y
= ± 2

√
a△x− (△x)2

√

2
√
a(△x)2 − 2

3 (△x)3
≃ ±τ △x

|△x| . (1.134)So one of the bran
hes of the 
urve through the equilibrium point is in the stabledire
tion. The MAPLE plot is:
c = –1 c = 0

c = 0

c = 1

c = 2/3

–3

–2

–1

1

2

3

y

–3 –2 –1 1 2x
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The 
losed part of the orbit (1.132), whi
h begins at the saddle-point (−√

a, 0)and returns to the same point, has two important properties:
• It separates the 
losed orbits from the traje
tories whi
h go o� to in�nityand is thus 
alled a separatrix.
• It 
onne
ts the saddle-point to itself. Su
h a traje
tory is 
alled homo-
lini
. (A traje
tory 
onne
ting di�erent saddle-points together is 
alledhetero
lini
.)In general the points where a traje
tory 
uts the x�axis are given, from (1.130),by

f(x) = 1
3x

3 − ax− c = 0. (1.135)
f(x) has a maximum at x = −√

a with f(−√
a) = 2

3a
√
a − c and a minimum

x =
√
a with f(

√
a) = − 2

3a
√
a − c. So, when 2

3a
√
a > c > − 2

3a
√
a, an orbit
uts the x�axis at three points. The upper limit of this range is the separatrixand the 
ase c = 0 
orresponds to the 
losed orbit through the origin. As

c→ − 2
3a

√
a the 
losed orbit 
ontra
ts to a point on the 
entre (

√
a, 0). We 
an
al
ulate the period around a 
losed orbit from (1.127) and (1.130).

ẋ(t) =
√

2c+ 2ax− 2
3x

3. (1.136)If this orbit 
uts the x�axis at x1 and x2 (x1 < x2) then the period T aroundthe orbit is
T = 2

∫ x2

x1

dx
√

2c+ 2ax− 2
3x

3
. (1.137)The integrand has a singularity at x = x1 = −√

a on the separatrix; so T → ∞on this 
urve, whi
h is the limit of the 
losed orbits.Example 1.12.4 The equation of motion of a simple pendulum of length ℓswinging under gravity g is
θ̈(t) = −a sin[θ(t)], (1.138)where θ is the angle the pendulum makes with the downward verti
al and a = g/ℓ.Using the angular velo
ity ω this equation of motion 
an be written
θ̇(t) = ω(t), (1.139)
ω̇(t) = −a sin[θ(t)]. (1.140)The equilibrium points for (1.139)�(1.140) are ω = 0, θ = nπ, n = 0,±1,±2. . . ..



1.13. CONSERVATIVE SYSTEMS 33Equations (1.139)�(1.140) 
an be integrated to give the family of 
urves
ω2 = 2a{cos(θ) − c} (1.141)in the phase spa
e Γ2 of the variables {θ, ω} parameterized by c. At the equi-librium point (θ∗, 0)

J∗ =

(
0 1
−a cos(θ∗) 0

) (1.142)So the eigenvalues are λ(1) = i
√

a cos(θ∗) and λ(2) = −i
√

a cos(θ∗). The equilib-rium points θ = 2nπ, n = 0,±1,±2, . . ., where the eigenvalues are purely imag-inary, are 
entres and the equilibrium points θ = (2n + 1)π, n = 0,±1,±2, . . .,where the eigenvalues are real and of opposite sign, are saddle-points. A traje
-tory given by (1.141) 
uts the θ�axis at a periodi
 sequen
e of points if |c| ≤ 1and is the hetero
lini
 separatrix passing through the saddle-points if c = −1.If c = 1 it 
ollapses into a set of points at the 
entres. Again using a MAPLEprogram, like that given above, we obtain 
urves of (1.141) with a = 0:
c = –1

c = –2

c = 0

–2

–1

0

1

2

ω

–10 –5 5 10
θ

The period of a 
losed orbit around the origin whi
h 
uts the θ�axis at θ =
±θ0 = ± arccos(c) is given by
T = 2

∫ θ0

−θ0

dθ
√

2a(cos(θ) − c)
. (1.143)This integral 
an be expressed in terms of a 
omplete ellipti
 integral of the �rstkind (Drazin, p. 28) and the usual formula T = 2π/

√
c = 2π

√

ℓ/g for smallos
illations 
an be re
overed in the limit c→ 1.1.13 Conservative SystemsFor a 
onservative system with equation
ẍ(t) = −V ′(x), (1.144)
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edure of Se
t. 1.3 and take
ẋ(t) = y(t), (1.145)
ẏ(t) = −V ′(x). (1.146)The equilibrium points are the turning points of V (a, b, c, . . . , x), appearing inthe spa
e Γ2 of {x, y} on the x�axis. Now linearize about the equilibrium point
(x∗, 0).
d△x
dt

= △y, (1.147)
d△y
dt

= −△xV ′′(x∗). (1.148)The eigenvalues of the stability matrix are ±i
√

V ′′(x∗). So x∗ is a 
entre if
V ′′(x∗) > 0 and a saddle-point if V ′′(x∗) < 0. These two 
onditions 
orre-spond respe
tively to the potential fun
tion V (x) having a lo
al minimum andmaximum respe
tively at x = x∗. From (1.145)�(1.146),
y
dy

dt
= −yV ′(x) = −dx

dt
V ′(x). (1.149)Integrating this gives

1
2y

2 + V (x) = E, (1.150)for 
onstant E. In me
hani
al terms this is the energy integral for a parti
leof unit mass, lo
ation x and speed y moving under the in�uen
e of a potential
V (x) with 
onstant energy E. From (1.150)
y = ±

√

2Y (x), (1.151)where
Y (x) = E − V (x). (1.152)The zeros of Y (x) are the points in Γ2 where the 
urve given by (1.150) 
utsthe x�axis. Let x̃ be su
h a point about whi
h Y (x) has the Taylor expansion
Y (x) = (x− x̃)Y ′(x̃) +

1
2(x− x̃)2Y ′′(x̃)

+ O((x− x̃)3),

= −(x− x̃)V ′(x̃) − 1
2(x− x̃)2V ′′(x̃)

+ O((x− x̃)3). (1.153)Then, if V ′(x̃) 6= 0,
y2 ≃ −2(x− x̃)V ′(x̃), (1.154)in a neighbourhood of (x̃, 0). The 
urve (1.150) is paraboli
; 
onvex in thepositive x�dire
tion if V ′(x̃) > 0 and in the negative x�dire
tion if V ′(x̃) < 0.
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ases 
orrespond to extremities of 
losed orbits of the 
urve (1.150). Nowsuppose V ′(x̃) = 0 and assume V ′′(x̃) 6= 0. From (1.151) and (1.145),
y ≃ ±i(x− x̃)

√

V ′′(x̃), (1.155)
x(t) ≃ x̃+ c exp{±it

√

V ′′(x̃)}. (1.156)where c is a 
onstant. When V ′′(x̃) > 0 (1.156) again 
on�rms the linear analysisof periodi
 orbits about a 
entre. When V ′′(x̃) < 0 the 
hoi
e of signs in (1.156)gives the stable and unstable dire
tions from the saddle-point, with the phasepoint taking an in�nite amount of time to rea
h the saddle-point in the stabledire
tion. This is the same result as the divergen
e of the integral (1.143) as
θ → arccos(c).Now 
onsider a possible plot (Fig. 1.14) of Y (x) given by (1.152) against x.

A

B

Y (x)

x

x̃1 x̃2 x̃3

Figure 1.14: A possible plot of Y (x) against x. The shape of parts of traje
tories(in the {x, y} plane) are shown by broken lines.The zeros x̃1, x̃2, . . . on the x�axis are points like x̃ with Y ′(x̃) = −V ′(x̃) 6= 0.The points x̃1 and x̃3 are pla
es where V ′(x̃) = −Y ′(x̃) > 0, so they 
or-respond to right-hand extremities of 
losed orbits, while x̃2 
orresponds toa left-hand extremity. The minimum at A is a point where V ′(x) = 0 and
V ′′(x) = −Y ′′(x) < 0, so it is a saddle-point, whereas the maximum at Bis a 
entre. If A approa
hes the x�axis x̃1 and x̃2 
oales
e at a point where
Y ′(x̃) = −V ′(x̃) = 0, Y ′′(x̃) = −V ′′(x̃) > 0 and the two traje
tories merge toprodu
e a 
rossing point like those shown in the MAPLE plot on page 33, at oddmultiples of π. If B approa
hes the x�axis x̃2 and x̃3 
oales
e at a point where
Y ′(x̃) = −V ′(x̃) = 0, Y ′′(x̃) = −V ′′(x̃) < 0 and the orbit between x̃2 and x̃3
loses in on the 
entre like those shown in the MAPLE plot on page 33, at evenmultiples of π.Given that there is a 
losed orbit between x̃2 and x̃3, it follows from thesymmetry of (1.150) that the time taken between x̃2 and x̃3 is half the 
omplete
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e Y (x) > 0 in the interval (x̃2, x̃3) the period T for the orbit isgiven, from (1.151), by
T = 2

∫ x̃3

x̃2

dx
√

2Y (x)
. (1.157)Problems 11) Find out as mu
h as you 
an about the one-dimensional dynami
 systems:(i) ẋ(t) = x(t)[a− c− ab x(t)],(ii) ẋ(t) = a x(t) − b x2(t) + c x3(t),You may assume that a and b are non-zero but you 
an 
onsider the 
ase

c = 0. You should be able to(a) Find the equilibrium points and use linear analysis to determine theirstability.(b) Draw the bifur
ation diagrams in the {x, a}�plane for the di�erent rangesof b and c.(
) Solve the equations expli
itly.2) Verify that the system
ẋ(t) = x(t) + sin[y(t)],

ẏ(t) = cos[x(t)] − 2 y(t) − 1has an equilibrium point at x = y = 0 and determine its type.3) Find all the equilibrium points of
ẋ(t) = −x2(t) + y(t),

ẏ(t) = 8 x(t) − y2(t)and determine their type.4) Show that the system given by
ẋ(t) = −y +

x(1 − x2 − y2)
√

x2 + y2
, ẏ(t) = x+

y(1 − x2 − y2)
√

x2 + y2
,has a stable limit 
y
le given by x = cos(θ0 + t), y = sin(θ0 + t).
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le moves around a smooth 
ir
ular wire of radius ℓ whi
h is �xedrelative to a verti
al plane. Gravity g a
ts on the parti
le and the planerotates with 
onstant angular velo
ity Ω about a verti
al diameter of the
ir
le. The motion of the parti
le on the 
ir
le is given by
θ̈(t) = Ω2 sin(θ){cos(θ) − a},where θ is the angle the radius to the parti
le makes with the downwardverti
al and a = g/(Ω2ℓ) > 0. Find the equilibrium points in the plane of
{θ, ω} where ω(t) = θ̇(t) and give a sket
h of the bifur
ation diagram inthe {a, θ} plane indi
ating the stability of the equilibrium lines. Find outanything else you 
an about this problem.6) Show that the system
ẋ(t) = −y + x{f(x, y) − a2}n, ẏ(t) = x+ y{f(x, y) − a2}n,where n is a positive integer and f(x, y) is 
ontinuous, 
an be transformedto
ṙ(t) = r{f(r cos(θ), r sin(θ)) − a2}n, θ̇(t) = 1,in terms of polar 
oordinates given by x = r cos(θ), y = r sin(θ). Dedu
ethat the equilibrium solution r = 0 is stable or unstable a

ording as
{f(0, 0)− a2}n <,> 0.With f(x, y) = x2 + y2 show that the limit 
y
le r = a is unstable if n is oddand semistable if n is even, where `semistable' means that it is stable fromone side and unstable from the other.7) A system is given by
ż(t) = iz + zf(|z|),where z = x+ iy. Express this formula in polar form. Show that, when
f(r) =

{
sin{1/(r2 − 1)} r 6= 1,
0 r = 1.the system has limit 
y
les r = 1 and r =

√

1 + 1
nπ for n = ±1,±2, . . ..Determine the stability of the limit 
y
les and of the equilibrium point r = 0.8) Consider the equation

ż(t) = a+ z(b− |z|2),



38 CHAPTER 1. DYNAMIC SYSTEMSwhere z is a 
omplex fun
tion of t and a and b are real. Expressing z in theusual polar form z = r exp(iθ) show that
ṙ(t) = a cos(θ) + r(b − r2), θ̇(t) = −a sin(θ)

r
.Investigate the steady solutions and their stability and sket
h their 
urves inthe plane of {b, r} for �xed positive, zero and negative a.



Chapter 2Bifur
ations and CatastropheTheory2.1 The Classi�
ation of Bifur
ationsWe 
onsider an d-dimensional autonomous system whi
h evolves a

ording tothe equation
ẋ(t) = F (a,x), (2.1)where x = (x1, x2, . . . , xd)

T and a = (a1, a2, . . . , aη)T is a ve
tor of independentparameters. The equilibrium points for �xed a are solutions of (2.1) for whi
h
ẋ(t) = 0; that is they are the roots of
F (a,x) = 0. (2.2)The 
ondition (2.2) 
orresponds to d surfa
es in Γd whi
h, will in general inter-se
t in one or more points. If the η 
omponents of a vary over their allowedranges then the equilibrium solutions form an η�dimensional equilibrium surfa
eor surfa
es in the (d + η)�dimensional spa
e Λd+η = Πη × Γd, where Πη is thespa
e of the parameters a.A bifur
ation point or bran
h point is a solution (x0,a0) of (2.2) su
hthat the number of solutions x of (2.2) in a small neighbourhood of x0 
hangeswhen a varies within a small neighbourhood of a0.2.1.1 The One-Dimensional, One-Parameter CaseIn this 
ase d = 1 with one variable x(t) and η = 1 with one parameter a. Then(2.1) be
omes
ẋ(t) = F (a, x), (2.3)39



40 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYTo dis
uss the possible bifur
ations in this 
ase the following de�nition andtheorem will be needed:If there exist P (a′, x′) and Q(a′, x′), su
h that
F (a′ + δa, x′ + δx) = F (a′, x′)

+P (a′, x′)δa+Q(a′, x′)δx

+ θ(a′, x′, δa, δx)δa

+ψ(a′, x′, δa, δx)δx, (2.4)with
θ(a′, x′, δa, δx) → 0

ψ(a′, x′, δa, δx) → 0
as (δa, δx) → (0, 0) (2.5)then F (a, x) is di�erentiable at (a′, x′) with

P (a′, x′) =

(
∂F

∂a

)

a=a′,x=x′

= Fa(a′, x′),

Q(a′, x′) =

(
∂F

∂x

)

a=a′,x=x′

= Fx(a′, x′).

(2.6)The Impli
it Fun
tion Theorem: If F (a, x) is di�erentiable and has
ontinuous partial derivatives with Fx(a, x) 6= 0 in the 
losed re
tangle a1 ≤ a ≤
a2, x1 ≤ x ≤ x2 and if F (a0, x0) = 0 at the point (a0, x0) in the open re
tangle
a1 < a < a2, x1 < x < x2, then there exists an interval (a′, a′′) 
ontaining a0within whi
h F (a, x) = 0 de�nes x as a 
ontinuous and di�erentiable fun
tionof a with
dx

da
= −Fa(a, x)

Fx(a, x)
. (2.7)Suppose that (a0, x0) is a point on the 
urve of equilibrium points given by

F (a, x) = 0. (2.8)If (a0, x0) is a bifur
ation point then a small positive or negative 
hange (onebut not both) in a will in
rease the number of solutions in x of (2.8). Thismeans that x0 must be a multiple root of F (a0, x) = 0 and so a ne
essary,but not su�
ient, 
ondition for (a0, x0) to be a bifur
ation point is that it is asimultaneous solution of (2.8) and
Fx(a, x) = 0. (2.9)



2.1. THE CLASSIFICATION OF BIFURCATIONS 41In prin
iple the solutions of the pair of equations (2.8)�(2.9) will give the bifur-
ation set. Thus for Example 1.8.2 the bifur
ation set is given by solving
x(x2 − 2xc− a) = 0

3x2 − 4xc− a = 0.
(2.10)These equations give x = −a/c and a(a + c2) = 0, yielding the trans
riti
albifur
ation at a = x = 0 and the simple turning point at a = −c2, x = c (seeFig. 1.11).That these 
onditions are not su�
ient to yield a bifur
ation is illustratedby the 
ase F (a, x) = (a − x)2. Any values of a and x on the line x = a willsatisfy (2.8) and (2.9) but there is no bifur
ation. This is the degenerate 
aseof a trans
riti
al bifur
ation disappearing when the 
rossing pair of solutionsmerge into ea
h other.We now 
onsider di�erent types of points whi
h 
an o

ur on the equilibrium
urve. These will in
lude all the simple types of bifur
ation. We assume that

F (a, x) is in�nitely di�erentiable in both variables. Then the Taylor expansionabout (a0, x0) in the two variables a and x is
F (a, x) = +(a− a0)Fa(a0, x0) + (x− x0)Fx(a0, x0)

+ 1
2
(x− x0)

2Fxx(a0, x0)

+ (x− x0)(a− a0)Fax(a0, x0)

+ 1
2
(a− a0)

2Faa(a0, x0) + · · · . (2.11)
(a0, x0) is regular point on the equilibrium 
urve if F (a0, x0) = 0 andone or both of Fa(a0, x0) and Fx(a0, x0) is non-zero. All other points on theequilibrium 
urve are singular points. If (a0, x0) is a singular point on theequilibrium 
urve then it is 
alled a higher-order singularity if Fxx(a0, x0) =

Faa(a0, x0) = Fax(a0, x0) = 0.Ex
luding the 
ase where (a0, x0) is a higher-order singularity there are the fol-lowing possibilities:
• (a0, x0) is a regular point and:
Fx(a0, x0) 6= 0. Then, a

ording to the impli
it fun
tion theorem, (2.8)and (2.11) give the equilibrium 
urve as an expression for x as a 
ontinuousfun
tion of a in a neighbourhood around a0, with dx/da given by (2.7).
Fx(a0, x0) = 0. The roles of a and x in the impli
it fun
tion theorem
an now be reversed and the equilibrium 
urve is given as a expressed as a
ontinuous fun
tion of x in a neighbourhood of x0. From (2.7) da/dx = 0at x = x0, so the equilibrium 
urve of x as a fun
tion of a has a horizontaltangent at (a0, x0). The is 
alled a regular or simple turning point and it isthe only type of bifur
ation whi
h is not a singular point. The bifur
ationat the origin in Example 1.8.1 is a 
ase of this.
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• (a0, x0) is a singular point with [Fax(a0, x0)]

2 > Faa(a0, x0)Fxx(a0, x0).(2.11) as far as quadrati
 terms has the form
F (a, x) = {α1(a− a0) + β1(x − x0)}{α2(a− a0) + β2(x− x0)}, (2.12)where all the 
oe�
ients are real and

2α1α2 = Faa(a0, x0),

2β1β2 = Fxx(a0, x0),

α1β2 + α2β1 = Fax(a0, x0).

(2.13)The equilibrium 
urve has two distin
t bran
hes through (a0, x0) withtangents given by the linear fa
tors in (2.12) and (a0, x0) is a double point.Now suppose β1 6= 0 and β2 6= 0 and 
onsider the lo
al stability ofthe �rst fa
tor at a point
x∗ = x0 − α1(a− a0)/β1. (2.14)With x = x∗ + △x, from (2.3) and (2.12),
d△x
dt

= △x(a− a0){α2β1 − α1β2}. (2.15)The 
urve with tangent α1(a− a0) + β1(x − x0) = 0 
hanges its stabilityas a in
reases through a0 from stable to unstable if α2β1 > α1β2 andunstable to stable if α2β1 < α1β2. Sin
e the stability of the se
ond fa
toris given by reversing the subs
ripts 1 and 2, it is 
lear that the stabilityis also reversed and the bifur
ation is a trans
riti
al point. This analysisin
ludes the 
ase where either one but not both of α1 or α2 is zero. Thenone member of the pair of tangents is the verti
al line x = x0 as in the 
aseof the trans
riti
al bifur
ation at the origin in Example 1.8.2 for c 6= 0.Now suppose β1 = 0 and β2 6= 0. This is the limiting 
ase of theprevious situation where the �rst tangent line is horizontal. The 
omplete
urve plotted for a as a fun
tion of x has a turning point at (a0, x0) andthe bifur
ation is 
alled a singular turning point. The pre
ise form for thisbifur
ation is revealed by taking higher-order fa
tors. One possibility isthe pit
hfork bifur
ation of Example 1.8.2, with c = 0, when the leadingterms in F (a, x) about the origin are x(a − x2). The linear fa
tor is averti
al line and the fa
tor with a horizontal tangent is quadrati
.
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• (a0, x0) is a singular point with [Fax(a0, x0)]

2 < Faa(a0, x0)Fxx(a0, x0).In this 
ase the set of leading quadrati
 terms has 
omplex roots and 
an-not be resolved into real linear fa
tors. There are no points on an equilib-rium 
urve in a neighbourhood of (a0, x0) whi
h is an isolated equilibriumpoint 
alled a 
onjugate point.
• (a0, x0) is a singular point with [Fax(a0, x0)]

2 = Faa(a0, x0)Fxx(a0, x0).In this 
ase the leading term is a produ
t of two identi
al linear fa
tors.In general
F (a, x) = {α(a− a0) + β(x − x0)}2 + g(a, x), (2.16)where g(a, x) has a zero at (a0, x0) and is of at least 
ubi
 degree in thevariables (a − a0), (x − x0). Equation (2.8) has a solution only when
g(a, x) < 0 and, if g(a, x) 
hanges sign along the line α(a − a0) + β(x −
x0) = 0 at (a0, x0), the equilibrium 
urve has a 
usp at (a0, x0). A simpleexample is
F (a, x) = {(a− 1) + 2(x− 3)}2 + 7(a− 1)3, (2.17)The 
urve F (a, x) = 0 
an be plotted by the following MAPLE 
ode:
> with(plots):
> f:=(x,a)->((a-1)+2*(x-3))^2+7*(a-1)^3:
> 
urve:=impli
itplot(f(x,a)=0,x=0..5,
> a=0..4,grid=[100,100℄, labelfont=[TIMES,ITALIC,12℄):
> text:=plots[textplot℄
> ([3,1,`(3,1)`℄,align={ABOVE,RIGHT}, font=[TIMES,ROMAN,12℄):
> plots[display℄
> ({
urve,text});

[3, 1]
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This is a 
usp-point bifur
ation.



44 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORY2.1.2 The One-Dimensional, Two Parameter CaseIn this 
ase (2.3) is repla
ed by
ẋ(t) = F (a, b, x), (2.18)and the equilibrium solutions form a surfa
e (or surfa
es) in the spa
e Λ3 of
{a, b, x}. With b set at a �xed value we are taking a sli
e through the equilibriumsurfa
e and on the resulting 
urve of equilibrium points in the {a, x} planewe may see any of the bifur
ations des
ribed above for a one-dimensional oneparameter system. In this situation the parameter b is passive or irrelevant to theo

urren
e of the bifur
ation in the sense that it plays no role in the o

urren
eof the bifur
ation. A simple example of this would be the modi�
ation
ẋ(t) = a+ b− x2, (2.19)to Example 1.8.1. There is now a simple turning point bifur
ation at a = −b,
x = 0 whi
h gives a pi
ture like Fig. 1.9 in any plane parallel to the x�axis. Ina similar way the parameter c is an irrelevant parameter in Examples 1.52 and1.53.We now 
onsider an example of a new type of bifur
ation whi
h 
an o

uronly be
ause of the presen
e of two parameters.Example 2.1.1
ẋ(t) = 4x3 − 2ax+ b. (2.20)The equilibrium points for (2.20) lie on the 
ubi
 
urve
F (a, b, x) = 4x3 − 2ax+ b = 0. (2.21)Taking �xed values of a and b there will in general be three solutions or onesolution in x to (2.21) (Fig. 2.1). The boundaries between these regions aregiven by the 
urves on the surfa
e where, for �xed a, the tangent is parallel tothe x�axis. These 
urves form lines of simple turning point bifur
ations, whi
hfrom (2.21) are given by
∂b

∂x
= 2a− 12x2 = 0. (2.22)This gives x = ±

√
a

6
. Now let x = ±

√
a

6
+ △x and, substituting ba
k into(2.20),

d△x
dt

= 4(△x)3 ± 12

√
a

6
(△x)2 + b∓ 4a

3

√
a

6
. (2.23)Negle
ting the 
ubi
 term this be
omes a similar situation to that dis
ussed inExample 1.8.1 with a simple turning point bifur
ation o

urring at

b∓ 4a

3

√
a

6
= 0, whi
h is 27b2 = 8a3. (2.24)
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x

x

(a)
(b)

F (a, b, x) = 0

a

a b

bone solutionone solutionthree solutionsFigure 2.1: (a) The surfa
e F (a, b, x) = 0 given by (2.21). (b) The 
usp bifur-
ation set in the plane of {a, b}.The 
urve in the {a, b} plane given by (2.24) whi
h is the bifur
ation set for thisexample has a 
usp at the origin. Both the variables a and b are needed or arerelevant for the o

urren
e of this 
usp. It is important to distinguish betweenthis 
usp in the bifur
ation set in two parameter spa
e and the 
usp bifur
ationat a single point in the spa
e of the equilibrium 
urves whi
h is shown in theMAPLE �gure on page 43.2.2 Co-Dimension, Co-Rank and Stru
turalStability2.2.1 Co-DimensionAs we have seen the parameters of a system near to a bifur
ation 
an be dividedinto two sets, those whi
h are relevant to the o

urren
e of the bifur
ation andthose whi
h are not. The number of members of the �rst set is 
alled the 
o-dimension of the bifur
ation. The simple turning point of Example 1.8.1 is thusan example of a bifur
ation of 
o-dimension one and the 
usp of Example 2.1.1is a bifur
ation of 
o-dimension two. Another way of understanding this idea isto think of the bifur
ation as a geometri
al obje
t of dimension d in the spa
e
Πη of parameters {a, b, c, . . .}. The 
o-dimension of the bifur
ation is then the



46 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYnumber of equations needed to spe
ify the bifur
ation. In general this numberis η− d. Thus for the simple turning point in Example 1.8.1 η = 1, d = 0 giving
o-dimension one. In Example 2.1.1 the lines of turning points have η = 2, d = 1so again the 
o-dimension is one. For the 
usp bifur
ation, whi
h terminates thelines of turning points in Example 2.1.1, η = 2 and d = 0 so the 
o-dimensionfor this is two.2.2.2 Co-RankJust as we 
an divide the parameters of a system at a bifur
ation into a relevantset and an irrelevant set, we 
an do the same for the variables. The number ofrelevant variables is 
alled the 
o-rank of the bifur
ation. In this 
ase we 
anbe more pre
ise by supposing that x = x∗(a) is an equilibrium point for the
d�dimensional system given by (2.1). As in Se
t. 1.12 we 
an linearize about
x∗(a) for a parti
ular value of a to give
d△x

dt
= J∗△x, (2.25)where J∗ is the stability matrix given by (1.114). With V and U as the d× dmatri
es 
ontaining the left and right eigenve
tors of J∗ as rows and 
olumnsrespe
tively, as explained in Se
t. 1.9, andΛ the d×d diagonal matrix 
ontainingthe eigenvalues

J∗ = UΛV . (2.26)Substituting into (2.25) and operating on the left with V gives
dΨ

dt
= ΛΨ, (2.27)where

Ψ = V △x. (2.28)The d = 1 
ase of this analysis 
orresponds to the situation where
J = λ(a, x) =

∂F

∂x
. (2.29)and, as we saw Se
t. 2.1.1, the bifur
ation set 
orresponds to the simultaneoussolution of F (a, x) = 0 and λ(a, x) = 0. This means that the dimension of thebifur
ation set is η + d− 2 = 1 + 1 − 2 = 0. That is a single point.For the general 
ase the matrix J has d eigenvalues λ(k)(a,x), k = 1, 2, . . . , d.At a bifur
ation some number ρ (≤ d) of these eigenvalues will be zero. The
hange of variables from △r to Ψ is a linear approximation to a 
hange ofvariables of whi
h ρ have zero eigenvalues. This means that ρ independent
ombination of the variables x1, x2, . . . , xd are relevant to the bifur
ation. The
o-rank of the bifur
ation is thus the number ρ of zero eigenvalues at the bifur-
ation1.1Sin
e the rank of an d×d matrix is the number of independent rows, whi
h is the numberof non-zero eigenvalues, 
o-rank = d − rank.
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tural StabilityWe �rst 
onsider the one-dimensional 
ase of a fun
tion V (a, b, c, . . . , x) whi
his a polynomial of degree µ in x with 
oe�
ients a, b, c, . . .. By linear andmultipli
ative s
aling of V we 
an eliminate the 
onstant term and set the
oe�
ient of xµ to 1/µ. For any V (a, b, c, . . . , x) of this type we now de�ne aset of perturbed polynomials
Ṽp(ε, a, b, . . . , x) =

εxp

p
+ V (a, b, c, . . . , x). (2.30)Then V (a, b, c, . . . , x) is said to be stru
turally stable if, for all p > 0 and forsmall ε, Ṽp(ε, a, b, . . . , x) has the same x-dependent 
hara
ter (having a non-zerogradient or a maximum or a minimum or a point of in�e
tion) in a neighbour-hood of x = a = b = · · · = 0 as V (a, b, c, . . . , x) does at x = a = b = c = · · · = 0.For ea
h value of µ we begin building a stru
turally stable polynomial by addingterms to

V (x) =
xµ

µ
. (2.31)For µ even this has a minimum at x = 0, for µ = 1 it is a straight line throughthe origin and for µ ≥ 3 and odd there is a point of in�e
tion at the origin.Consider

Ṽp(ε, x) =
εxp

p
+
xµ

µ
, p ≥ µ. (2.32)This perturbation does not a�e
t the degree of the root at the origin sin
e the�rst non-zero derivative is still the µ�th with value one. If p = µ the only e�e
tis a trivial 
hange of 
oe�
ient. If p > µ the large x�value is 
hanged. With

p and µ of di�erent parity, or of the same parity with ε negative, this involvesnew roots far from the origin.Now 
onsider the possibilities for destabilization with monomial terms with
p < µ. (We start with µ = 2 sin
e there is no s
ope for adding terms for µ = 1,whi
h is stru
turally stable in a trivial sense.)

• µ = 2, Ṽ1(ε, x) = εx + 1
2x

2. This simply shifts the minimum to x = −εso x2/2 is stru
turally stable.
• µ = 3, Ṽ1(ε, x) = εx + 1

3x
3. The point of in�e
tion at x = 0 in V (x)has been eliminated leaving no turning points when ε > 0 or split into amaximum and minimum if ε < 0. So x3/3 is stru
turally unstable. Now
onsider

V (a, x) = 1
3x

3 + ax. (2.33)It is 
lear that this potential is not destabilized by εx whi
h now just shiftsthe fun
tion a distan
e ε in the a dire
tion. What about
Ṽ2(ε, a, x) = 1

2εx
2 + 1

3x
3 + ax? (2.34)
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an be rewritten as
Ṽ2(ε, a, x) = 1

3

(
x+ 1

2ε
)3

+
(
a− 1

4ε
2
) (
x+ 1

2ε
)

+ 1
12ε(ε

2 − 6a). (2.35)So a small shift of origin will restore the polynomial to the form (2.33). Itfollows that (2.33) is stru
turally stable.Are there any general 
on
lusions we 
an draw at this stage? Suppose we want,for some value of µ, to 
onstru
t the the stru
turally stable polynomial withminimum 
o-dimension, that is with the minimum number of parameters as
oe�
ients. It is 
lear that
V (a1, a2, . . . , aµ−1, x) =

xµ

µ
+

µ−1
∑

k=1

ak
xk

k
(2.36)is stru
turally stable sin
e addition of a perturbation of degree k ≤ µ will justshift the parameter ak by ε. It is also not di�
ult to see that the degree µ− 1monomial 
an, as in the 
ase µ = 3, be eliminated by a shift in all the remainingparameters and in V and x. It follows that

V (a1, a2, . . . , aµ−2, x) =
xµ

µ
+

µ−2
∑

k=1

ak
xk

k
(2.37)is stru
turally stable and the minimum 
o-dimension for a µ�degree polynomialis not more that µ − 2. In fa
t it turns out that (2.37) with degree µ has themaximum degree for a polynomial of 
o-rank one and 
o-dimension µ− 2. Weshall not prove this general result, but it is worth 
onsidering

V (a, b, x) = 1
4x

4 + 1
2ax

2 + bx. (2.38)We know that this polynomial is unstable if a = b = 0. But is it still stable withone but not both of a or b zero? With V (a, x) = V (a, 0, x)

Ṽ1(ε, a, x) = εx+ 1
4x

4 + 1
2ax

2. (2.39)The turning points of Ṽ1(ε, a, x) are given by
∂Ṽ1

∂x
= ε+ x(x2 + a) = 0. (2.40)For the unperturbed 
ase (ε = 0) and with

F (a, x) = −∂V
∂x

, (2.41)
V (a, x) 
an just be regarded as the potential for the pit
hfork (c = 0) 
ase ofExample 1.8.2 and (apart from a trivial reversal of sign for a) the pattern ofmaxima and minima derived from (2.40) with ε = 0 are just the unstable andstable 
urves plotted in Fig. 1.11. Now in
lude a small non-zero ε. The pi
ture
hanges 
ompletely and the pit
hfork bifur
ation stru
ture of potential turning
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a

x0

Figure 2.2: The plot of the 
urves of (2.40) with small positive ε.points is broken into two dis
onne
ted bran
hes (Fig. 2.2). So the fun
tion(2.38) is not stru
turally stable with b = 0. With V (b, x) = V (0, b, x)

Ṽ1(ε, b, x) = 1
2εx

2 + 1
4x

4 + bx. (2.42)The turning points of Ṽ1(ε, b, x) are given by
∂Ṽ1

∂x
= εx+ (x3 + b) = 0. (2.43)In this 
ase the potential does not 
orrespond to any kind of bifur
ation sin
efor ε = 0 there is only one bran
h of the 
urve with a point of in�e
tion at theorigin (as a plot of b as a fun
tion of x). With non-zero ε the point of in�e
tionis removed to be repla
ed by a maximum and a minimum. So the fun
tion(2.38) is not stru
turally stable with a = 0 and with the two parameters aand b it is the stru
turally stable quarti
 one-variable polynomial with smallest
o-dimension. In a similar way

V (a, b, c, x) = 1
5x

5 + 1
3ax

3 + 1
2bx

2 + cx, (2.44)
V (a, b, c, d, x) = 1

6x
6 + 1

4ax
4 + 1

3bx
3 + 1

2cx
2 + dx, (2.45)
an be shown to be the lowest degree 
o-rank one polynomials with 
o-dimensionthree and four. If the 
o-rank is allowed to in
rease then there are three morestru
turally stable polynomials with 
o-dimension not greater than four:

V (a, b, c, x, y) = 1
3x

3 + 1
3y

3 + cxy − ax− by, (2.46)
V (a, b, c, x, y) = 1

3x
3 − xy2 + c(x2 + y2) − ax− by, (2.47)

V (a, b, c, d, x, y) = x2y + 1
4y

4 + cx2 + dy2 − ax− by, (2.48)
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a

x0

Figure 2.3: The plot of the 
urves of (2.52) with a small positive ε.giving in all seven stru
turally stable polynomials with 
o-dimension less thanor equal to four and degree greater than two. We have seen that the simpleturning point bifur
ation has the stru
turally stable potential (2.33) and it is
lear that the 
usp bifur
ation of Example 2.1.1 has the potential
V (a, b, x) = −x4 + ax2 − bx, (2.49)whi
h with slight 
hanges of parameterization is equivalent (2.38). Thus the 
uspbifur
ation has a stru
turally stable potential. We have already seen that thepit
hfork bifur
ation is not stable and by impli
ation the trans
riti
al bifur
ationwith
F (a, x) = x(a− x), (2.50)
V (a, x) = 1

3x
3 − 1

2ax
2, (2.51)is stru
turally unstable. This 
an be seen 
learly if we add a term εx to (2.51).Then the equilibrium diagram is given by

x(a− x) − ε = 0. (2.52)With ε = 0 the trans
riti
al bifur
ation o

urs with the lines x = 0 and x = a
rossing at the origin and ex
hanging stability. With ε 6= 0, however small,the bifur
ation is removed and the equilibrium points form two non-interse
tingbran
hes (Fig. 2.3).



2.3. BIFURCATIONS IN MORE THAN ONE DIMENSION 512.3 Bifur
ations in More Than One DimensionIn Se
t. 2.1 we 
onsidered bifur
ations with one variable x and up to two para-meters. Here we indi
ate brie�y the situation for a system evolving a

ordingto (2.1) where d > 1. Suppose (a0,x0) is an equilibrium point in the (η + d)�dimensional spa
e Λη+d of all the variables and parameters. Then
F (a0,x0) = 0 (2.53)and the ve
torial form of the Taylor expansion (2.11) is
F (a,x) = J(a0,x0)(x − x0) + A(a0,x0)(a − a0)

+ O(|x− x0||a − a0|)
+ O(|x− x0|2) + O(|a − a0|2). (2.54)where

J(a,x) =












∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xd
∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xd... ... . . . ...
∂Fd

∂x1

∂Fd

∂x2
· · · ∂Fd

∂xd












. (2.55)is a d× d matrix and
A(a,x) =













∂F1

∂a1

∂F1

∂a2
· · · ∂F1

∂aη

∂F2

∂a1

∂F2

∂a2
· · · ∂F2

∂aη... ... . . . ...
∂Fd

∂a1

∂Fd

∂a2
· · · ∂Fd

∂aη













. (2.56)is a d×η matrix. The di�erential element dx of the equilibrium 
urve at (a0,x0)for a di�erential 
hange da in the parameters is given, from (2.54), by taking
x − x0 → dx, a − a0 → da and negle
ting non-linear terms. This gives
J(a0,x0)dx = −A(a0,x0)da. (2.57)If J(a0,x0) is non-singular then (a0,x0) is a regular point on the equilibrium
urve with tangent element
dx = −[J(a0,x0)]

−1A(a0,x0)da. (2.58)and, if J(a0,x0) is singular, but A(a0,x0) has an inverse,
da = −[A(a0,x0)]

−1J(a0,x0)dx. (2.59)



52 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYThis is the multi-dimensional version of a regular turning point. Otherwise
(a0,x0) is a singular point. As in the 
ase d = 1 bifur
ations arise both fromsingular points and regular turning points. They satisfy
Det{J(a0,x0)} = 0. (2.60)The d equations (2.53) and (2.60) are (d − 1)-dimensions surfa
es in the spa
e
Λd+η. Their interse
tion is the (d+ η − d− 1 = η − 1)�dimensional bifur
ationset. Whi
h is simply to say that we 
an (in prin
iple) eliminate the d variables
x1, x2 . . . , xd between the d + 1 equations to give one relationship between the
η parameters a1, a2, . . . , aη whi
h is an (η − 1)�dimensional surfa
e in the η�dimensional spa
e of parameters. An example, for d = 1, η = 2, is the 
uspbifur
ation set in Fig. 2.1(b).Example 2.3.1
F (a, x, y) =

(
y − x

ax− y − x2y

) (2.61)The equilibrium points for (2.61) lie on the 
urve in the three-dimensional spa
ewhi
h is the interse
tion of the surfa
es
y − x = 0, ax− y − x2y = 0 (2.62)and
J(a, x, y) =

(
−1 1

a− 2xy −(1 + x2)

) (2.63)The equilibrium 
urve lies in the plane x = y in the spa
e of the variables
{a, x, y} and in this plane is given by
(a− 1)x− x3 = 0, (2.64)whi
h is a pit
hfork. From (2.60) and (2.63) the bifur
ation set is given bysolving (2.62) with
(1 + x2) − (a− 2xy) = 0, (2.65)whi
h gives the bifur
ation set a = 1.Example 2.3.2 The system with potential (2.46) has equilibrium set given by
−∂V
∂x

= −x2 − cy + a = 0,

−∂V
∂y

= −y2 − cx+ b = 0,

(2.66)and the bifur
ation set is given by eliminating x and y between these equationsand
det{J(a, x, y)} =

∣
∣
∣
∣

−2x −c
−c −2y

∣
∣
∣
∣
= 4xy − c2 = 0. (2.67)
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√

a

(a)
V

x

(b)
V

x

(
)
V

x

Figure 2.4: The 
urve V (a, x) = 1
3x

3 − ax for (a) a > 0, (b) a = 0, (
) a < 0.2.4 Catastrophe TheoryThis subje
t, whi
h was initiated by René Thom2, has been applied to allkinds of situations (
on�i
ts, biologi
al morphogenesis, phase transitions et
.)in whi
h sudden 
hanges o

ur.Catastrophe theory is 
on
erned with systems with a set of state variablesdenoted by x1, x2, . . . , xd and a set of 
ontrol variables denoted by a1, a2, . . . , aη.Sin
e time does not enter expli
itly into the theory one may suppose that thestate variables have rea
hed temporal equilibrium and their values are thensmooth fun
tions of the 
ontrol variables. Changes in the state variables arenow 
aused by 
hanges in the 
ontrol variables. In general small 
hanges in the
ontrol variables lead to small 
hanges in the state variables. However, for somevalues of the 
ontrol variables, there is the possibility of a 
atastrophe o

urringwhen a small 
hange in one or more of the 
ontrol variables leads to a large anddis
ontinuous 
hange in one or more of the state variables. Catastrophe theoryis 
on
erned with the 
lassi�
ation of the di�erent ways these dis
ontinuous
hanges 
an o

ur. As a simple example of a 
atastrophe 
onsider a system inwhi
h a parti
le is free to roll on the 
urve
V (a, x) = 1

3x
3 − ax. (2.68)When a > 0 the 
urve has a lo
al minimum at x =

√
a and the parti
le 
an sitat rest at this minimum (Fig. 2.4(a)). While a remains positive a small 
hangein a will lead to only a small 
hange in the lo
ation of the parti
le. However,at a = 0 the maximum and minimum of V (a, x) merge at x = 0. The stateof the parti
le be
omes pre
arious (Fig. 2.4(b)) and, when a be
omes negative,the 
atastrophe o

urs and the parti
le is tipped o� and falls down to x = −∞(Fig. 2.4(
)).Of 
ourse we 
an see that what we are really talking about here is the simpleturning point bifur
ation, with

−∂V
∂x

= a− x2. (2.69)2Stru
tural Stability and Morphogenesis, Benjamin, 1975; for an introdu
tion see P.T.Saunders, An Introdu
tion to Catastrophe Theory, Cambridge, 1980.



54 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYThe maximum and minimum of the potential V (a, x) are the unstable andstable equilibrium states of the parti
le. The parti
le moves downwards alongthe right-hand bran
h of the parabola in Fig. 1.9 as a is de
reased and �nally`drops o�' at a = 0.This example gives a 
ase where a bifur
ation at x = 0, a = 0 gives a
atastrophe. Now we generalize by 
onsidering a smooth potential fun
tion
V (a,x), whi
h 
an be represented approximately in a neighbourhood of theorigin by a polynomial and whi
h is linear in the 
ontrol variables a1, a2, . . . , aη.With
F (a,x) = −∇V (a,x), (2.70)we have a dynami
 system
ẋ(t) = F (a,x). (2.71)When the system has rea
hed equilibrium we 
an think of its state as a parti
lelying at a lo
al minimum on the surfa
e of V plotted in the (d+1)�dimensionalspa
e of the variables {V, x1, x2, . . . , xd}. Now the point x = 0, a = 0 is a
atastrophe if there are paths whi
h 
an be tra
ed out by varying a near to
a = 0 whi
h lead to dis
ontinuous 
hanges in the equilibrium value of x. Inthe 
ase d = 1, η = 1 we have already seen that the path through a = 0 forthe potential (2.68) leads to a dis
ontinuous 
hange in equilibrium state. For
d = 1, η = 2 we 
an think of the path as a small 
ir
le around the origin inthe plane of the 
ontrol variables {a, b}. A dis
ontinuous 
hange in x meansthat the fun
tion F (a, b, x) = 0 plotted as a surfa
e of x against a and b has abran
h-point at the origin, with the equilibrium state 
hanging dis
ontinuouslyfrom one bran
h to another. In Se
t. 2.1 we saw that a bifur
ation point isjust a bran
h-point. So 
atastrophes are bifur
ations. But are all bifur
ations
atastrophes? The answer is `no' and we 
an already produ
e two examples with
o-dimension one, the trans
riti
al bifur
ation with F (a, x) = x(a− x) and thepit
hfork bifur
ation with F (a, x) = x(a−x2) where passing through a = 0 doesnot produ
e a dis
ontinuous 
hange in x. These are not 
atastrophes in theirown right.3 On the other hand the 
usp bifur
ation of Example 2.1.1 does givea dis
ontinuous 
hange in x on a small 
losed path about the origin in the {a, b}plane, either at b =

√

8a3/27 or b = −
√

8a3/27 depending on the orientationof the path. So we have two examples of 
atastrophes:
• The fold 
atastrophe with 
o-dimension one and 
o-rank one, whi
h is thesimple turning point bifur
ation with F (a, x) = −a−x2 (this is just (1.53)with the sign of a reversed) and potential (2.33).
• The 
usp 
atastrophe with 
o-dimension two and 
o-rank one, whi
h is the
usp bifur
ation with F (a, b, x) = −x3 − ax − b (this is just (2.21) withthe signs of a, b and x reversed) and potential (2.38).3Although they do make a guest appearan
e; see Problem Sheet 4.



2.4. CATASTROPHE THEORY 55The distinguishing features of these two 
ases is that they are stru
turally stable.In fa
t it 
an be shown that all the stru
tural stable polynomial forms give
atastrophes. We have already listed these for 
o-dimension up to four. We 
annow given them their names as 
atastrophes.
• (2.44) is the swallow's tail 
atastrophe.
• (2.45) is the butter�y 
atastrophe.
• (2.46) is the hyperboli
 umbili
 
atastrophe.
• (2.47) is the ellipti
 umbili
 
atastrophe.
• (2.48) is the paraboli
 umbili
 
atastrophe.The swallow's tail and the butter�y are of 
o-rank one and 
o-dimensions threeand four respe
tively. Their names derive from resemblan
es seen in their bi-fur
ation sets. The umbili
s are of 
o-rank two with the hyperboli
 and ellipti
being of 
o-dimension three and the ellipti
 being of 
o-dimension four.2.4.1 Bifur
ation Sets Using MAPLEGiven the potential V (a, b, . . . , x) for a 
atastrophe of 
o-rank one, the bifur
a-tion set is given by eliminating x between the two equations

∂V

∂x
= 0,

∂2V

∂x2
= 0. (2.72)For the swallow's tail V (a, b, c, x) is given by (2.44) and the bifur
ation set isobtained by �nding the values of a, b and c for whi
h the polynomials

x4 + ax2 + bx+ c = 0,

4x3 + 2ax+ b = 0
(2.73)have a 
ommon solution for x. The simplest way to solve this problem is to
onstru
t the Sylvester determinant

S(a, b, c) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 a b c 0 0
0 1 0 a b c 0
0 0 1 0 a b c
4 0 2 a b 0 0 0
0 4 0 2 a b 0 0
0 0 4 0 2 a b 0
0 0 0 4 0 2 a b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.74)The bifur
ation set is then given by
S(a, b, c) = 0. (2.75)Solving this determinant and plotting the results is a fairly 
ompli
ated task.The easiest way to do it is to use MAPLE. The following is the re
ord of a



56 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYMAPLE session whi
h 
on�rms the formula (2.24) for the bifur
ation set of the
usp 
atastrophe and 
al
ulates the bifur
ation set for the swallow's tail plottingsli
es through the surfa
e.
> with(linalg,det,matrix):
> with(plots,impli
itplot,impli
itplot3d):
> # This is the matrix of the Sylvester determinant
> # for the 
usp.
> S
:=(a,b)->matrix([[4,0,-2*a,b,0℄,[0,4,0,-2*a,b℄,[12,0,-2*a,0,0℄,[0,1
> 2,0,-2*a,0℄,[0,0,12,0,-2*a℄℄):
> S
(a,b); 266664 4 0 −2 a b 0

0 4 0 −2 a b

12 0 −2 a 0 0
0 12 0 −2 a 0
0 0 12 0 −2 a

377775
> s
:=(a,b)->simplify(det(S
(a,b))):
> s
(a,b);

−512 a3 + 1728 b2

> #This is the bifur
ation set for the 
usp.
> # It 
an be plotted in the {a,b} plane using:
> impli
itplot(27*b^2=8*a^3,b=-2..2,a=-0.5..2,grid=[50,50℄);

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

a

–1.5 –1 –0.5 0 0.5 1 1.5b

> # This is the matrix of the Sylvester determinant
> # for the swallow's tail.
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> Sst:=(a,b,
)->matrix([[1,0,a,b,
,0,0℄,[0,1,0,a,b,
,0℄,[0,0,1,0,a,b,
℄
> ,[4,0,2*a,b,0,0,0℄,[0,4,0,2*a,b,0,0℄,[0,0,4,0,2*a,b,0℄,[0,0,0,4,0,2*a,
> b℄℄):
> Sst(a,b,
); 2666666664 1 0 a b c 0 0

0 1 0 a b c 0
0 0 1 0 a b c

4 0 2 a b 0 0 0
0 4 0 2 a b 0 0
0 0 4 0 2 a b 0
0 0 0 4 0 2 a b

3777777775
> sst:=(a,b,
)->simplify(det(Sst(a,b,
))):
> sst(a,b,
);

16 c a4
− 4 b2 a3

− 128 c2 a2 + 144 b2 c a − 27 b4 + 256 c3

> # This is the bifur
ation set for the swallow's tail.
> # We 
an plot various sli
es through the surfa
e.
> ssta1:=(b,
)->simplify(sst(1,b,
)):
> ssta1(b,
);

16 c − 128 c2 + 144 b2 c + 256 c3
− 4 b2

− 27 b4

> impli
itplot(ssta1(b,
)=0,b=-2..2,
=-0.5..2,grid=[100,100℄);

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c

–2 –1 1 2
b

> ssta2:=(b,
)->simplify(sst(-2,b,
)):
> ssta2(b,
);

256 c − 512 c2
− 288 b2 c + 256 c3 + 32 b2

− 27 b4

> impli
itplot(ssta2(b,
)=0,b=-2..2,
=-2..2,grid=[100,100℄);
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0

0.5

1

1.5

2

c

–1 –0.5 0.5 1b

So we see that the bifur
ation set for the swallow's tail is given by
4ca4 − b2a3 − 32c2a2 + 36b2ca− 27

4 b
4 + 64c3 = 0. (2.76)This surfa
e is symmetri
 under inter
hange of the sign of b and 
uts the b = 0plane in the lines

c = 0, c = 1
4
a2. (2.77)As we 
an see from the MAPLE session given above, its interse
tion with theplane a = 1 is given by

256c3 − 128c2 + 16c+ 4(36c− 1)b2 − 27b4 = 0. (2.78)This 
urve passes through b = c = 0 and is of a basin shape. Although thepoint b = 0, c = 1
4 , given by (2.77) is a solution of (2.78) it is an isolated pointwhen a > 0. Again from the MAPLE session, we see that the interse
tion of thesurfa
e (2.78) with the plane a = −2 is given by

256c3 − 512c2 + 256c+ 32(1 − 9c)b2 − 27b4 = 0. (2.79)This 
urve passes through b = c = 0, but is now also satis�ed by the se
ondsolution of (2.77) b = 0, c = 1, whi
h is a point where the 
urve interse
ts itself.The 
urve has the shape whi
h gives the bifur
ation set its name.



2.4. CATASTROPHE THEORY 59Problems 21) Consider the roots of F (ε, a, x) = 0, where
F (ε, a, x) = εx2 + x3 − ax,Show that the pit
hfork bifur
ation at the origin in the plane of {a, x} when
ε = 0 be
omes a trans
riti
al bifur
ation for small ε 6= 0 and that there is aturning point at a = − 1

4ε
2, x = − 1

2ε. Sket
h the equilibrium 
urves in the
{a, x} plane for ε > 0.2) A system is given by
ẋ(t) = x3 − 2ax2 − (b − 3)x+ c.Find the equation for the bifur
ation set, whi
h is the surfa
e in the spa
eof {a, b, c} satisfying F (a, b, c, x) = Fx(a, b, c, x) = 0. Show that in the plane
a = 1 the bifur
ation set is the 
urve
(27c− 18b+ 38)2 = 4(3b− 5)3Prove that it has a 
usp at b = 5

3 , c = − 8
27 and sket
h the 
urve. Trysket
hing 
urves for other �xed values of a to see how the 
usp is a�e
ted byvariation of a.3) Show that the 
usp bifur
ation with

V (a, b, x) = 1
4
x4 + 1

2
ax2 + bxhas pit
hfork and trans
riti
al bifur
ations in spe
ial planes in the {a, b, x}spa
e. (For the se
ond of these you may �nd it helpful to note that the system
onsidered in Example 1.7.2 has a trans
riti
al bifur
ation.)4) A two-dimensional system is given by

ẋ(t) = −x2 + y2 − 2cx+ a, ẏ(t) = 2xy − 2cy + b.Show that the bifur
ation set is given by eliminating x between the polyno-mials
2x2 + 2xc− a− c2 = 0,

4x4 − 8x3c+ 8c3x+ b2 − 4c4 = 0.Either by hard work or by using MAPLE 
arry out this pro
ess and showthat the bifur
ation set 
an be expressed in the form
27c8 − 18c4(a2 + b2) + 8c2a(a2 − 3b2) − (a2 + b2)2 = 0.



60 CHAPTER 2. BIFURCATIONS AND CATASTROPHE THEORYShow that in terms of the polar 
oordinates a = r cos(θ), b = r sin(θ) thisformula 
an be expressed in the form
(r + c2)(3c2 − r)3 + 8c2r3{cos(3θ) − 1} = 0.Sket
h the interse
tion with a plane of 
onstant c showing that there are
usps at r = 3c2, θ = 0, 2π

3 ,
4π
3 .5) Find the equilibrium points of the system

ẋ(t) = −y − z, ẏ(t) = x+ y, ż(t) = c+ z(x− a).and determine the 
onditions for their existen
e. Determine the 
onditionsfor the existen
e of a bifur
ation and identify its type.



Chapter 3Stability3.1 The Stability of Traje
toriesThis 
hapter will be 
on
erned solely with the stability properties of autonomoussystems. In fa
t, as we saw in Se
t. 1.5, this is not a severe restri
tion, sin
e anon-autonomous system 
an be represented as a suspended autonomous system.In this se
tion we 
onsider the general stability properties of a solution x(t) ofthe dynami
al system
ẋ(t) = F (a,x). (3.1)With x(t0) = x(0) spe
ifying the solution at time t0, x(t) de�nes a traje
tory1in the spa
e Γd of the d variables {x1, x2, . . . , xd}.The map φt: Γd → Γd for all t ≥ 0 is de�ned by
φt[x(t0)] = x(t0 + t) (3.2)and the set of maps {φt : t ≥ 0} is 
alled a �ow. Sin
e
φt1 [φt2 [x(t0)]] = x(t0 + t1 + t2) t1, t2 ≥ 0 (3.3)the �ow satis�es the 
onditions
φt1φt2 = φt1+t2 = φt2φt1 . (3.4)It thus has all the properties of an Abelian (
ommutative) group apart from thepossible non-existen
e of an inverse; it is therefore an Abelian semigroup.An important question 
on
erning a solution x(t) of (3.1) is whether it isstable. There are many di�erent de�nitions of stability in the literature. Weshall give two of the most 
ommon ones:1Also 
alled the path or orbit. 61



62 CHAPTER 3. STABILITYThe solution x(t) to (3.1), with x(t0) = x(0), is said to be uniformly stableor stable in the sense of Lyapunov if there exists, for every ε > 0, a δ(ε) > 0,su
h that any other solution x̃(t), for whi
h x̃(t0) = x̃(0) and
|x(0) − x̃(0)| < δ(ε), (3.5)satis�es
|x(t) − x̃(t)| < ε, (3.6)for all t ≥ t0. If no su
h δ(ε) exists then x(t) is said to be unstable in thesense of Lyapunov. If x(t) is uniformly stable and
lim

t→∞
|x(t) − x̃(t)| = 0. (3.7)it is said to be asymptoti
ally stable in the sense of Lyapunov.The solution x(t) to (3.1), with x(t0) = x(0), is said to be orbitally stableor stable in the sense of Poin
aré if there exists, for every ε > 0, a δ(ε) > 0,su
h that, for any other solution x̃(t), with x̃(t1) = x̃(1) and

|x(0) − x̃(1)| < δ(ε), (3.8)there exists a t2(t) with
|x(t) − x̃(t2)| < ε, (3.9)for all t ≥ t0. If no su
h δ(ε) exists then x(t) is said to be unstable in thesense of Poin
aré. If x(t) is orbitally stable and
lim

t→∞
|x(t) − x̃(t2(t))| = 0. (3.10)it is said to be asymptoti
ally stable in the sense of Poin
aré.It is 
lear that Lyapunov stability is more restri
tive than Poin
aré stability,whi
h it implies with t1 = t0 and t2(t) = t. Lyapunov stability 
ould be 
hara
-terized by saying that the two solutions are for
ed to lie in a `tube' of thi
kness

ε, for t > t0, by the initial 
ondition (3.5) (Fig. 3.1(a)). A 
ross-se
tion of thetube represents the same time instant on ea
h traje
tory. They 
an be saidto have same histories on the same time s
ale. The pi
ture is very similar forPoin
aré stability (Fig. 3.1(b)) but in this 
ase the time s
ales, marked on thetraje
tories may be di�erent. The two solutions have the same histories, but notne
essarily on the same time s
ale. Unless otherwise stated we shall hen
eforthin the dis
ussion of stability mean stable in the sense of Lyapunov.For later referen
e we in
lude at this point the following de�nitions:
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(a)

(b)x̃
(1)

x(0)

δ(ε)ε

x̃(t2)

x(t)

x̃
(0)

x(0)

δ(ε)ε

x̃(t)

x(t)

Figure 3.1: Neighbouring traje
tories whi
h are stable in (a) the sense of Lya-punov, (b) the sense of Poin
aré. Dots on the traje
tories indi
ate equal unitsof time.The solution x(t) to (3.1), with x(t0) = x(0), is a periodi
 solution ofperiod T if, x(t + T ) = x(t), for all t > t0, and there does not exist a T ′ < Twith x(t+ T ′) = x(t), for all t > t0.A 
luster (or limit) point x∞ of the solution x(t) to (3.1), with x(t0) =
x(0), is su
h that, for all τ > 0 and ε > 0, there exists a t1(ε) > τ with
|x∞ − x(t1)| < ε. (3.11)The set of 
luster points is 
alled the ω-limit set of the traje
tory.Given that the solution x(t) to (3.1) is de�ned for all (positive and negative)
t and x(0) = x(0) the reverse traje
tory xR(t) is de�ned by xR(t) = x(−t).The set of 
luster points of the reverse traje
tory is 
alled the α-limit set ofthe traje
tory x(t).It is 
lear that the existen
e of a 
luster point x∞ implies the existen
e of asequen
e t1 < t2 < · · · < tn → ∞ su
h that, for the spe
i�ed traje
tory,

x(tn) → x∞, as n→ ∞. (3.12)



64 CHAPTER 3. STABILITYLet A be the ω-limit set of a parti
ular solution x(t) to (3.1). If there existsa region D(A), in Γd, whi
h 
ontains A and for whi
h the traje
tories with
x(0) = x(0), for all x(0) in D(A), have A as their ω-limit set, then A is 
alled anattra
tor with basin (or domain) D(A). An α-limit with the same propertyfor reverse traje
tories is 
alled a repellor.3.2 The Stability of Equilibrium PointsIn Se
t. 1.6 we de�ned the stability of an equilibrium point x∗. It is now 
learthat that de�nition was just for the spe
ial 
ase of the stability of a traje
torywhi
h 
onsists of the single point x∗. An asymptoti
ally stable equilibrium pointhas a neighbourhood su
h that every traje
tory with x(0) = x(0), and x(0) inthe neighbourhood, has x∗ as its unique 
luster point (and thus the ω-limit set).An asymptoti
ally stable equilibrium point is therefore an attra
tor with basin
onsisting of some neighbourhood. Of 
ourse, as we shall see, not all attra
torsare asymptoti
ally stable equilibrium points.3.2.1 The Lyapunov Dire
t MethodAn interesting method for establishing the stability of an equilibrium point isgiven by Lyapunov's �rst theorem for stability:Theorem 3.2.1 Let x∗ be an equilibrium point of (3.1). Suppose that thereexists a 
ontinuous di�erentiable fun
tion L(x) su
h that

L(x∗) = 0 (3.13)and, for some µ > 0,
L(x) > 0, when 0 < |x∗ − x| < µ. (3.14)Then x∗ is(i) stable if

F (a,x).∇L(x) ≤ 0, when 0 < |x∗ − x| < µ, (3.15)(ii) asymptoti
ally stable if
F (a,x).∇L(x) < 0, when 0 < |x∗ − x| < µ, (3.16)(iii) unstable if
F (a,x).∇L(x) > 0, when 0 < |x∗ − x| < µ. (3.17)
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tory
dL(x)

dt
= ∇L(x).

dx

dt
= F (a,x).∇L(x). (3.18)From (3.13) and (3.14), x∗ is a lo
al minimum of L(x). So we 
an �nd an R > 0,with µ ≥ R, su
h that, for all R > |x∗ − x1| > |x∗ − x2| > 0, L(x1) > L(x2).Then if (3.15) applies, it follows from (3.18) that a traje
tory 
annot movefurther from x∗ and, given any ε > 0, (1.28) 
an be satis�ed by 
hoosing δ(ε)in (1.27) to be the smaller of ε and R. If the stri
t inequality (3.16) applies itfollows from (3.18) that the traje
tory must 
onverge to x∗. The 
ondition for

x∗ to be unstable is established in a similar way.A fun
tion L(x) whi
h satis�es (3.15) is 
alled a Lyapunov fun
tion and whi
hsatis�es (3.16) a stri
t Lyapunov fun
tion. The method of establishing stabilityof an equilibrium point by �nding a Lyapunov fun
tion is 
alled the Lyapunovdire
t method.Suppose the dynami
al system is given by (2.70)�(2.71) and the fun
tion
V (a,x) has a lo
al minimum at x∗, for some �xed a = a∗. Then the 
hoi
e
L(x) = V (a∗,x) − V (a∗,x∗), (3.19)satis�es (3.13) and (3.14), with
F (a∗,x).∇L(x) = −|∇V (a∗,x)|2 < 0. (3.20)So a lo
al minimum of V (a,x) is, as we might expe
t, an asymptoti
ally stableequilibrium point. To establish that a lo
al maximum is an unstable equilibriumpoint simply make the 
hoi
e
L(x) = V (a∗,x∗) − V (a∗,x). (3.21)Example 3.2.1 Show that (0, 0) is a stable equilibrium point of
ẋ(t) = −2x− y2, ẏ(t) = −y − x2. (3.22)Try
L(x, y) = αx2 + βy2. (3.23)For α and β positive (3.13) and (3.14) are satis�ed and
F (x, y).∇L(x, y) = −{2αx(2x+ y2) + 2βy(y + x2)}

= −2x2(2α+ βy) − 2y2(β + 2αx). (3.24)So in the neighbourhood |x| < β/(2α), |y| < 2α/β of the origin (3.15) is satis�edand the equilibrium point is stable.The problem in this method is to �nd a suitable Lyapunov fun
tion. This ingeneral 
an be quite di�
ult. There are, however, two 
ases where the 
hoi
e isstraightforward:
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onservative system given by ,
ẍ(t) = −∇V (a,x), (3.25)whi
h in terms of the 2d variables {x1, . . . , xd, v1, . . . , vd} 
an be expressed inthe form
ẋ(t) = v, v̇(t) = −∇V. (3.26)An equilibrium point with a = a∗ is given by v = 0 and a value x = x∗ whi
hsatis�es ∇V = 0. Now try
L(x,v) = 1

2v.v + V (a∗,x) − V (a∗,x∗). (3.27)With
∇L(x) =

(
∇V
v

) (3.28)
F (a∗,x).∇L(x) = 0. (3.29)Sin
e, from (3.27), L(x∗, 0) = 0 it follows from (3.29) that the equilibrium pointis stable (but not asymptoti
ally stable) if (3.14) holds. From (3.27) this will
ertainly be the 
ase if x∗ is a lo
al minimum of V (a∗,x). A

ording to theanalysis of Se
t. 1.3 su
h a minimum of the potential is a 
entre, whi
h is stablein the sense of Lyapunov.A Hamiltonian system given by (1.10) , in terms of the 2d variables
{x1, . . . , xd, p1, . . . , pd}. If the system is autonomous and we have an equilibriumpoint (x∗,p∗) then, with
L(x,p) = H(x,p) −H(x∗,p∗) (3.30)we have, from (1.11)
dL

dt
=

dH

dt
= F (x,p).∇L(x,p) = 0. (3.31)The equilibrium point is stable if it is a lo
al minimum of the Hamiltonian. Anexample where this is true is the equilibrium point at the origin for the simpleharmoni
 os
illator with Hamiltonian (1.30). Even when the equilibrium pointis not a lo
al minimum of the Hamiltonian, its form 
an often be a guide to�nding an appropriate Lyapunov fun
tion.Example 3.2.2 Consider the stability of the equilibrium point at the origin forthe system with Hamiltonian

H(a, x1, x2, p1, p2) = 1
2{x2

1 + x2
2 + p2

1 + p2
2} + a{p1x2 − p2x1}. (3.32)



3.2. THE STABILITY OF EQUILIBRIUM POINTS 67From (1.10) the equations of motion for this system are
ẋ1(t) =

∂H

∂p1
= p1 + ax2, ṗ1(t) = − ∂H

∂x1
= −x1 + ap2,

ẋ2(t) =
∂H

∂p2
= p2 − ax1, ṗ2(t) = − ∂H

∂x2
= −x2 − ap1.

(3.33)The origin is 
learly an equilibrium point. However in the plane x2 = p1 = 0
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2H

∂x2
1

∂2H

∂x1∂p2

∂2H

∂p2∂x1

∂2H

∂p2
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 − a2. (3.34)So the origin is a saddle point in this plane when |a| > 1. However, the fun
tion
L(x1, x2, p1, p2) = H(0, x1, x2, p1, p2) (3.35)has a minimum at the origin with
F (a, x1, x2, p1, p2).∇L(x1, x2, p1, p2) = 0. (3.36)So we have found a Lyapunov fun
tion whi
h establishes the stability of theequilibrium point.3.2.2 LinearizationThe Lyapunov 
riterion for stability of an equilibrium point given by (1.27)�(1.29) is lo
al in the sense that a traje
tory will wander near to the equilibriumpoint only in 
ases where it begins su�
iently 
lose by. In Se
ts. 1.10 and 1.12we examined the stability of equilibrium points for systems linearized aboutan equilibrium point. The 
riteria for stability that we developed, whi
h arerelated to the types of eigenvalues of the stability matrix (1.114) at the equilib-rium point, apply globally to the linearized equation (1.113) and apply to thefull equations (2.1) for in�nitesimal disturban
es from the equilibrium point.The 
onne
tion between these 
onditions for linear or in�nitesimal stability andthe stability 
onditions given by (1.27)�(1.29) was provided by Thm. 1.12.1.This theorem allows us to use linear analysis to determine the stability (in theLyapunov and not just the in�nitesimal sense) whenever all the eigenvalues havenon-zero real parts. Thus it leaves open the question of the stability of a 
en-tre. Su
h a 
ase is the simple harmoni
 os
illator with equations of motion(1.3). The stability matrix for equilibrium point at the origin has eigenvalues
±iω/

√
m. We have, however, shown, using the Lyapunov dire
t method, thatthis equilibrium point is stable. Another 
ase of interest is Example 1.12.2,where for a = 0 the point x = y = 0 is a 
entre. The 
omplete solution shows aslow 
onvergen
e to the origin. The fun
tion

L(x, y) = 1
2
(x2 + y2) (3.37)



68 CHAPTER 3. STABILITYhas a minimum at the origin where it is zero and, from (1.117)�(1.118), with
a = 0,
F (x, y).∇L(x, y) = −{x2 + y2}2. (3.38)So a

ording to Thm. 3.2.1 the origin is asymptoti
ally stable.We now review and extend our dis
ussion in Se
t. 1.12 of two-dimensionalautonomous systems given by
ẋ(t) = F (x, y), ẏ(t) = G(x, y). (3.39)The family of traje
tories in the plane Γ2 of {x, y} is given by solving (if it ispossible) the di�erential equation
dy

dx
=
G(x, y)

F (x, y)
. (3.40)Now suppose that there is an equilibrium point, whi
h, using if ne
essary atranslation in the variables, 
an be taken to be at the origin. Linearizing aboutthe equilibrium point

F (x, y) = ax+ by + O(x2 + y2), G(x, y) = cx+ dy + O(x2 + y2). (3.41)Retaining only linear terms and assuming a normal mode solution of the form
x(t) = u1 exp(λt), y(t) = u2 exp(λt), gives the right eigenproblem
J∗u = uλ, (3.42)with
u =

(
u1

u2

)

J∗ =

(
a b
c d

)

, (3.43)dis
ussed in Se
t. 1.9. The general solution to the linearized equations is of theform
x = C(+)u

(+)
1 exp{λ(+)t} + C(−)u

(−)
1 exp{λ(−)t},

y = C(+)u
(+)
2 exp{λ(+)t} + C(−)u

(−)
2 exp{λ(−)t},

(3.44)where
λ(±) = 1

2
{p±

√

p2 − 4q}, (3.45)with
p = Trace{J∗} = a+ d, q = Det{J∗} = ad− bc, (3.46)are the eigenvalues of J∗ with 
orresponding right eigenve
tors
u(±) = (u

(±)
1 , u

(±)
2 )T. It is 
lear from (3.44) that the topologi
al nature of thetraje
tories in a neighbourhood of the origin in the {x, y} plane is determinedby the eigenvalues and right eigenve
tors of J∗. An equilibrium point for whi
h
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h eigenvalue has a non-zero real part is 
alled a hyperboli
 point; an equi-librium point for whi
h ea
h eigenvalue is purely imaginary is 
alled an ellipti
point. Sin
e in two dimensions the eigenvalues are either real or a 
onjugate
omplex pair, the only alternative to either a hyperboli
 or ellipti
 point iswhere the eigenvalues are real and one or both are zero. As we have seen abovethis normally 
orresponds to a bifur
ation.When p2 > 4q, the eigenvalues are real and unequal. with eigenve
torswith real 
omponents. There are two dire
tions through the equilibrium pointwhi
h give straight line traje
tories for the linear system. These are given bythe two eigenve
tors and 
orrespond to taking C(−) = 0 and C(+) = 0 in (3.44),giving the lines
xu

(+)
2 = yu

(+)
1 , (3.47)

xu
(−)
2 = yu

(−)
1 . (3.48)We assume, without loss of generality, that a > d. Then, if b = c = 0, u(−)

1 =

u
(+)
2 = 0 and the lines (3.47) and (3.48) be
ome respe
tively the x and y axes.If c = 0, but b 6= 0, then u(−)

1 = 0 but u(+)
2 6= 0; (3.48) is the y axis but (3.47)is not the x axis. The 
onverse is the 
ase if b = 0, c 6= 0. Within the 
lass ofreal unequal eigenvalues there are a number of 
ases:(i) q > 0 > p, giving 0 > λ(+) > λ(−). From (3.44)

x

y
=

u
(+)
1 + (C(−)/C(+)u

(−)
1 exp{(λ(−) − λ(+))t}

u
(+)
2 + (C(−)/C(+)u

(−)
2 exp{(λ(−) − λ(+))t}

→ u
(+)
1

u
(+)
2

, as t→ ∞. (3.49)So the ultimate approa
h to the equilibrium point is tangential tothe prin
iple dire
tion (3.47), whi
h is 
alled the strong dire
tion.This applies to all traje
tories in a neighbourhood of the equilibriumpoint ex
ept those lying on the prin
iple dire
tion (3.48) (C(+) = 0)(
alled the weak dire
tion). An equilibrium point of this kind is astable node, (Fig. 3.2a).(ii) q > 0, p > 0 giving λ(+) > λ(−) > 0. The result (3.49) applies tothe linearized equations for all traje
tories ex
ept for those lyingon the weak dire
tion line whi
h tend to in�nity on that line. Allother traje
tories approa
h the strong line asymptoti
ally at largedistan
es. This predi
tion applies only to the linearized equations.Non-linear terms in the full equations will probably modify the largedistan
e behaviour. Close to the equilibrium point the traje
torieshave the same topology as that of the stable mode ex
ept that thedire
tion of the �ow is reversed. This is an unstable mode.
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(f) (g)
(e)
(
) (d)
(a) (b)

Figure 3.2: Traje
tories in a neighbourhood of an equilibrium point: (a) stablenode, (b) improper stable node, (
) saddle-point, (d) in�e
ted stable node, (e)perfe
t stable node, (f) stable fo
us, (g) 
entre.



3.2. THE STABILITY OF EQUILIBRIUM POINTS 71(iii) q = 0, p < 0 giving λ(+) = 0, λ(−) = p < 0. In this 
ase it followsfrom (3.44) that the traje
tories are straight lines whi
h approa
hthe line (3.47) as t→ ∞. This is an improper stable node (Fig. 3.2b).(iv) q = 0, p > 0 giving λ(+) = p > 0, λ(−) = 0. In this 
ase it followsfrom (3.44) that the traje
tories are straight lines whi
h retreat fromthe line (3.48) as t in
reases. This is an improper unstable node.(v) q < 0 giving λ(+) > 0 > λ(−). This is similar to the 
ase of anunstable mode ex
ept that the weak dire
tion is now a dire
tion ofapproa
h to the equilibrium point and traje
tories near to this linewill �rst be in�uen
ed by its attra
tive power before experien
ingthe repulsive a�e
t of the strong dire
tion. This is a saddle-point(Fig. 3.2
). Again the form of the traje
tories may be modi�ed bynon-linear terms.When p2 = 4q, the eigenvalues are real and equal. Within this 
lassthere are a number of 
ases:(i) p < 0, not both b = 0 and c = 0 giving λ(+) = λ(−) < 0. This 
asebe regarded as the limiting 
ase q → p2/4 of a stable node. Thelines (3.47)�(3.48) degenerate into one linear traje
tory of approa
h.This is 
alled an in�e
ted stable node (Fig. 3.2d).(ii) p > 0, not both b = 0 and c = 0 giving λ(+) = λ(−) > 0. This 
asebe regarded as the limiting 
ase q → p2/4 of a unstable node. Thelines (3.47)�(3.48) degenerate into one linear traje
tory of retreat.This is 
alled an in�e
ted unstable node.(iii) p < 0, both b = c = 0. In this 
ase the equations for x and y areindependent and every radial line through the origin is a linear di-re
tion of approa
h. This is 
alled a sink or perfe
t stable node (Fig.3.2e).(iv) p > 0, both b = c = 0. Again every radial line is a linear traje
torybut now it is a dire
tion of retreat. This is 
alled a sour
e or perfe
tunstable node.When p2 < 4q, the eigenvalues are a 
onjugate 
omplex pair. λ(±) =
1
2
(p+ iθ), where θ =

√

4q − p2. Equations (3.44) still apply but the elements ofthe eigenvalues are no longer real. However, sin
e x and y are real the solutionmust be of the form
x = C1 exp(pt/2) cos(γ1 + θt/2),

y = C2 exp(pt/2) cos(γ2 + θt/2),
(3.50)where C1, C2, γ1, γ2 are 
onstants. There are a number of 
ases:



72 CHAPTER 3. STABILITY(i) p < 0. In this 
ase the traje
tories spiral into the origin. This is
alled a stable fo
us (Fig. 3.2f).(ii) p > 0. In this 
ase the traje
tories spiral out from the origin. Thisis 
alled a unstable fo
us.(iii) p = 0. In this 
ase the traje
tories form periodi
 
urves around theorigin. This is a 
entre (Fig. 3.2g).A summary of the types of equilibrium points for di�erent regions of the {p, q}plane are shown in (Fig. 3.3). The only 
ases not shown are the sink and sour
e

UNSTABLE

q

p

p2
= 4q

ASYMPTOTICALLY STABLE UNSTABLEINFLECTED STABLE NODES(ON CURVE) INFLECTED UNSTABLE NODES(ON CURVE)STABLE NODES UNSTABLE NODESSTABLE FOCICENTREUNSTABLE FOCIIMPROPER STABLE NODES IMPROPER UNSTABLE NODES
←− SADDLE POINTS −→

Figure 3.3: Summary in the {p, q} plane of the types of equilibrium points.whi
h also lie on the stable and unstable bran
hes of p2 = 4q.3.3 Poin
aré MapsFor the autonomous system (3.1) a traje
tory 
annot meet or 
ross itself in
Γd unless it is a periodi
 solution when it forms a simply-
onne
ted 
urve.This is not the 
ase for the non-autonomous, sin
e for a parti
ular a and xit is possible that F (a,x; t1) 6= F (a,x; t2) giving ẋ(t1) 6= ẋ(t2) for the samepoint in spa
e at di�erent times. This situation is simpli�ed by 
reating the



3.3. POINCARÉ MAPS 73(autonomous) suspended system, des
ribed in Se
. 1.5, so the these two pointson the traje
tory are at di�erent lo
ations with xt = t1 and xt = t2 in the spa
e
Γd × Υ. Hen
eforth in this se
tion we shall 
onsider only autonomous systems.This 
ourse is mainly 
on
erned with di�erential equations, although manybooks on the subje
t also dis
uss di�eren
e equations (Drazin, Chap. 3). Wehave already seen that the di�eren
e equation
x(n+ 1) = F[a, x(n)], n = 0, 1, . . . , (3.51)
an be obtained from the di�erential equation (3.1) by quantizing time. The`traje
tory' in Γd will then 
onsist of a sequen
e of points. An equilibrium point
x∗ of (3.51), usually 
alled a �xed point, satis�es x∗ = F[a, x∗] and there 
analso be p-
y
les x(1) → x(2) → · · · → x(p) → x(1).An alternative method of deriving a dis
rete time map from a 
ontinuoustime system is using the Poin
aré map or se
tion. In the spa
e Γd take the
(d− 1)�dimensional hypersurfa
e de�ned by the 
ondition
Π(x) = 0. (3.52)Now suppose that a parti
ular traje
tory 
uts the hypersurfa
e (3.52) at times
t0, t1, t2, . . .. In 
ases where an expli
it solution 
an be obtained to the dif-ferential system so that we know x(tn) for all n = 0, 1, 2, . . ., we 
an de�ne
x(n) = x(tn), whi
h then gives us a di�eren
e map x(0) → x(1) → · · ·. If thesu

ession of points are restri
ted to those whi
h 
orrespond to passages throughthe hypersurfa
e in the same sense the 
onstru
tion is 
alled the Poin
aré �rst-return map.Example 3.3.1 Take the Poin
aré se
tion y = 0 of the system
ẋ(t) = −y + x(a− x2 − y2), ẏ(t) = x+ y(a− x2 − y2). (3.53)This system was investigated in Example 1.12.2. In polar 
oordinates
x = r cos(θ), y = r sin(θ) the solution to this system is given by (1.122) and(1.125).2 For a 6= 0

r(t) =

√

ar2(0)
r2(0) + exp(−2at)

{
a− r2(0)

} ,

θ(t) = t.

(3.54)The traje
tory 
uts the plane y = 0 at times tn = nπ, n = 0,±1,±2 . . .. Wenow de�ne θ(n) = θ(tn), r(n) = r(tn) giving x(n) = r(n) cos[θ(n)] = r(n)(−1)n.The di�eren
e equation relating x(n+ 1) and x(n) 
an be obtained from (3.54)by repla
ing r(0) by r(n) and t by π. So
x(n+ 1) = −x(n)

√
a

x2(n) + exp(−2aπ)
{
a− x2(n)

} . (3.55)2Sin
e the system is autonomous we 
an, without loss of generality, take t0 = 0 and also
θ(0) = 0.
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an be taken to be those points where the traje
tory 
utsthe plane moving in the positive y dire
tion. From the se
ond of equations(3.53) these all o

ur when x > 0 and they 
ould be `
aptured' by taking thehalf-plane x > 0, y = 0. For x > 0, θ = θ(tn) = 2nπ and (3.55) is modi�ed to
x(n+ 1) = x(n)

√
a

x2(n) + exp(−4aπ)
{
a− x2(n)

} . (3.56)If an equilibrium point of the di�erential system lies on (3.52) then it will be a�xed point of the dis
rete map. A periodi
 traje
tory will 
ut a hypersurfa
ewithout edges an even number of times and generate a 2p-
y
le in the Poin
arémap. In the �rst-return map it will generate a p-
y
le.Consider now the 
ase of a system where the phase point move on a torus,given in terms the variables 0 ≤ θ < 2π, 0 ≤ φ < 2π by
x = cos(θ){a+ b cos(φ)},

y = sin(θ){a+ b cos(φ)},

z = b sin(φ),

(3.57)(Fig. 3.4). Suppose now a traje
tory is given by θ = αt and φ = βt. This
φ

θ

Figure 3.4: A torus in the {x, y, z} spa
e.traje
tory winds around the torus. Now 
onsider the �rst-return map obtain by
utting the torus with the half-plane y = 0, x > 0. The su

essive values of θwhen the traje
tories 
ut this plane are
θ = 2nπ, n = 0, 1, 2, . . . . (3.58)The 
orresponding su

essive values of φ are
φ =

(
β

α

)

θ = 2nπ

(
β

α

)

. (3.59)
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tory will be periodi
 only if, when α = 2πp′ for some integer p′
β = 2πq′ for some integer q′. This is simply the 
ondition
α

β
=
p′

q′
=
p

q
, where p = p′/s and q = q′/s are 
oprime integers. (3.60)Meaning that α/β is a rational number. Su
h a periodi
 traje
tory 
uts theplane y = 0 x > 0 at the points

x = a+ b cos(2nπq/p), z = b sin(2nπq/p). (3.61)It, therefore, generates a p-
y
le in the �rst-return map. When α/β is irrational
x(θ, φ), with 
omponents given by (3.57), is periodi
 in ea
h of its arguments,but not periodi
. The periods are in
ommensurate and the fun
tion is 
alledquasi-periodi
. It is not di�
ult to show that the points of the Poin
aré mapare dense on the 
ir
le (3.61)3.4 The Stability of Periodi
 SolutionsIn Example 1.12.2 we investigated the Hopf bifur
ation at whi
h a stable limit
y
le emerged from a stable equilibrium point. It is 
lear that a limit 
y
le isa type of periodi
 orbit but we have yet to give a more formal de�nition. This
an be done using the de�nitions of stability of traje
tories given in Se
t. 3.1.The periodi
 solution x(t) to (3.1) is a stable limit 
y
le if it is asymptot-i
ally stable and an unstable limit 
y
le if it is unstable.Just as for traje
tories in general the terms stable and unstable 
an be quali�edby the phase `in the sense of Lyapunov' or `in the sense of Poin
aré' with theformer implying the latter. Unless otherwise stated we shall use Lyapunovstability and we shall also 
on
entrate on the autonomous 
ase (3.1). We developfor periodi
 solutions the analogue of the linearization method of equilibriumpoints. This is known as Floquet theory.Suppose x̊(t) is a periodi
 solution of (3.1) with period T . Thus x̊(t) =
x̊(t + T ). Now 
onsider the traje
tory x(t), 0 ≤ t ≤ T , where x(0) is near to
x̊(0) and de�ne △x(t) = x(t) − x̊(t). Then, from (3.1)
d△x(t)

dt
= F (a,x(t)) − F (a, x̊(t)). (3.62)The Taylor expansion of the right-hand side of (3.62) at �xed t gives

F (a,x(t)) − F (a, x̊(t)) = J(a, x̊(t))△x(t) + O(|△x(t)|2), (3.63)where J(a,x(t)) is given by (2.55). Retaining only linear terms,
d△x(t)

dt
= J(a, x̊(t))△x(t). (3.64)



76 CHAPTER 3. STABILITYFixing and suppressing referen
e to a, we write
J̊(t) = J(a, x̊(t)). (3.65)Solving (3.64) is equivalent to looking for a solution w(t) to
ẇ(t) = J̊(t)w(t). (3.66)In parti
ular we are interested in the existen
e of a periodi
 solution (period T )to (3.66). If su
h exists then it yields (at least to linear order) a periodi
 solution
x(t) to (3.1) with x(0) 
lose to x̊(0). To pro
eed we need a number of resultsfrom the theory of di�erential equations. These will be stated without proofs,whi
h are given in many texts on the theory of ordinary di�erential equations3.(i) The set of solutions w(1)(t),w(2)(t), . . . ,w(r)(t) to (3.66) is linearlyindependent if there exist no 
onstants c(1), c(2), . . . , c(r), whi
h arenot all zero and for whi
h c(1)w(1)(t)+ c(2)w(2)(t)+ · · ·+ c(r)w(r)(t)is identi
ally zero for any t.(ii) If the elements of J̊(t) are 
ontinuous for all t then there exists a setof independent solutions w(1)(t),w(2)(t), . . . ,w(d)(t) to (3.66). Thisis 
alled a fundamental set of solutions and every solution is a linear
ombination of the members of a fundamental set.(iii) The set of d-dimensional 
olumn ve
torsw(1)(0),w(2)(0), . . . ,w(d)(0)form an orthogonal set and by 
hoosing suitable linear 
ombinationswe 
an 
onstru
t a new fundamental set of solutions

q(1)(t), q(2)(t), . . . , q(d)(t), where, for ℓ = 1, 2, . . . , d, q(ℓ)(0) is theunit ve
tor with zeros everywhere apart from one in the ℓ-th pla
e.(iv) The d× d matrix
Q(t) = (q(1)(t), q(2)(t), . . . , q(d)(t)), (3.67)satis�es
Q̇(t) = J̊(t)Q(t), Q(0) = I, (3.68)and
Det{Q(t2)} = Det{Q(t1)} exp

{∫ t2

t1

Trace{J̊(s)}ds
}

, (3.69)whi
h is Liouville's formula.3e.g. D. A. Sán
hez, Ordinary Di�erential Equations and Stability Theory: An Introdu
-tion, W. H. Freeman, 1968.



3.4. THE STABILITY OF PERIODIC SOLUTIONS 77(v) The solution w(t) to (3.66) whi
h satis�es w(0) = w0, for some w0,
an be written
w(t) = Q(t)w0. (3.70)None of these results depends on the periodi
 property

J̊(t+ T ) = J̊(t), (3.71)of J̊(t), whi
h follows from (3.65) and the fa
t that x̊(t) is a periodi
 solutionof period T . Using that property we 
an now make the following dedu
tions:
• Sin
e the 
olumns of Q(t) form a fundamental set of solutions of (3.66)

Det{Q(t)} 6= 0 and Det{Q(t + T )} 6= 0. Thus the 
olumns of Q(t + T )also form a fundamental set of solutions and, sin
e any solution is a linear
ombination of a fundamental set,
Q(t+ T ) = Q(t)C, (3.72)for some 
onstant d × d matrix. From (3.72) with t = 0 and (3.69) with
t = T ,
Det{C} = exp

{
∫ T

0

Trace{J̊(s)}ds
}

6= 0. (3.73)
• Suppose that λ(k), k = 1, 2, . . . , d are the eigenvalues of C with righteigenve
tors u(k). Thus

Cu(k) = u(k)λ(k), k = 1, 2, . . . , d. (3.74)From (3.66), (3.68) and (3.70)
w(k)(t) = Q(t)u(k), k = 1, 2, . . . , d, (3.75)are solutions of (3.66) with w(k)(0) = u(k).

• From (3.72) and (3.75)
w(k)(t+ T ) = Q(t+ T )u(k) = Q(t)Cu(k) = λ(k)Q(t)u(k)

= λ(k)w(k)(t). (3.76)The 
onverse of the development leading to (3.76) is that if, for somesolution w(t) of (3.66),
w(t+ T ) = λw(t), (3.77)then λ is an eigenvalue of C. The proposition that (3.66) with J̊(t) 
ontin-uous and satisfying (3.71) has at least one non-trivial solution satisfying(3.77) with λ 6= 0 is Floquet's theorem.



78 CHAPTER 3. STABILITY
• Although the matrix C was de�ned, by (3.72), using the fundamentalsolution matrix Q(t), the eigenvalues are not dependent on this 
hoi
e.Suppose S(t) is another fundamental solution matrix. There must exist anon-singular matrix Z with S(t) = Q(t)Z and

S(t+ T ) = Q(t+ T )Z = Q(t)CZ

= S(t)Z−1CZ. (3.78)Comparing (3.78) with (3.72) we see that C has been repla
ed by Z−1CZ,whi
h has the same set of eigenvalues.
• Let
λ(k) = exp

(

σ(k)T
)

. (3.79)The numbers σ(1), σ(2), . . . , σ(d) are 
alled the 
hara
teristi
 or Floquetexponents of the linear system (3.66).
• For the solution w(k)(t) to (3.64), de�ned by (3.75), let

w(k)(t) = y(k)(t) exp
(

σ(k)t
)

. (3.80)Then, substituting into (3.76),
y(k)(t+ T ) exp

(

σ(k){t+ T }
)

= λ(k)y(k)(t) exp
(

σ(k)t
) (3.81)and from the de�nition of σ(k)

y(k)(t+ T ) = y(k)(t). (3.82)When w(k)(t) is given the form (3.80), y(k)(t) is periodi
, period T .
• Sin
e

Det{C} =

m∏

k=1

λ(k), (3.83)it follows, from (3.73) and (3.79), that
m∑

k=1

σ(k) ≡ 1

T

∫ T

0

Trace{J̊(s)}ds mod (2πi/T ). (3.84)



3.4. THE STABILITY OF PERIODIC SOLUTIONS 79This development now allows us to dis
uss the stability of the periodi
 solution
x̊(t) of (3.1). To do so we suppose that the eigenve
tors u(k), k = 1, 2, . . . , d of
C form a basis of Γd. Then, for any solution △x(t) of (3.64), there exists a setof 
onstants c(k), k = 1, 2, . . . , d with
△x(0) =

d∑

k=1

c(k)u(k). (3.85)From (3.75)�(3.76) and (3.79),
△x(nT ) =

d∑

k=1

exp
(

nσ(k)T
)

c(k)u(k), n = 1, 2, . . . . (3.86)It follows that:(i) If ℜ{σ(k)} < 0, for k = 1, 2, . . . , d, △x(nT ) → △x(0) as n→ ∞, forall 
hoi
es of {c(k)}, and x̊(t) is an asymptoti
ally stable periodi
solution, that is a stable limit 
y
le.(ii) If ℜ{σ(k)} > 0, for some k then there exists a 
hoi
e of {c(k)} forwhi
h △x(nT ) → ∞, as n → ∞. x̊(t) is an unstable periodi
solution, that is a unstable limit 
y
le.(iii) If for some k′, σ(k′) = 0 then the 
hoi
e of △x̊(0) with c(k) = 0 for
k 6= k′ gives a periodi
 orbit 
lose to x̊(t).(iv) Purely imaginary Floquet exponents lead to periodi
 orbits, withperiods whi
h are multiples of T , or quasi-periodi
 orbits rather likethose on the torus dis
ussed in Se
t. 3.3.Example 3.4.1 Suppose that, for d = 2, the linearized equations have the form

d△x
dt

= △y, d△y
dt

= −ω(t)△x, (3.87)where ω(t) is a real-valued, 
ontinuous, periodi
 fun
tion of period T .4Then
J̊(t) =

(
0 1

−ω(t) 0

) (3.88)and
Trace{J̊(t)} = 0. (3.89)From (3.84) the Floquet exponents are related by
σ(1) + σ(2) ≡ 0 mod (2πi/T ). (3.90)4This system is equivalent to Hill's equation z̈(t) + ω(t)z(t) = 0.



80 CHAPTER 3. STABILITYIt 
annot be the 
ase that both Floquet exponents have negative real part andthe periodi
 solution of a system whi
h leads to the linearized form (3.87) 
annotbe a stable limit 
y
le. The alternatives are:(i) Floquet exponents with real parts of opposite signs whi
h gives anunstable limit 
y
le.(ii) Purely imaginary Floquet exponents σ(1) = σ(2) = nπi/T , whi
hgives a periodi
 solution, period T , if n is even and 2T , if n is odd.(iii) Purely imaginary Floquet exponents with other than these spe
ialvalues whi
h give a quasi-period solution.3.4.1 Periodi
 Solutions in Two DimensionsWe now 
onsider the 
ase of periodi
 solutions for two-dimensional autonomoussystems given by (3.39), with (3.39) having a unique solution at all points in
{x, y} whi
h are not equilibrium points (F (x, y) = G(x, y) = 0). We state twoimportant results for su
h systems. The se
ond of these, whi
h is the Poin
aré-Bendixson theorem will be shown to be a 
onsequen
e of the �rst result, whi
his stated without proof.Theorem 3.4.1 If a traje
tory of (3.39) has a bounded ω-set, then that set iseither an equilibrium point or a periodi
 traje
tory.Theorem 3.4.2 Let C be a 
losed, bounded (i.e. 
ompa
t) subset of the {x, y}plane. If there exists a solution γ = {x(t), y(t)} of (3.39), whi
h is 
ontainedin C for all t ≥ 0, then it tends either to an equilibrium point or to a periodi
solution as t→ ∞.Proof: Consider the in�nite sequen
e (x(t0 + nε), y(t0 + nε)) of points of γ,with t0 > 0, ε > 0, n = 0, 1, 2, . . .. All these points lie in the 
ompa
t set
C so it follows from the Bolzano-Weierstrass theorem that the sequen
e has atleast one limit point. This point must belong to the ω-limit set of γ, whi
h isthus non-empty. From Thm. 3.4.1 this ω-limit set is an equilibrium point or aperiodi
 solution to whi
h γ tends.It follows from the Poin
aré-Bendixson theorem that the existen
e of a traje
-tory γ of the type des
ribed in the theorem guarantees the existen
e of eithera periodi
 traje
tory or an equilibrium point in C. It is 
lear that a periodi
solution whi
h is the ω-set of γ 
annot be an unstable limit 
y
le, but it alsoneed not be a stable limit 
y
le.Example 3.4.2
ẋ(t) = x(t) − y(t) − x(t)[x2(t) + 2y2(t)],

ẏ(t) = x(t) + y(t) − y(t)[x2(t) + y2(t)].
(3.91)
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oordinates (3.91) take the form
dr

dt
= r − r3

{

1 + 1
4

sin2(2θ)
}

, (3.92)
dθ

dt
= 1 + r2 sin2(θ) cos(θ). (3.93)From (3.92)

r − 5
4
r3 ≤ dr

dt
≤ r − r3, for all θ, (3.94)and thus

ṙ(t) < 0, for all θ, if r > r1 = 1,
ṙ(t) > 0, for all θ, if r < r2 = 2/

√
5. (3.95)So any traje
tory with (x(0), y(0)) in the annulus

C = {(x, y) : r2 ≤
√

x2 + y2 ≤ r1} (3.96)remains in this region for all t > 0. The minimum value of 1 + r2 sin2(θ) cos(θ)as θ varies at 
onstant r is 1 − 2r2/(3
√

3) and thus
θ̇(t) > 1 − 2r22

3
√

3
= 1 − 8

15
√

3
≃ 0.69208. (3.97)So θ̇(t) is never zero and there are no equilibrium points in C. Thus, from thePoin
aré-Bendixson theorem there is at least one periodi
 orbit.Problems 31) Systems are given by(i) ẋ(t) = −x− 2y2, ẏ(t) = xy − y3,(ii) ẋ(t) = y − x3, ẏ(t) = −x3.Using a trial form of L(x, y) = xn + αym for the Lyapunov fun
tion show(by a judi
ious 
hoi
e of n, m and α) that, in ea
h 
ase the equilibrium point

x = y = 0 is asymptoti
ally stable.2) A system is given by
ẋ(t) = x2y − xy2 + x3, ẏ(t) = y3 − x3Show that x = y = 0 is the only equilibrium point and, using a trial form of
L(x, y) = x2+αxy+βy2 for the Lyapunov fun
tion, show that it is unstable.



82 CHAPTER 3. STABILITY3) Express
ẍ(t) + x(t){1 − a|x(t)|} = 0as a two-dimensional system in the variables x�y and show that
1
2
{x2 + y2} − 1

3
a|x|3 = E (3.98)is a 
onstant of motion for any value of the parameter E. Find the equilib-rium points and the ranges of a for whi
h they exist. Use linear analysis todetermine their types and sket
h the bifur
ation diagram in the x�a plane.Using (3.98) sket
h traje
tories in the x�y plane for typi
al values of a, show-ing that periodi
 solutions exist for all a and that the period of the os
illationwith amplitude ζ is

T = 4

∫ ζ

0

dx
√

ζ2 − 2
3aζ

3 − x2 + 2
3ax

3
.4) Express

ẍ(t) + 2aẋ(t) + x(t) + bx3(t) = 0as a two-dimensional system in the variables x�y and, for a > 0, �nd theequilibrium points for both signs of b. Use linear analysis to determine theirtypes.For b > 0 and a > 0, use the Lyapunov fun
tion
L(x, ẋ) = 1

2
ẋ2 + 1

2
x2 + 1

4
bx4,to show that x(t) → 0, as t→ ∞, for all initial 
onditions.5) Show dire
tly from the de�nitions that the periodi
 solution x(t) = a cos(t),

y(t) = −a sin(t) to the system
ẋ(t) = y(t), ẏ(t) = −x(t)is stable in the Lyapunov sense.6) Show that the system
ẍ(t) + b[ẋ2(t) + x2(t) − a]ẋ(t) + x(t) = 0,
an be expressed in the form
ṙ = b(a− r2)r sin2(θ), θ̇ = 1

2
b(a− r2) sin(2θ) − 1,



3.4. THE STABILITY OF PERIODIC SOLUTIONS 83where x = r cos(θ), ẋ = r sin(θ). Dedu
e that, for a > 0, there is a periodi
solution r =
√
a, θ = t0−t of period 2π and show that the sum of the Floquetexponents is −ab. (This suggests but doesn't prove that the periodi
 solutionis stable if b > 0.) Now show that, with △r = r −√

a,
d△r
dt

= −b△r(△r +
√
a)(△r + 2

√
a) sin2(t0 − t).Hen
e prove that the periodi
 solution is stable in the sense of Lyapunov if

b > 0.7) Consider the system
ẋ(t) = F (x, y), ẏ(t) = G(x, y),where F and G are 
ontinuous fun
tions of x and y. For the 
ases(i) F (x, y) = x+ y − x(x2 + 2y2), G(x, y) = −x+ y − y(x2 + 2y2),(ii) F (x, y) = −x− y + x(x2 + 2y2), G(x, y) = x− y + y(x2 + 2y2),show that the origin is the only equilibrium point and determine its type.Express the equations in polar form and show that the system has at leastone periodi
 solution. Determine, using the Poin
aré-Bendixson theorem, orotherwise, whether it is stable.
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Chapter 4Weakly Nonlinear Systems4.1 The Lindstedt-Poin
aré MethodIn Se
ts. 1.3 and 1.13 we 
onsidered the 
ase of 
onservative systems. Usingdi�erent variables for the 
ase d = 2

η̇(t) = ξ, ξ̇(t) = −V ′(η). (4.1)The equilibrium points are the turning points of V (η) appearing in the spa
eof {η, ξ} on the η�axis. Suppose η = η∗ is su
h an equilibrium point. Thenexpanding about the η = η∗

V ′(η) = (η − η∗)V ′′(η∗) + ψ(η − η∗), (4.2)where V ′′(η∗) > 0 and ψ(z) = O(z2). Let x = η − η∗, y = ξ and ω2
0 = V ′′(η∗).Then

ẋ(t) = y, ẏ(t) = −ω2
0x− ψ(x). (4.3)If the non-linear term ψ(x) were negle
ted then we should have a simple har-moni
 os
illator with all solutions of period 2π/ω0. We now suppose that

ψ(x) = ω2
0f(ε, x), (4.4)where f(0, x) = 0. Thus

ẋ(t) = y, ẏ(t) = −ω2
0{x+ f(ε, x)}. (4.5)We look for a periodi
 solution to (4.5) of period 2π/ω(ε). The �rst step is torepla
e t by τ = ω(ε)t where ω(ε) = ω0g(ε). This gives

dx

dτ
= ỹ, {g(ε)}2 dỹ

dτ
= −{x+ f(ε, x)}, (4.6)85



86 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSwhere ỹ = y/ω(ǫ). Let
x(ε, τ) = x0(τ) + εx1(τ) + ε2x2(τ) + O(ε3), (4.7)
ỹ(ε, τ) = ỹ0(τ) + εỹ1(τ) + ε2ỹ2(τ) + O(ε3), (4.8)
g(ε) = 1 + εg1 + ε2g2 + O(ε3), (4.9)

f(ε, x(τ, ε)) = εfε(τ) + ε2x1(τ)fεx(τ) +
1
2ε

2fεε(τ) + O(ε3). (4.10)where
fε(τ) =

∂f

∂ε
(0, x0(τ)), fεx(τ) =

∂2f

∂ε∂x
(0, x0(τ)),

fεε(τ) =
∂2f

∂ε2
(0, x0(τ)). (4.11)Substituting into (4.6) and equating powers of ε the ε0 terms give

dx0

dτ
= ỹ0,

dỹ0
dτ

= −x0 (4.12)and the ε1 terms give
dx1

dτ
= ỹ1, 2g1

dỹ0
dτ

+
dỹ1
dτ

= −x1 − fε(τ). (4.13)The general solution to (4.12) is
x0 = a0 cos(τ) + b0 sin(τ),

ỹ0 = b0 cos(τ) − a0 sin(τ),
(4.14)but for simpli
ity we shall take b0 = 0. Then substituting into (4.13)

dx1

dτ
= ỹ1,

dỹ1
dτ

= −x1 − fε(τ) + 2g1a0 cos(τ). (4.15)Let us suppose a solution to (4.15) of the form
x1 = a1 cos(τ) + b1 sin(τ) +X(τ),

ỹ1 = b1 cos(τ) − a1 sin(τ) +X ′(τ).
(4.16)Then the parti
ular integral X(τ) is a solution of

X ′′(τ) +X(τ) = −fε(τ) + 2g1a0 cos(τ). (4.17)To pro
eed further we need a parti
ular form for fε(τ). Suppose, as an example,that f(ε, x) = εcx3. Then (4.17) be
omes
X ′′(τ) +X(τ) = a0

[

2g1 − 3
4
ca2

0

]

cos(τ) − 1
4
ca3

0 cos(3τ). (4.18)



4.1. THE LINDSTEDT-POINCARÉ METHOD 87For whi
h the solution is
X(τ) = a0

[

g1 − 9
32
ca2

0

]

cos(τ) + 1
32
ca3

0 cos(3τ) + a0

[

g1 − 3
8
ca2

0

]

τ sin(τ). (4.19)Substituting from (4.19) into (4.16) we see that the solution will be periodi
only if the �nal term in (4.19) disappears, for whi
h we need,
g1 = 3

8
ca2

0. (4.20)We impose the 
ondition that x(ε, 0) = a0, ỹ(ε, 0) = 0 and then, from (4.7)�(4.9), (4.14), (4.16), (4.19)�(4.20),
x(ε, t) = a0 cos(ωt) + ε 1

32
ca3

0{cos(3ωt) + 3 cos(ωt)} + O(ε2), (4.21)where
ω(ε) = ω0

{

1 + 3
8
εca2

0 + O(ε2)
}

. (4.22)We have su

eeded in obtaining a periodi
 solution to the equations
ẋ(t) = y, ẏ(t) = −ω2

0x{1 + εcx2}, (4.23)by perturbing the simple harmoni
 solution. Some insight into this pro
edure
an be gained from the �rst integral 
onstant of motion. From (4.23)
ω2

0x
dx

dt
+ y

dy

dt
= −ω2

0εcx
3y = −ω2

0εcx
3 dx

dt
, (4.24)giving

ω2
0x

2
{

1
2

+ 1
4
εcx2

}

+ 1
2
y2 = E. (4.25)It is 
onvenient to keep ε ≥ 0 with c = ±1. Then with c = 1, the onlyequilibrium point of (4.23) is x = y = 0. A

ording to (4.22) the frequen
y isin
reased with in
reasing ε. Curves for (4.25) 
an be obtained using MAPLE
ode similar to that given on page 30. Curves of with c = 1, E = ω2

0 are of theform
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[1] [2]

–1

–0.5

0

0.5

1
y

–1.5 –1 –0.5 0.5 1x

with (1) ε = 0 and (2) ε = 0.1. The e�e
t of small non-zero ε is to 
ontra
tthe 
urves in the x�dire
tion. When c = −1, (4.22) have saddle-points on the
x�axis at x = 1/

√−cε. The set of 
urves (4.25) has a separatrix through thesaddle-points with E = ω2
0/(−4cε). Curves have the form

[3] [2] [1]

–3

–2

–1

1

2

3

y

–4 –2 2 4x

where (1) ε = 0.0, E = ω2
0 , (2) ε = 0.1, E = ω2

0 . Now the e�e
t of small ε isto dilate the 
urve in the x�dire
tion. Curve (3) is the separatrix for ε = 0.1



4.2. THE HOPF BIFURCATION 89whi
h has E = 5ω2
0/2.This important point about the Lindstedt-Poin
aré method is that it allowsfor perturbations in the angular frequen
y ω. Without su
h a perturbationterms of the form t sin(ωt) would have been present, preventing the perturbedsolution from being periodi
. The method 
an be generalized in various ways.We may for example in
lude a y dependen
e in the perturbation, so that wehave f(ǫ, x, y) in (4.5).4.2 The Hopf Bifur
ationAs we saw in Example 1.12.2 a Hopf bifur
ation o

urs when the stability of afo
us 
hanges from stable to unstable (super
riti
al) or unstable to stable (sub-
riti
al) with the emergen
e of a limit 
y
le, whi
h is stable in the super
riti
al
ase and unstable in the sub
riti
al 
ase. We now 
onsider the system given by

ẋ(t) = −y + ax+ xy2, ẏ(t) = x+ ay − x2. (4.26)The linear terms are the same as those of (1.117)�(1.118) so we might anti
ipatethe o

urren
e of a Hopf bifur
ation, leading to a periodi
 solution. Sin
e, as inExample 1.12.2, the equilibrium point at (0, 0) is stable or unstable a

ordingas a < 0 and a > 0, the Hopf bifur
ation will be super
riti
al if the periodi
orbit o

urs for a > 0 and sub
riti
al if it o

urs for a < 0.We investigate this using a version on the Lindstedt-Poin
aré method. Indoing so we 
an, without loss of generality, impose the 
ondition ẋ(0) = 0. Let
τ = ωt and ε =

√
a. Then (4.26) be
ome

ω
dx

dτ
= −y + ε2x+ xy2, ω

dy

dτ
= x+ ε2y − x2. (4.27)Now substitute the expansions

x(ε, τ) = εx1(τ) + ε2x2(τ) + ε3x3(τ) + O(ε4), (4.28)
y(ε, τ) = εy1(τ) + ε2y2(τ) + ε3y3(τ) + O(ε4), (4.29)
ω(ε) = 1 + εω1 + ε2ω2 + ε3ω3 + O(ε4), (4.30)into (4.27) and 
ompare 
oe�
ients. For ε1,

dx1

dτ
= −y1,

dy1
dτ

= x1, (4.31)giving
x1(τ) = a1 cos(τ), y1(τ) = a1 sin(τ). (4.32)For ε2,
ω1

dx1

dτ
+

dx2

dτ
= −y2, ω1

dy1
dτ

+
dy2
dτ

= x2 − x2
1, (4.33)
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dx2

dτ
= −y2 + ω1a1 sin(τ), (4.34)

dy2
dτ

= x2 − a2
1 cos2(τ) − ω1a1 cos(τ). (4.35)Let

x2(τ) = a2 cos(τ) +X(τ). (4.36)Then, from (4.34),
y2(τ) = a2 sin(τ) −X ′(τ) + ω1a1 sin(τ), (4.37)and, substituting into (4.35),
X ′′(τ) +X(τ) = 1

2
a2
1{1 + cos(2τ)} + 2ω1a1 cos(τ). (4.38)Thus, from (4.36) and (4.38),

x2(τ) = a2 cos(τ) + a1ω1{cos(τ) + τ sin(τ)} + 1
6
a2
1{3 − cos(2τ)}. (4.39)This solution will not be periodi
 unless ω1 = 0 and applying this 
ondition itfollows from (4.39) and (4.37) that

x2(τ) = a2 cos(τ) + 1
6
a2
1{3 − cos(2τ)}

y2(τ) = a2 sin(τ) − 1
3
a2
1 sin(2τ).

(4.40)For ε3,
dx3

dτ
+ ω2

dx1

dτ
= −y3 + x1 + x1y

2
1 , (4.41)

dy3
dτ

+ ω2
dy1
dτ

= x3 + y1 − 2x1x2. (4.42)Substituting from (4.32) and (4.40)
dx3

dτ
= −y3 + a1 cos(τ) + a1ω2 sin(τ) + a3

1 sin2(τ) cos(τ), (4.43)
dy3
dτ

= x3 + a1 sin(τ) − a1ω2 cos(τ) − 2a1a2 cos2(τ)

− 1
3
a3
1 cos(τ){3 − cos(2τ)}. (4.44)Solving these equations for x3(τ) gives

x3(τ) = a3 cos(τ) + 1
8
a1τ cos(τ){a2

1 + 8} + 1
12
a1τ sin τ{12ω2 + 5a2

1}

− 2
3
a1a2{cos2(τ) − 2} − 1

48
a3
1{cos(τ) cos(4τ)

+ sin(τ) sin(4τ) − 12 sin(τ) + 24 cos(τ) + 4 sin(τ) sin(2τ)

+ 18 sin(τ) cos2(τ)}. (4.45)



4.3. THE KRYLOV, BOGOLIUBOVANDMITROPOLSKYAVERAGINGMETHOD91For the solution to be periodi
 we must have a1 = 2
√

2i, ω2 = 10/3. Theimaginary value of a1 means that ε is also imaginary and the periodi
 solutionappear for a < 0, whi
h means that it is sub
riti
al. To leading order the limit
y
le is given by
x(a, t) ≃

√
−8a cos(ωt), y(a, t) ≃

√
−8a sin(ωt), (4.46)where

ω ≃ 1 +
10
3
a. (4.47)4.3 The Krylov, Bogoliubov and MitropolskyAveraging MethodIn Se
t. 4.1 we 
onsidered the 
ase of a simple harmoni
 os
illator perturbed bya term whi
h was a fun
tion of the spatial variable x. In parti
ular we investi-gated the 
ase where the perturbation was εcx3. In this se
tion we 
onsider aperturbation whi
h is a fun
tion of x(t) and ẋ(t). That is

ẍ(t) + εf (x(t), ẋ(t)) + x(t) = 0. (4.48)This in
ludes the 
ase where f(x, ẋ) = ẋ. Then the perturbation is proportionalto the speed of the `parti
le' and, for ε > 0 it, a
ts to slow the parti
le down.This is the way vis
osity a
ts when a parti
le is moving in a vis
ous medium,like a simple pendulum swinging in air (or even more so in trea
le). This is
alled damping. We 
ould also 
onsider negative damping, when ε < 0. With
y(t) = ẋ(t), (4.48) be
omes
ẋ(t) = y, ẏ(t) = −x− εf(x, y). (4.49)In polar 
oordinates

dr

dt
= −ε sin(θ)f(r cos(θ), r sin(θ)), (4.50)

d(θ + t)

dt
=

dθ

dt
+ 1 = −ε cos(θ)

r
f(r cos(θ), r sin(θ)). (4.51)It 
an be seen that, when ε is small, r(t) and θ(t) + t both vary slowly with t.So the motion is 
lose to simple harmoni
 motion with a 
ir
ular orbit in the

{x, y} plane and an angular velo
ity −1. The KBM averaging method 
onsistsin going ba
k to (4.48) and supposing that:(i) x(ε, t) = r cos(θ) + εu(1)(r, θ) + ε2u(2)(r, θ) + · · · , (4.52)where u(k)(r, θ + 2π) = u(k)(r, θ) and
∫ 2π

0

u(k)(r, θ) cos(θ)dθ =

∫ 2π

0

u(k)(r, θ) sin(θ)dθ = 0,

k = 1, 2, . . . . (4.53)
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ṙ(t) = εA(1)(r) + ε2A(2)(r) + · · · , (4.54)
θ̇(t) = −1 + εB(1)(r) + ε2B(2)(r) + · · · . (4.55)The k-th order KBM method 
onsists in retaining terms up to εk. We shallnow derive the formulae for the �rst-order method. Substituting into (4.48) andretaining terms up to O(ε) gives
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) + 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ f(r cos(θ), r sin(θ)) = 0. (4.56)Multiplying (4.56) by sin(θ) integrating over [0, 2π] using (4.53), and then doingthe same with cos(θ) gives
A(1)(r) = − 1

2π

∫ 2π

0

sin(θ)f(r cos(θ), r sin(θ))dθ, (4.57)
B(1)(r) = − 1

2rπ

∫ 2π

0

cos(θ)f(r cos(θ), r sin(θ))dθ. (4.58)It will be seen that (4.57)�(4.58) are equivalent to the results obtained by re-pla
ing the right-hand sides of (4.50)�(4.51) by their averages over [0, 2π]. The�nal task to 
omplete the �rst-order approximation is to determine a parti
ularintegral for (4.56). The 
omplementary fun
tion will 
orrespond to substitutingthe results obtained from integrating (4.54)�(4.55) into the �rst tem of (4.52).Example 4.3.1
ẍ(t) + 2εẋ(t) + x(t) = 0, (4.59)So
f(r cos(θ), r sin(θ)) = 2r sin(θ). (4.60)From (4.57)�(4.58),
A(1)(r) = − r

π

∫ 2π

0

sin2(θ)dθ = −r, (4.61)
B(1)(r) = − 1

π

∫ 2π

0

sin(θ) cos(θ)dθ = 0. (4.62)Substituting results into (4.54)�(4.55) gives, with the initial 
ondition r(0) = r0,
r(t) = r0 exp(−εt), θ(t) = −t. (4.63)
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essary to solve the equation
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) = 0 (4.64)whi
h has a solution

u(1)(r, θ) = 0, (4.65)giving
x(ε, t) = r0 exp(−εt) cos(t). (4.66)This is an example whi
h 
an be solved exa
tly. It just 
orresponds to the 
ase
a = 0, b = 1, c = −1, d = −2ε of the linear analysis of Se
t. 3.2.2. From (3.45)the eigenvalues of the stability matrix are
λ(±) = −ε±

√

ε2 − 1. (4.67)With −1 < ε < 1, this gives, from (3.44),
x(ε, t) = r0 exp(−εt) cos

(

t
√

1 − ε2
)

. (4.68)We see that the �rst-order KBM method 
orre
tly produ
es the exponentialdamping and the fa
t that the linear ε term in θ is zero. An indi
ation of thea

ura
y of the �rst-order method is given by the following theorem due toBogoliubov and Mitropolsky.Theorem 4.3.1 If the R(ε, t) and ϕ(ε, t) satisfy the equations
dR

dt
= εF (ε,R, ϕ),

dϕ

dt
= Ω(ε,R) + εG(ε,R, ϕ), (4.69)where F (ε,R, ϕ+ 2π) = F (ε,R, ϕ) and G(ε,R, ϕ+ 2π) = G(ε,R, ϕ) and S(ε, t)satis�es

dS

dt
=

ε

2π

∫ 2π

0

F (0, R, ϕ)dϕ, S(0) = R(0), (4.70)then there exists a 
onstant C and a su�
iently small value of ε su
h that
|S(t) −R(t)| < Cε, for all 0 ≤ t ≤ 1/ε. (4.71)4.4 Liénard's EquationThe generi
 type of the se
ond-order equations 
onsidered in this 
hapter isLiénard's equation
d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0, (4.72)where f(x) and g(x) are 
ontinuous fun
tions. For this equation we have thetheorem:
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F (x) =

∫ x

0

f(s)ds, (4.73)(4.72) has a unique periodi
 solution, whi
h is asymptoti
ally orbitally stable(asymptoti
ally stable in the sense of Poin
aré) if the following 
onditions aresatis�ed.(i) g(x) is an odd fun
tion with xg(x) > 0 for all x 6= 0.(ii) f(x) is an even fun
tion.(iii) There exists an a > 0 su
h that:(a) F (x) < 0 for 0 < x < a.(b) F (x) > 0 for x > a.(
) F (x) = 0 only at x = 0,±a.4.5 Du�ng's EquationDu�ng's equation
d2x

dt2
+ ε

{

cx3 + 2µ
dx

dt

}

+ x = 0, (4.74)does not satisfy the 
onditions of Thm. 4.4.1 so we do not anti
ipate the exis-ten
e of an asymptoti
ally stable periodi
 solution. It is, however, a 
onvenientexample for the appli
ation of the KBM average method. For µ = 0 it givesthe 
ase of the non-linear os
illator 
onsidered in Se
t. 4.1 using the Lindstedt-Poin
aré method and for c = 0, µ = 1 it gives the 
ase of the damped os
illatorof Se
t. 4.3. With y(t) = ẋ(t), (4.74) gives
ẋ(t) = y, ẏ(t) = −x− ε(cx3 + 2µy). (4.75)There is an equilibrium point at x = y = 0 with eigenvalues
λ(±) = −µε±

√

µ2ε2 − 1, (4.76)for all values of the parameters. For
• µε > 1 it is a stable node,
• µε = 1 it is an in�e
ted stable node,
• 1 > µε > 0 it is a stable fo
us,
• µε = 0 it is a 
entre,
• 0 > µε > −1 it is a unstable fo
us,
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• µε = −1 it is an in�e
ted unstable node,
• −1 > µε it is an unstable node.When εc < 0 there are also equilibrium points at x = ±1/

√−εc, y = 0 witheigenvalues
λ(±) = −µε±

√

µ2ε2 + 2. (4.77)Sin
e the eigenvalues are real and of opposite sign for all values of µε, theseequilibrium points are saddle points.In the notation used in Se
t. 4.3
f(r cos(θ), r sin(θ)) = cr3 cos3(θ) + 2µr sin(θ). (4.78)Substituting into (4.57)�(4.57),
A(1)(r) = −µr, B(1)(r) = −3

8
cr2. (4.79)Substituting into (4.54)�(4.55) with the initial 
onditions r(0) = r0, θ(0) = 0gives

r(t) = r0 exp(−µεt),

θ(t) = −t− 3
16

cr20
µ

{1 − exp(−2µεt)}.
(4.80)Substituting into (4.56)

∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) = 1

4
cr3 cos(θ){3 − 4 cos2(θ)}. (4.81)whi
h has the solution

u(1)(r, θ) = 1
8
cr3 cos3(θ). (4.82)Thus, from (4.52),

x(ε, t) = r0 exp(−µεt) cos

(

t+ 3
16

cr20
µ

{1 − exp(−2µεt)}
)

+ 1
8
εcr30 exp(−3µεt) cos3

(

t+ 3
16

cr20
µ

{1 − exp(−2µεt)}
)

. (4.83)With c = 0, µ = 1 we re
over the result (4.66) for the damped os
illator.Expanding the exponentials for small µ and retaining 
ontributions of O(ε)gives
x(ε, t) = r0 cos(ωt) + 1

32
εcr30{3 cos(ωt) + cos(3ωt)}. (4.84)where

ω = 1 + 3
8
εcr20 (4.85)This agrees (with ω0 = 1) with the results (4.21)-(4.22) obtained by the Lindstedt-Poin
aré method.



96 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS4.6 The Van der Pol and Rayleigh EquationsIn modelling an ele
tri
al 
ir
uit with a thermioni
 valve van der Pol derivedan equation of the form
d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = 0 (4.86)and Rayleigh modelled non-linear vibrations with the equation

d2w

dt2
+ ε

{

1
3

(
dw

dt

)3

− dw

dt

}

+ w = 0. (4.87)Di�erentiating this equation with respe
t to t gives
d3w

dt3
+ ε

{(
dw

dt

)2

− 1

}

d2w

dt2
+

dw

dt
= 0 (4.88)and setting x(t) = ẇ(t) re
overs (4.86). With f(x) = ε(x2−1) and the de�nition(4.73), F (x) = εx(x2 − 3)/3. So, when ε > 0, van der Pol's equation satis�esthe 
onditions of Thm. 4.4.1 with a =
√

3 and an asymptoti
ally stable periodi
solution exists. With y(t) = ẋ(t), (4.86) gives
ẋ(t) = y, ẏ(t) = −x− ε(x2 − 1)y. (4.89)There only equilibrium point is at x = y = 0 with eigenvalues
λ(±) = 1

2
{ε±

√

ε2 − 4}. (4.90)This is
• a stable node when ε < −2,
• an in�e
ted stable node when ε = −2,
• a stable fo
us when −2 < ε < 0,
• a 
entre when ε = 0,
• an unstable fo
us when 0 < ε < 2,
• an in�e
ted unstable node when ε = 2,
• an unstable node for ε > 2.In a damped system like (4.59) there is a loss of energy due to fri
tion, whi
h
auses an exponential approa
h to the equilibrium point at x = ẋ = 0. Thisis the 
ase for van der Pol's equation when ε < 0. However, when ε > 0 the`fri
tion term' is negative for |x| < 1 and the origin is an unstable equilibriumpoint. When the system is disturbed it self-ex
ites and it it only the presen
e ofthe x2 term, leading to positive fri
tion when |x| > 1, whi
h prevents it havingjust an uninteresting exponential growing solution.
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ipate that the destabilization of the equilibrium point at the originas ε in
reases through zero is a

ompanied by the emergen
e of a limit 
y
le.Comparing (4.48) and (4.86) we have
f(r cos(θ), r sin(θ)) = r sin(θ){r2 cos2(θ) − 1}. (4.91)Substituting into (4.57)�(4.58) gives
A(1)(r) = 1

2
r − 1

8
r3, B(1)(r) = 0. (4.92)Substituting into (4.54)�(4.55) with the initial 
onditions r(0) = r0, θ(0) = 0gives

r(t) =
2r0 exp(εt/2)

√

4 + r20{exp(εt) − 1}
, (4.93)

θ(t) = −t. (4.94)From (4.56),
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ) + 1

4
r3 sin(3θ) = 0, (4.95)Whi
h has the solution

u(1)(r, θ) = 1
32
r3 sin(3θ) (4.96)and

x(ε, t) = r cos(t) − 1
32
εr3 sin(3t). (4.97)It follows from (4.93) that r(t) → 2 as t → ∞. The stable limit 
y
le, to O(ε)is r = 2 and the period is 2π. Approa
h to the limit 
y
le is from inside if

r0 < 2 and from outside if r0 > 2. If the KBM averaging approximation wereperformed to se
ond-order, the period would a
quire an ε dependen
e and thelimit 
y
le would loose its 
ir
ularity.In this model we have an example of a 
hange of stability of an equilibriumpoint and the emergen
e of a limit 
y
le as a parameter passes through a spe
ialvalue. However, this di�ers from the Hopf bifur
ation where the limit 
y
legrows from nothing. Here the limit 
y
le springs into existen
e fully-formedwith a radius of the order of two.4.7 For
ed Os
illationsThe generi
 type of equation for a system undergoing free os
illations is Lié-nard's equation (4.72). In this se
tion we 
onsider 
ases of the non-autonomousmodi�
ation,
d2x

dt2
+ f(x)

dx

dt
+ g(x) = F (t), (4.98)



98 CHAPTER 4. WEAKLY NONLINEAR SYSTEMSof this equation, where the F (t) = F (t+ 2π/Ω) is a periodi
 for
ing term. We
an think of this as the model for a parti
le os
illating with possibly dampingand non-linear e�e
ts, whi
h is subje
t to an outside periodi
 for
e F (t).The following mathemati
al results will be useful in our 
al
ulations:
• A parti
ular integral of
d2x

dt2
+ 2γ

dx

dt
+ α2x = C cos(βt), (4.99)where α > 0 and β > 0, is

x(p)(t) =
C{(α2 − β2) cos(βt) + 2βγ sin(βt)}

(α2 − β2)2 + 4β2γ2
, (4.100)if α 6= β or γ 6= 0, and

x(p)(t) =
Ct sin(βt)

2β
, (4.101)if α = β and γ = 0.

• For any positive integer n,
cos2n(θ) =

1

22n

{
n−1∑

k=0

2

(
2n
k

)

cos(2[n− k]θ) +

(
2n
n

)}

,

cos2n−1(θ) =
1

22n−2

{
n−1∑

k=0

(
2n− 1
k

)

cos([2n− 2k − 1]θ)

}

,

(4.102)
sin2n(θ) =

1

22n

{
n−1∑

k=0

2(−1)n−k

(
2n
k

)

cos(2[n− k]θ) +

(
2n
n

)}

,

sin2n−1(θ) =
1

22n−2

{
n−1∑

k=0

(−1)n+k−1

(
2n− 1
k

)

cos([2n− 2k − 1]θ)

}

.

(4.103)
Example 4.7.1
d2x

dt2
+ ω2

0x = Γ cos(Ωt). (4.104)This is just the 
ase of a for
ed simple harmoni
 os
illator. Taking, without lossof generality, ω0 > 0 and Ω > 0, the general solution, if Ω 6= ω0, is
x(t) = A cos(ω0t) +B sin(ω0t) +

Γ cos(Ωt)

ω2
0 − Ω2

. (4.105)If Ω is not a rational multiple of ω0 this solution is quasi-periodi
. If Ω/p =
ω0/q, where p and q are 
oprime integers, the system is periodi
 with period
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2πp/Ω = 2πq/ω0. The �rst two terms in (4.105) 
orrespond to the naturalos
illations of the system and the �nal term is the response of the system tofor
ing. Suppose we are able to tune the for
ing term by 
hanging its frequen
y.Then as Ω → ω0 the amplitude of the response grows without bound. Thesystem approa
hes resonan
e. Supposing that A > 0 then if Ω approa
hes ω0from below the response is in phase with the natural os
illations of the systembut if it approa
hes ω0 from above the response is out of phase by a phase fa
torof π. When Ω = ω0 (4.105) is repla
ed by
x(t) = A cos(ω0t) +B sin(ω0t) +

Γt sin(ω0t)

2ω0
. (4.106)The response is now a se
ular term whi
h grows without bound as t in
rease,but whi
h is �nite at any given value of t.Example 4.7.2 We now modify (4.104) by in
luding the damping term of Ex-ample 4.3.1. Thus

d2x

dt2
+ 2ε

dx

dt
+ ω2

0x = Γ cos(Ωt). (4.107)As we saw in Example 4.3.1 the 
omplementary part of the solution of (4.107)is
x(c)(t) = exp(−εt)

{

A cos

(

t
√

ω2
0 − ε2

)

+B cos

(

t
√

ω2
0 − ε2

)}

. (4.108)and the parti
ular integral is
x(p)(Ω, t) =

Γ{(ω2
0 − Ω2) cos(Ωt) + 2εΩ sin(Ωt)}

(ω2
0 − Ω2)2 + 4ε2Ω2

, (4.109)with
x(t) = x(c)(t) + x(p)(Ω, t). (4.110)For ε > 0 the 
omplementary fun
tion is 
alled the transient part of the solutionas it de
ays with time leaving only the response to for
ing given by the parti
ularintegral. This term has a resonan
e peak, with amplitude Γ/(2ω0ε), when Ωis tuned to the natural frequen
y1 of ω0. We now 
onsider the appli
ationof expansion methods, with expansions in terms of a small parameter ε forequations with a for
ing term. We distinguish between two 
ases: hard for
ingwhere the for
ing term does does not involve ε and soft or weak for
ing wherethe for
ing term is O(ε).1Stri
tly speaking the parameter for whi
h we usually use the symbol ω or Ω is the angularfrequen
y with the a
tual frequen
y for an os
illation of period T being 1/T = ω/2π. Weshall, however, when there is no risk of 
onfusion simply use `frequen
y' to denote quantitieslike ω.



100 CHAPTER 4. WEAKLY NONLINEAR SYSTEMS4.7.1 The Du�ng Equation with a Hard For
ing TermWe use the Lindstedt-Poin
aré method to investigate the Du�ng equation, witha hard for
ing term, no damping and a natural unperturbed frequen
y ω0.Thus
d2x

dt2
+ ω2

0

{
x+ εcx3

}
= Γ cos(Ωt), (4.111)and with y(t) = ẋ(t) this equation be
omes

ẋ(t) = y, ẏ(t) = −ω2
0{x+ εcx3} + Γ cos(Ωt). (4.112)Apart from the presen
e of the for
ing term these formulae are the spe
ial 
ase

f(ε, x) = εcx3 of (4.5) and we pro
eed with the method in the same way. Welook for a periodi
 solution of period 2π/ω(ε). Let
τ = Ωω(ε)t/ω0, ω(ε) = ω0g(ε), ỹ = yω0/{Ωω(ε)},

α = ω0/Ω, Γ̃ = Γ/Ω2.
(4.113)Then (4.112) be
ome

dx

dτ
= ỹ, {g(ε)}2 dỹ

dτ
= −α2{x+ εcx3} + Γ̃ cos(τ/g(ε)). (4.114)Let

x(ε, τ) = x0(τ) + εx1(τ) + ε2x2(τ) + O(ε3), (4.115)
ỹ(ε, τ) = ỹ0(τ) + εỹ1(τ) + ε2ỹ2(τ) + O(ε3), (4.116)
g(ε) = 1 + εg1 + ε2g2 + O(ε3) (4.117)and substituting into (4.114) the terms of O(ε0) give

d2x0

dτ2
+ α2x0 = Γ̃ cos(τ). (4.118)As in Se
t. 4.1 we impose the 
ondition dx/dt = 0 at t = 0. This 
onditionapplies separately to ea
h of the terms in the expansion (4.115) and (4.118) hasthe solution

x0(τ) =







a0 cos(ατ) +
Γ̃ cos(τ)

α2 − 1
, α 6= 1,

a0 cos(τ) +
Γ̃τ sin(τ)

2
, α = 1. (4.119)The terms of O(ε1) give

dx1

dτ
= ỹ1,

dỹ1
dτ

+ 2g1
dỹ0
dτ

= −α2(x1 + cx3
0) + Γ̃g1τ sin(τ). (4.120)



4.7. FORCED OSCILLATIONS 101From (4.118)�(4.120), x1(τ) satis�es the equation
d2x1

dτ2
+ α2x1 = g1

{

2α2a0 cos(ατ) +
2Γ̃ cos(τ)

α2 − 1
+ Γ̃ sin(τ)

}

−α2c

{

a0 cos(ατ) +
Γ̃ cos(τ)

α2 − 1

}3

, if α 6= 1, (4.121)
d2x1

dτ2
+ x1 = g1{2a0 cos(τ) + Γ̃τ sin(τ)} − c

{

a0 cos(τ) +
Γ̃τ sin(τ)

2

}3

,if α = 1. (4.122)We see that at ea
h stage of the expansion pro
ess the 
omplementary fun
-tion obtained at the previous stage will generate new se
ular terms (of the form
τ cos(ατ)) unless either the 
onstant (in this 
ase a0) is set to zero or the 
oe�-
ients g1, g2, . . . in the expansion of the angular frequen
y are set to values whi
heliminate these terms. From (4.102) cos3(ατ) = {3 cos(ατ) + cos(3ατ)}/4. Sothe 
oe�
ient of cos(ατ) on the right-hand side of (4.121) is 2α2a0g1−3α2ca3

0/4.For this to be zero we must have either a0 = 0 or
g1 = 3

8
ca2

0, (4.123)This is 
ondition (4.20) of Se
t. 4.1. In the solution of (4.122) the se
ular termsgenerated by fa
tors with cos(τ) on the right-hand side are also eliminated bythe 
ondition (4.123). Rather than the strategy indi
ated by (4.123) we shall,for simpli
ity set the 
onstants a0 = a1 = · · · = 0 in the solution. This simplymeans that the system starts from rest with x(0) = 0 and is driven by thefor
ing term from whi
h it a
quires the same frequen
y. This is known as asyn
hronous os
illation. For this situation we do not need perturbations to theangular frequen
y and g1 = g2 = · · · = 0. Then (4.119) be
omes
x0(τ) =







Γ̃ cos(τ)

α2 − 1
, α 6= 1,

Γ̃τ sin(τ)

2
, α = 1, (4.124)and x1(t) is the solution of

d2x1

dτ2
+ α2x1 =







−α
2cΓ̃3{3 cos(τ) + cos(3τ)}

4(α2 − 1)3
, if α 6= 1,

− 1
32
cΓ̃3τ3{3 sin(τ) − sin(3τ)}, if α = 1. (4.125)From (4.99)�(4.101) we see that in solving (4.125) we must now distinguishtwo spe
ial 
ases α = 1, as before, but also α = 3. Ea
h of these will yield a
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e 
ontribution in the form of a se
ular term whi
h be
omes large forlarge τ . In fa
t if we pursue this method to higher orders in ε a resonan
e termwill arise if α = 3n, (ω0 = 3nΩ), for some n = 0, 1, 2, . . .. A resonan
e of theform ω0 = pΩ, for p = 2, 3, . . ., is 
alled ultraharmoni
. That p = 3n in this 
aseis obviously due to the 
ubi
 perturbation. Reverting to the original notationand 
olle
ting terms up to O(ε), when ω0 6= 3nΩ,
x(ε, t) =

Γ cos(Ωt)

ω2
0 − Ω2

− εcΓ3ω2
0

4(ω2
0 − Ω2)3

{
3 cos(Ωt)

ω2
0 − Ω2

+
cos(3Ωt)

ω2
0 − 9Ω2

}

. (4.126)4.7.2 The Du�ng Equation with a Soft For
ing TermWe use the Lindstedt-Poin
aré method to investigate the Du�ng equation, witha soft for
ing term, no damping and a natural unperturbed frequen
y ω0. Thus
d2x

dt2
+ ω2

0

{
x+ εcx3

}
= εΓ cos(Ωt), (4.127)and with y(t) = ẋ(t) this equation be
omes

ẋ(t) = y, ẏ(t) = −ω2
0{x+ εcx3} + εΓ cos(Ωt). (4.128)Using the notation de�ned in (4.113),

dx

dτ
= ỹ, {g(ε)}2 dỹ

dτ
= −α2{x+ εcx3} + εΓ̃ cos(τ/g(ε)). (4.129)With the expansions given in (4.115)�(4.117) the terms of O(ε0) in (4.129) give

d2x0

dτ2
+ α2x0 = 0. (4.130)Again we impose the 
ondition ẋ(0) = 0 and (4.130) has the solution

x0(τ) = a0 cos(ατ). (4.131)The terms of O(ε1) give
dx1

dτ
= ỹ1,

dỹ1
dτ

+ 2g1
dỹ0
dτ

= −α2(x1 + cx3
0) + Γ̃ cos(τ). (4.132)From (4.130)�(4.132), x1(τ) satis�es the equation

d2x1

dτ2
+ α2x1 = Γ̃ cos(τ) + α2a0 cos(ατ)

{

2g1 − 3
4
ca2

0

}

− 1
4
α2ca3

0 cos(3ατ).(4.133)The term in cos(ατ) on the right-hand side of (4.133) will lead to se
ular 
on-tributions to the solution.
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an be eliminated by taking
g1 = 3

8
ca2

0, (4.134)when (4.133) be
omes
d2x1

dτ2
+ α2x1 = Γ̃ cos(τ) − 1

4
α2ca3

0 cos(3ατ), (4.135)with the solution
x1(τ) = a1 cos(ατ) +

Γ̃ cos(τ)

α2 − 1
+ 1

8
ca3

0 cos(3ατ). (4.136)If α = 1 then the for
ing term has the same frequen
y as the natural frequen
yof the system. Terms in cos(τ) 
an be eliminated by taking
Γ = 1

4
ω2

0a0{3ca2
0 − 8g1}, (4.137)giving the solution

x1(τ) = a1 cos(τ) + 1
32
ca3

0 cos(3τ). (4.138)Then, translating ba
k to the original variables,
x(ε, t) = (a0 + εa1) cos(ωt) + 1

32
εca3

0 cos(3ωt) + O(ε2), (4.139)where
ω(ε) = ω0

{

1 + ε

(

3
8
ca2

0 −
Γ

2ω2
0a0

)

+ O(ε2)

}

. (4.140)Curves of ω(ε)/ω0 (denoted by w in the plot) against a0 at �xed Γ, c and ε 
anbe obtained using MAPLE . Here we take c = 1 and ε = 0.1 and the 
urves arelabelled with their value of Γ/ω2
0.

> with(plots):
> w:=(epsilon,a0,g,
)->1+epsilon*(3*
*a0^2/8-g/(2*a0)):
> text:=plots[textplot℄(
> {[-1.0,1.2,`2`℄,
> [0.9,1.2,`-2`℄,[0.9,0.8,`2`℄,[-1.2,0.8,`-2`℄,
> [0.25,1.025,`0`℄},align={ABOVE,RIGHT},font=[TIMES,ROMAN,12℄):
> 
urve:=plot(
> {w(0.1,a0,2,1),w(0.1,a0,0,1),w(0.1,a0,-2,1)},
> a0=-4..4,w=0..2,labelfont=[TIMES,ITALIC,12℄):
> plots[display℄({
urve,text});
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a0For Γ = 0 the bran
hes a0 = 0 and a0 =

√

8(ω − ω0)/(3εcω0) form a pit
hforkbifur
ation. When Γ 6= 0 the 
urve breaks into two bran
hes, one giving a0 > 0and one a0 < 0 (
f. Fig. 2.2).4.7.3 The Van der Pol Equation with a Weak For
ingTermWe use the KBM averaging method to investigate the van der Pol equation witha weak for
ing term and natural frequen
y ω0. Thus
ẍ(t) + ε(x2 − 1)ẋ(t) + ω2

0x(t) = εΓ cos(Ωt). (4.141)With ẋ(t) = ω0y(t) this be
omes
ẋ(t) = ω0y, ẏ(t) = −ω0x+ ε

{

(1 − x2)y +
Γ cos(Ωt)

ω0

}

. (4.142)We now make the same assumptions (4.52)�(4.54) as we did for the autonomous
ase and repla
e (4.55) and (4.56) by
θ̇(t) = −ω0 + εB(1)(r) + ε2B(2)(r) + · · · , (4.143)
ω0

{
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ)

}

+ 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ r sin(θ){r2 cos2(θ) − 1} =
Γ cos(Ωt)

ω0
. (4.144)
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ase we obtained A(1)(r) and B(1)(r) by using the orthogo-nality property (4.53). However, now we have a term whi
h is expli
itly depen-dent on t. A way of solving this in the 
ase where the system is not 
lose toresonan
e is to write
u(1)(r, θ) = ũ(1)(r, θ) +

Γ cos(Ωt)

ω2
0 − Ω2

. (4.145)Inserting this form into (4.144) repla
es u(1)(r, θ) by ũ(1)(r, θ) and eliminates theterm Γ cos(Ωt)/ω0. If we now assume that ũ(1)(r, θ) satis�es the orthogonality
ondition (4.53) the method pro
eeds as in the autonomous 
ase with the onlydi�eren
es being the extra term in u(1)(r, θ) and the presen
e of ω0. Using (4.97)the solution is now
x(ε, t) = r cos(ω0t) − 1

32
εr3 sin(3ω0t) +

εΓ cos(Ωt)

ω2
0 − Ω2 . (4.146)The more interesting and di�
ult 
ase is near resonan
e when Ω ≃ ω0. Thissolution is dominated by the for
ing term and the phenomenon is 
alled en-trainment. To deal with this situation a di�erent approa
h is needed.We de�ne φ = Ωt+ θ, whi
h varies slowly with time near to resonan
e sin
e,from (4.143),

dφ

dt
= Ω +

dθ

dt
= Ω − ω0 + εB(1)(r) + O(ε2) ≃ εB(1)(r). (4.147)Then

cos(Ωt) = cos(φ− θ) = cos(φ) cos(θ) + sin(φ) sin(θ) (4.148)and substituting this into (4.144) and, as for the autonomous 
ase, multiplyingsu

essively by sin(θ) and cos(θ) and integrating over [0, 2π] gives
A(1)(r) = − 1

2π

∫ 2π

0

r sin2(θ)[r2 cos2(θ) − 1]dθ +
Γ sin(φ)

2ω0
,

= 1
8
r(4 − r2) +

Γ sin(φ)

2ω0
, (4.149)

B(1)(r) = − 1

2π

∫ 2π

0

sin(θ) cos(θ)[r2 cos2(θ) − 1]dθ +
Γ cos(φ)

2rω0
,

=
Γ cos(φ)

2rω0
. (4.150)From (4.54) and (4.143)

dr

dt
= 1

8
ε

{
4Γ sin(φ)

ω0
+ 4r − r3

}

, (4.151)
dφ

dt
= Ω +

dθ

dt
= Ω − ω0 +

εΓ cos(φ)

2rω0
. (4.152)
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ω0

{
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ)

}

+ 1
4
r3 sin(3θ) = 0, (4.153)whi
h has the solution

u(1)(r, θ) =
r3 sin(3θ)

32ω0
. (4.154)Sin
e cos(θ) = cos(φ − Ωt) it follows from (4.52) that

x(ε, t) = ξ(t) cos(Ωt) + ζ(t) sin(Ωt) +
εr3 sin(3θ)

32ω0
+ O(ε2), (4.155)where

ξ(t) = r cos(φ), ζ(t) = r sin(φ), (4.156)are 
alled the van der Pol variables. From (4.151)�(4.152)
dξ

dt
= −1

2
εσζ + 1

8
εξ{4 − ξ2 − ζ2}, (4.157)

dζ

dt
= 1

2
εσξ + 1

8
εζ{4 − ξ2 − ζ2} + εγ. (4.158)where

Ω − ω0 = 1
2
εσ, γ =

Γ

2ω0
. (4.159)The equilibrium points in the van der Pol plane of the variables {ξ, ζ} are givenby

1
2
ζσ − 1

8
ξ{4 − ξ2 − ζ2} = 0, (4.160)

1
2
ξσ + 1

8ζ{4 − ξ2 − ζ2} = −γ. (4.161)Squaring and adding these equations gives
f(σ, ρ) = σ2ρ+ ρ(1 − ρ)2 = γ2, (4.162)where
ρ = 1

4
{ξ2 + ζ2}. (4.163)Periodi
 traje
tories in the van der Pol plane are now given by the positiveroots of (4.162). Suppose that (ξ̊, ζ̊) is a point on a periodi
 solution. That is

ρ̊(σ, γ) = {ξ̊2 + ζ̊2}/4 is a root of (4.162) and (ξ̊, ζ̊) satisfy (4.160)�(4.161). Let
△ξ = ξ − ξ̊, △ζ = ζ − ζ̊. Substituting into (4.157)�(4.158) and linearizing
d△ξ
dt

= 1
4
ε△ξ(2 − 2ρ̊− ξ̊2) − 1

4
ε△ζ(2σ + ξ̊ζ̊), (4.164)

d△ζ
dt

= 1
4
ε△ξ(2σ − ξ̊ζ̊) + 1

4
ε△ζ(2 − 2ρ̊− ζ̊2). (4.165)
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 orbit stability matrix is
J̊(t) =





1
4
ε(2 − 2ρ̊− ξ̊2) −1

4
ε(2σ + ξ̊ζ̊)

1
4
ε(2σ − ξ̊ζ̊) 1

4
ε(2 − 2ρ̊− ζ̊2)



 . (4.166)The eigenvalues of this matrix are
λ(±) = 1

2

{

p±
√

p2 − 4q
}

, (4.167)where
p = ε(1 − 2ρ̊), q = 1

4
ε2
{
σ2 + 1 − 4ρ̊+ 3ρ̊2

}
,

p2 − 4q = ε2(ρ̊2 − σ2).
(4.168)Sin
e these eigenvalues determine the stability of the whole periodi
 solution,they are, as might be expe
ted dependent only on σ and ρ̊ and not individuallyon ξ̊ and ζ̊. Using (4.167)�(4.168) the {σ, ρ} plane 
an be divided into regions
orresponding to the type of the equilibrium solution Fig. 4.1. When q < 0 theequilibrium point is a saddle-point and the 
urve q = 0 separates the regionof saddle-points from other types of equilibrium solutions. In the latter regionthe parts with p < 0 and p > 0 
orrespond respe
tively to stable and unstablesolutions and the region is further divided between fo
ii and nodes a

ording as

p2 < 4q and p2 > 4q.The value of ρ̊, for parti
ular σ and γ is given by a solution of (4.162). The
ubi
 fun
tion f(σ, ρ), plotted against ρ passes through the origin and tends toin�nity for large ρ. It therefore 
uts the horizontal line at γ2 either one or threetimes for positive ρ. The 
ondition for three positive roots of (4.162) is thatthe two turning points of f(σ, ρ) are at positive values of ρ and lie on oppositessides of the line γ2. Now
∂f

∂ρ
= σ2 + 1 − 4ρ+ 3ρ2, (4.169)with roots

ρ(±) = 1
3
{2 ±

√

1 − 3σ2}, (4.170)where
f
(

σ, ρ(±)
)

=
2
27

{

1 + 9σ2 ± (3σ2 − 1)
√

1 − 3σ2
}

. (4.171)The 
ubi
 f(σ, ρ) will have real turning points if 3σ2 < 1 and a point of in�e
tionif 3σ2 = 1. The former will lead to three positive roots of (4.162) if
2
27

{

1 + 9σ2 − [1 − 3σ2]3/2
}

< γ2 <
2
27

{

1 + 9σ2 + [1 − 3σ2]3/2
}

. (4.172)This band of values of γ2 giving three periodi
 solutions develops as σ is redu
edthrough 1/
√

3 with γ2 = 8/27 and there will be three roots on the σ = 0 axis
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0

0.5

1

1.5

2

ρ

0.5 1 1.5 2σFigure 4.1: The {σ, ρ} plane divided into regions by the lines q = 0, p = 0 and
p2 = 4q. These regions 
orrespond to the stability types (SN) stable node, (SF)stable fo
us, (USF) unstable fo
us, (USN) unstable node and (SP) saddle point,of the periodi
 solutions in the for
ed van der Pol equation. Solution 
urves for(4.162), parameterized and labelled by γ2, are shown by broken lines.if γ2 <

4
27 . Solution 
urves for ρ̊ plotted against σ and parameterized by γ2are shown by broken lines in Fig. 4.1. The unfor
ed 
ase is obtained by setting

σ = γ = 0 in (4.162). This yields the non-zero solution ρ̊ = 1, whi
h gives r = 2agreeing with the result of Se
t. 4.6. Sin
e this solution lies on the 
urve q = 0it is an improper stable node.
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 SolutionsIn Se
t. 4.7.1 we 
onsider the Du�ng equation for a system with natural fre-quen
y ω0 and a hard for
ing term of frequen
y Ω. We showed that the presen
eof the 
ubi
 term of O(ε) led to an expansion in powers of ε whi
h 
ontainedharmoni
 terms of wavelength 2π/(pΩ) for p = 3n, n = 1, 2, . . .. In this se
tionwe again 
onsider the same forms (4.111)�(4.112) for Du�ng's equation but wenow ask under what 
onditions on ω0, c and Γ the solution may 
ontain sub-harmoni
 terms with wavelengths 2πm/Ω, for some integer values of m. With
τ = Ωt and ỹ = y/Ω (4.112) gives
dx

dτ
= ỹ, Ω2 dỹ

dτ
= −ω2

0{x+ εcx3} + Γ cos(τ). (4.173)Let
x(ε, τ) = x0(τ) + εx1(τ) + ε2x2(τ) + O(ε3), (4.174)
ỹ(ε, τ) = ỹ0(τ) + εỹ1(τ) + ε2ỹ2(τ) + O(ε3), (4.175)

Ω(ε) = Ω0 + εΩ1 + ε2Ω2 + O(ε3) (4.176)and substituting into (4.173) the terms of O(ε0) give
Ω2

0

d2x0

dτ2
+ ω2

0x0 = Γ cos(τ). (4.177)whi
h has the solution
x0(τ) = a0 cos(ω0τ/Ω0) + b0 sin(ω0τ/Ω0) +

Γ cos(τ)

ω2
0 − Ω2

0

. (4.178)In terms of the time variable t this solution will have period 2πm/Ω, for m > 1,if Ω0 = mω0 giving
x0(τ) = a0 cos(τ/m) + b0 sin(τ/m) − G(m) cos(τ). (4.179)where
G(m) =

Γ

ω2
0(m

2 − 1)
. (4.180)The terms of O(ε1) give

2mω0Ω1
d2x0

dτ2
+m2ω2

0

d2x1

dτ2
= −ω2

0{x1 + cx3
0} (4.181)and substituting from (4.179) gives

d2x1

dτ2
+
x1

m2
=

2Ω1

m3ω0

{
a0 cos(τ/m) + b0 sin(τ/m) −m2G(m) cos(τ)

}

− c

m2
{a0 cos(τ/m) + b0 sin(τ/m) − G(m) cos(τ)}3

. (4.182)
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ular terms will o

ur in the solution unless the 
oe�
ients of cos(τ/m) and
sin(τ/m) on the right of (4.182) are zero. To determine these 
oe�
ients weneed to expand the �nal 
ubi
 term. In general this is quite 
ompli
ated be
ausewe need not only to redu
e all terms to a form with only a single sine or 
osine,but we must take into a

ount the fa
t that, for example 1 − 2/m = 1/m,when m = 3. As an example we 
onsider the parti
ular 
ase m = 3. Then the
onditions for the 
oe�
ients on the right-hand side of (4.182) to be zero are
a0

{

a2
0 + b20 +

Γ2

32ω4
0

− 8ω0Ω1

9c

}

=
Γ(a2

0 − b20)

8ω2
0

, (4.183)
b0

{

a2
0 + b20 +

Γ2

32ω4
0

− 8ω0Ω1

9c

}

= −Γa0b0
4ω2

0

. (4.184)Equation (4.184) has one solution b0 = 0 for whi
h (4.183) gives a0 = 0 or as aroot of the quadrati

a2
0 −

Γa0

8ω2
0

+
Γ2

32ω4
0

− 8ω0Ω1

9c
= 0. (4.185)If b0 6= 0 then by subtra
ting a0× (4.184) from b0× (4.183) we have b0 = ±

√
3a0.Then a0 is a root of the quadrati


4a2
0 +

Γa0

4ω2
0

+
Γ2

32ω4
0

− 8ω0Ω1

9c
= 0, (4.186)whi
h 
an be expressed in the form

(−2a0)
2 − Γ(−2a0)

8ω2
0

+
Γ2

32ω4
0

− 8ω0Ω1

9c
= 0. (4.187)So if (ã

(±)
0 , 0) are the solutions obtained from (4.185) when b0 = 0, the solutionsobtained from (4.186) are (−2ã

(±)
0 ,∓2

√
3ã

(±)
0 ). In ea
h 
ase the nature of thesolutions are the same and depend on ω0, Ω1, c and Γ.Problems 41) Consider the equation

ẍ(t) + x(t)[1 − εx(t)] = 0,for an asymmetri
 spring. Find the equilibrium points and identify theirtypes. Sket
h the bifur
ation diagram in the {ε, x} plane. Use(a) the Lindstedt-Poin
aré method,(b) the KBM averaging method,to �nd terms up to O(ε) in the expansion of the periodi
 solution x(ε, t) forwhi
h ẋ(ε, 0) = 0 and x(ε, 0) ≃ a0 + εa1.



4.7. FORCED OSCILLATIONS 1112) Cal
ulate the syn
hronous 
ontribution to the solution of
ẍ(t) + ω2

0{x(t) − εx4(t)} = Γ cos(Ωt),to order O(ε1), when ω0 6= Ω, 2Ω, 4Ω, indi
ating the signi�
an
e of thesespe
ial values.(The method to use is the Lindstedt-Poin
aré method, ex
ept that, as we sawin Se
t. 5.4.1, if only the syn
hronous part is required, no expansion termsare needed for the frequen
y.)3) Use the Lindstedt-Poin
aré method to �nd to O(ε1) the solution of the equa-tion
ẍ(t) + ω2

0{x(t) − εx4(t)} = εΓ cos(Ωt),when ẋ(0) = 0.4) Consider the equation
ẍ(t) + ω2

0{x(t) + εx2(t)} = Γ cos(Ωt).By using the expansion Ω = Ω0 + εΩ1 + . . ., and looking for subharmoni
solutions with Ω0 = 2ω0, �nd a solution of the form
x(t) = A(ε) +B(ε) cos

(
1
2Ωt

)

+ C(ε) cos(Ωt) + +D(ε) cos
(

3
2Ωt

)

+ E(ε) cos(2Ωt),evaluating the 
oe�
ients to O(ε).5) Des
ribe the assumptions involved in the appli
ation of theKrylov-Bogoliubov-Mitropolsky averaging method to the equation
ẍ(t) + εf(x, ẋ) + x(t) = εΓ cos(Ωt),where ε is small and positive.Implement this pro
edure in the 
ase van der Pol's equation where
f(x, ẋ) = (x2 − 1)ẋand show that, if x(0) = r0 + O(ε), ẋ(0) = O(ε), where r0 is a 
onstant and
Ω is not 
lose to unity, the solution to O(ε) is
x(ε, t) = r cos(t) − 1

32
εr3 sin(3t) +

εΓ cos(Ωt)

1 − Ω2
,where r is given by

r20(4 − r2)

r2(4 − r20)
= exp(−εt).
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Chapter 5Time Series and Chaos5.1 The Analysis of Time SeriesA time series is just sequen
e of values x(t0), x(t0 + △t), x(t0 + 2△t), . . ., of
x(t), for some △t > 0. The sequen
e is often the output of some experiment,or the data 
olle
ted by some 
ompany or survey. As an example, Fig. 5.1shows the re
ords of a telephone 
ompany for the number of newly installedlines, re
orded in monthly periods over nine years. As might be expe
ted thereis a gradual upward drift of the yearly average and also a roughly periodi
behaviour over ea
h yearly period. We should also expe
t there to be a 
ertainrandom element (possibly based on global or national e
onomi
 fa
tors) in thedistribution. In fa
t most work on time series is 
on
erned with systems with asto
hasti
 
omponent. In our dis
ussion we shall, however, be 
on
erned entirelywith deterministi
 systems and those for whi
h the graph of the output data hasthe overall appearan
e of some sort of periodi
ity. This 
ould be something verysimple like measuring the displa
ement of pendulum at regular time intervals
△t. In this 
ase we know that, if the displa
ement is fairly small, the datawill �t the 
urve A cos{ω(t0 + n△t)} for some A, ω and t0. We have seen inSe
t. 4.7 that if the simple harmoni
 os
illator has natural frequen
y ω0 and issubje
t to a for
ing term of frequen
y Ω then, if ω0 6= Ω, the solution (4.105)
ontains terms of frequen
y ω0 and Ω. If pω0 = qΩ, where p and q are 
oprimeintegers the solution is periodi
 of period 2πp/Ω = 2πq/ω0, but if this is notthe 
ase the system will be quasi-periodi
. When the system is non-linear andsatis�es Du�ng's equation we have seen that the response to a for
ing termof the form Γ cos(Ωt), whether it is hard or soft, is to generate terms in thesystem response whi
h are of frequen
y rΩ for positive integers r, whi
h areultraharmoni
 terms. We have also seen that subharmoni
 terms of frequen
y
Ω/r 
an also be generated by perturbing the for
ing.Suppose now that, instead of trying to �nd analyti
 properties of the solu-tion of a non-linear equation, we applied methods of numeri
al integration to
al
ulate the values of the dependent variable x(t) along a traje
tory subje
t113
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b1961 1962 1963 1964 1965 1966 1967 1968 1969YearFigure 5.1: The numbers of new lines installed by the Tomasek telephone 
om-pany in monthly periods from 1961 to 1969.to 
ertain initial 
onditions. The result of this pro
ess would be a sequen
eof values x(t0), x(t0 + △t), x(t0 + 2△t), . . .. In other words we will have ob-tained a time series, no di�erent in kind from that obtained by measuring datafrom an experiment. The fa
t that we started with a parti
ular equation wouldbe largely irrelevant. Our task is to analyze the data, based on the generalobservation that it has an overall periodi
-type stru
ture.A useful approa
h to analyzing time series is to use Fourier analysis. This useof Fourier methods is a little di�erent from the problem to whi
h su
h methodsare usually applied. In standard appli
ations we are given the analyti
 form of afun
tion of time f(t), whi
h we know to be of period T . That is f(t+T ) = f(t),for all t. We want to resolve f(t) into its harmoni
 
omponents of periods T/n.That is
f(t) = 1

2
A0 +

∞∑

n=1

{

An cos

(
2πnt

T

)

+Bn sin

(
2πnt

T

)}

. (5.1)The unknowns in this formula are the 
oe�
ients A0, An, Bn, n = 1, 2, . . .. Butsin
e
1

T

∫ T

0

cos

(
2πnt

T

)

dt = δ(Kr)(n, 0), (5.2)
1

T

∫ T

0

sin

(
2πnt

T

)

dt = 0, (5.3)
1

T

∫ T

0

cos

(
2πnt

T

)

sin

(
2πmt

T

)

dt = 0, (5.4)
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Figure 5.2: A time series plotted over 100 se
.
1

T

∫ T

0

cos

(
2πnt

T

)

cos

(
2πmt

T

)

dt = 1
2
δ(Kr)(n,m), (5.5)

1

T

∫ T

0

sin

(
2πnt

T

)

sin

(
2πmt

T

)

dt = 1
2
δ(Kr)(n,m), (5.6)it follows that

1

T

∫ T

0

cos

(
2πnt

T

)

f(t)dt = 1
2
An, n = 0, 1, 2, . . . , (5.7)

1

T

∫ T

0

sin

(
2πnt

T

)

f(t)dt = 1
2
Bn, n = 1, 2, . . . . (5.8)In the 
ase of time series analysis we have a sequen
e of data points rather than afun
tional form and, although we may have indi
ations of periodi
 behaviour wehave no �rm knowledge of the period. Indeed the series may be quasi-periodi
or 
haoti
. Consider, as an example, the graph in Fig. 5.2. It has a generalperiodi
 stru
ture and seems to have a period of around 55 se
. but this maybe de
eptive. It may have a mu
h longer period or possibly be quasi-periodi
.In fa
t, I 
an reveal that, in this parti
ular 
ase, the graph was plotted1 from adata �le obtained from 
al
ulating the values of the fun
tion

x(t) = 11 sin(t/9) + 20 cos(3t) + 6 cos(5t) + 8 sin(13t), (5.9)1The graphs for Figs. 5.2 and 5.3 were obtained using FORTRAN 90 programs.
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10 se
. The periods of the su

essive terms in this expressionare T0 = 18π, T1 = 2π/3, T2 = 2π/5 and T3 = 2π/13. Sin
e T0 = 27T1 =

45T2 = 117T3, the period of x(t) is T0 ≃ 56.549 se
., quite 
lose to our estimateand (5.9) 
an be written in the form
x(t) = 11 sin

(
2πt

T0

)

+20 cos

(
2π27t

T0

)

+6 cos

(
2π45t

T0

)

+8 sin

(
2π117t

T0

)

.(5.10)Thus if we know the wavelength of the time series we 
an use the Fourier methodof (5.1), (5.7)�(5.8) to extra
t the 
oe�
ients of the harmoni
 
ontributions. Inthis 
ase the only non-zero 
oe�
ients are B1 = 11, B117 = 8, A27 = 20 and
A45 = 6. Of 
ourse, in pra
ti
e, we will not have the fun
tional form (otherwisewe'd know the answer before we started), but only a data set. The integrationwill be numeri
al with a 
ertain amount of error. This question is dis
ussed inmore detail below. Of 
ourse, we 
ould still attempt to use this approa
h if wehad an approximate estimate of the period. In this 
ase, however, we would �ndit di�
ult to dete
t 
ontributions whi
h were not 
lose to harmoni
 
omponentsof the approximate period.Instead of attempting to use methods based on an assumed period, we nowoutline a pro
edure whi
h relies on data being 
olle
ted over a long period oftime. Consider the transformed fun
tion
γ(τ ;ω) =

1

τ

∫ τ

0

exp{iωt}x(t)dt. (5.11)Now
1

τ

∫ τ

0

cos(ω1t) sin(ω2t)dt =







[

cos{(ω1 − ω2)τ}
2τ(ω1 − ω2)

− ω2

τ(ω2
1 − ω2

2)

]

− cos{(ω1 + ω2)τ}
2τ(ω1 + ω2)

, ω1 6= ω2,
1
2

{

1
τ − cos{2ω1τ}

2τω1

}

, ω1 = ω2, (5.12)
1

τ

∫ τ

0

cos(ω1t) cos(ω2t)dt =







sin{(ω1 − ω2)τ}
2τ(ω1 − ω2)

+
sin{(ω1 + ω2)τ}

2τ(ω1 + ω2)
, ω1 6= ω2,

1
2

{

1 +
sin{2ω1τ}

2τω1

}

, ω1 = ω2,(5.13)
1

τ

∫ τ

0

sin(ω1t) sin(ω2t)dt =







sin{(ω1 − ω2)τ}
2τ(ω1 − ω2)

− sin{(ω1 + ω2)τ}
2τ(ω1 + ω2)

, ω1 6= ω2,
1
2

{

1 − sin{2ω1τ}
2τω1

}

, ω1 = ω2

(5.14)and we suppose that τ is large. Then the integral (5.12) is O(τ−1) even when
ω1 = ω2. However, (5.13) and (5.14) both have an O(τ0) term of 1

2 when
ω1 = ω2. Sin
e
sin{(ω1 − ω2)τ}

2τ(ω1 − ω2)
≃ 1

2
− 1

6
(ω1 − ω2)

2τ2, when ω1 ∼ ω2, (5.15)



5.1. THE ANALYSIS OF TIME SERIES 117there will be a `spread', with width ∼ 1/τ , around the maximum of 1
2 at ω1 = ω2.With this information we 
an 
onsider the fun
tion γ(τ ;ω) 
omputed using

x(t) of (5.9). As long as τ is su�
iently large we expe
t both the real andimaginary parts of γ(τ ;ω) to be almost zero everywhere ex
ept near to peaksof height 10 at ω = 3 and 3 at ω = 5 in the real part, and near to peaks ofheight 5.5 at ω = 1
9 and 4 at ω = 13 in the imaginary part. Results 
omputeddire
tly from the fun
tional form with τ = 100 
an be obtained using MAPLE .The 
ode for 
omputing real and imaginary parts is:

> v1:=t->11*sin(t/9):
> w1:=(tau,omega)->int(v1(t)*
os(omega*t)/tau,t=0..tau):
> u1:=(tau,omega)->int(v1(t)*sin(omega*t)/tau,t=0..tau):
> v2:=t->20*
os(3*t):
> w2:=(tau,omega)->int(v2(t)*
os(omega*t)/tau,t=0..tau):
> u2:=(tau,omega)->int(v2(t)*sin(omega*t)/tau,t=0..tau):
> v3:=t->6*
os(5*t):
> w3:=(tau,omega)->int(v3(t)*
os(omega*t)/tau,t=0..tau):
> u3:=(tau,omega)->int(v3(t)*sin(omega*t)/tau,t=0..tau):
> v4:=t->8*sin(13*t):
> w4:=(tau,omega)->int(v4(t)*
os(omega*t)/tau,t=0..tau):
> u4:=(tau,omega)->int(v4(t)*sin(omega*t)/tau,t=0..tau):
> ww:=(tau,omega)->w1(tau,omega)+w2(tau,omega)+w3(tau,omega)+w4(tau,omega):
> uu:=(tau,omega)->u1(tau,omega)+u2(tau,omega)+u3(tau,omega)+u4(tau,omega):The plot for ℜ{γ(100, ω)} is then given by:
> plot(ww(100,w),w=0..20,labelfont=[SYMBOL,12℄);
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and for ℑ{γ(100, ω)} by:
> plot(uu(100,w),w=0..20,labelfont=[SYMBOL,12℄);
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It will be seen that the dominant peaks in these graphs are at the pointspredi
ted. There are also weaker peaks from the sine 
ontributions in the plotof the ℜ{γ(100, ω)} and the 
osine 
ontributions in the plot of ℑ{γ(100, ω)}.



5.1. THE ANALYSIS OF TIME SERIES 119These arise from the �rst term in the integral (5.12). Sin
e this term 
hangessign as ω2 passes through the value ω1 we observe that the fun
tion has negativeand positive values in this region. A more a

urate guide to the nature of thefun
tion x(t) is the graph of |γ(τ, ω)|. This is 
alled the spe
tral fun
tion andits peaks give the spe
trum of x(t). The spe
tral fun
tion |γ(100, ω)| 
an beobtained using:
> 

:=(tau,omega)->sqrt(ww(tau,omega)*ww(tau,omega)+uu(tau,omega)*uu(tau,omega)):
> plot(

(100,w),w=0..20,labelfont=[SYMBOL,12℄);

0
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6

8

10

2 4 6 8 10 12 14 16 18 20ω

Of 
ourse, the integral form for γ(τ ;ω) given by (5.11) is not appropriate to theanalysis of a time series sin
e the only information is a data set2 x(0), x(△t),
x(2△t), . . . , x([N − 1]△t). We need to repla
e t by n△t and τ by (N − 1)△t in(5.11) and approximate the integral by a sum. This gives
γ(N,△t;ω) =

1

N

N−1∑

n=0

exp(iωn△t)x(n△t). (5.16)In Fig. 5.3 |γ(1000, 1/10;ω)| is plotted from a data �le obtained from the fun
-tion (5.9) rather than by integrating the fun
tional form. Comparison withthe MAPLE plot for the spe
tral fun
tion on page 119 and Fig. 5.3 shows thatnone of the essential properties of the spe
trum is lost by using the time se-ries rather than the analyti
 form. However, use of the formula (5.16) means2Without loss of generality, the starting time t0 
an be set to zero.
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Figure 5.3: The plot of the spe
tral fun
tion |γ(1000, 1/10, ω)|, 
omputed froma data �le for (5.9).that γ(N,△t;ω) is periodi
 in ω with period 2π/△t. The period in this 
ase is
20π = 62.83 as 
an be 
learly seen in Fig. 5.3. If the range of ω were extended inthe MAPLE plots derived from the integral formula (5.11) then su
h periodi
itywould be seen.Further 
onsideration of time series will be ne
essary in relation to the dete
tionof 
haoti
 behaviour in dynami
 system.5.2 Chaos in Dynami
 SystemsThere are three things to be 
onsidered in relation to 
haos:

• We need a de�nition of 
haos.
• We need some methods for dete
ting if a system, either theoreti
alor experimental, is behaving 
haoti
ally.
• We need some idea of what kinds of systems will have the possibilityof behaving 
haoti
ally.In fa
t there are very few attempts in the literature to de�ne 
haos in amathemati
al sense. The 
learest one I know is that given by Devaney3 for3R. L. Devaney, 1989, Introdu
tion to Chaoti
 Dynami
 Systems, Addison Wesley, 2nd Ed.p. 50.



5.2. CHAOS IN DYNAMIC SYSTEMS 121a dis
rete map x(n) → x(n + 1) = F[x(n)] on a spa
e V . A

ording to thisde�nition f is 
haoti
 on V if:(i) It has sensitive dependen
e on initial 
onditions.(ii) It is topologi
ally transitive.(iii) Periodi
 points are dense in V .Sensitive dependen
e on initial 
onditions is just another way of des
ribing un-predi
tability and this 
ondition is the most important both for dis
rete and 
on-tinuous systems. Topologi
al transitivity simply means that for any U ,W ⊂ Vthere will be, under su�
ient number of iterations, images of points of U in
W . Periodi
 points o

ur only for dis
rete maps (see box below). However, ananalogue does exist in the o

urren
e of subharmoni
 periodi
 solutions whi
hgive rise to periodi
 points on a Poin
aré se
tion.At a meeting on Chaos sponsored by the Royal So
iety in London in 1986,there was4 a 
ertain unwillingness to 
ome up with a de�nition of 
haos. Even-tually the de�nition proposed was:Sto
hasti
 behaviour o

urring in a deterministi
 system.In other words the output of the system looks as if it is random in spite of thefa
t that the system, or equation, generating the output is entirely deterministi
.The best way to dete
t 
haoti
 output from a system is to observe howthe nature of the solution 
hanges when parameters of the system are 
hanged.For these purposes we normally suppose that we have waited a su�
iently longperiod of time so that transient 
omponents of the output have disappeared.This means that the traje
tory has rea
hed its attra
tor. We have already seenthat equilibrium points and periodi
 solutions are attra
tors and in Example1.12.2 we saw an example of a Hopf bifur
ation between the two. In Example3.3.1 we 
onsidered quasi-periodi
 motion on a torus and saw that the 
olle
tionof su
h traje
tories on the torus 
ould be the attra
tor of a dynami
 system. We,therefore, have dis
overed three types of attra
tors, equilibrium points, periodi
traje
tories and quasi-periodi
 traje
tories, none of whi
h is 
haoti
. What othertypes of attra
tors 
an exist? A

ording to Devaney's de�nition the 
haoti
attra
tor of a di�eren
e equation is a region whi
h is topologi
ally transitiveand in whi
h periodi
 points are dense. Below we give a brief dis
ussion of thelogisti
 map
x(n+ 1) = ax(n)[1 − x(n)] (5.17)whi
h maps the unit interval into itself when 0 ≤ a ≤ 4. As we shall explain,after a sequen
e of bifur
ations, the behaviour be
omes 
haoti
 at a = 3.569946.We are, however, in this 
ourse 
on
erned with di�erential equations and wespe
ulate about how 
ompli
ated a di�erential system needs to be to exhibit4A

ording to Ian Stewart 1989, Does God Play Di
e? Penguin.
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haoti
 solutions. In Example 1.8.3 we showed that the di�erential logisti
equation
ẋ(t) = cx(b− x), (5.18)
an be approximated to the logisti
 map (5.17) with a = 1 − εcb, where ε issmall. This means that a is 
lose to one, and thus outside the 
haoti
 range. Thisserves to suggest that it may be more di�
ult, or perhaps impossible, to �nd
haoti
 solutions for one-dimensional autonomous systems. That we 
an restri
tour attention to autonomous systems follows from the dis
ussion in Se
t. 1.5,where we showed that an d-dimensional non-autonomous system 
an be madeequivalent to a suspended (d+1)-dimensional autonomous system. A traje
torywhose attra
tor is an equilibrium point, a periodi
 solution or a quasi-periodi
solution is predi
table and therefore not 
haoti
. However, a

ording to thePoin
aré-Bendixson theorem (see Se
t. 3.4.1) all solutions of a two-dimensionalautonomous system whi
h for t ≥ t0, for some t0, are 
ontained in a 
ompa
t setof the {x, y} plane tend to a periodi
 solution or an equilibrium point. This es-tablishes5 that 
haoti
 traje
tories 
annot exist for two-dimensional autonomoussystems. This result also holds, of 
ourse, for one-dimensional autonomous andnon-autonomous systems. We must, therefore, 
onsider, two-dimensional non-autonomous systems or (at least) three-dimensional autonomous systems. Thetype of attra
tors of 
haoti
 traje
tories are strange attra
tors. Their de�ning
hara
teristi
 is that they have a non-integer fra
tal dimension. We shall nothave time for a detailed dis
ussion of fra
tals.6 However, it may be useful toin
lude the de�nition of fra
tal dimension (see box).In fa
t it is `almost possible' to de�ne 
haos as motion to a strange attra
tor,ex
ept that there is some indi
ation that a strange attra
tor 
an sometimes beasso
iated with non-
haoti
 motion7 and Hamiltonian systems, although they
an be 
haoti
, do not have attra
tors.8As we have seen with any time series it is often quite di�
ult to dete
t its
hara
ter just by visual inspe
tion of the graph. We need some other meansof `�ltering out' the important qualities asso
iated with di�erent types of be-haviour. We have already seen in Se
t. 5.1 that a useful tool in this respe
t isthe spe
tral fun
tion. As we shall see it 
an be used not only to determine thefrequen
ies of periodi
 
omponents but also indi
ate the presen
e of 
haos. Inaddition to this an important test of the presen
e of 
haos is to 
al
ulate theLyapunov exponents.5.2.1 Lyapunov ExponentsChaos in a deterministi
 system implies a sensitive dependen
e on initial 
ondi-tions. This means that if two traje
tories start 
lose together they will in most5Subje
t to the restri
tion of having to 
onsider traje
tories 
ontained in a 
ompa
t set.6A good introdu
tion is that of Hans Lauwerier, 1987, Fra
tals, Penguin.7See F.C. Moon 1992, Chaoti
 and Fra
tal Dynami
s, Wiley, for referen
es.8See E. Ott 1993, Chaos in Dynami
 Systems, Cambridge, Chapter 7.



5.2. CHAOS IN DYNAMIC SYSTEMS 123Suppose S is a set of points in d�dimensional spa
e. Let N(ℓ) be the minimumnumber of hyper
ubes of edge-length ℓ needed to 
over S. Then the fra
taldimension of S is
D(S) = lim

ℓ→0

ln{N(ℓ)}
ln{1/ℓ} . (5.19)Try this out for a 1 × 1 square. The number of squares of side 1/n needed to
over it is n2. So D = ln(n2)/ ln(n) = 2. In this 
ase you don't even need to takethe limit to get the required result. Now 
onsider the 
ase of the Sierpinskigasket or sieve.
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This is 
onstru
ted by su

essive removal of the 
entral 1
4 from an equilateraltriangle. In this 
ase if the lengths of the sides of the 
overing squares goes downby a fa
tor of 1

2 the number of su
h squares goes up by a fa
tor of 3. Thus, with
ℓ =

(
1
2

)n, N(ℓ) = 3n and the fra
tal dimension is ln(3)/ ln(2) ≃ 1.5849.We 
an de�ne a fra
tal as an obje
t with non-integer fra
tal dimension.
ases move exponentially away from ea
h other on a small time s
ale. Thus if
d(t0) is a measure of the distan
e between the phase points on the traje
toriesat time t = t0 and d(t) is the distan
e at a small, but later, time t
d(t) = d(t0) exp[λL(t− t0)]. (5.20)If the system is a di�eren
e equation then (5.20) is repla
ed by
d(n) = d(0) exp[λLn]. (5.21)The divergen
e of 
haoti
 orbits must be only a lo
al property be
ause if thesystem is bounded, as it is in the 
ase of most physi
al experiments, d(t) 
annotgo to in�nity. Thus to de�ne a measure of divergen
e we must average theexponential growth at a sequen
e of points along a traje
tory. We de�ne the
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e t0, t1, t2, . . . , tN , where tn = t0 + n△t. Then
d(tN )

d(t0)
=

d(tN )

d(tN−1)

d(tN−1)

d(tN−2)
· · · d(t1)

d(t0)
(5.22)and, from (5.20),

λL =
1

tN − t0

N∑

n=1

ln

{
d(tn)

d(tn−1)

}

. (5.23)Using a similar argument
λL =

1

N

N∑

n=1

ln

{
d(n)

d(n− 1)

}

, (5.24)for a di�eren
e equation. With the map of the form x(n) → x(n+ 1) = F[x(n)]this be
omes,
λL ≃ 1

N

N∑

n=1

ln

∣
∣
∣
∣

dF[x]

dx

∣
∣
∣
∣
x=x(n)

, as N → ∞. (5.25)Lyapunov exponents give a means of 
lassifying the dilating and 
ontra
ting
hara
teristi
s of attra
tors. For a one-dimensional system the 
ondition for
haos is λL > 0, whi
h, as we have seen, 
an be the 
ase only for di�eren
eequations. In general, in a d�dimensional system, there will be d independentLyapunov exponents, whi
h measure dilation or 
ontra
tion in the d independentdire
tions in spa
e and a ne
essary 
ondition for 
haos is that at least oneLyapunov exponent is positive. It must also be the 
ase that at least oneLyapunov is negative, otherwise the set 
ould not be an attra
tor. For d = 3 wehave one more exponent whi
h is along the traje
tory. It is normally supposedthat points on the same traje
tory do not diverge from ea
h other. This impliesa Lyapunov exponent of zero in the dire
tion of the traje
tory and we have�xed the parity of all three Lyapunov exponents. Before dis
ussing in detailthe 
al
ulation of Lyapunov exponents for di�erential systems, we 
onsider thesimple 
ase of the logisti
 equation.5.2.2 The Logisti
 MapBe
ause this 
ourse is intended to be restri
ted to 
ontinuous systems we shallnot spend time in a detailed analysis of this system but just summarize themain results. For those of you not familiar with the analysis of dis
rete systemsthe main mathemati
al results are listed here.
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rete map x(n) → x(n+ 1) = F[x(n)]:(i) A �xed point x∗ of the mapping is given by x∗ = F[x∗].(ii) The �xed point x∗ is stable if |dF/dx|∗ < 1, unstable if
|dF/dx|∗ > 1 and marginal if |dF/dx|∗ = 1.(iii) A periodi
 point x̊(i) of period p is a member of a set x̊(1) → x̊(2) →
· · · → x̊(p) → x̊(1). This set of points is 
alled a p-
y
le. x̊(i) is a�xed point of the iterated mapping
x =

p times
︷ ︸︸ ︷

FF · · · FF(x).Using this information it is simple to show that the logisti
al map has thefollowing properties:(i) In the range 0 < a < 1 the map has a single stable �xed point x = 0.(ii) A trans
riti
al bifur
ation o

urs at a = a0 = 1 between the �xedpoints x = 0 and
x∗ = 1 − 1

a
. (5.26)(Of 
ourse, for a < 1, x∗ < 0.)(iii) The �xed point x∗ is stable for a0 < a < a1 = 3, when a bifur
ationo

urs to a two-
y
le given by

x(±) =
1 + a±

√

(a+ 1)(a− 3)

2a
. (5.27)(iv) The two-
y
le is stable for a1 < a < a2 = 1+

√
6, when a bifur
ationto a four-
y
le o

urs.(v) When a = 4 the substitution

x = sin2(πθ) (5.28)gives (5.17) in the form
θ(n+ 1) = NI(2θ(n)), (5.29)where NI denotes `non-integer part'.At this point it stops being `simple to show' and the analysis be
omes in
reasingdi�
ult. However, a mixture of analysis and 
omputing has established thefollowing:
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e of period-doubling bifur
ations at the points
a3, a4, a5, . . ., where ak is the bifur
ation from the 2k−1-
y
le to the
2k-
y
le.(vii) lim
k→∞

= a∞ = 3.569946, and, for a∞ < a ≤ 4, the system is 
haoti
.(viii) It was shown by Feigenbaum that, with
δk =

ak − ak−1

ak+1 − ak
, (5.30)

lim
k→∞

δk = δ = 4.6692016. (5.31)The remarkable fa
t is that the Feigenbaum number δ o

urs in awide 
lass of mappings exhibiting period-doubling and not just thelogisti
 map.(ix) Before a rea
hes 4, 
y
les of all orders o

ur. It was shown bySharkovskii, that if all the positive integers are ordered like
3 → 5 → 7 → 9 → 11 → · · · →

6 → 10 → 14 → 18 → 22 → · · · →... ... ... ... ... ...
2n3 → 2n5 → 2n7 → 2n9 → 2n11 → · · · →

2n → 2n−1 → · · · → 4 → 2 → 1,then the 
y
les o

ur in the reverse order. The �rst odd 
y
le (ofvery long period) o

urs at a = 3.6786 and the three-
y
le, whi
h islast, o

urs at a = 3.8284.The bifur
ation diagram of the logisti
 equation is shown in Fig. 5.4. The two,four and eight 
y
les are 
learly visible, as is also the `window' showing theo

urren
e of the three 
y
le.We 
an determine the onset of 
haos by 
al
ulating the Lyapunov exponent,whi
h from (5.17) and (5.25) is given, for large N , by
λL ≃ 1

N

N∑

n=1

ln |a[1 − 2x(n)]|. (5.32)A plot of λL with N = 1000 is shown in Fig. 5.5.Bifur
ation points 
orrespond to marginal stability with λL = 0 and the�rst point where the exponent rises to tou
h the value zero is at the bifur
ationpoint a = a2, when the two-
y
le be
omes unstable. (More stru
ture with a
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Figure 5.4: The bifur
ation diagram for the logisti
 map (5.17).
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Figure 5.5: The Lyapunov exponent for the logisti
 equation.
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Figure 5.6: The spe
tral fun
tion for the logisti
 equation with a = 3.2.
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Figure 5.7: The spe
tral fun
tion for the logisti
 equation a = 3.9.
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learer indi
ation of subsequent bifur
ation points would have been a
hievedby using a larger value of N .) The point where the 
urve �rst 
rosses theline λL = 0 
orresponds to the onset of 
haos at a = a∞. Subsequent dipsin value 
orrespond to the o

urren
e of a new sequen
e of 
y
les with thestrong dip in the interval (3.8, 3.9) indi
ating the presen
e of the three-
y
le.An alternative test for the presen
e of 
haos 
an be made by using the spe
tralfun
tion |γ(N,△t;ω)|, whi
h is shown for a = 3.2 and a = 3.9 in Fig. 5.6 andFig. 5.7.9 In ea
h 
ase the sharp maxima 
orrespond to the presen
e of 
y
les.The value a = 3.2 is in the two-
y
le region and the spe
tral fun
tion is 
lose tozero apart from at the 
y
le frequen
ies. The value a = 3.9 is deep within the
haoti
 region and the form of the fun
tion indi
ates 
y
les of all orders.5.2.3 The Rössler EquationsConsider �rst the equations
ẋ(t) = −y − z, (5.33)
ẏ(t) = x+ ay. (5.34)For any �xed z, they have the single equilibrium point x = −az, y = −z withstability matrix

J∗ =

(
0 −1

1 a

)

, (5.35)with eigenvalues λ(±) = 1
2{a ±

√
a2 − 4}. We shall 
on�ne out attention tothe 
ase 0 < a < 2, when the equilibrium point is an unstable fo
us. Now weintrodu
e a third equation

ż(t) = b− zc, (5.36)with c > b > 0. In the three-dimensional spa
e of {x, y, z} the equilibrium pointis now at x = −ab/c, y = −b/c, z = b/c with stability matrix
J∗ =








0 −1 −1

1 a 0

0 0 −c







, (5.37)Two of the eigenvalues are the same as those of the previous 
ase and the thirdis λ(3) = −c. So the equilibrium point is attra
tive in the z�dire
tion. Thegeneral solution to (5.36) is

z = C exp(−ct) + b/c. (5.38)9Again we use △t = 0.1 giving a period in ω of 20π.
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tories 
onverge towards the plane z = b/c, while at the same time spi-ralling outwards in the x and y dire
tions. So this is not a parti
ularly interestingsystem. Suppose that we now modify (5.36) by adding a non-linear term to give
ż(t) = b+ z(x− c). (5.39)Equations (5.33), (5.34) and (5.39) de�ne the Rössler equations. This systemhas two equilibrium points
x(±) = 1

2

{

c±
√

c2 − 4ab
}

, y(±) = −x(±)/a, z(±) = x(±)/a. (5.40)For di�erent values of a, b and c one member of this pair has one real positiveeigenvalue and a 
omplex pair with negative real part, and the other has onereal negative eigenvalue and a 
omplex pair with positive real part.Consider (5.39) alone. When the value of x is less than c, z remains stableand this subsystem tends to drive z to a value near to b/(c− x). However, withsmall b, this quantity is small and (5.33)�(5.34), 
ause the values of x and y tospiral outwards. The growth in x 
auses the sign of the z(x− c) term in (5.39)to 
hange. The traje
tory leaps upwards. On
e z is large the −z term in (5.33)
omes into play and for
es the value of x downwards again. The whole pro
essthen repeats itself. The overall e�e
t of the non-linear term is to 
on�ne theattra
tor to a region around the origin. It is interesting to 
ompute traje
toriesfor this system. To do so it is ne
essary to use the 
orresponding di�eren
eequations. Take x(n) = x(n△t), y(n) = y(n△t) and z(n) = z(n△t) and repla
e
ẋ(t), ẏ(t) and ż(t) by their two-point �nite equivalents in (5.33), (5.34) and(5.39). This gives
x(n+ 1) = x(n) − y(n)△t− z(n)△t,

y(n+ 1) = x(n)△t+ y(n)[1 + a△t],

z(n+ 1) = b△t+ z(n)[1 + {x(n) − c}△t].

(5.41)Using some small (but not too small) value for △t, traje
tories 
an now be
omputed.10 We 
onsider the 
ase a = b = 0.2. Then for values of c lessthan about 2.83 the proje
tion of the traje
tory into the {x,y} plane is a simpleperiodi
 orbit and the output x(n) is a periodi
 fun
tion, with a single frequen
y(Fig. 5.8(a): a simple 
y
le). When c is in
reased through 2.83 the traje
toryjust fails to 
lose on itself after one 
ir
uit and does so after two (Fig. 5.8(b):a two-
y
le). The period doubles and the frequen
y halves to a subharmoni
.By c = 4.2 the pro
ess has repeated, leading to an orbit whi
h 
loses onto itselfonly after four 
ir
uits (Fig. 5.8(
): a four-
y
le). By c = 4.35 (Fig. 5.8(d)) wehave an eight-
y
le. As c is in
reased period-doubling o

urs with in
reasingfrequen
y until, at a value between 4.35 and 5.0, the system be
omes 
haoti
.The three-dimensional plot of the strange attra
tor for c = 5.0 is shown in Fig.5.9. You will see that it looks rather like a Möbius strip. On this attra
tor any10MAPLE is not the most appropriate pa
kage for doing this. I used FORTRAN 90 with
△t = 0.02. It is ne
essary to run the iteration for a number (∼ 103, but depending on c) ofiterations to eliminate transient behaviour and to ensure that the traje
tory has rea
hed theattra
tor.
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Figure 5.9: The strange attra
tor for Rössler equations when a = b = 0.2,
c = 5.0.two traje
tories starting at nearby points will diverge exponentially. A briefa

ount of the methods available for 
al
ulating Lyapunov exponents for su
hsystems will be given later. For a = 0.15, b = 0.2 and c = 10.0 the threeLyapunov exponents are 0.13, 0.0 and −14.1. The leading exponent of 0.13 > 0indi
ates the system is 
haoti
. The negative exponent is ne
essary to hold theattra
tor together, and the zero exponent is for the dire
tion along a traje
toryand indi
ated that points on the same traje
tory maintain their distan
es apart.5.2.4 The Lorentz EquationsIn this 
ase we have two non-linear terms.
ẋ(t) = −a(x− y), (5.42)
ẏ(t) = ρx− y − zx, (5.43)
ż(t) = −bz + xy. (5.44)For simpli
ity we shall take a and b as �xed positive quantities and 
onsidervariations in ρ. It will be seen that the transformation (x, y, z) → (−x,−y, z)leaves the equations un
hanged and also there are traje
tories whi
h lie on the



5.2. CHAOS IN DYNAMIC SYSTEMS 133
z�axis (x = y = 0) with z(t) = z(0) exp(−bt). From (5.42) all equilibrium pointsmust lie on the plane x = y and have either x = 0 or z = ρ − 1. In the latter
ase x2 = bz. So the three equilibrium points are

x = y = 0, z = 0, (5.45)
x = y = ±

√

b(ρ− 1), z = ρ− 1. (5.46)Linearizing about equilibrium point (5.45) gives the stability matrix
J∗ =





−a a 0
ρ −1 0
0 0 −b



 (5.47)with eigenvalues
λ(±) = −1

2

{

1 + a±
√

(1 + a)2 + 4a(ρ− 1)
}

, λ(3) = −b. (5.48)The �rst pair of eigenvalues are for eigenve
tors lying in the x�y plane and thethird is in the z�dire
tion. When ρ < 1 the origin is a proper stable node inthe x�y plane. It be
omes an improper stable node when ρ = 1 and a saddle-point when ρ > 1. In all 
ases sin
e we have assumed b > 0 it is stable in the
z�dire
tion. This linear analysis 
an be supplemented by using the Lyapunovdire
t method. Choose the Lyapunov fun
tion
L(x, y, z) = 1

2
{x2 + ay2 + bz2}. (5.49)This gives

∇L.F (x, y, z) = −1
2
a(1 + ρ)(x − y)2 − 1

2
a(1 − ρ)(x2 + y2) − abz2. (5.50)whi
h is stri
tly negative, implying asymptoti
 stability when ρ < 1.The equilibrium solution (5.46) exists only when ρ ≥ 1 and the stabilitymatrix is

J∗ =









a −a 0

−1 1 ±
√

b(ρ− 1)

∓
√

b(ρ− 1) ∓
√

b(ρ− 1) b









(5.51)and the eigenvalues are solutions of the 
ubi
 equation
f(λ) ≡ λ3 + (a+ b+ 1)λ2 + b(a+ ρ)λ+ 2ab(ρ− 1) = 0. (5.52)When ρ > 1 all the 
oe�
ients of this 
ubi
 are positive and there are, therefore,no real, positive eigenvalues and there must, of 
ourse, be one real negativeeigenvalue. The only way for this equilibrium point to be unstable is for thereto be a pair of 
omplex roots with positive real part. When ρ = 1 (5.52) hasroots λ = 0,−b,−(a+1). Now suppose that ρ is in
reased from unity. Sin
e the�rst eigenvalue is marginal its 
hange, whi
h will be of the order of △ρ = ρ− 1,
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Figure 5.10: The strange attra
tor for the Lorentz equations shown in proje
-tions in (a) the {x, y} plane, (b) the {x, z} plane, (
) the {y, z} plane, with
a = 10, b = 8

3 , ρ = 28.will determine the stability. Substituting λ = α△ρ into (5.52) and solving forthe lowest order terms gives α = −2a/(a + 1). So the equilibrium points arestable. For them to be
ome unstable, two of the eigenvalues must pass throughvalues where they are purely imaginary. Suppose λ(1) = iω and λ(2) = −iω.Then, sin
e the sum of all three eigenvalues is equal to minus the quadrati

oe�
ient in (5.52), λ(3) = −(a + b + 1). This must be a root of (5.52) at thevalue ρc of ρ where instability sets in. Substituting into (5.52) gives
ρc =

a(a+ b+ 3)

a− b− 1
. (5.53)Thus instability 
an o

ur only if a and b are su
h that ρc > 1 and then theequilibrium points will be stable for 1 < ρ < ρc. It is of interest to 
al
ulatethe eigenvalues of the equilibrium points (5.46) for �xed values of a and b anda range of values of ρ. For a = 10 and b = 8

3 , ρc = 470
19 = 24.737. Sin
e oneeigenvalue is always negative the interest is in the values of the other pair. At

ρ = 1 one is zero and the other is −11. For ρ near to one all three eigenvaluesare real and negative and (with respe
t to this pair) the equilibrium points arestable nodes. Between ρ = 1.3 and 1.4 the pair be
omes 
omplex 
onjugatewith negative real parts. The equilibrium points are stable fo
ii. This 
hara
terpersists up to ρ = ρc = 24.737, when the real parts 
hange sign and we haveunstable fo
ii. The passage to 
haos in the Lorentz system is very 
ompli
atedwith both period-doubling and period halving. The strange attra
tor whi
h is
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tion for a = 10, b = 8
3 in Fig. 5.10 takes the form of a pairof 
onne
ted loops around the two equilibrium solutions (5.46). The Lyapunovexponents for a = 16.0, b = 4.0 and ρ = 45.92 are 2.16, 0.0 and −32.4. Theparti
ular 
omplexity of this system is evident from the fa
t that the strangeattra
tor makes its appearan
e at values of ρ slightly less that ρc when theequilibrium points are still stable. It also 
oexists with limit 
y
les around theequilibrium points whi
h make their appearan
e for 
ertain ranges of ρ.5.3 Lyapunov Exponents and Fra
tal Dimension5.3.1 The Transformation of VolumesLet Γd be the phase spa
e of the dynami
 system

ẋ(t) = F (x; t) (5.54)and suppose µ(x; t) is some density fun
tion de�ned on Γd. Let Υ(t) ⊂ Γd be avolume whi
h moves with the �ow of the dynami
 system and de�ne the volumeintegral
P(t) =

∫

Υ(t)

µ(x; t)dV, (5.55)A well-known theorem, used in a number of areas in
luding probability theoryand �uid dynami
s, is that
dP(t)

dt
=

∫

Υ(t)

{
∂µ

∂t
+ ∇.[µF ]

}

dV. (5.56)In the spe
ial 
ase where µ(x; t) = 1, P(t) just measures the size of the volume
Υ(t). It follows that
∇.F (x; t) = 0 (5.57)is a ne
essary and su�
ient 
ondition for the �ow of the dynami
 system topreserve volume. In parti
ular, for the Hamiltonian system de�ned by (1.10),
∇.F (x; t) =

d∑

ℓ=1

{
∂2H

∂xℓ∂pℓ
− ∂2H

∂pℓ∂xℓ

}

= 0. (5.58)So Hamiltonian systems are volume preserving. A system for whi
h ∇.F (x; t) <
0, meaning that volumes shrink with time, is 
alled dissipative.5.3.2 The Lyapunov Spe
trumWe now generalize the dis
ussion of Lyapunov exponents given in Se
t. 5.2.1 tosystems of more than one dimension. Consider �rst the d�dimensional di�eren
eequation
x(n+ 1) = F[x(n)], (5.59)
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x(n) = (x1(n), x2(n), . . . , xd(n)) ,

F[x] = (F1[x], F2[x], . . . , Fd[x]) .
(5.60)Let △x(n) = x(n) − x(n− 1). Then

△x(n+ 1) = J[x(n− 1)]△x(n) + O(|△x(n)|2), (5.61)where
J[x] =















∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xd

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xd... ... . . . ...
∂Fd

∂x1

∂Fd

∂x2
· · · ∂Fd

∂xd















. (5.62)
Negle
ting all but the linear term in (5.61),
△x(n+ 1) = S(n)△x(1), (5.63)where
S(n) = J[x(n− 1)]J[x(n− 2)] · · · J[x(0)]. (5.64)Let Σ(n) be the diagonal matrix with the eigenvalues, σ1(n),σ2(n), . . . ,σd(n),of S(n) along the diagonal, ordered a

ording to des
ending magnitude, V(n)be the matrix with the 
orresponding left eigenve
tors as rows and U(n) be thematrix with the 
orresponding right eigenve
tors as 
olumns. From Se
t. 1.9,
V(n)△x(n+ 1) = Σ(n)V(n)△x(1), (5.65)The magnitudes | σ1 (n)|, | σ2 (n)|, . . . , | σd (n)| measure the dilations and 
on-tra
tions of the transformation over n steps. As we saw in (5.21) the averageof these s
ale 
hanges are measured by the Lyapunov exponents and for the
d�dimensional di�eren
e equation system des
ribed here we 
an de�ne the dLyapunov exponents in des
ending order by
λ

(ℓ)
L = lim

n→∞

ln{σℓ(n)}
n

, ℓ = 1, 2 . . . , d. (5.66)It will be seen that, in the 
ase d = 1, this is equivalent to (5.25).In the 
ase of the d-dimensional 
ontinuous system
ẋ(t) = F (x), (5.67)we monitor the long-term evolution of an in�nitesimal d-dimensional hyper-sphere of initial 
onditions. This hypersphere will be
ome a hyperellipsoid under
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z

y

x

t0

t1

t2

Figure 5.11: The deformation of a sphere of initial 
onditions under the e�e
tof the �ow.the e�e
t of the deforming nature of the �ow. This is shown in Fig. 5.11 for
d = 3. If d(ℓ)(t) is the length of the ℓ�th prin
iple axis at time t then a suitablegeneralization of (5.20) to the 
ase of d Lyapunov exponents is
d
(ℓ)(t) = d

(ℓ)(t0) exp[λ
(ℓ)
L (t− t0)], ℓ = 1, 2, . . . , d. (5.68)The implementation of the pro
edure implied by (5.68) involves de�ning theprin
ipal axes with an initial hypersphere whi
h is as small as possible anddetermining their evolution with the non-linear equations. This means deter-mining d neighbouring solutions. As we saw in the one-dimensional 
ase, toobtain the Lyapunov exponents we need to be able to do this over a long periodof time, whi
h is not normally pra
ti
al for a 
haoti
 system.An alternative approa
h is to obtain the �du
ial traje
tory, whi
h gives theevolution of the 
entre of the hypersphere/ellipsoid and then to integrate thelinearized equations for d di�erent initial 
onditions de�ning an arbitrarily ori-ented set of d orthonormal ve
tors. Of 
ourse, over a long period of time, evenjust using the linearized equations, the ve
tors will diverge in length. Theywill also reorient themselves towards the dire
tion asso
iated with the largestLyapunov exponent. The way to deal with this di�
ulty is by the repeated useof Gram-S
hmidt renormalization (GSR).Suppose e(1)(0), e(2)(0), . . . , e(d)(0) is a set of orthonormal ve
tors at time

t = 0 and suppose upon integration over a time period △t they evolve into theset ẽ(1)(△t), ẽ(2)(△t), . . . , ẽ(d)(△t). These ve
tors, will in general, no longerbe normalized. They will also have all reoriented themselves more towardsthe dire
tion of the major prin
ipal axis, asso
iated with the largest Lyapunovexponent λ(1)
L . We now apply GSR in su
h a way as to leave the dire
tion of
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ẽ(1)(△t) una�e
ted. Thus
e(1)(△t) =

ẽ(1)(△t)
|ẽ(1)(△t)| ,

e(2)(△t) =
ẽ(2)(△t) − e(1)(△t)[e(1)(△t).ẽ(2)(△t)]
|ẽ(2)(△t) − e(1)(△t)[e(1)(△t).ẽ(2)(△t)]| ,... ... ...

e(d)(△t) =

ẽ(d)(△t) −
d−1∑

ℓ=1

e(ℓ)(△t)
[

e(ℓ)(△t).ẽ(d)
]

∣
∣
∣
∣
∣
ẽ(d)(△t) −

d−1∑

ℓ=1

e(ℓ)(△t)
[

e(ℓ)(△t).ẽ(d)
]
∣
∣
∣
∣
∣

(5.69)
The ve
tor e(1)(t) tends to seek out the dire
tion of most rapid growth and todilate in proportion to exp[λ

(1)
L t]. So

λ
(1)
L ≃ 1

N

N∑

n=1

ln

∣
∣
∣
∣
∣

ẽ(1)(n△t)
ẽ(1)((n− 1)△t)

∣
∣
∣
∣
∣
. (5.70)for large N . The dire
tion of e(2)(t) is orthogonal to e(1)(t), but ẽ(2)(t) is notne
essarily in the dire
tion of the se
ond dominant Lyapunov exponent. Toobtain λ(2)

L we either proje
t ẽ(2)(t) onto the dire
tion of e(2)(t) or observe thatthe plane of ẽ(1)(t) and ẽ(2)(t) is the same as that of e(1)(t) and e(2)(t). Thesize |ẽ(1)(t) ∧ ẽ(2)(t)| grows in proportion to exp[{λ(1)
L t+ λ

(2)
L t}]. So

λ
(1)
L + λ

(2)
L ≃ 1

N

N∑

n=1

ln

∣
∣
∣
∣
∣

ẽ(1)(n△t) ∧ ẽ(2)(n△t)
ẽ(1)((n− 1)△t) ∧ ẽ(2)((n− 1)△t)

∣
∣
∣
∣
∣

(5.71)for large N . In a similar way the �rst three exponents 
an be obtained fromthe growth in size of a volume de�ned by a triad of ve
tors.11 In d�dimensionalspa
e the volume of a small hypersphere of radius ε is
V (ε) =

{

Γ
(

1
2

)

ε
}d

Γ
(

1
2
d+ 1

) , (5.72)where Γ(x) is the gamma fun
tion.12 On the attra
tor this volume deforms ina time t into a hyperellipsoid with
V (ε) → exp{(λ(1)

L + λ
(2)
L + · · · + λ

(d)
L )t}V (ε). (5.73)11A FORTRAN program for implementing this pro
edure is given by Wolf, A, Swift J. B.,Swinney H. L. and Vastano J. A. (1985) Physi
a D, 285�317.12With the salient properties x Γ (x) = Γ(x + 1), Γ

�
1
2

�
=

√
π.



5.3. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION 139The sum of the Lyapunov exponents will therefore be zero if the system isvolume preserving and negative if it is dissipative. Sin
e the basin of attra
tionof a strange attra
tor is of the dimension of the spa
e of the system and theattra
tor itself has a fra
tal dimension less than d, 
haoti
 systems must bedissipative.5.3.3 The Dimension of Chaoti
 Attra
torsIn Se
t. 5.2 we de�ned fra
tal dimension and suggested that one (possibly not
ertain) indi
ation of the presen
e of 
haos was a non-integer fra
tal dimen-sion of the attra
tor. The fra
tal dimension of an attra
tor A is D(A) givenby (5.19). In prin
iple the fra
tal dimension of A in a spa
e of dimension d
ould be 
al
ulated by 
overing the spa
e with a hyper
ubi
 grid of mesh size
ℓ. A traje
tory of the system, after transitory fa
tors have disappeared, is thenfollowed and the number N(ℓ) of 
ells of the grid visited by the traje
tory overa long period of time is then 
ounted. An approximation to D(A) is then givenby − ln{N(ℓ)}/ ln{ℓ}. Su
h a pro
edure is in most 
ases very di�
ult to im-plement. It is also di�
ult to get an a

urate result be
ause of the need toapproa
h in some way the limit of small ℓ.Although the fra
tal dimension is related to the number of 
ells of the gridvisited by a traje
tory on the attra
tor, no a

ount is taken of the numberof times the traje
tory visits a parti
ular 
ell. A generalization of the fra
taldimension D(A) of A 
an be made by introdu
ing a probability measure µ(x)over the spa
e of the dynami
 system, where µ(x)△V is the probability of�nding the phase point of the system in a volume△V around the point x. Thenlabel the 
ells of the grid s = 1, 2, . . . and de�ne ps(µ, ℓ) to be the probability of�nding the phase point in the s�th 
ell, obtained by integrating µ(x) over thevolume of the 
ell. The information entropy of the probability measure µ(x) isde�ned by
I(µ, ℓ) = −

N(ℓ)
∑

s=1

ps(µ, ℓ) ln{ps(µ, ℓ)}. (5.74)In information theory this fun
tion gives the amount of information ne
essaryto spe
ify the state of the system to within an a

ura
y of ℓ. The informationdimension DI(µ; A) is de�ned by
DI(µ; A) = lim

ℓ→0

I(µ, ℓ)

ln{1/ℓ} . (5.75)It is 
lear that when the probability measure is uniform ps(µ, ℓ) = 1/N(ℓ),
I(µ, ℓ) = ln{N(ℓ)} and the information dimension is equal to the fra
tal dimen-sion. In general it 
an be shown that DI(µ; A) ≤ D(A).Suppose we want to 
al
ulate the fra
tal dimension of the 
haoti
 attra
tor
A asso
iated with a di�eren
e equation in two dimensions. We 
over it in
N(ℓ) squares of side ℓ. The Lyapunov exponents will satisfy the 
ondition
λ

(1)
L > 0 > λ

(2)
L . Let the map be iterated n times. If we suppose that the
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ontra
tion a
ts linearly on ea
h square, then ea
h is turned intoa parallelogram of average length exp{nλ(1)
L }ℓ and average width exp{nλ(2)

L }ℓ.Suppose that we had used a �ner grid of squares of side exp{nλ(2)
L }ℓ to 
overthe attra
tor. On average we need exp{n[λ

(1)
L − λ

(2)
L )]} of the new squares to
over one parallelogram. So we need

N(exp{nλ(2)
L }ℓ) = exp{n[λ

(1)
L − λ

(2)
L )]}N(ℓ), (5.76)squares to 
over the attra
tor. Sin
e, from (5.19),

D(A) ≃ − ln{N(ℓ)}
ln{ℓ} =≃ − ln{N(exp{nλ(2)

L }ℓ)}
ln{exp{nλ(2)

L }ℓ}
, (5.77)it follows, from (5.76) and (5.77), that

D(A) = 1 − λ
(1)
L

λ
(2)
L

. (5.78)Of 
ourse, this analysis 
annot be digni�ed by the title of a proper derivation.Apart from anything else it applies only to di�eren
e maps in two dimensions.However, we shall use it as a motivation for de�ning the Lyapunov dimension
DL(A) = k +

λ
(1)
L + λ

(2)
L + · · · + λ

(k)
L

|λ(k+1)
L |

, (5.79)where k is the largest value for whi
h λ(1)
L +λ

(2)
L + · · ·+λ

(k)
L ≥ 0. In many 
asesit appears to be true that DL(A) = DI(A). From the values given in Se
t. 5.2.3for the Rössler system the dimension of its strange attra
tor is 2.0092 and forthe Lorentz system dis
ussed in Se
t. 5.2.4 the dimension is 2.0667.Problems 51) Express the equation

ẍ(t) + µẋ(t) − x(t) + x2(t) = 0,as a pair of equations using the se
ond variable y(t) = ẋ(t). Find the equi-librium points and determine their linear stability for the di�erent ranges of
µ. Show that, when µ = 0,
1
2
{x2 − y2} = E + 1

3
x3 (5.80)is an integral of the motion for di�erent values of the parameter E. Ei-ther using MAPLE or by hand (and brain) sket
h the traje
tories given by(5.80). Mark the dire
tion of �ow and label the 
urves with their values of

E, identifying the homo
lini
 traje
tory. Using your intuition rather than
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h the form that the 
orresponding 
urvestake when µ is small and positive or negative. The breakup of a homo
lini
traje
tory is often asso
iated with the onset of 
haos. This is an example ofthe breakup of a homo
lini
 without 
haos being involved.2) Remember that the equilibrium point x = y =
√

b(ρ− 1), z = ρ − 1 ofthe Lorentz equations be
omes unstable as ρ is in
reased through the value
ρ = ρc where
ρc =

a(a+ b+ 3)

a− b− 1
,as long as a and b are su
h that ρc > 1. With xc = yc =

√

b(ρc − 1),
zc = ρc − 1 de�ne △x = x − xc, △y = y − yc, △z = z − zc and △r =
(△x,△y,△z)T. Show that the Lorentz equations 
an be expressed, withoutapproximation in the form
ω

d△r

dτ
+ J∗△r = w,where τ = ωt, for some parameter ω and

J∗ =








a −a 0

−1 1 xc

−xc −xc b







, w =








0

(ρ− ρc)(△x+ xc) −△x△z

△x△y







.The matrix J∗ is that given by (5.51) in the notes, but evaluated where ρ =

ρc. Remember at this point the matrix has two purely imaginary eigenvalues
±iωc (say) and a third whi
h is equal to −(a+ b+ 1). Show that
ωc =

√

2ab(a+ 1)

a− b − 1
.Let v and u be the left and right eigenve
tors for the eigenvalue iωc, (withthe 
orresponding eigenve
tors for −iωc being their 
omplex 
onjugates vand u). Assume that:(i) The eigenve
tors satisfy the usual orthnormality 
ondition.(ii) |ρ− ρc| = ε, where ε is small.(iii) △r lies in the plane spanned by u and u.(iv) ω and △r have expansions of the form

ω = ωc + εω1 + O(ε2), △r = ε
1
2 p + εq + O

(

ε
3
2

)

.
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p = cu exp(−iωt) + cu exp(iωt),where c is some 
omplex 
onstant. Subje
t to the assumptions made, thisestablishes the existen
e of a periodi
 solution for ρ slightly larger than ρcand shows that as ρ passes through ρc there is a Hopf bifur
ation.3) Show that the Lorentz equations (5.42)�(5.44) 
an be expressed in the form
dξ

dτ
= −aεξ − η,

dη

dτ
= −εη − ξζ,

dζ

dτ
= −bεζ + ξη − abε,in terms of the variables ε = 1/

√
ρ, τ = t/ε, ξ = εx, η = ε2ay, ζ = a(ε2z−1).The Lorentz equations in the limit ρ→ ∞ are now obtained by setting ε = 0in these equations. Show that in this limit they have the integrals

1
2
η2 + 1

2
ζ2 = α,

1
2
ξ2 − ζ = β.and that

(
dξ

dτ

)2

= (2α− β2) − 1
4
ξ4 + βξ2.Hen
e show that, when α = 9

8 , β = 1
2 , there is a periodi
 solution in the

{ξ, dξ/dτ} plane with a period (measured in terms of the time parameter τ)of
4

∫ 2

−2

dξ
√

(ξ2 + 2)(4 − ξ2)
.4) The baker's map is given by

x(n+ 1) =







τax(n), if y(n) < 1
2
,

(1 − τb) + τbx(n), if y(n) > 1
2
,

y(n+ 1) =







2y(n), if y(n) < 1
2
,

2y(n) − 1, if y(n) > 1
2
,



5.3. LYAPUNOV EXPONENTS AND FRACTAL DIMENSION 143where τa +τb ≤ 1. Given that µ is the probability that the iterated value of yis in the range 0 ≤ y ≤ 1
2 , determine the Lyapunov exponents, showing thatthe system is 
haoti
. Show that the Lyapunov dimension of the attra
tor is

1 − {µ ln(τa) + (1 − µ) ln(τb)}−1.
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Chapter 6Solutions6.1 Problems 11) (i) The equilibrium points are given by x = 0 and x = x∗ = (a − c)/ab.Linearizing about x = 0

d△x
dt

= (a− c)△x,with solution
△x = C exp[(a− c)t].So this solution is stable if a < c and unstable if a > c. Linearize about
x = x∗

d△x
dt

= (c− a)△x,with solution
△x = C exp[(c− a)t].So this solution is stable if a > c and unstable if a < c. There are �vedi�erent 
ases:When c = 0, x∗ = 1/b and the lines of equilibrium points are parallelto the a-axis. There is no bifur
ation but the stability 
hanges at a = 0.When b > 0 and c > 0, there is a trans
riti
al bifur
ation at x = 0,
a = c on one bran
h of x = x∗(a). The se
ond bran
h is unstable. The
ase b < 0, c > 0 is the mirror image of this in the verti
al axis.145
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a

x

x = 1/b

0c = 0

a

x

x = 1/b

0

b

c > 0, b > 0

When b < 0 and c < 0, there is a trans
riti
al bifur
ation at x = 0,
a = c on one bran
h of x = x∗(a). The se
ond bran
h is stable. The
ase b > 0, c < 0 is the mirror image of this in the verti
al axis. Theequation is separable so
∫

dx

x(a− c− abx)
= t+ constant.Using partial fra
tions it is easy to do the integration and the �nalsolution is

x(t) =
C(a− c) exp[(a− c)t]

1 + abC exp[(a− c)t]
,for some 
onstant C. If a < c, x → 0 as t → ∞ and, if a > c,

x→ (a− c)/ab as t→ ∞.
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a

x

x = 1/b

0
b

c < 0, b < 0

(ii) The equilibrium solutions are x = 0 and
x = x∗ =







a/b, if c = 0,
b±

√
b2 − 4ac

2c
, if c 6= 0,Linearizing about x = 0

d△x
dt

= a△x.So this equilibrium point is stable if a < 0 and unstable if a > 0.Linearizing about x = x∗

d△x
dt

= x∗(2x∗c− b)△x.So x∗ is stable if x∗(2x∗c − b) < 0 and unstable if x∗(2x∗c − b) > 0.When c = 0 these 
onditions redu
e to a > 0 and a < 0 respe
tively.When c = 0 and b > 0, there is a trans
riti
al bifur
ation at theorigin. For c = 0 and b < 0 the bifur
ation diagram is obtained fromthis by re�e
tion in the verti
al axis.When c > 0 and b > 0, there is a trans
riti
al bifur
ation at theorigin and a turning-point bifur
ation at x = b/2c, a = b2/4c. The 
ase
c > 0, b < 0 is obtained from this by re�e
tion in the verti
al axis.When c < 0 and b < 0, there are again a trans
riti
al and a turning-point bifur
ation at the same lo
ations. The 
ase c < 0 and b > 0 isobtained from this by re�e
tion in the verti
al axis.
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a

x0
b

c = 0, b > 0

a

xb/2c

b2/4c

0

c > 0, b > 0
b

b

Ea
h of these c 6= 0 systems of bifur
ations goes into a pit
hfork bifur
ationwhen b → 0. Denoting the two bran
hes of x∗ by x(±), the equation 
anseparated into
∫

dx

x[x− x(+)][x− x(−)]
= constant + ctDe
omposing into partial fra
tions and integrating gives

ln
{

xα[x− x(+)]γ
(+)

[x− x(−)]γ
(−)
}

= C exp(ct).where α = x(+)x(−), γ(±) = x(±)[x(±) − x(∓)]. The limiting behaviour as
t→ ∞ 
an be obtained by 
onsidering the various signs of the parameters.2) The right-hand sides of these two equations are both zero when x = y = 0.Now the Taylor expansions of sin(x) and cos(x) give
sin(△x) = △x+ O(△x3), cos(△x) = 1 + O(△x2).
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a

xb/2c

b2/4c

0c < 0, b < 0
b

b

So when linearized to the same form as (⋆) we have
A =

(
1 1
0 −2

)

.This matrix has eigenvalues λ = −2, 1. The equilibrium point is a saddle-point.3) All the equilibrium points are given by the simultaneous solutions of
x2 = y, 8x = y2.This gives x4 = 8x, whi
h has the solutions
x = 0, implying y = 0, (6.1)
x = 2, implying y = 4. (6.2)For (6.1)
A =

(
0 1
8 0

)

.This matrix has eigenvalues λ = ±
√

8 giving a saddle-point.For (6.2)
A =

(
−4 1

8 −8

)

.This matrix has eigenvalues λ = −6 ± 2
√

3. Both these eigenvalues arenegative so the equilibrium point is a stable node.
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dt
= −xy +

x2(1 − x2 − y2)
√

x2 + y2
,

ydy

dt
= xy +

y2(1 − x2 − y2)
√

x2 + y2
.So with r2 = x2 + y2

1

2

dr2

dt
=
r2(1 − r2)

r
,giving

dr

dt
= (1 − r2). (6.3)There is an equilibrium solution with r = 1 and with r = 1 + △r

d△r
dt

= −2△r.So r = 1 is stable. At the point x = cos(θ), y = sin(θ) on this solution
θ̇(t) = 1, so x = cos(θ0 + t) y = sin(θ0 + t) gives the stable limit 
y
le forany θ0. Equation (6.3) 
an be solved to give r = tanh(t0 + t).5) θ̇(t) = ω, ω̇(t) = Ω2 sin(θ){cos(θ) − a}.The equilibrium points are given by(a) sin(θ) = 0 for whi
h θ = 0,±π,±2π, . . ..(b) cos(θ) = a whi
h, for 1 ≥ a ≥ 0, gives two sets of solutions

θ⋆ = ±θ0(a) + 2nπ, n = 0,±1,±2 . . . ,where θ0(a) → 0, as a→ 1.First linearize about nπ.
sin(nπ + △θ) = △θ (−1)n,

cos(nπ) = (−1)n,

d△θ
dt

= △ω,

d△ω
dt

= Ω2[1 + (−1)n+1a]△θ.So the eigenvalues are ±Ω
√

1 + (−1)n+1a. When a > 1 and n is even theeigenvalues are imaginary and the equilibrium points are 
entres. Otherwisethe eigenvalues are real and of di�erent signs so the equilibrium points aresaddle points.



6.1. PROBLEMS 1 151Linearizing about θ⋆ = arccos(a) gives
d△θ
dt

= △ω,

d△ω
dt

= −Ω2 sin2(θ⋆)△θ

= −Ω2(1 − a2)△θ.The eigenvalues are ±iΩ
√

1 − a2. Sin
e these equilibrium points o

ur onlywhen a ≤ 1 the eigenvalues are purely imaginary and the equilibrium pointsare 
entres.6) xdx

dt
+ y

dy

dt
= 1

2

dr2

dt
= r

dr

dt
.So

dr

dt
= r{f(r cos(θ), r sin(θ)) − a2}n,and using

dx

dt
= cos(θ)

dr

dt
− r sin(θ)

dθ

dt
,gives θ̇(t) = 1. Linearizing about the origin for r

d△r
dt

= △r{f(0, 0) − a2}n.So the solution is stable or unstable a

ording as {f(0, 0)− a2}n < 0 or > 0.Consider now the limit 
y
le r = a.
ṙ(t) = r(r2 − a2)n.With r = a+ △r

d△r
dt

= a(2a△r)n.If n is odd
d△r
dt

> 0, when △r > 0,

d△r
dt

< 0, when △r < 0.So the limit 
y
le is unstable (in both dire
tions). If n is even d△r
dt

> 0 forboth signs of △r, so the limit 
y
le is semistable.



152 CHAPTER 6. SOLUTIONS7) z = r exp(iθ).
ż(t) = ṙ(t) exp(iθ) + ir(t)θ̇(t) exp(iθ).So
ṙ(t) + ir(t)θ̇(t) = ir(t) + r(t)f(r)giving
θ̇(t) = 1, ṙ(t) = r(t)f(r).Limit 
y
les are given by
sin

(
1

r2 − 1

)

= 0, with solutions r⋆ =

√

1 +
1

nπ
, n = ±1,±2, . . . .and r = 1. Linearizing about r⋆ for the former gives

d△r
dt

= − 2(r⋆)2△r
[(r⋆)2 − 1]2

cos

(
1

(r⋆)2 − 1

)

= (−1)n+1 2(r⋆)2△r
[(r⋆)2 − 1]2

.So the 
y
les are stable if n is even and unstable if n is odd. The 
y
lenearest the origin is n = −1 whi
h is unstable. Sin
e sin(−1) = −0.84 theorigin is stable.8) z = r exp(iθ). So
ż(t) = ṙ(t) exp(iθ) + irθ̇(t) exp(iθ),giving
ṙ(t) + irθ̇(t) = a exp(−iθ) + r(b − r2).Taking real and imaginary parts
ṙ(t) = a cos(θ) + r(b − r2), θ̇(t) = −a sin(θ)

r
.When a = 0 This gives

ṙ(t) = r(b − r2), θ̇(t) = 0.This is just (with b repla
ing a) the same as the polar form of Example 2.5.1,yielding the Hopf bifur
ation as shown in Fig. 2.5.



6.1. PROBLEMS 1 153When a 6= 0 From the se
ond equation θ̇(t) = 0 gives θ = 0 or π. So theequilibrium solutions are
r(b − r2) = −a, θ = 0,

r(b − r2) = a, θ = π.Linearizing about the equilibrium solution (r⋆, θ⋆) gives
d△r
dt

= △r[b − 3(r⋆)2],
d△θ
dt

= −△θ a cos(θ⋆)

(r⋆)2
.The 
urve in the r�θ plane given by r(b − r2) = ±a is

b = ±a
r

+ r2.We 
an now divide the equilibrium solutions into two 
ases:
• When a > 0 and θ = π or a < 0 and θ = 0.It is 
lear that this solution is unstable in the θ dire
tion sin
e
−a cos(θ⋆)

(r⋆)2
> 0.The variable r > 0 and

b =
|a|
r

+ r2.The 
urve of b as a fun
tion of r has a turning point given by
0 =

db

r
= −|a|

r2
+ 2r =

r2 − b

r + 2r
=

3r2 − b

r
,Giving b = 3r2. It follows from the linearized equation for △r that theequilibrium point is stable in the r dire
tion when r >

√

b/3 (giving asaddle point when you take into a

ount the instability in the θ dire
tion)and unstable in the r dire
tion when r <√b/3 (giving an unstabler node.The equilibrium 
urve is if the form
b

r

SADDLE POINTUNSTABLE NODE
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• When a < 0 and θ = π or a > 0 and θ = 0.It is 
lear that this solution is stable in the θ dire
tion sin
e
−a cos(θ⋆)

(r⋆)2
< 0.The variable r > 0 and

b = −|a|
r

+ r2.The 
urve of b as a fun
tion of r does not have a turning point and
b− 3(r⋆)3 = −

[ |a|
r

+ 2(r⋆)2
]

.So the equilibrium point is stable in the r dire
tion and is thus a stablenode. The equilibrium 
urve is if the form
b

r

STABLE NODE
6.2 Problems 21) In this problem we have not been given the equation of motion so we 
an'tdedu
e the stability. We 
an, however, if we assume the equation to be ofthe form1

ẋ(t) = F (ε, a, x) = εx2 + x3 − ax.When ε = 0 the solutions to F (0, a, x) = 0 are x = 0 and a = x2. Theline of equilibrium points x = 0 is stable when a > 0 and unstable when
a < 0. The equilibrium points given by a = x2 are all unstable. So wehave a sub
riti
al pit
hfork bifur
ation. When ε 6= 0 the line of equilibrium1The other possibility is

ẋ(t) = −F (ε, a, x) = −εx2 − x3 + ax,whi
h will simply reverse the stability.



6.2. PROBLEMS 2 155points x = 0 remain, with the same stability. The parabola is shifted to
a = εx+ x2, with minimum at x = − 1

2ε, a = − 1
4ε

2. Now take x = x⋆ +△x,
a = εx⋆ + (x⋆)2. Then
d△x
dt = −△x[2x⋆ε+ 3(x⋆)2 − a] = (2a− εx⋆)△x.The line a = 1

2xε passes through the origin and the minimum of the parabolaof equilibrium points. Below the line the equilibrium points on the parabolaare stable and above they are unstable. There is a trans
riti
al bifur
ationat the origin and a turning point at x = − 1
2ε, a = − 1

4ε
2. The diagram (with

ε < 0) is like Fig. 1.11 with c = − 1
2ε and the stability reversed.2) Treating the equation as of the form ẋ(t) = F (a, b, c, x), the bifur
ation setis given by eliminating x between the equations

F (a, b, c, x) = x3 − 2ax2 − (b− 3)x+ c = 0, (1)

Fx(a, b, c, x) = 3x2 − 4ax− (b − 3) = 0. (2)From (2)
x = 1

3{2a± f(a, b)}, (3)where
f(a, b) =

√

4a2 + 3(b− 3).Subtra
ting x× (2) from 3× (1) gives
0 = −2ax2 − 2(b− 3)x+ 3c.Eliminating x2 between this equation and (2) gives
x[8a2 + 6(b− 3)] = 9c− 2a(b− 3).Substituting the values of x given by (3) gives
±f(a, b){8a2 + 6(b− 3)} = −16a3 + 27c− 18a(b− 3).Squaring and substituting for f(a, b) yields
±{4a2 + 3(b− 3)}{8a2 + 6(b− 3)}2 = {16a3 − 27c+ 18a(b− 3)}2.When a = 1 we have
(27c− 18b+ 38)2 = 4(3b− 5)3.



156 CHAPTER 6. SOLUTIONSThis has a 
usp when 3b = 5, whi
h is at b = 5
3 , c = − 8

27 . Now we 
an useMAPLE to plot c against b for various values of a.
> with(plots,impli
itplot):
> f:=(a,b)->4*a^2+3*(b-3):
> g:=(a,b)->8*a^2+6*(b-3):
> h:=(a,b,
)->16*a^3-27*
+18*a*(b-3):
> p:=(a,b,
)->f(a,b)*(g(a,b))^2-(h(a,b,
))^2:
> p(a,b,
);

(4 a2 + 3 b− 9) (8 a2 + 6 b− 18)2 − (16 a3 − 27 c+ 18 a (b− 3))2

> p(1,b,
);
(−5 + 3 b) (−10 + 6 b)2 − (−38 − 27 c+ 18 b)2

> impli
itplot(p(1,b,
),b=0..4,
=-1..1,grid=[100,100℄);

–0.2

0

0.2

0.4

0.6

0.8

1

c

2 2.5 3 3.5 4b

> impli
itplot(p(2,b,
),b=-6..4,
=-4..4,grid=[100,100℄);
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–2

–1

1

2

3

4

c

–2 –1 1 2 3 4
b

> impli
itplot(p(3,b,
),b=-20..4,
=-8..4,grid=[500,100℄);

–8

–6

–4

–2

2

4

c

–8 –6 –4 –2 2 4b

> impli
itplot(p(-1,b,
),b=-1..4,
=-2..4,grid=[100,200℄);
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–2

–1.5

–1

–0.5

0

c

2 2.5 3 3.5 4b

3) F (a, b, c, x) = −∂V
∂x

= −x3 − ax− b (1).The standard form of 
ubi
 to produ
e a pit
hfork bifur
ation at x = a = 0in the {x, a} plane is x(x2 + a) = 0. This 
an be a
hieve for (1) in the plane
b = 0.The standard form to give trans
riti
al and turning point bifur
ations is thatgiven in Example 1.8.2 by the right-hand side of equation (1.61) with c 6= 0.It has 
ubi
, quadrati
 and linear terms but no 
onstant term. We must nowtransform (1) to this form. Consider
−(x+ α)3 + 2β(x+ α)2 + γ(x+ α) = −x3 + (2β − 3α)x2

+ (4αβ − 3α2 + γ)x

+ (γα+ 2βα2 − α3).So to eliminate the quadrati
 term on the right β = 3α/2 and
−x3 − ax− b = −(x+ α)3 + 3α(x+ α)2 + γ(x+ α),when α and γ satisfy the relations
3α2 + γ = −a
2α3 + γα = b.



6.2. PROBLEMS 2 159Eliminating γ gives the equation
αa− b = −α3,whi
h, for any number α, is a plane in the {x, a, b} spa
e on whi
h trans
rit-i
al and turning point bifur
ations will o

ur. To lo
ate these bifur
ations
(x+ α)3 − 3α(x + α)2 − γ(x+ α) = (x+ α)[x2 − αx + (α2 + a)] = 0.The lines of equilibrium points have two bran
hes
x = −αand
a = −x2 + αx− α2.The turning point bifur
ation o

urs when
x = 1

2α, a = − 3
4α

2, b = 1
4α

3.The trans
riti
al bifur
ation will o

ur when the two bran
hes 
ross. Thatis
x = −α, a = −3α2, b = −2α3.If for example we 
hoose α = 2

3 , then the plane is
18a− 27b+ 8 = 0,the turning point o

urs at x = 1

3 , a = − 1
3 , b = 2

17 , and the trans
riti
albifur
ation at x = − 2
3 , a = − 4

3 , b = − 16
27 . We 
an 
he
k out results usingMAPLE

> with(plots,impli
itplot):
> F:=(a,b,x)->-x^3-x*a+b:
> impli
itplot({F(a,0,x),x
> },x=-2..2,a=-2..2,grid=[100,100℄);
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–2

–1

1

2

a

–1 –0.5 0.5 1x

> impli
itplot({F(a,-(8+18*a)/27,x),x+2/3},
> x=-2..2,a=-2..2,grid=[100,100℄);

–2

–1

1

2

a

–1 –0.5 0.5 1 1.5x

4) For �xed c The equilibrium region is a three-dimensional subspa
e in thespa
e {a, b, c, x, y} whi
h is given by the interse
tion of
0 = −x2 + y2 − 2cx+ a, (6.4)
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0 = 2xy − 2cy + b. (6.5)The bifur
ation set lies in the the equilibrium region and also satis�es theJa
obean 
ondition
∣
∣
∣
∣
∣

−2x− 2c 2y

2y 2x− 2c

∣
∣
∣
∣
∣
= 0,whi
h is

c2 = x2 + y2. (6.6)Now eliminate y between (6.4) and (6.6) to give
2x2 + 2xc− a− c2 = 0, (6.7)and between (6.5) and (6.6) to give
b2 = 4(x− c)2(c2 − x2).This expands to
4x4 − 8x3c+ 8c3x+ b2 − 4c4 = 0. (6.8)Now the hard work starts sin
e, to obtain the bifur
ation set x must be elim-inated between (6.7) and (6.8). This is most easily done using the Sylvesterdeterminant. The MAPLE program is
> with(linalg,det,matrix):
> with(plots,impli
itplot):
> S:=(a,b,
)->
> matrix([[2,2*
,-a-
^2,0,0,0℄,[0,2,2*
,-a-
^2,0,0℄,[0,0,2,2*
,-a-
^2,0℄,
> [0,0,0,2,2*
,-a-
^2℄,[4,-8*
,0,8*
^3,b^2-4*
^4,0℄,[0,4,-8*
,0,8*
^3,b^2-4*
^4℄℄):
> S(a,b,
);











2 2 c −a− c2 0 0 0
0 2 2 c −a− c2 0 0
0 0 2 2 c −a− c2 0
0 0 0 2 2 c −a− c2

4 −8 c 0 8 c3 b2 − 4 c4 0
0 4 −8 c 0 8 c3 b2 − 4 c4










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> s:=(a,b,
)->simplify(det(S(a,b,
))/16):
> s(a,b,
);

18 a2 c4 − 8 c2 a3 − 27 c8 + b4 + 18 b2 c4 + 2 b2 a2 + 24 b2 a c2 + a4

> # This is different from the answer given
> so
> we 
he
k for equivalen
e.
> g:=(a,b,
)->27*
^8-18*
^4*(a^2+b^2)
> +8*
^2*a*(a^2-3*b^2)-(a^2+b^2)^2;

g := (a, b, c) → 27 c8 − 18 c4 (a2 + b2) + 8 c2 a (a2 − 3 b2) − (a2 + b2)2

> simplify(s(a,b,
)+g(a,b,
));
0

> # So they are the same.
> # Now we translate into polars.
> spolar:=(r,theta,
)->simplify(g(r*
os(theta),r*sin(theta),
)):
> spolar(r,theta,
);

27 c8 − 18 c4 r2 + 32 c2 r3 cos(θ)3 − 24 c2 r3 cos(θ) − r4

> # We again 
he
k for equivalen
e.
> h:=(r,theta,
)->(3*
^2-r)^3*(r+
^2)
> +8*
^2*r^3*(
os(3*theta)-1);

h := (r, θ, c) → (3 c2 − r)3 (r + c2) + 8 c2 r3 (cos(3 θ) − 1)

> expand(spolar(r,theta,
)-h(r,theta,
),trig);
0

> impli
itplot(s(a,b,2)=0,a=-7..11,b=-10..10,grid=[100,100℄);
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–10

–5

0

5

10

b

–6 –4 –2 2 4 6 8 10
a

It is 
lear that
(r + c2)(3c2 − r)3 + 8c2r3{cos(3θ) − 1} = 0 (6.9)has rotational symmetry with period θ = 2π

3 and that when θ = 0, 2π
3 ,

4π
3 ,

r = 3c2. To see that these point are 
usps we take r = 3c2 + △r and
θ = 2nπ

3 + △θ. Equation (6.9) then gives
(△r)3 + (27c2)[3c2△θ]2 = 0.This is the standard form for a 
usp in the lo
al variables (△r, 3c2△θ).5) The equilibrium points are given by
z(x− a) = −c, y = −x, z = x. (6.10)So the x 
oordinates of the equilibrium points are given by real roots of
x(x − a) + c = x2 − ax+ c =

(

x− 1
2
a
)2

−
(

1
4
a2 − c

)

= 0,whi
h exist only when a2 ≥ 4c. The bifur
ation set, if it exists, is given bya single equation relating a and c and is obtained by eliminating x, y and zbetween (6.10) and
∣
∣
∣
∣
∣
∣
∣
∣

0 −1 −1

1 1 0

z 0 (x − a)

∣
∣
∣
∣
∣
∣
∣
∣

= x+ z − a = 0. (6.11)



164 CHAPTER 6. SOLUTIONSThis gives x = z = 1
2a, y = − 1

2a, a2 = 4c. It follows that a bifur
ation 
ano

ur only when c ≥ 0. When c = 0 there are two lines of equilibrium pointsin the x�a plane x = a, x = 0, with a trans
riti
al bifur
ation at x = a = 0;when c > 0 the equilibrium 
urves in the x�a plane are given by
a = x+

c

x
.This is hyperbola with turning point bifur
ations at a = ±2

√
c, x = ±√

c.6.3 Problems 31) ∇L = (nxn−1, αmym−1). So(i) F .∇L = −nxn − 2nxn−1y2 + αmxym − αmym+2.The aim is to make sure that this expression is negative for all signsof x and y. This means eliminating odd degree terms. So we must getrid of the third term and the only way to do it is by arranging that it
an
els with the se
ond term. So n = m = α = 2 and
F .∇L = −2x2 − 4y4 < 0.

L(0, 0) = 0 and L(x, y) has a minimum at (0, 0), so the equilibriumpoint is asymptoti
ally stable.(ii) F .∇L = nxn−1y − nxn+2 − αmym−1x3.Now we arrange for the �rst and third terms to 
an
el by taking n = 4,
m = α = 2. This gives
F .∇L = −4x6 < 0.

L(0, 0) = 0 and L(x, y) has a minimum at (0, 0), so the equilibriumpoint is asymptoti
ally stable.2) For the equilibrium points; from the se
ond equation x3 = y3 giving x = yand then from the �rst equation x = y = 0.
∇L = (2x+ αy, 2βy + αx).So
F .∇L = (2 − α)x4 + 2βy4 + (α− 2)x2y2 + (2 + α− 2β)x3y.For the �rst three terms to be of only one sign we must take α = 2 and wemust also eliminate the last term; so β = 2. Thus
F .∇L = 4y4 > 0.Also L(0, 0) = 0 and L(x, y) = x2 + 2xy + 2y2 does not 
hange sign in aneighbourhood of (0, 0), sin
e x2 + 2xy + 2y2 = 0 has no real roots. It istherefore always positive and thus L(x, y) has a minimum at (0, 0). So theequilibrium point is unstable.



6.3. PROBLEMS 3 1653) ẋ(t) = y(t), ẏ(t) = x(t){a|x(t)| − 1}and
x

dx

dt
+ y

dy

dt
= ax|x|dx

dt
.Integrating

1
2
{x2 + y2} = E +

{ 1
3
ax3, if x > 0,

−1
3
ax3, if x < 0,

1
2
{x2 + y2} − 1

3
a|x|3 = E.The equilibrium points are x = y = 0, for all a, x = ±1/a, y = 0, for a > 0.Linearizing about x = y = 0,

J∗ =

(
0 1

−1 0

)

,whi
h has eigenvalues ±i. So the origin is a 
entre.Linearizing about x = ±1/a, y = 0, when a > 0,
J∗ =

(
0 1

1 0

)

,in both 
ases with eigenvalues ±1. So the ea
h of these equilibrium pointsis a saddle point.
a

x

SADDLE POINTSADDLE POINT
CENTRE



166 CHAPTER 6. SOLUTIONSCurves are divided, by the separatrix, between 
losed 
urves about the 
entreand open 
urves with two bran
hes. Sin
e the separatrix passes through bothbran
h-points, its value of E is given by substituting x = ±1/a, y = 0 into
(∗). This gives E = 1/(6a2). Curves with E ≤ 1/(6A2) 
ut the x�axis andfor ea
h value of a 
onsist of two open bran
hes and a 
losed loop. CurvesFor E > 1/(6A2) 
ut the y�axis and for ea
h value of a 
onsist of two openbran
hes.
> with(plots):
> f:=(x,y,a,En)->
> x^2/2+y^2/2-a*abs(x^3)/3-En:
> # Try the 
ase a=1, with E=1/100,1/6,1:
> impli
itplot(
> {f(x,y,1,1/100),f(x,y,1,1/6),f(x,y,1,1)},
> x=-2..2,y=-2..2,grid=[100,100℄);
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> # Try the 
ase a=-1, with E=1/100,1/6,1:
> impli
itplot(
> {f(x,y,-1,1/100),f(x,y,-1,1/6),f(x,y,-1,1)},
> x=-2..2,y=-2..2,grid=[100,100℄);
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–1
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1
y

–1 –0.5 0.5 1
x

Periodi
 solutions (
losed 
urves) exist for all a. Let ζ be the smallest positiveroot of
1
2
x2 − 1

3
ax3 = E.Then

dx

dt
=

√
2
3
ax3 + 2E − x2

=
√

ζ2 − 2
3
aζ3 − x2 + 2

3
ax3.Integrating over [−ζ, ζ] gives T/2 and thus the required result.4) ẋ(t) = y(t), ẏ(t) = −x(t) − bx3(t) − 2ay(t).The equilibrium points are on y = 0 and given by

x(1 + bx2) = 0.So they are x = y = 0, for all values of the parameters, and x = ±1/
√
−b,

y = 0, when b < 0.
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J∗ =

(
0 1

−1 −2a

)

,whi
h has eigenvalues −a±√
a2 − 1. So the origin is

• A stable proper node if a > 1.
• A stable in�e
ted node if a = 1.
• A stable fo
us if 0 < a < 1.Linearizing about x = ±1/

√
−b, y = 0,

J∗ =

(
0 1

2 −2a

)

,whi
h has eigenvalues a ±
√
a2 + 2. So the equilibrium points are saddlepoints.Theorem 1.12.1, on page 26, tells us that for a > 0 the origin is an asymp-toti
ally stable equilibrium point. This 
an also be established using theLyapunov dire
t method. With the given form,

L(x, y) = 1
2
[x2 + y2] + 1

4
bx4for the Lyapunov fun
tion,

∇L = (x+ bx3, y),

F .∇L = −2ay2 < 0.So the origin is an asymptoti
ally stable equilibrium point with x(t) → 0 as
t→ ∞.5) The general solution to the equations is
x(t) = A cos(t) + B sin(t), y(t) = −A sin(t) + B cos(t).Denote the given periodi
 solution by
x̊(t) = a cos(t), ẙ(t) = −a sin(t).To show that this is stable we must show that, given ε > 0, there exists
δ(ε) > 0 su
h that, if
{x(0) − x̊(0)}2 + {y(0) − ẙ(0)}2 = (A − a)2 + B2 < [δ(ε)]2,
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{x(t) − x̊(t)}2 + {y(t) − ẙ(t)}2 = [(A − a) cos(t) + B sin(t)]2

+ [(a− A) sin(t) + B cos(t)]2 < ε2.Expanding this expression gives
(A − a)2 + B2 < ε2.So we just 
hoose δ = ε.6) With y(t) de�ned as ẋ(t) we have
ẋ(t) = y(t), ẏ(t) = by(t)[a− x2(t) − y2(t)] − x(t).Then
r
dr

dt
= x

dx

dt
+ y

dy

dt
= by2[a− x2 − y2]

= br2 sin2(θ)[a− r2].So
ṙ = br sin2(θ)(a− r2).Sin
e y(t) = ẋ(t),
r sin(θ) =

d[r cos(θ)]

dt
= ṙ cos(θ) − θ̇ r sin(θ).Substituting for ṙ gives

θ̇ r sin(θ) = br sin2(θ) cos(θ)[a − r2] − r sin(θ).So
θ̇ = 1

2
b sin(2θ)[a− r2] − 1.Substituting r =

√
a into the expressions for ṙ and θ̇ we have ṙ = 0 and

θ̇ = −1. So we have a periodi
 solution
x̊(t) =

√
a cos(t0 − t), ẙ(t) =

√
a sin(t0 − t),of period 2π. Now let

△x(t) = x(t) − x̊(t), △y(t) = y(t) − ẙ(t).
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d△x
dt

= ẋ−√
a sin(t0 − t)

= y − ẙ

= △y(t).

d△y
dt

= ẏ(t) +
√
a cos(t0 − t)

= by(a− x2 − y2) − x− x̊

= △x+ b(̊y + △y)(a− x̊2 − ẙ2 − 2x̊△x− 2ẙ△y)

= −△x(1 + 2bx̊ẙ] − 2bẙ2△y

= −△x(t)[1 + ab sin(2t0 − 2t)] − 2△y(t)[ab sin2(t0 − t)],from whi
h
Trace{J̊(t)} = −2ab sin2(t0 − t).So the sum of the Floquet exponents is
σ(1) + σ(2) = − 1

2π

∫ 2π

0

2ab sin2(t0 − t)dt = −ab.Substituting r = △r+
√
a into the di�erential equation for r, with θ = t0− twe obtain the given equation. For b > 0, if △r > 0 then

d△r
dt

≤ 0, over the whole period.If △r < 0 then
d△r
dt

> 0, if |△r| < √
a.So in either 
ase Lyapunov stability is established for some ε > 0 by 
hoosing

δ to be the smaller of ε and √
a.7) (i) The equilibrium points are solutions of

0 = x+ y − x(x2 + 2y2), (6.12)
0 = −x+ y − y(x2 + 2y2). (6.13)
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ting gives x2 +y2 =
0. So the only equilibrium point is x = y = 0. The stability matrix is
J∗ =

(
1 1
−1 1

)

,with eigenvalues λ(±) = 1 ± i. So the origin is an unstable fo
us. Now
r
dr

dt
= x

dx

dt
+ y

dy

dt
,

= x2 + y2 − (x2 + y2)(x2 + 2y2).So
dr

dt
= r − r3(1 + sin2(θ)). (6.14)Also

dx

dt
= cos(θ)

dr

dt
− r sin(θ)

dθ

dt

= r cos(θ) + r sin(θ) − r cos(θ){r2 + r2 sin2(θ)},giving
dθ

dt
= −1. (6.15)Equation (6.14) 
an be expressed in the form

ṙ(t) = −r(r2 − 1) − r3 sin2(θ).So on the 
ir
le r = 1 + δ for any δ > 0

ṙ(t) < 0.Equation (6.14) 
an also be expressed in the form
ṙ(t) = 2r

(
1
2
− r2

)

+ r3(1 − sin2(θ)). (6.16)So on the 
ir
le r = 1/
√

2 − δ for any 1/
√

2 > δ > 0

dr

dt
> 0.So the annulus

1√
2
− δ ≤ r ≤ 1 + δsatis�es the result of the �rst part of the question and must 
ontaineither an equilibrium point or a periodi
 solution. Sin
e the origin isthe only equilibrium point it must 
ontain a periodi
 solution.Sin
e, from the Poin
aré-Bendixson theorem, the traje
tory tends tothe periodi
 solution as t → ∞ it must be stable. Alternatively denote
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 solution of (6.15) and (6.16) by r = r̊(t) and substitute
r = r̊(t) + △r into (6.16) and linearize to give
d△r
dt

= −{3̊r2[1 + sin2(t)] − 1}△r.But
3̊r2[1 + sin2(t)] − 1 > 3

(
1√
2
− δ

)2

[1 + sin2(t)] − 1 > 0,for su�
iently small δ. So the periodi
 solution is stable.(ii) The equilibrium points are solutions of
0 = −x− y + x(x2 + 2y2), (6.17)
0 = x− y + y(x2 + 2y2). (6.18)Multiplying (6.17) by y and (6.18) by x and subtra
ting gives x2 +y2 =
0. So the only equilibrium point is x = y = 0. The stability matrix is
J∗ =

(
−1 −1
1 −1

)

,with eigenvalues λ(±) = −1 ± i. So the origin is a stable fo
us.AT THIS POINT YOU SHOULD REALIZE THAT THIS IS AN AP-PLICATION OF THE POINCARÉ-BENDIXSONTHEOREM IN THE REVERSE TIME DIRECTION.
r
dr

dt
= x

dx

dt
+ y

dy

dt
,

= −x2 − y2 + (x2 + y2)(x2 + 2y2).So
ṙ(t) = −r + r3(1 + sin2(θ)). (6.19)Also
cos(θ)

dr

dt
− r sin(θ)

dθ

dt
= −r cos(θ) − r sin(θ)

+ r cos(θ){r2 + r2 sin2(θ)},giving
θ̇(t) = 1. (6.20)Equation (6.19) 
an be expressed in the form
ṙ(t) = r(r2 − 1) + r3 sin2(θ).
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ir
le r = 1 + δ for any δ > 0

ṙ(t) > 0.Equation (6.19) 
an also be expressed in the form
= 2r(r2 − 1

2) + r3(sin2(θ) − 1). (6.21)So on the 
ir
le r = 1/
√

2 − δ for any 1/
√

2 > δ > 0

ṙ(t) < 0.So the annulus
1√
2
− δ ≤ r ≤ 1 + δsatis�es the result of the �rst part of the question and must 
ontaineither an equilibrium point or a periodi
 solution. Sin
e the origin isthe only equilibrium point it must 
ontain a periodi
 solution.Sin
e, from the reverse Poin
aré-Bendixson theorem, the reverse tra-je
tory tends to the periodi
 solution as t → −∞ it must be unsta-ble. Alternatively denote the periodi
 solution of (6.20) and (6.21) by

r = r̊(t) and substitute r = r̊(t) + △r into (6.21) and linearize to give
d△r
dt

= {3̊r2[1 + sin2(t)] − 1}△r.But
3̊r2[1 + sin2(t)] − 1 > 3

(
1√
2
− δ

)2

[1 + sin2(t)] − 1 > 0,for su�
iently small δ. So the periodi
 solution is unstable.6.4 Problems 41) With y(t) denoting ẋ(t)
ẋ(t) = y(t), ẏ(t) = −x(t)[1 − εx(t)].The equilibrium points are x = y = 0 and x = 1/ε, y = 0.Linearizing about x = y = 0 the stability matrix is
J∗ =

(
0 1
−1 0

)

,with eigenvalues ±i. So the origin is a 
entre.



174 CHAPTER 6. SOLUTIONSLinearizing about x = 1/ε, y = 0 the stability matrix is
J∗ =

(
0 1
1 0

)

,with eigenvalues ±1. So this is a saddlepoint.
ε

x

SADDLE POINT
CENTREAlthough you are not asked to do this it is of interest to �nd a �rst integraland plot 
urves in the x�y plane.

x
dx

dt
+ y

dy

dt
= εx2 dx

dt
,with the integral

1
2
x2 + 1

2
y2 − 1

3
εx3 = E.For a parti
ular ε the 
urve passes through the saddle point at x = 1/ε,

y = 0, giving the separatrix with a homo
lini
 point, when E = 1/6ε2. We
ompute the 
urves for ε = 1 and E = 1
10 ,

1
6 , 1.

> with(plots):
> f:=(x,y,epsilon,En)->
> x^2/2+y^2/2-epsilon*x^3/3-En:
> # Try the 
ase epsilon=1, with
> E=1/10,1/6,1:
> impli
itplot(
> {f(x,y,1,1/10),f(x,y,1,1/6),f(x,y,1,1)},
> x=-2..2,y=-2..2,grid=[100,100℄);
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(a) Let τ = ω(ε)t. Then the equation be
omes
ω2(ε)

d2x

dτ2
+ x− εx2 = 0.Let

x(ε, τ) = x0(τ) + εx1(τ) + O(ε2),

ω(ε) = 1 + ω1ε+ O(ε2).The ε0 
ontribution to the equation is
d2x0

dτ2
+ x0 = 0,with solution

x0(τ) = A0 cos(τ) + B0 sin(τ).Sin
e this 
ontribution 
ontains all the O(ε0) part of the solution itfollows from the t = 0 initial 
onditions that B0 = 0 and A0 = a0. The
ε1 
ontribution to the equation is
d2x1

dτ2
+ 2ω1

d2x0

dτ2
+ x1 − x2

0 = 0.Substituting for x0 gives
d2x1

dτ2
+ x1 = 1

2
a2
0[1 + cos(2τ)] + 2ω1a0 cos(τ).



176 CHAPTER 6. SOLUTIONSSuppose the solution is of the form
x1(τ) = A1 cos(τ) + B1 sin(τ) +X(τ).Then
X ′′(τ) +X(τ) = 1

2
a2
0[1 + cos(2τ)] + 2ω1a0 cos(τ).A parti
ular solution to this equation is

X(t) = 1
2
a0ω1τ [cos(τ) + 2 sin(τ)] + 1

2
a2
0 − 1

6
a2
0 cos(2τ).We are interested in �nding the periodi
 
ontribution. But the �rst pairof terms involves τ cos(τ) and τ sin(τ), whi
h are not periodi
.2 So toensure that the solution is periodi
 we must take ω1 = 0 so that

ω = 1 + O(ε2).Also from the initial 
onditions it follows that B1 = 0 and
a1 = A1 + 1

3
a2
0.Thus we have

x(ε, t) = a0 cos(t) + ε
{[

a1 − 1
3
a2
0

]

cos(t) + 1
2
a2
0 − 1

6
a2
0 cos(2t)

}

.(b) Let
x(ε, t) = r cos(θ) + εu(1)(r, θ) + O(ε2),with
∫ 2π

0

u(1)(r, θ) cos(θ)dθ =

∫ 2π

0

u(1)(r, θ) sin(θ)dθ = 0and
ṙ(t) = εA(1)(r) + O(ε2),

θ̇(t) = −1 + εB(1)(r) + O(ε2).Then
ẋ(t) = ṙ(t) cos(θ) − r sin(θ)θ̇(t) + ε

{
∂u(1)

∂θ
θ̇(t) +

∂u(1)

∂r
ṙ(t)

}

ẍ(t) = r̈(t) cos(θ) − 2ṙ(t)θ̇(t) sin(θ) − r cos(θ)[θ̇(t)]2 − r sin(θ)θ̈(t)

+ ε

{
∂2u(1)

∂θ2
[θ̇(t)]2 +

∂u(1)

∂θ
θ̈(t) + 2

∂2u(1)

∂r∂θ
θ̇(t)ṙ(t)

+
∂2u(1)

∂r2
[ṙ(t)]2 +

∂u(1)

∂r
r̈(t).

}2They are 
alled se
ular terms.
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ontain both O(ε0) and O(ε1) 
ontributions. Whenwe substitute into the equation the O(ε0) 
ontributions 
an
el and the
O(ε1) terms give
2 sin(θ)A(1)(r) + 2r cos(θ)B(1)(r) +

∂2u(1)

∂θ2
+ u(1) = r2 cos2(θ).Now

A(1)(r) =
1

2π

∫ 2π

0

r2 cos2(θ) sin(θ)dθ = 0,

B(1)(r) =
1

2π

∫ 2π

0

r cos3(θ)dθ = 0.So
∂2u(1)

∂θ2
+ u(1) = r2 cos2(θ),whi
h has the solution

u(1)(r, θ) = A1 cos(t) + B1 sin(t) + 1
6
r2[3 − cos(2θ)].Sin
e

ṙ(t) = O(ε2), r = A0 + O(ε2)

θ̇(t) = −1 + O(ε2), θ = C0 − t+ O(ε2)To satisfy the initial 
onditions B1 − C0 = 0 and
x(ε, t) = A0 cos(t) + ε

{

A1 cos(t) + 1
6
A2

0[3 − cos(2t)]
}

.To satisfy the initial 
onditions we must now 
hoose A0 = a0 and A1 =
a1 − 1

3a
2
0.2) As was de�ned in Se
t. 4.7.1 the syn
hronous 
ontribution to the solution toan equation with a for
ing term is that part with the same frequen
y as thefor
ing term. If we are 
on
erned only with this 
ontribution we 
an negle
tperturbations in the frequen
y. Let

x(ε, t) = x0(t) + εx1(t).The O(ε0) 
ontribution satis�es
d2x0

dt2
+ ω2

0x0 = Γ cos(Ωt).The 
omplementary fun
tion will not be syn
hronous sin
e its frequen
y is
ω0 not Ω. So we just take the parti
ular integral
x0(t) =







Γ cos(Ωt)

ω2
0 − Ω2

, Ω 6= ω0,
Γt sin(Ωt)

2Ω
, Ω = ω0.
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luded value Ω = ω0 there is a resonan
e with amplitude growingwith t. The O(ε1) 
ontribution satis�es
d2x1

dt2
+ ω2

0x1 = ω2
0x

4
0

=
ω2

0Γ
4 cos4(Ωt)

(ω2
0 − Ω2)4

.Sin
e
cos4(Ωt) = 1

8
{cos(4Ωt) + 4 cos(2Ωt) + 3},

ω0 = 2Ω and 4Ω will also give resonan
es. Ex
luding these values the par-ti
ular integral is
x1(t) =

ω2
0Γ

4

8(ω2
0 − Ω2)4

{
cos(4Ωt)

ω2
0 − 16Ω2

+
4 cos(2Ωt)

ω2
0 − 4Ω2

+
3

ω2
0

}

,and
x(t) =

Γ cos(Ωt)

ω2
0 − Ω2

+
εω2

0Γ
4

8(ω2
0 − Ω2)4

{
cos(4Ωt)

ω2
0 − 16Ω2

+
4 cos(2Ωt)

ω2
0 − 4Ω2

+
3

ω2
0

}

.3) Let
τ = Ωtω(ε)/ω0, ω(ε) = ω0g(ε),

α = ω0/Ω, Γ̃ = Γ/Ω2.Then the equation transforms to
g2(ε)

d2x

dτ2
+ α2(x− εx4) = εΓ̃ cos[τω0/ω(ε)].Let

x(ε, τ) = x0(τ) + εx1(τ) + O(ε2),

g(ε) = 1 + εg1 + O(ε2).Then the O(ε0) terms satisfy
d2x0

dτ2
+ α2x0 = 0.Using the initial 
ondition, the solution is

x0(τ) = a0 cos(ατ).
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d2x1

dτ2
+ α2x1 = 2g1a0α

2 cos(ατ) + α2a4
0 cos4(ατ) + Γ̃ cos(τ).Terms with cos(ατ) on the right will give a se
ular 
ontribution to the solu-tion. Sin
e cos4(ατ) unlike cos3(ατ) does not 
ontain su
h a term we musttake g1 = 0 to eliminate a se
ular 
ontribution. Then

d2x1

dτ2
+ α2x1 = 1

8
α4a4

0[cos(4ατ) + 4 cos(2ατ) + 3] + Γ̃ cos(τ).Using the trial fun
tion
f(τ) = A0 + A1 cos(2ατ) + A3 cos(4ατ) + A4 cos(τ)for the parti
ular solution it follows that
x1(τ) = a1 cos(ατ) +

Γ̃ cos(τ)

α2 − 1
− 1

8
α2a4

0

[
cos(4ατ)

15α2
+

4 cos(2ατ)

3α2
− 3

α2

]

,giving
x(t) = cos(ω0t)[a0 + εa1] +

εΓ cos(Ωt)

ω2
0 − Ω2

− 1
8
a4
0ε
[

1
15

cos(4ω0t) + 4
3

cos(2ω0t) − 3
]

.4) Let τ = Ωt. Then the equation transforms to
Ω2(ε)

d2x

dτ2
+ ω2

0(x + εx2) = Γ cos(τ).Let
x(ε, τ) = x0(τ) + εx1(τ) + O(ε2),

Ω(ε) = Ω0 + εΩ1 + O(ε2).Then the O(ε0) terms satisfy
Ω2

0

d2x0

dτ2
+ ω2

0x0 = Γ cos(τ),with solution
x0(τ) = a0 cos(ω0τ/Ω0) +

Γ cos(τ)

ω2
0 − Ω2

0

.
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x0(τ) = a0 cos(τ/2) − Γ cos(τ)

3ω2
0

.Then the O(ε1) terms satisfy
2ω0Ω1

d2x0

dτ2
+ 4ω2

0

d2x1

dτ2
+ ω2

0 [x1 + x2
0] = 0.Substituting for x0(τ) gives

d2x1

dτ2
+ 1

4
x1 =

Ω1

8ω0

[

a0ω
2
0 cos(τ/2) − 4

3
Γ cos(τ)

]

− 1
4

[

a0 cos(τ/2) − Γ cos(τ)

3ω2
0

]2

.Expanding the last term gives
d2x1

dτ2
+ 1

4
x1 =

Ω1

8ω0

[

a0ω
2
0 cos(τ/2) − 4

3
Γ cos(τ)

]

− 1
8
a2
0[1 + cos(τ)]

− Γ2

72ω4
0

[1 + cos(2τ)] +
Γa0

6ω2
0

[cos(3τ/2) + cos(τ/2)].To eliminate se
ular terms we must remove the cos(τ/2) terms from thenon-for
ing 
ontribution by setting Ω1 = 4
3
Γ/ω3

0. Then
d2x1

dτ2
+ 1

4
x1 = −1

8
a2
0[1 + cos(τ)] − Γ2

72ω4
0

[1 + −16 cos(τ) + cos(2τ)]

+
Γa0

6ω2
0

cos(3τ/2).This has the solution
x1(τ) = −a2

0

[

2 − 1
6

cos(τ)
]

− Γ2

18ω4
0

[

4 + 16
3

cos(τ) − 1
15

cos(2τ)
]

− Γa0

12ω2
0

cos(3τ/2).Finally we substitute these results for x0(τ) and x1(τ) into the expansion for
x(ε, t) with τ = Ωt and 
ompare 
oe�
ients with those given in the question.We have
A(ε) = −2

9
ε

[

9a2
0 +

Γ2

ω4
0

]

, B(ε) = a0,

C(ε) = − Γ

3ω2
0

+ 1
6
a2
0ε−

8Γ2ε

27ω4
0

, D(ε) = − εΓa0

12ω2
0

,

E(ε) =
εΓ2

270ω4
0

.



6.4. PROBLEMS 4 1815) To apply the Krylov-Bogoliubov-Mitropolsky averaging method to the equa-tion
d2x

dt2
+ εf

(

x,
dx

dt

)

+ x = εΓ cos(Ωt),we suppose that:(i) x(ε, t) = r cos(θ) + εu(1)(r, θ) + ε2u(2)(r, θ) + · · · ,where u(k)(r, θ + 2π) = u(k)(r, θ) and
∫ 2π

0

u(k)(r, θ) cos(θ)dθ =

∫ 2π

0

u(k)(r, θ) sin(θ)dθ = 0,

k = 1, 2, . . . .(ii)
dr

dt
= εA(1)(r) + ε2A(2)(r) + · · · ,

dθ

dt
= −1 + εB(1)(r) + ε2B(2)(r) + · · · ,The k-th order KBM method 
onsists in retaining terms up to εk. We nowapply the method to the Van der Pol equation with a weak for
ing term

d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = εΓ cos(Ωt).where Ω is not 
lose to unity. Retaining terms to O(ε) it follows from (i) and(ii) that

ε(x2 − 1) = ε{r2 cos2(θ) − 1},

dx

dt
= r sin(θ) + ε

{

A(1)(r) cos(θ) − rB(1)(r) sin(θ) − ∂u(1)

∂θ

}

,

d2x

dt2
= −r cos(θ) + ε

{

2 sin(θ)A(1)(r) + 2r cos(θ)B(1)(r) +
∂2u(1)

∂θ2

}

.Substituting into Van der Pol equation the terms of O(ε0) 
an
el and theterms of O(ε1) give
{
∂2u(1)(r, θ)

∂θ2
+ u(1)(r, θ)

}

+ 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ r sin(θ){r2 cos2(θ) − 1} = Γ cos(Ωt). (6.22)
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it t dependen
e. We do this byde�ning
u(1)(r, θ) = ũ(1)(r, θ) +

Γ cos(Ωt)

1 − Ω2and substituting into (6.22) gives
{
∂2ũ(1)(r, θ)

∂θ2
+ ũ(1)(r, θ)

}

+ 2A(1)(r) sin(θ) + 2rB(1)(r) cos(θ)

+ r sin(θ){r2 cos2(θ) − 1} = 0. (6.23)Now multiplying su

essively by sin(θ) and cos(θ), integrating over [0, 2π]and using the integral results in (i) gives
A(1)(r) = − r

2π

∫ 2π

0

dθ sin2(θ){r2 cos2(θ) − 1} = 1
8
r(4 − r2),

B(1)(r) = − 1

2π

∫ 2π

0

dθ sin(θ) cos(θ){r2 cos2(θ) − 1} = 0.

(6.24)Sin
e x(0) = r0 + O(ε1), ẋ(0) = O(ε1), r(0) = r0 and θ(0) = 0. From (ii)and (6.24)
dθ

dt
= −1, giving θ = −t,

dr

dt
= 1

8
εr(4 − r2),giving

εt = 8

∫ r

r0

dr

r(4 − r2)
= ln

{
r2(4 − r20)

r20(4 − r2)

}

r20(4 − r2)

r2(4 − r20)
= exp(−εt).Substituting from (6.24) into (6.23) gives

∂2ũ(1)(r, θ)

∂θ2
+ ũ(1)(r, θ) = −1

4
r3{3 sin(θ) − 4 sin3(θ)} = −1

4
r3 sin(3θ).This has the solution

ũ(1)(r, θ) = 1
32
r3 sin(3θ).



6.5. PROBLEMS 5 183So
u(1)(r, θ) = 1

32
r3 sin(3θ) +

Γ cos(Ωt)

1 − Ω2and from (i)
x(ε, t) = r cos(t) − 1

32
εr3 sin(3t) +

εΓ cos(Ωt)

1 − Ω2 .6.5 Problems 51) With ẋ(t) denoted as y(t)
ẋ(t) = y(t),

ẏ(t) = x(t) − µy(t) − x2(t).The equilibrium points are (0, 0) and (1, 0).Linearizing about x = y = 0 the stability matrix is
J∗ =

(
0 1

1 −µ

)

,with eigenvalues 1
2 [−µ±

√

µ2 + 4]. Sin
e both eigenvalues are real with onepositive and one negative, for all µ, this is a saddle point.Linearizing about x = 1, y = 0 the stability matrix is
J∗ =

(
0 1

−1 −µ

)

,with eigenvalues 1
2 [−µ±

√

µ2 − 4]. So this equilibrium point is
• A stable node if µ > 2.
• A stable in�e
ted node if µ = 2.
• A stable fo
us if 0 < µ < 2.
• A 
entre if µ = 0.
• A unstable fo
us if −2 < µ < 0.
• A unstable in�e
ted node if µ = −2.
• A unstable node if µ < −2.
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x
dx

dt
= yx, y

dy

dt
= yx− x2 dx

dt
.So

x
dx

dt
− y

dy

dt
= x2 dx

dt
,giving

1
2
[x2 − y2] = E − 1

3
x3.The homo
lini
 traje
tory passes through the origin and thus 
orresponds to

E = 0. A MAPLE plot for some traje
tories is
> with(plots):
> f:=(x,y)->(x^2-y^2)/2-x^3/3:
> 
urve:=
> impli
itplot({f(x,y)=-2,f(x,y)=0,f(x,y)=1/9},
> x=-2..3,y=-3.5..3.5,grid=[100,100℄,
> labelfont=[TIMES,ITALIC,12℄,linestyle=5,thi
kness=1):
> text:=
> plots[textplot℄({[-1.0,0.2,`E=1/9`℄,
> [0.9,0.1,`E=1/9`℄,[1,0.8,`E=0`℄,[1,2.2,`E=-2`℄},
> align={ABOVE,RIGHT},font=[TIMES,ITALIC,10℄):
> plots[display℄({
urve,text});
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E=–2

E=0

E=1/9E=1/9

–3

–2

–1

0

1

2

3

y

–2 –1 1 2x

The arrows indi
ating the dire
tion of �ow 
an be added to this diagramusing the fa
t that ẋ(t) > 0 when y > 0. When µ is small and positivethe 
entre at (1, 0) 
hanges to a stable fo
us. The right-hand part of thehomo
lini
 traje
tory breaks into a part spiralling into the fo
us point anda bran
h 
oming from in�nity.

–3

–2

–1

0

1

2

3

y

–2 –1 1 2x
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ting this diagramin the x�axis and reversing the dire
tion of the arrows.2) Substituting x = xc + △x, y = yc + △y, z = zc + △z into the Lorentzequations gives
d△x
dt

= −a(△x−△y),

d△y
dt

= △x−△y − xc△z + (ρ− ρc)(xc + △x) −△x△z,

d△z
dt

= yc△x+ xc△y − b△z + △x△y.These 
an be expressed in ve
tor form as
d△r

dt
+ J∗△r = w,where J∗ and w are as given on the question sheet. Now substitute t = τ/ωto give the required equation. The eigenvalue equation of J∗ is

λ3 + (a+ b+ 1)λ2 + b(a+ ρc)λ+ 2ab(ρc − 1) = 0.Having been given one root the 
ubi
 
an be fa
torized and the roots are
λ = −(a+ b+ 1),

λ = ±i
√

b(a+ ρc) = ±i

√

2ab(a+ 1)

a− b− 1
,whi
h identi�es ωc. Let v and u be the left and right eigenve
tors of J∗ witheigenvalue iωc. Then

vTJ∗ = iωcv
T, J∗u = uiωc.Let

p = ua(τ) + ūb(τ)and substitute into the equation. Sin
e the terms on the right-hand side areof O(ε), the terms of O(ε1/2) give
u

da

dτ
+ ū

db

dτ
+ i[ua− ūb] = 0.
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da

dτ
+ ia = 0,

a(τ) = c exp(−iτ),and
db

dτ
− ib = 0,

b(τ) = c′ exp(iτ).Sin
e p is real c′ = c̄ and we have the required result.3) Substituting t = ετ , ρ = 1/ε2, x = ξ/ε, y = η/(ε2a) and z = (ζ + a)/(ε2a)into the Lorentz equations to a
hieve the required forms is straightforward.When ε = 0

dξ

dτ
= η,

dη

dτ
= −ξζ, dζ

dτ
= ξηand thus

η
dη

dτ
+ ζ

dζ

dτ
= 0,giving

1
2
η2 + 1

2
ζ2 = α,and

ξ
dξ

dτ
− dζ

dτ
= 0,giving

1
2
ξ2 − ζ = β.Also
(

dξ

dτ

)2

= 2α2 − ζ2 = 2α−
(

1
2
ξ2 − β

)2

= (2α− β2) − 1
4
ξ4 + βξ2.When α = 9

8 , β = 1
2 ,

(
dξ

dτ

)2

= −1
4
(ξ2 + 2)(ξ2 − 4).
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on�ned to the range −2 ≤ ξ ≤ 2 with dxi/dtau = 0 atthe extremities. The period of the solution will be given by integrating over
[−2, 2] and doubling the result. That is
4

∫ 2

−2

dξ
√

(ξ2 + 2)(4 − ξ2)
.We 
an determine the form of the orbits in the ξ�dξ/dτ plane using MAPLE.

> with(plots):
> f:=(x,y,alpha,beta)->
> 2*alpha-beta^2-x^4/4+beta*x^2-y^2:
> 
urve:=impli
itplot({f(x,y,9/8,1/2)=0,f(x,y,9/8,-1/2)=0
> },
> x=-3..3,y=-2.5..2.5,grid=[100,100℄,labelfont=[TIMES,ITALIC,12℄,
> linestyle=5,thi
kness=1):
> text:=plots[textplot℄(
> {[0.8,0.5,`b=-1/2`℄,[2.1,0.5,`b=1/2`℄,[1,2.2,`a=9/8`℄},
> align={ABOVE,RIGHT},font=[SYMBOL,10℄):
> plots[display℄({
urve,text});

α=9/8

β=1/2β=±1/2

–1.5

–1

–0.5

0.5

1

1.5

2

y

–2 –1 1 2x
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4) For the given transformation the stability matrix is

J[x,y] =







(
τa 0
0 2

)

, y < 1
2
,

(
τb 0
0 2

)

, y > 1
2
.Suppose that in n iterations the mapping spends p in the region y < 1

2 . Thenthe eigenvalues of S(n) (de�ned by (5.64) are 2n and τp
a τ

n−p
b . Then, from(5.66),

λ
(1)
L = lim

n→∞

ln(2n)

n
= ln(2) > 0,

λ
(2)
L = lim

n→∞

ln(τp
a τ

n−p
b )

n
= µ ln(τa) + (1 − µ) ln(τb) < 0,where

µ = lim
n→∞

( p

n

)

.Sin
e λ(1)
L > 0 and λ(2)

L < 0 the system is 
haoti
. In formula (5.79) for theLyapunov dimension of the attra
tor we take k = 1 to give
D(A) = 1 − {µ ln(τa) + (1 − µ) ln(τb)}−1 .


