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Chapter 1

Differential Equations

1.1 Basic Ideas

We start by considering a first-order (ordinary) differential equation of the form

i—j = F(x;t) with the initial condition (1) =¢. (1.1)
We say that © = f(t) is a solution of (1.1) if it is satisfied identically when we
substitute f(t) for . That is

%&” =F(f(t);t) and f(r)=¢. (1.2)
If we plot (¢, f(t)) in the Cartesian t—z plane then we generate a solution curve of
(1.1) which passes through the point (7, ) determined by the initial condition. If
the initial condition is varied then a family of solution curves is generated. This
idea corresponds to thinking of the general solution x = f(t,¢) with f(t,co) =
f(t) and f(7,co) = €. The family of solutions are obtained by plotting (¢, (¢, ¢))
for different values of c.

Throughout this course the variable ¢ can be thought of as time. When
convenient we shall use the ‘dot’ notation to signify differentiation with respect
to t. Thus

dx d®z
with (1.1) expressed in the form 4 (t) = F(x;t).! We shall also sometimes denote
the solution of (1.1) simply as x(¢) rather than using the different letter f(t).

In practice it is not possible, in most cases, to obtain a complete solution to
a differential equation in terms of elementary functions. To see why this is the
case consider the simple case of a separable equation

dx . N .

i T(t)/X(x) with the initial condition x(T)=¢. (1.3)
IFor derivatives of higher than second order this notation becomes cumbersome and will

not be used.
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This can be rearranged to give

/T () = /E " X(y)dy. (1.4)

So to complete the solution we must be able to perform both integrals and
invert the solution form in z to get an explicit expression for x = f(¢). Both
these tasks are not necessary possible. Unlike differentiation, integration is a
skill rather than a science. If you know the rules and can apply them you can
differentiate anything. You can solve an integral only if you can spot that it
belongs to a class of easily solvable forms (by substitution, integration by parts
etc.). So even a separable equation is not necessarily solvable and the problems
increase for more complicated equations. It is, however, important to know
whether a given equation possesses a solution and, if so, whether the solution is
unique. This information is given by Picard’s Theorem:

Theorem 1.1.1 Consider the (square) set
A={(z,t) : [t —7| < A, [z —{] < A} (1.5)

and suppose that F(x;t) and OF/0x are continuous functions in both x and
t on A. Then the differential equation (1.1) has a unique solution x = f(t),
satisfying the initial condition & = f(7) on the interval [T — Ay, 7 + A\q], for
some A\ with 0 < A1 < A.

We shall not give a proof of this theorem, but we shall indicate an approach
which could lead to a proof. The differential equation (1.1) (together with the
initial condition) is equivalent to the integral equation

t
z(t) =& —|—/ F(z(u);uw)du. (1.6)
Suppose now that we define the sequence of functions {x\/)(¢)} by

2O (t) =¢,
. t ‘ (1.7)
U () = ¢ +/ F(zD(u);u)du, j=1,2,....
T

The members of this sequence are known as Picard iterates. To prove Picard’s
theorem we would need to show that, under the stated conditions, the sequence
of iterates converges uniformly to a limit function z(¢) and then prove that it
is a unique solution to the differential equation. Rather than considering this
general task we consider a particular case:

Example 1.1.1 Consider the differential equation

#(t) =«  with the initial condition x(0) = 1. (1.8)
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Using (1.7) we can construct the sequence of Picard iterates:

2O(t) =1,
t
x(l)(t)=1—|—/ ldu=1+t,
0

t
x<2>(t):1+/ (1+u)du =1+t + 512,
0 (1.9)
a@%ﬂ=1+1;Q+u+%wﬂdu=1+t+%#+%ﬁ,

dO(t) = 1+t 4 5t* + -+ 31,

We see that, as j — oo, 1) (t) — exp(x), which is indeed the unique solution
of (1.8).

1.2 Using MAPLE to Solve Differential Equations

The MAPLE command to differentiate a function f(z) with respect to x is
diff (f(x),x)

The n-th order derivative can be obtained either by repeating the = n times or
using a dollar sign. Thus the 4th derivative of f(x) with respect to x is obtained
by

diff(£f(x),x,x,%,x) or diff(f(x),x$4)

This same notation can also be used for partial differentiation. Thus for g(z, y, z),
the partial derivative 9*g/0220y0z is obtained by

diff (g(x,y,2),x$2,y,2)

An n-th order differential equation is of the form

n n—1
&'z ::F‘( N t>. (1.10)

dtn S At

This would be coded into MAPLE as
diff(x(t),t$n)=F(diff(x(t),t),...,diff(x(t),t$(n-1)),t)
Thus the MAPLE code for the differential equation
d3z
is

diff(x(t),t$3)=x(t)
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The MAPLE command for solving a differential equation is dsolve and the
MAPLE code which obtains the geneml solution for (1 11) is

> dsolve (dlff (x(t) 1:$3) x(t))
x(t)= Cle'+ _C2 e(71/28 sin( \/_t) + _C8 e(71/28 cos( \/_t)

Since this is a third-order differential equation the general solution contains
three arbitrary constants for which MAPLE uses the notation _C1, (€2 and
_ (3. Values are given to these constants if we impose three initial conditions.
In MAPLE this is coded by enclosing the differential equation and the initial
conditions in curly brackets and then adding a final record of the quantity
required. Thus to obtain a solution to (1.11) with the initial conditions

2(0) = 2, (0) = 3, #(0) =1, (1.12)

Ty R G oy o83 e (o GOy By oy
> (DEO2) (x) (0)=7},x(t));

x(t) =4e' — \/_ (=1/2%) sm( \/_t) l/2’5)(305( \/_t)

Note that in the context of the initial condition the code D(x) is used for the
first derivative of = with respect to t. The corresponding n-th order derivative
is denoted by (D@@n) (x).

1.3 General Solution of Specific Equations

An n-th order differential equation like (1.10) is said to be linear if F' is a linear
function of x and its derivatives; (the dependence of F' on ¢ need not be linear
for the system to be linear). The equation is said to be autonomous if F' does
not depend explicitly on ¢. (The first-order equation of Example 1.1.1 is both
linear and autonomous.) The general solution of an n-th order equation contains
n arbitrary constants. These can be given specific values if we have n initial?
conditions. These may be values for x(t) at n different values of ¢ or they may
be values for z and its first n — 1 derivatives at one value of t. We shall use C,
C’, C1,C,,... to denote arbitrary constants.

1.3.1 First-Order Separable Equations

If a differential equation is of the type of (1.3), it is said to be separable because
it is equivalent to (1.4), where the variables have been separated onto opposite

2The terms initial and boundary conditions are both used in this context. Initial conditions
have the connotation of being specified at a fixed or initial time and boundary conditions at
fixed points in space at the ends or boundaries of the system.
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sides of the equation. The solution is now more or less easy to find according
to whether it is easy or difficult to perform the integrations.

Example 1.3.1 A simple separable equation is the exponential growth equation
#(t) = px. The variable z(t) could be the size of a population (e.g. of rabbits)
which grows in proportion to its size. A modified version of this equation is
when the rate of growth is zero when x = x. Such an equation is

de p

i E:E(/f — ). (1.13)
This is equivalent to

/de—u/dH—C. (1.14)

r(k—x)

Using partial fractions

ut = /d_x+/ do -C
T K—x

In|z| —In|k —z| — C. (1.15)

This gives

X

= C'exp(ut), (1.16)

R—

which can be solved for x to give

C'k exp(ut)
t)= ————. 1.17
(t) 15 C oxp(ud) (1.17)
The MAPLE code for solving this equation is
>d501ve(dlff(x(t)t)sz*x(t)*(kappa_x(t))/kappa)

K

x() = 1+et=1t Cik

It can be seen that z(t) — &, as t — oo.

1.3.2 First-Order Homogeneous Equations
A first-order equation of the form

dz  P(x,t)
dt Q1)

is said to be homogeneous if P and @ are functions such that

(1.18)

P(Xt,t) = t"P(\, 1), QO 1) = t™Q(\, 1), (1.19)
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for some m. The method of solution is to make the change of variable y(t) =

x(t)/t. Since
#(t) =y +1ty(t),
(1.18) can be re-expressed in the form

dy P(y,1)
=2 Ly = ,
a YT Q)

which is separable and equivalent to

wtQy, 1)dy dt
’ = _— :1 .
/ Pl / " +C=Inlt|+C

y,1) —yQ(y, 1)

Example 1.3.2 Find the general solution of

de 2224+ ¢?
dt ot

In terms of the variable y = x/t the equation becomes

Ay _ 14 y?
dt oy
So
dt 2ty dy
& C
/t / T+

giving
In |t| = %ln|1 + 2% /t*| + C.
This can be solved to give

z(t) = £/ C'tt — 12,

1.3.3 First-Order Linear Equations

Consider the equation

o(t) + f(t)z(t) = g(b).

Multiplying through by u(t) (a function to be chosen later) we have

dz
Hat

or equivalently
d(pz)  dp

TR TS +upfr = pg.

+pfr = g,

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
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Now we choose u(t) to be a solution of
dp
- wf

and (1.30) becomes
d(px)

dt
which has the solution

u(0)a(t) = [ u(tig(oyde + .

The function p(t) given, from (1.31), by

) =exo ([ 1(0ar).

is an integrating factor.

Example 1.3.3 Find the general solution of
d
d—j + x cot(t) = 2 cos(t).

The integrating factor is

exp </ cot(t)dt) = exp [Insin(¢)] = sin(¢),

giving
) dx . .
sm(t)a +xcos(t) = 2sin(t)cos(t) = sin(2t),
W sin(2t).
So
rsin(t) = /sin(2t)dt +C
= —% cos(2t) + C,
giving
C" — cos®(t)
M= 5w

The MAPLE code for solving this equation is

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

o ds()lve(dlff(x(t) , t) +X(t) *COt(t)=2*cos(t)),

—% cos(2t) + C1
sin(t)

x(t) =
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1.4 Equations with Constant Coeflicients

Consider the n-th order linear differential equation

d"z d" 1z dz
- ] ——— = = f(t), 14
a +a oy + +a1dt +apx = f(t) (1.40)
where ag, aq, ..., a,—1 are real constants. We use the D-operator notation. With
d
= — 1.41
" (1.41)
(1.40) can be expressed in the form
P(D)x(t) = f(1), (1.42)
where
AN =N+ a, N g\ +ao. (1.43)

Equation (1.40) (or (1.42)) is said to be homogeneous or inhomogeneous accord-
ing to whether f(t) is or is not identically zero. An important result for the
solution of this equation is the following:

Theorem 1.4.1 The general solution of the inhomogeneous equation (1.42)
(with f(t) #Z 0) is given by the sum of the general solution of the homogeneous
equation

¢(D)x(t) =0, (1.44)
and any particular solution of (1.42).

Proof: Let z.(t) be the general solution of (1.44) and let x,(t) be a particular
solution to (1.42). Since ¢(D)x(t) = 0 and ¢(D)zp(t) = f(t)

P(D)[ze(t) + zp(8)] = f(2). (1.45)
So
x(t) = zc(t) + 2p(t) (1.46)

is a solution of (1.42). That it is the general solution follows from the fact that,
since z(t) contains n arbitrary constants, then so does x(t). If

o' (t) = we(t) + @, (t) (1.47)

were the solution obtained with a different particular solution then it is easy
to see that the difference between x(¢) and 2/(t) is just a particular solution of
(1.44). So going from x(t) to «’(t) simply involves a change in the arbitrary
constants.

We divide the problem of finding the solution to (1.42) into two parts. We first
describe a method for finding z.(t), usually called the complementary function,
and then we develop a method for finding a particular solution zp(t).
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1.4.1 Finding the Complementary Function

It is a consequence of the fundamental theorem of algebra that the n-th degree
polynomial equation

6(\) =0 (1.48)

has exactly n (possibly complex and not necessarily distinct) solutions. In
this context (1.48) is called the auziliary equation and we see that, since the

coefficients ag, a1, ...,a,—1 in (1.43) are all real, complex solutions of the aux-
iliary equation appear in conjugate complex pairs. Suppose the solutions are
A1, A2, ..., An. Then the homogeneous equation (1.44) can be expressed in the
form

(D—=X)(D—=X2)--- (D= \p)z(t) =0. (1.49)
It follows that the solutions of the n first-order equations

(D — Xj)z(t) =0, i=12...n (1.50)
are also solutions of (1.49) and hence of (1.44). The equations (1.50) are simply

dx .

E:)\jx, i=12....n (1.51)
with solutions

xj(t) = Cj exp(Ajt). (1.52)
If all of the roots A1, Ae, ..., A\, are distinct we have the complementary function
given by

2c(t) = Crexp(Ait) + Coexp(Aat) + - - - + Cpexp(Ant). (1.53)

Setting aside for the moment the case of equal roots, we observe that (1.53)
includes the possibility of:

(i) A zero root, when the contribution to the complementary function is just
a constant term.

(ii) Pairs of complex roots. Suppose that for some j
Ay =a+ipB, Ajr1 =a—ip. (1.54)

Then

Cjexp(Ajt) + Cjq1 exp(Aj1t) exp(at){ Cj[cos(Bt) + isin(Bt)]
+ Cjy1[cos(Bt) —isin(Bt)] }
= exp(at) {Ccos(Bt) + C'sin(Bt)},

(1.55)

where

C= Cj + Cj+1, C' = I[CJ - Cj+1]. (156)
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In order to consider the case of equal roots we need the following result:
Theorem 1.4.2 For any positive integer n and function u(t)

D™ u(t) exp(At) = exp(At)(D + A\)"u(t) (1.57)
Proof: We prove the result by induction. For n =1

Du(t)exp(At) = exp(At)Du(t) + u(t)D exp(At)
exp(At)Du(t) + exp(At) Au(t)
= exp(At)(D + Nu(t). (1.58)

Now suppose the result is true for some n. Then

D ly(t)exp(At) = Dexp(M)(D + \)"u(t)
= (D4 N)"u(t)Dexp(At)
+ exp(A)D(D + N)"u(t)
= exp(A)AD + A\)"u(t)
+ exp(At)D(D + \)"u(t)
= exp(\)(D + N)"Hu(t). (1.59)

and the result is established for all n.

An immediate consequence of this theorem is that, for any polynomial ¢(D)
with constant coefficients,

d(D)u(t) exp(At) = exp(At)P(D + Nu(t) (1.60)

Suppose now that (D — A)™ is a factor in the expansion of ¢(D) and that
all the other roots of the auxiliary equation are distinct from \. It is clear
that one solution of the homogeneous equation (1.44) is C exp(\'t), but we need
m — 1 more solutions associated with this root to complete the complementary
function. Suppose we try the solution u(t) exp(\'t) for some polynomial u(t).
From (1.60)

(D — XN)™u(t) exp(N't) expNt) (D + XN — XN)"u(t)

= exp(\Nt)D™uf(t). (1.61)
The general solution of
D™u(t) =0 (1.62)
is
u(t) = [C“)) +CW4. 4 C<m—1>tm—1] . (1.63)

So the contribution to the complementary function from an m-fold degenerate
root X of the auxiliary equation is

2l (t) = [C@) +CWt 4y C<m*1>tm*1} exp(N't) (1.64)
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Example 1.4.1 Find the general solution of

(3127? —3(31—:; —4z =0. (1.65)
The auxiliary equation A?> — 3\ — 4 = 0 has roots A = —1,4. So the solution is

x(t) = C1exp(—t) + Caexp(4t). (1.66)
Example 1.4.2 Find the general solution of

d’z dz

— +4— 4+ 13z =0. 1.67

e T (1.67)
The auxiliary equation A2 +4X 4 13 = 0 has roots A\ = —2 =+ 3i. So the solution
is

x(t) = exp(—2t) [C1 cos(3t) + Ca sin(3t)]. (1.68)
Example 1.4.3 Find the general solution of

d3z d?z

— — —4x =0. 1.

1 +3dt2 z =0 (1.69)

The auxiliary equation is a cubic A3 +3X2 —4 = 0. It is easy to spot that one
root is A = 1. Once this is factorized out we have (A — 1)(A\2 +4X +4) = 0 and
the quadratic part has the two-fold degenerate root A = —2. So the solution is

x(t) = Ciexp(t) + [Ca + Cat] exp(—2t). (1.70)

Of course, it is possible for a degenerate root to be complex. Then the form of
that part of the solution will be a product of the appropriate polynomial in ¢
and the form for a pair of complex conjugate roots.

1.4.2 A Particular Solution

There are a number of methods for finding a particular solution z(t) to the
inhomogeneous equation (1.42). We shall use the method of trial functions. We
substitute a trial function T(¢), containing a number of arbitrary constants (A,
B etc.) into the equation and then adjust the values of the constants to achieve
a solution. Suppose, for example,

f(t) = aexp(bt). (1.71)
Now take the trial function T(t) = Aexp(bt). From (1.60)
d(D)T(t) = A exp(bt)p(b). (1.72)

Equating this with f(¢), given by (1.71), we see that the trial function is a
solution of (1.42) if

A= (1.73)
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as long as ¢(b) # 0, that is, when b is not a root of the auxiliary equation (1.48).
To consider that case suppose that

6(\) = DA —b)™, (b) £ 0. (1.74)
That is b is an m-fold root of the auxiliary equation. Now try the trial function
T(t) = At™ exp(bt). From (1.60)
P(D)T(¢) $(D)(D — b)™ At™ exp(bt)
= Aexp(bt)yY(D+b)[(D +b) —b]"t™
= Aexp(bt)y(D+b)D"t™
= Aexp(bt)y(b)m! (1.75)

Equating this with f(t), given by (1.71), we see that the trial function is a
solution of (1.42) if

a

A= o) (1.76)
Table 1.1 contains a list of trial functions to be used for different forms of f(t).
Trial functions when f(¢) is a linear combination of the forms given are simply
the corresponding linear combination of the trial functions. Although there
seems to be a lot of different cases it can be seen that they are all special cases
of either the eighth or tenth lines. We conclude this section with two examples.

Example 1.4.4 Find the general solution of

Az dx

e —4E+3x:6t— 11 + 8exp(—t). (1.77)
The auxiliary equation is

A 4\ +3=0, (1.78)

with roots A = 1,3. So
xc(t) = Crexp(t) + Cq exp(3t). (1.79)
From Table 1.1 the trial function for
e 6t is Byt + By, since zero is not a root of (1.78).
e —11 is Bs, since zero is not a root of (1.78).
o 8exp(—t) is Aexp(—t), since —1 is not a root of (1.78).
The constant B3 can be neglected and we have
T(t) = Bit + By + Aexp(—t). (1.80)
Now

$(D)T(t) = 3Byt + 3By — 4B + SA exp(—t) (1.81)



Table 1.1: Table of trial functions for finding a particular integral for ¢(D)x = f(t)
f(t) T(t) Comments
aexp(bt) A exp(bt) b not a root of ¢(A\) =0.
aexp(bt) AtF exp(bt) b a root of ¢(A) = 0 of multiplicity k.

asin(bt) or acos(bt)

A sin(bt) 4+ B cos(bt)

A2 4 b? not a factor of ¢(N).

asin(bt) or acos(bt)

t*[A sin(bt) + B cos(bt)]

A2 + b2 a factor of ¢(A) of multiplicity k-

at” Ant™ + Ap_1t" 4+ A Zero is not a root of ¢(\) = 0.

at™ tk[Ant” F At Ao] Zero is a root of ¢p(A) = 0 of multiplicity k.
at™ exp(bt) exp(bt)[Ant™ + Ap_1t" 1 4 4+ Ag)] b is not a root of ¢(A\) = 0.
at™ exp(bt) t* exp(bt) [Ant™ + Ap_1t" 1 4+ Ag] b is a root of ¢(\) = 0 of multiplicity k.

at™ sin(bt) or at™ cos(bt)

[B1 sin(bt) + Ba cos(bt)][t" + Ap—1t" "1 + -+ + Ag]

A2 4 b not a factor of ¢(N).

at™ sin(bt) or at™ cos(bt)

t"[B1 sin(bt) + By cos(bt)][t™ + Ap_1t" "1 + -+ - + Ag]

A2 4 b? a factor of ¢(\) of multiplicity k.

SINAIDIAAA0D INVLSNOD HLIM SNOILVAOH 7T
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and comparing with f(¢) gives By =2, B, = —1 and A = 1. Thus

xp(t) = 2t — 1 4+ exp(—t) (1.82)
and

z(t) = Cyexp(t) + Coexp(3t) + 2t — 1 + exp(—t). (1.83)

The MAPLE code for solving this equation is

> dsolve(diff (x(t),t$2)-4xdiff (x(t),t)+3*x(t)=6*t-11+8*exp(-t));

x() =2t =1+ 4+ Cret+ €289

Example 1.4.5 Find the general solution of

(3;7? + ((1;7:; =4 — 12exp(2t). (1.84)
The auxiliary equation is

MA+1)=0, (1.85)
with roots A = 0 (twice) and A = —1. So

zc(t) = Co + Cit + Csz exp(—t). (1.86)
From Table 1.1 the trial function for

e 4 is Bt?, since zero is double root of (1.85).

o —12exp(2t) is Aexp(2t), since 2 is not a root of (1.85).

We have

T(t) = Bt* + A exp(2t) (1.87)
and

B(D)T(t) = 2B + 12A exp(2t). (1.88)

Comparing with f(¢) gives B =2 and A = —1. Thus

x(t) = Co + Cyt + Czexp(—t) + 2t* — exp(2t). (1.89)
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1.5 Systems of Differential Equations

If, for the n-th order differential equation (1.10), we define the new set of vari-
ables z; = z, #y = dz/dt,...,z, = d""lz/dt"~! then the one n-th order
differential equation with independent variable ¢ and one dependent variable x
can be replaced by the system

dw1
—_— = t )
a
dxg
—_— t
a el
(1.90)
da,—
(;t ! = xn(t)v
dz
d—tn - F(xhx?v cee ,$n§t)
of n first-order equations with independent variable ¢ and n dependent variables
Z1,...,ZTy. In fact this is just a special case of
dw1
E = Fl(xlvx% cee ,{En;t),
d
% = FQ(.]:l,xQ, ceey Ly t)?
(1.91)
da,—
gt b= Fpoi(@1, 22,0, 203 t),
dz
d—tn = Fn(xlvx%" .,{En;t),

where the right-hand sides of all the equations are now functions of the variables
T1,T2,...,7,.5 The system defined by (1.91) is called an n-th order dynamical
system. Such a system is said to be autonomous if none of the functions Fy is
an explicit function of t.

Picard’s theorem generalizes in the natural way to this n-variable case as
does also the procedure for obtained approximations to a solution with Picard
iterates. That is, with the initial condition z,(7) = &, £ = 1,2,...,n, we define

the set of sequences {xéj)(t)}, £=1,2,...,n with

20 (1) =&,
| . | | (1.92)
eI (1) =& + / B (), ad (wiu)du,  j=1,2,...

T

forall{=1,2,...,n.

30f course, such a system is not, in general, equivalent to one n-th order equation.
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Example 1.5.1 Consider the simple harmonic differential equation
#(t) = —w?z(t) (1.93)
with the initial conditions z(0) = 0 and #(0) = w.

This equation is equivalent to the system

1 (t) = 22(t), (t) = —w?z1 (1),
(1.94)
x1(0) =0, 22(0) =w
which is a second-order autonomous system. From (1.92)
7" () =0, (1) = w.
t t
xgl)(t) =0 —|—/ wdu, a:él)(t) =w— w2/ 0du
0 0
= wt, = w,
¢ ¢
xgz) (t)=0 —|—/ wdu, ng) ) =w —/ wiudu (1.95)
0 0
2
= wt, :W{l_(wzt!) },
t 2 t
x§3) (t)=0 —|—/ w {1 - (w;,) }du, a:g?’) t)=w-— / w3udu
0 3 ' 0 2
o i )
The pattern which is emerging is clear
971 9 )3 ) t)(25—1)
d2 D) =2 (1) = wr- Gy (GO
i=1,2,..., (1.96)
2j 2j+1 t)? i (wt) ()
() =270 = w{l— G+ gy }
j=0,1,.... (1.97)

In the limit j — oo (1.96) becomes the MacLaurin expansion for sin(wt) and
(1.97) the MacLaurin expansion for w cos(wt).

The set of equations (1.91) can be written in the vector form

z(t) = F(x;t), (1.98)
where
X1 F1 (:It;t)
i) Fg(at;t)
r=| . , F(z;t) = : . (1.99)

Ty F,(x;t)
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x(t)

Figure 1.1: A trajectory in the phase space I,.

As time passes the vector x(t) describes a trajectory in an n-dimensional phase
space I, (Fig. 1.1). The trajectory is determined by the nature of the vector
field F(«;t) and the location x(tg) of the phase point at some time ty. An
important property of autonomous dynamical systems is that, if the system is
at (© at time ¢ then the state (! of the system at ¢; is dependent on x(%)
and t; — to, but not on ty and t; individually.

A dynamical system with 2m degrees of freedom and variables

{z1,.. . Zm,p1,...,Pm} is @ Hamiltonian system if there exists a Hamiltonian
function H(x1,...,Zm,P1,-.-,Pm;t) in terms of which the evolution of the sys-
tem is given by Hamilton’s equations
. OH
Te =
S 8p9 Y
s=1,2,...,m. (1.100)
. OH
bs = Oz,

It follows that the rate of change of H along a trajectory is given by

- [0Hdv,  0Hdp.) | 0H
dt ‘ Ors dt  Ops dt ot

_ - fomon omom) on

B —1 0z Ops Ops 0z ot
OH

= —. 1.101

T (1.101)

So if the system is autonomous (0H/0t = 0) the value of H does not change

along a trajectory. It is said to be a constant of motion. In the case of many

1
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physical systems the Hamiltonian is the total energy of the system and the
trajectory is a path lying on the energy surface in phase space.

As we have already seen, a system with m variables {x1, za, ..., } determined
by second-order differential equations, given in vector form by
i(t) = G t), (1.102)
where
x1 G1(x;t)
To G2 (:12; t)
z=| . , G(x;t) = . , (1.103)
Tom Gm(z;t)

is equivalent to the 2m-th order dynamical system

x(t) = p(t), p(t) = G(z;1), (1.104)
where
P1 8x1/8t
P2 8x2/8t
p= . = . (1.105)
p;n 8%;/6%

If there exists a scalar potential V' (;t), such that

G(x;t) = —=VV(x;t), (1.106)
the system is said to be conservative. By defining

H(z,p;t) = %pz + V(x;t), (1.107)

we see that a conservative system is also a Hamiltonian system. In a physical
context this system can be taken to represent the motion of a set of m/d particles
of unit mass moving in a space of dimension d, with position and momentum
coordinates x1.xs, . .., T, and p1, pa, . . ., pm respectively. Then %pQ and V(x;t)
are respectively the kinetic and potential energies.

A rather more general case is when, for the system defined by equations (1.98)
and (1.99), there exists a scalar field U(x;t) with

F(x:t) = —VU(x;1). (1.108)

1.5.1 MAPLE for Systems of Differential Equations

In the discussion of systems of differential equations we shall be less concerned
with the analytic form of the solutions than with their qualitative structure.
As we shall show below, a lot of information can be gained by finding the
equilibrium points and determining their stability. It is also useful to be able to
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plot a trajectory with given initial conditions. MAPLE can be used for this in
two (and possibly three) dimensions. Suppose we want to obtain a plot of the
solution of

i(t) = z(t) — y(1), y(t) = a(t), (1.109)

over the range ¢t = 0 to ¢ = 10, with initial conditions z(0) = 1, y(0) = —1.
The MAPLE routine dsolve can be used for systems with the equations and
the initial conditions enclosed in curly brackets. Unfortunately the solution is
returned as a set {z(t) = ---,y(t) = ---}, which cannot be fed directly into
the plot routine. To get round this difficulty we set the solution to some
variable (Fset in this case) and extract x(¢) and y(¢) (renamed as fxz(t) and
fy(t)) by using the MAPLE function subs. These functions can now be plotted
parametrically. The complete MAPLE code and results are:

> Fset:=dsolve(
{diff (x(t),t)=x(t)-y(t),diff (y(t),t)=x(t),x(0)=1,y(0)=-1},
> {x(t),y(t)P):

Y

> fx:=t->subs(Fset,x(t)):
> fx(t);

%e(l/“) (3cos(% tV3) + 3\/§sin(% tv3))

> fy:=t->subs(Fset,y(t)):

> fy(t);

1 (2¢ .1 1
3 (/2 (3 \/gsm(§t\/§) - 3cos(§t\/§))

> plot([fx(t),fy(t),t=0..101);
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1.6 Autonomous Systems

We shall now concentrate on systems of the type described by equations (1.98)
and (1.99) but, where the vector field F' is not an explicit function of time. These
are called autonomous systems. In fact being autonomous is not such a severe
restraint. A non-autonomous system can be made equivalent to an autonomous
system by the following trick. We include the time dimension in the phase space
by adding the time line 7" to I,. The path in the (n + 1)-dimensional space
I, x T is then given by the dynamical system

() = F(x,x0), () = 1. (1.110)

This is called a suspended system.

In general the determination of the trajectories in phase space, even for
autonomous systems, can be a difficult problem. However, we can often obtain
a qualitative idea of the phase pattern of trajectories by considering particularly
simple trajectories. The most simple of all are the equilibrium points.* These
are trajectories which consist of one single point. If the phase point starts at
an equilibrium point it stays there. The condition for £* to be an equilibrium
point of the autonomous system

&(t) = F(x), (1.111)

F(z*) = 0. (1.112)

4 Also called, fized points, critical points or nodes.
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For the system given by (1.108) it is clear that a equilibrium point is a sta-
tionary point of U(x) and for the conservative system given by (1.103)—(1.106)
equilibrium points have p = 0 and are stationary points of V(x). An equilib-
rium point is useful for obtaining information about phase behaviour only if
we can determine the behaviour of trajectories in its neighbourhood. This is a
matter of the stability of the equilibrium point, which in formal terms can be
defined in the following way:

The equilibrium point x* of (1.111) is said to be stable (in the sense of
Lyapunov) if there exists, for every € > 0, a 6(¢) > 0, such that any solution
x(t), for which z(ty) = z©) and

le* — 2] < §(e), (1.113)
satisfies
lz* —z(t)| < ¢, (1.114)

for all t > to. If no such 6(e) exists then x* is said to be unstable (in the
sense of Lyapunov). If x* is stable and

flggo le* — x(t)| = 0. (1.115)
it is said to be asymptotically stable. If the equilibrium point is stable and
(1.115) holds for every z°) then it is said to be globally asymptotically
stable. In this case x* must be the unique equilibrium point.

There is a warning you should note in relation to these definitions. In some texts
the term stable is used to mean what we have called ‘asymptotically stable’ and
equilibrium points which are stable (in our sense) but not asymptotically stable
are called conditionally or marginally stable.

An asymptotically stable equilibrium point is a type of attractor. Other types
of attractors can exist. For example, a close (periodic) trajectory to which all
neighbouring trajectories converge. These more general questions of stability
will be discussed in a later chapter.

1.6.1 One-Variable Autonomous Systems

We first consider a first-order autonomous system. In general a system may
contain a number of adjustable parameters a,b,c,... and it is of interest to
consider the way in which the equilibrium points and their stability change
with changes of these parameters. We consider the equation

z(t) = F(a,b,c,...,x), (1.116)

where a,b,c,... is some a set of one or more independent parameters. An
equilibrium point z*(a, b, ¢, . ..) is a solution of

F(a,b,c,...,2")=0. (1.117)
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Figure 1.2: The bifurcation diagram for Example 1.6.1. The stable and unstable
equilibrium solutions are shown by continuous and broken lines and the direction
of the flow is shown by arrows. This is an example of a simple turning point
bifurcation.

According to the Lyapunov criterion it is stable if, when the phase point is
perturbed a small amount from z* it remains in a neighbourhood of z*, asymp-
totically stable if it converges on z* and wunstable if it moves away from x*.
We shall, therefore, determine the stability of equilibrium points by linearizing
about the point.®

Example 1.6.1 Consider one-variable non-linear system given by
i(t) =a— a2 (1.118)

The parameter a can vary over all real values and the nature of equilibrium
points will vary accordingly.

The equilibrium points are given by © = z* = +4/a. They exist only when
a > 0 and form the parabolic curve shown in Fig. 1.2. Let z = z* + Az and
substitute into (1.118) neglecting all but the linear terms in Ax.

dAx
dt

5A theorem establishing the formal relationship between this linear stability and the Lya-
punov criteria will be stated below.

=a— (z%)? - 22" Az, (1.119)
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Since a = (z*)? this gives

A
dd—tx = —2* Az, (1.120)

which has the solution
Az = Cexp(—2z*t). (1.121)

Thus the equilibrium point z* = /a > 0 is asymptotically stable (denoted by a
continuous line in Fig. 1.2) and the equilibrium point 2* = —/a < 0 is unstable
(denoted by a broken line in Fig. 1.2). When a < 0 it is clear that z(¢) < 0
so z(t) decreases monotonically from its initial value x(0). In fact for a = 0
equation (1.118) is easily solved:

x t
/ r%dz = —/ dt (1.122)
z(0) 0

gives

(0 o z(0) \?

0, as t — oo if z(0) > 0,
z(t) — (1.124)

—o0, ast— 1/]z(0)] if z(0) < 0.

In each case z(t) decreases with increasing t. When x(0) > 0 it takes ‘forever’
to reach the origin. For z(0) < 0 it attains minus infinity in a finite amount of
time and then ‘reappears’ at infinity and decreases to the origin as ¢ — co. The
linear equation (1.120) cannot be applied to determine the stability of z* = 0
as it gives (dAz/dt)* = 0. If we retain the quadratic term we have

dAz
dt

So including the second degree term we see that dAz/dt < 0. If Az > 0 z(t)
moves towards the equilibrium point and if Az < 0 it moves away. In the
strict Lyapunov sense the equilibrium point z* = 0 is unstable. But it is ‘less
unstable’ that z* = —,/a, for a > 0, since there is a path of attraction. It
is at the boundary between the region where there are no equilibrium points
and the region where there are two equilibrium points. It is said to be on the
margin of stability. The value a = 0 separates the stable range from the unstable
range. Such equilibrium points are bifurcation points. This particular type of
bifurcation is variously called a simple turning point, a fold or a saddle-node
bifurcation. Fig.1.2 is the bifurcation diagram.

= —(Ax)?. (1.125)
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Example 1.6.2 The system with equation
i(t) = z{(a+c*) — (x — ¢)*} (1.126)
has two parameters a and c.

The equilibrium points are x = 0 and z = z* = ¢ + Va + ¢2, which exist when
a+ ¢® > 0. Linearizing about = = 0 gives

z(t) = Cexp(at) (1.127)

The equilibrium point z = 0 is asymptotically stable if a < 0 and unstable for
a > 0. Now let x = 2* + Az giving
dAz
dt

—2Azz* (™ — ¢)

— 2nrVa+ 2 [ci \/a+c2}. (1.128)
This has the solution
Az = Cexp [:F2t\/a+62 (c:l: a—l—cz)} . (1.129)

We consider separately the three cases:

c=0.

Both equilibrium points z* = ++/a are stable. The bifurcation diagram for
this case is shown in Fig.1.3. This is an example of a supercritical pitchfork
bifurcation with one stable equilibrium point becomes unstable and two new
stable solutions emerge each side of it. The similar situation with the stability
reversed is a subcritical pitchfork bifurcation.

Figure 1.3: The bifurcation diagram for Example 1.6.2, ¢ = 0. The stable and
unstable equilibrium solutions are shown by continuous and broken lines and the
direction of the flow is shown by arrows. This is an example of a supercritical
pitchfork bifurcation.
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Figure 1.4: The bifurcation diagram for Example 1.6.2, ¢ > 0. The stable and
unstable equilibrium solutions are shown by continuous and broken lines and
the direction of the flow is shown by arrows. This gives examples of both simple
turning point and transcritical bifurcations.

c> 0.

The equilibrium point x = ¢+ va + ¢? is stable. The equilibrium point x =
¢ — +Va + 2 is unstable for a < 0 and stable for a > 0. The point z = ¢,
a = —c? is a simple turning point bifurcation and x = a = 0 is a transcritical
bifurcation. That is the situation when the stability of two crossing lines of
equilibrium points interchange. The bifurcation diagram for this example is

shown in Fig.1.4.

c < 0.
This is the mirror image (with respect to the vertical axis) of the case ¢ > 0.

Example 1.6.3

z(t) = cx(b — x). (1.130)
This is the logistic equation.

The equilibrium points are £ = 0 and x = b. Linearizing about z = 0 gives

z(t) = Cexp(cht) (1.131)
The equilibrium point x = 0 is stable or unstable according as if cb <, > 0. Now
let © = b+ Az giving

dAz

—— = —cbAx. 1.132
" cbAx (1.132)
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So the equilibrium point x = b is stable or unstable according as cb >, < 0. Now
plot the equilibrium points with the flow and stability indicated:

o In the (b, z) plane for fixed ¢ > 0 and ¢ < 0.
e In the (¢, x) plane for fixed b > 0, b= 0 and b < 0.

You will see that in the (b, z) plane the bifurcation is easily identified as trans-
critical but in the (¢, x) plane it looks rather different.
Now consider the difference equation corresponding to (1.130). Using the
two-point forward derivative,
Tnt1 = Tp[(ech + 1) — cexy). (1.133)
Now substituting
(1 —ecb)y + ech

= 1.134
33 . (1.134)
into (1.133) gives
Yn+1 = ayn(l — yn), (1.135)
where
a=1-—c¢ech. (1.136)

(1.135) is the usual form of the logistic difference equation. The equilibrium
points of (1.135), given by setting y,+1 = ¥, = y* are
y* =0 — ¥ =b,
(1.137)
y*=1-1/a — z* = 0.
Now linearize (1.135) by setting y, = Ay, + y* to give
Ayny1 = a(l = 2y")Ay,. (1.138)
The equilibrium point y* is stable or unstable according as |a(1 — 2y™*)| <, > 1.
So
o y* =0, (z* =0b)isstable if —1 <a <1, (0 <ecb<2).
o y*=1—1/a, (z* =0)isstableif 1 < a <3, (-2 < ecb < 0).

Since the differential equation corresponds to small, positive €, these stability
conditions agree with those derived for the differential equation (1.130). You
may know that the whole picture for the behaviour of the difference equation
(1.135) involves cycles, period doubling and chaos.® Here, however, we are just
concerned with the situation for small € when

y =~ (ce)x, a=1-— (ce)d. (1.139)
The whole of the (b, ) plane is mapped into a small rectangle centred around

(1,0) in the (a,y) plane, where a transcritical bifurcation occurs between the
equilibrium points y =0 and y = 1 — 1/a.

6Tan Stewart,Does God Play Dice?, Chapter 8, Penguin (1990)
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1.6.2 Digression: Matrix Algebra

Before considering systems of more than variable we need to revise our knowl-
edge of matrix algebra. An n X n matrix A is said to be singular or non-singular
according as the determinant of A, denoted by Det{ A}, is zero or non-zero. The
rank of any matrix B, denoted by Rank{B}, is defined, whether the matrix is
square or not, as the dimension of the largest non-singular (square) submatrix
of B. For the n x n matrix A the following are equivalent:

(i) The matrix A is non-singular.

(ii) The matrix A has an inverse denoted by A™'.
(iii) Rank{A} = n.
)

(iv) The set of n linear equations

Ax = c, (1.140)
where
X1 C1
T2 C2
T = , c= , (1.141)
In Cn
has a unique solution for the variables xz1,xo,...,z, for any numbers
c1,C2,...,Cn given by
x=A'c (1.142)
(Of course, when ¢; = ¢o = --- = ¢, = 0 the unique solution is the trivial
solution x1 = xo =--- =z, =0.)

When A is singular we form the n x (n + 1) augmented matriz matrix A’
by adding the vector ¢ as a final column. Then the following results can be
established:

(a) If
Rank{A} = Rank{A'} =m <n (1.143)
then (1.140) has an infinite number of solutions corresponding to making
an arbitrary choice of n — m of the variables z1,xo,. .., Z,.
(b) If
Rank{A} < Rank{A'} <n (1.144)

then (1.140) has no solution.
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Let A be a non-singular matrix. The eigenvalues of A are the roots of the
n-degree polynomial

Det{A — M} =0, (1.145)

in the variable \. Suppose that there are n distinct roots AV, X2 A
Then Rank{A—A® T} =n—1forallk =1,2,...,n. So there is, corresponding
to each eigenvalue (%) a left eigenvector v'¥) and a right eigenvector u'®) which
are solutions of the linear equations

[T A = \F)[p(]T Au®) = ) \F) (1.146)

The eigenvectors are unique to within the choice of one arbitrary component.
Or equivalently they can be thought of a unique in direction and arbitrary in
length. If A is symmetric it is easy to see that the left and right eigenvectors
are the same.” Now

[T Aul) = \F) [p(R]7,0) = [P T, )\ (1.147)

and since A% % \0) for k # j the vectors v*) and u(9) are orthogonal. In fact
since, as we have seen, eigenvectors can always be multiplied by an arbitrary
constant we can ensure that the sets {u*)} and {v(®} are orthonormal by

dividing each for u*) and v by Vu® v® for k =1,2,...,n. Thus

u® ) = 5% (k — j), (1.148)
where
r . 17 k= .a
5 (ke — j) = {0 . #; (1.149)

is called the Kronecker delta function.

1.6.3 Linear Autonomous Systems

The n-th order autonomous system (1.111) is linear if

F=Az—c, (1.150)
for some n x n matrix A and a vector c of constants. Thus we have

&(t) = Az(t) — c, (1.151)
An equilibrium point «*, if it exists, is a solution of

Az =c. (1.152)

"The vectors referred to in many texts simply as ‘eigenvectors’ are usually the right eigen-
vectors. But it should be remembered that non-symmetric matrices have two distinct sets of
eigenvectors. The left eigenvectors of A are of course the right eigenvectors of AT and vice
versa.
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As we saw in Sect. 1.6.2 these can be either no solutions points, one solution or
an infinite number of solutions. We shall concentrate on the case where A is
non-singular and there is a unique solution given by

xz* = At (1.153)

As in the case of the first-order system we consider a neighbourhood of the
equilibrium point by writing

=+ A, (1.154)
Substituting into (1.151) and using (1.153) gives

dAx
5 = Al (1.155)
Of course, in this case, the ‘linearization’ used to achieve (1.155) was exact
because the original equation (1.151) was itself linear.
As in Sect. 1.6.2 we assume that all the eigenvectors of A are distinct and
adopt all the notation for eigenvalues and eigenvectors defined there. The vector
Ax can be expanded as the linear combination

Ax(t) = w ()u® +wy(H)u® + -+ w, (u, (1.156)
of the right eigenvectors of A, where, from (1.148),

wi(t) = v - Ax(t), k=1,2,...,n. (1.157)
Now

ANz(t) = wi(t)Au® +wy(t)Au® + - 4 w, (t) Au™

= ADuB)u® + APy )u® + - 4 AP, (Hu™ (1.158)

and

d?—tm = 1 (H)u® 4 g () u® + - b, (H)u™). (1.159)
Substituting from (1.158) and (1.159) into (1.155) and dotting with v(*) gives

e (t) = AP wy(2), (1.160)
with solution

wi(t) = Cexp (M’%) . (1.161)

So Az will grow or shrink in the direction of u(¥) according as ® {\*)} >, < 0.
The equilibrium point will be unstable if at least one eigenvalue has a positive
real part and stable otherwise. It will be asymptotically stable if the real part
of every eigenvalue is (strictly) negative. Although these conclusions are based
on arguments which use both eigenvalues and eigenvectors, it can be seen that
knowledge simply of the eigenvalues is sufficient to determine stability. The
eigenvectors give the directions of attraction and repulsion.
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Example 1.6.4 Analyze the stability of the equilibrium points of the linear
system

o(t) = y(t), y(t) = 4x(t) + 3y(t). (1.162)

The matrix is

A—01 1.1
N i

with Det{A} = —4 and the unique equilibrium point is * = y = 0. The
eigenvalues of A are A() = —1 and A® = 4. The equilibrium point is unstable
because it is attractive in one direction but repulsive in the other. Such an
equilibrium point is called a saddle-point.

For a two-variable system the matrix A, obtained for a particular equilibrium
point, has two eigenvalues A(*) and \(?). Setting aside special cases of zero or
equal eigenvalues there are the following possibilities:

(i) A1 and A\® both real and (strictly) positive. Az grows in all directions.
This is called an unstable node.

(ii) A and A both real with A() > 0 and A® < 0. Az grows in all direc-
tions, apart from that given by the eigenvector associated with A(?). This,
as indicated above, is called a saddle-point.

(iii) A and A both real and (strictly) negative. Az shrinks in all directions.
This is called a stable node.

(iv) A and A conjugate complex with R{AD} = R{AP} > 0. Az grows in
all directions, but by spiraling outward. This is called an unstable focus.

(v) A = -\ are purely imaginary. Close to the equilibrium point, the length
of Ax remains approximately constant with the phase point performing a
closed loop around the equilibrium point. This is called an centre.

(vi) A and A\(?) conjugate complex with R{A\M} = R{A\P} < 0. Az shrinks
in all directions, but by spiraling inwards. This is called an stable focus.

It is not difficult to see that the eigenvalues of the matrix for the equilibrium
point z = y = 0 of (1.109) are 3(1 +1iv/3). The point is an unstable focus as
shown by the MAPLE plot.

Example 1.6.5 Analyze the stability of the equilibrium points of the linear
system

z(t) = 2z(t) — 3y(t) + 4, y(t) = —z(t) + 2y(t) — 1. (1.164)
This can be written in the form

&(t) = Az(t) - c, (1.165)
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with

o e
x = : A= : c= . (1.166)
y -1 2 1

The matrix is

a2 1.167
_<—1 2)’ (1.167)

with Det{A} = 1, has inverse

Al = 29 1.168
_<1 2)' (1.168)

So the unique equilibrium point is

~(2)0)-C)

Linearizing about «* gives an equation of the form (1.155). The eigenvalues of
A are 2+ /3. Both these numbers are positive so the equilibrium point is an
unstable node.

1.6.4 Linearizing Non-Linear Systems

Counsider now the general autonomous system (1.111) and let there by an equi-
librium point given by (1.112). To investigate the stability of * we again make
the substitution (1.154). Then for a particular member of the set of equations

dA:Ez %
TR Fy(x* + Ax)
- Z(ﬁ) Azy + O(Azs Ay, (1.170)
=1 Oz,

where non-linear contributions in general involve all produces of pairs of the
components of Azx. Neglecting nonlinear contributions and taking all the set of
equations gives

dAx

B _ s, (1.171)
where J* = J(x) is the stability matriz with
0F, 0R OF;
oo Do | Bo
OF, OF, OF,
J@)=| 021 Oz2 Oz |. (1.172)
oF, oF, ok,

0x1 8—552 0xm
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Analysis of the stability of the equilibrium point using the eigenvalues of J*
proceeds in exactly the same way as for the linear case. In fact it can be
rigorously justified by the following theorem (also due to Lyapunov):

Theorem 1.6.1 The equilibrium point x* is asymptotically stable if the real
parts of all the eigenvalues of the stability matriz J* are (strictly) negative. It
is unstable if they are all non-zero and at least one is positive.

It will be see that the case where one or more eigenvalues are zero or purely
imaginary is not covered by this theorem (and by linear analysis). This was
the case in Example 1.6.1 at ¢ = 0, where we needed the quadratic term to
determine the stability.

Example 1.6.6 Investigate the stability of the equilibrium point of
i(t) = simfa (O] —y(t),  9(t) = alt). (1.173)

The equilibrium point is 2* = y* = 0. Using the McLaurin expansion of sin(z) =
Az + O(Ax?) the equations take the form (1.171), where the stability matrix is

(! 1.174
_<1 0)' (1.174)

This is the same stability matrix as for the linear problem (1.109) and the
equilibrium point is an unstable focus.

Example 1.6.7

B(t) = —yt) +z(t)la—2*() -y ()], (1.175)

y(t) z(t) +y(t)la — 2*(t) —y*(1)]. (1.176)
The only equilibrium point for (1.175)—(1.176) is « = y = 0. Linearizing about
the equilibrium point gives an equation of the form (1.171) with

«_ f(a —1
Jr = (1 u > (1.177)
The eigenvalues of J* are a +1i. So the equilibrium point is stable or unstable
according as a < 0 or a > 0. When a = 0 the eigenvalues are purely imaginary,
so the equilibrium point is a centre.

We can find two integrals of (1.175)—(1.176). If (1.175) is multiplied by «

and (1.176) by y and the pair are added this gives
d d
xd—f +yd—th = (2% +y*)(a — 2® — y?). (1.178)

With r? = 22 4 32, if the trajectory starts with r = ro when ¢t = 0,

11 1.,
_/TO{(L—T2+T_2}d(r), a;éO,

t a
2/ dt = (1.179)
0 "1 9
- —d(T‘ )7 a:()a
ro
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giving
2
arg
, a0,
) r2 +exp(—2at){a — 12} 7
r2(t) = , (1.180)
—To a=0.
1+2trg’
This gives
0, a<0,
r(t) — (1.181)
Vva, a>0

Now let x = rcos(), y = rsin(d). Substituting into (1.175)-(1.176) and elimi-
nating dr/dt gives

do

— =1 1.182

I (1.182)
If 0 starts with the value 6(0) = 6, then

0 =t+ 0. (1.183)

When a < 0 trajectories spiral with a constant angular velocity into the origin.

When a = 0 linear analysis indicates that the origin is a centre. However, the full
solution shows that orbits converge to the origin as t — oo, with r(¢) ~ 1/+/2t,
which is a slower rate of convergence than any exponential.

Y Y

AN s

D S/

(a) (b)

Figure 1.5: A Hopf bifurcation with (a) a <0, (b) a > 0.
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——

Figure 1.6: A Hopf bifurcation in the space of {a, z,y}.

When a > 0, if r(0) = 79 = v/a, r(t) = y/a. The circle 2% + y? = a is invariant
under the evolution of the system. The circle 22 +y? = a is a new type of stable
solution called a limit cycle. Trajectories spiral, with a constant angular velocity
towards the limit cycle circle, either from outside if ro > \/a or from inside if
ro < v/a see Fig. 1.5. The change over in behaviour at @ = 0 is an example of
the Hopf bifurcation. If the behaviour is plotted in the three-dimensional space
of {a,z,y} then it resembles the supercritical pitchfork bifurcation (Fig. 1.6).

Problems 1

1) Find the general solutions of the following differential equations:

(a) tz(t) = 2x(t)

, x(t) (t)
(b) z(t) = —~ tan{T}
(c) 2t x(t) i(t) = 2*(t) +
(d) ti(t) — tx(t) = z(t) + exp(t)
(e) (1 —*)a(t) —ta(t) =1t

[There are each of one of the types described in Sects. 1.3.1-3. The first thing
to do is identify the type./
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2)

Find the general solutions of the following differential equations:

(a) Z(t) — b(t) + 6x(t) = 2exp(t) + 6t — 5
(b) Z(t) + x(t) = 2sin(t)

3 2,
(c) M—|—2d —|—6d =1+ 2exp(—t)

de3 de? dt
[These are all equations with constant coefficients as described in Sect. 1.4.]

Find the general solution of the differential equation
E(t) — 3&(t) +4x(t) =0

and solve the equation
B(t) — 32(t) + 4x(t) = t? exp(t)

with the initial conditions z(0) = 0 and £(0) = 1.

Find out as much as you can about the one-dimensional dynamic systems:

(i) 2(t) = z(t)[a — c — aba(t)],
(i) @(t) = ax(t) — bz?(t) + ca3(t),

You may assume that a and b are non-zero but you can consider the case
¢ = 0. You should be able to

8

(a) Find the equilibrium points and use linear analysis to determine their
stability.

(b) Draw the bifurcation diagrams in the {z, a}—plane for the different ranges
of b and c.

(c¢) Solve the equations explicitly.

Determine the nature of the equilibrium point (0,0) of the systems

5 i(t) = o(t) + 3y(2),
§(t) = Ba(t) +y(t).

. i(t) = 3a(t) + 2y(t),
§(t) = w(t) + 2y (t).

Verify that the system

(1) = x(t) + sinfy(t)],
y(t) = cosfz(t)] - 2y(t) -1

has an equilibrium point at * = y = 0 and determine its type.
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7) Find all the equilibrium points of

a(t) = —22(t) + y(1),
y(t) =8x(t) —y*(1)

and determine their type.



Chapter 2

Linear Transform Theory

2.1 Introduction

Consider a function z(t), where the variable ¢ can be regarded as time.

Throughout the rest of the course we shall be concerned only with systems
driven by autonomous differential (or difference) equations. This means that
time is a relative variable and we can set, without loss of generality, the initial
time to be t = 0.

A linear transform G is an operation on z(t) to produce a new function Z(s). It
can be pictured as

Input z(t) Output z(s)

z(s) = G{a(t)}]

The linear property of the transform is given by

G{c1z1(t) + cawa(t)} = c1Z1(8) + caTa(s), (2.1)

for any functions x1(¢) and z2(t) and constants ¢; and co. The variables ¢ and
s can both take a continuous range of variables or one or both of them can take
a set of discrete values. In simple cases it is often the practice to use the same
letter ‘¢’ for both the input and output function variables. Thus the amplifier

zZ(t) = cz(t), (2.2)
differentiator
zZ(t) = z(t) (2.3)

37
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and integrator

&I

(1) = /0 (u)du + #(0) (2.4)

are all examples of linear transformations. Now let us examine the case of the
transform given by the differential equation

da(t) | a(t) _

(t). (2.5)

The integrating factor (see Sect. 1.3.3) is exp(t/T) and

exp(t/T) T 4 exp(t/) D = S fexp(t/ 1))
- exp(t/T)%x(t). (2.6)
This gives
Z(t) = % /0 exp[—(t — u)/T)z(u)du + Z(0) exp(—t/T). (2.7)
In the special case of a constant input xz(¢) = 1, with the initial condition
z(0) =0,
Z(t) = c[1 — exp(—t/T)]. (2.8)

A well-known example of a linear transform is the Fourier series transformation

1 s
Z(s) = —/ x(t) exp(—ist)dt (2.9)
2 J_,
where x(t) is periodic in ¢ with period 27 and s now takes the discrete values
s =0,£1,4£2,.... The inverse of this transformation is the ‘usual’ Fourier series
S§=0C
z(t) = Z Z(s) exp(ist). (2.10)
8§=—00

A periodic function can be thought of as a superposition of harmonic com-
ponents exp(ist) = cos(st) — isin(st) and Z(s), s = 0,%1,+2,... are just the
weights or amplitudes of these components.*

'In the case of a light wave the Fourier series transformation determines the spectrum.
Since different elements give off light of different frequencies the spectrum of light from a star
can be used to determine the elements present on that star.
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2.2 Some Special Functions

2.2.1 The Gamma Function
The gamma function I'(z) is defined by

I'(z) = /000 uw* ! exp(—u)du, for R{z} > 0. (2.11)

It is not difficult to show that
Nz+4+1) = =zM(2), (2.12)
ru = 1. (2.13)

So p! =T'(p+ 1) for any integer p > 0. The gamma function is a generalization
of factorial. Two other results for the gamma function are of importance

N1 —z = mxcosec(nz), (2.14)
227NN (2 + 1) = T(22)(3). (2.15)

From (2.14), T'(3) = \/_ and this, together with (2.12), gives values for all
half-integer values of z

2.2.2 The Heaviside Function
The Heaviside function H(t) is defined by

. 1, ift>0, .10
t) = .
0, ift<O0.

Clearly, as it stands, the Heaviside function does not have much relevance to us
since it is equal to one for all times (¢ > 0) which interest us. However, with
to >0,

1, ift>ty,

H(t —to) = { N (2.17)

0, ift <tg,

is very useful (see Fig. 2.1). It effectively ‘turns on and off’ the integrand in an
integral. Thus, for 0 < a < b,

0, if b < tO;
b b
/ H(t — to)z(t)dt = /f z(t)dt, ifb>to > a, (2.18)
¢ b
/ s(0)dt, it < a.
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H(t — to)

Figure 2.1: The Heaviside function H(t — o).

2.2.3 The Dirac Delta Function

The Dirac Delta function 6°(t) is defined by

5P (t) = dg;t(t). (2.19)

This function is clearly zero everywhere apart from ¢ = 0. At this point it is
strictly speaking undefined. However, it can be thought of as being infinite at
that single point? leading to it often being called the impulse function. In spite
of its peculiar nature the Dirac delta function plays an easily understood role
as part of an integrand.

b b
/5D(t—t0)x(t)dt = /Ww@)dt

b b da(t
= [J{(t — to)x(t)} — / H(t —to) J(Ui(t )dt
a?(t()), if a <ty <b,
= 2.20
{0, otherwise. ( )

The Dirac delta function selects a number of values from an integrand. Thus
for example if a < 0 and b > p, for some positive integer p.

p

b p
/ 2(t) Y 60t —j)dt =Y x(j). (2.21)
a jZO

=0

2More rigorous definitions can be given for this delta function. It can, for example, be
defined using the limit of a normal distribution curve as the width contacts and the height
increases, while maintaining the area under the curve.
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2.3 Laplace Transforms

A particular example of a linear transform?® is the Laplace transform defined by

Z(s) = L{z(t)} = /000 x(t) exp(—st)dt. (2.22)

In this case s is taken to be a complex variable with R{s} > 5, where 7 is
sufficiently large to ensure the convergence of the integral for the particular
function z(t). For later use we record the information that the inverse of the
Laplace transform is given by

1 a-+ioco
z(t) = 3 /aiioo Z(s) exp(st)ds, (2.23)
where @ > 7 and the integral is along the vertical line R{s} = « in the complex
s-plane.

It is clear that the Laplace transform satisfies the linear property (2.1). That
is

L’{clxl (t) + Ccoxo (t)} = 6153‘1(8) + 02522(5). (2.24)
It is also not difficult to show that
1_ /s
L{a(ct)} = <& (E) . (2.25)

We now determine the transforms of some particular function and then derive
some more general properties.

2.3.1 Some Particular Transforms
A constant C.

L{C} = /000 Cexp(—st)dt = %, R{s} > 0. (2.26)

A monomial t?, where p > 0 is an integer. To establish this result use
integration by parts

L{t'} = /OOO tP exp(—st)dt

= _w + p /DO tp—1 exp(—st)dt
S 0 S Jo

p (o)
= / tP~ 1 exp(—st)dt. (2.27)
$Jo

3Henceforth, unless otherwise stated, we shall use Z(s) to mean the Laplace transform of

z(t).
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From (2.27) and the result (2.26) for p = 0, it follows by induction that

p!
L{tr} = R{s} > 0. (2.28)

gpt1’

It is of some interest to note that this result can be generalized to ¢¥, for complex
v with #{v} > 0. Now

(o)
L{t"} :/ t” exp(—st)dt (2.29)
0
and making the change of variable st = u
" L[, My +1)
L{t"} = W/O u” exp(—u)du = Tt R{s} > 0, (2.30)

where the gamma function is defined by (2.11). In fact the result is valid for all
complex v apart from at the singularities v = —1,—-2,... of I'(v 4 1).

The exponential function exp(—at).

L{exp(—at)} = /000 exp[—(s + a)t]dt

= - +1 R} > —R{a). (2.31)

This result can now be used to obtain the Laplace transforms of the hyperbolic
functions

L{cosh(at)} = % [L{exp(at)} + L{exp(—at)}]
i,
2ls—a s+a
= 5 R{s} > [R{a}], (2.32)
and in a similar way
L{sinh(at)} = ﬁ R{s} > |[R{a}], (2.33)

Formulae (2.32) and (2.33) can then be used to obtain the Laplace transforms
of the harmonic functions

L{cos(wt)} = L{cosh(iwt)} =

s
52 4+ w?’

R{s} > |S{w}], (2.34)

w
§2 4+ w?’

L{sin(wt)} = —1L{sinh(iwt)} = R{s} > |S{w}]. (2.35)
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The Heaviside function H(t — tp) with to > 0.

C{H(E 1)} = /0 TRt — 1) exp(—st)dt

/OO exp(—st)ydt = SRS i S0 (2.36)

to S

The Dirac delta function 0°(t —¢9) with to > 0.
L{6°(t —to)} = exp(—sto), R{s} > 0. (2.37)

2.3.2 Some General Properties

The shift theorem.
L{exp(—at)z(t)} = /000 x(t) exp[—(s + a)t]dt (2.38)
— Z(s+a), (2:39)

as long as R{s + o} is large enough to achieve the convergence of the integral.
It is clear that (2.31) is a special case of this result with z(¢t) = 1 and, from
(2.26) T(s) =1/s.

Derivatives of the Laplace transform. From (2.22)

diif) _ /0°° () dr ezr;i—st) a (2.40)
= (=1 /000 tPa(t) exp(—st)dt, (2.41)

as long as the function is such as to allow differentiation under the integral sign.
In these circumstances we have, therefore,
dPL{x(t
L{tPz(t)} = (—1)”%7 for integer p > 0. (2.42)
s

It is clear the (2.28) is the special case of this result with z(t) = 1.

The Laplace transform of the derivatives of a function.

. {dpx(t)} _ /000 Pal)

dtp dtp
dP=1z(t) > < dr—lx(t)
= {W exp(—st)} . +s /0 T exp(—st)dt

_ (Ml—oﬂc{w}' (2.43)

dep—1 dep—1
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It then follows by induction that

c { dzxtit) } — P L{a(t)) — pz:é i1 (dilﬁgt))t_o . (2.44)

The product of a function with the Heaviside function. With ¢y, > 0,
L{eOHE— 1)} = / 2(O)H(E — to) exp(—st)dt
0
= / x(t) exp(—st)dt. (2.45)

to

Making the change of variable u =t — g,
L{x(t)H(t — to)} = exp(—sto)L{x(t + to)}. (2.46)

The product of a function with the Dirac delta function. With ¢y > 0,
L{x(t)d"(t —to)} = x(to) exp(—sto), (2.47)

The Laplace transform of a convolution. The integral
t
/ x(w)y(t —u)du (2.48)
0
is called the convolution of x(t) and y(t). It is not difficult to see that
t t
/ x(u)y(t —u)du = / y(u)z(t — u)du. (2.49)
0 0
So the convolution of two functions is independent of the order of the functions.
t e’} t
L {/ x(u)y(t — u)du} z/ dt/ duz(u)y(t — u) exp(—st). (2.50)
0 0 0
Now define
A t
Zx(s) z/ dt/ du z(u)y(t — u) exp(—st). (2.51)
0 0

The region of integration is shown in Fig. 2.2. Suppose now that the functions
are such that we can reverse the order of integration® Then (2.51) becomes

A A
Zx(s) :/0 du/ dt z(u)y(t — u) exp(—st). (2.52)

4To do this it is sufficient that z(t) and y(t) are piecewise continuous.
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Figure 2.2: The region of integration (shaded) for Z(s).

Now make the change of variable t = u 4+ v. Equation (2.52) becomes
A A—u
In(s) = / du z(u) exp(—su) / dvy(v) exp(—sv). (2.53)
0 0

Now take the limit A — oo and, given that x(t), y(¢) and s are such that the
integrals converge it follows from (2.50), (2.51) and (2.53) that

c { /0 ()l — u)du} = 5(s)5(s). (2.54)

A special case of this result is when y(t) = 1 giving 7(s) = 1/s and

c {/Otx(u)du} - @ (2.55)

The results of Sects. 2.3.1 and 2.3.2 are summarized in Table 2.1

2.3.3 Using Laplace Transforms to Solve Differential
Equations

Equation (2.44) suggests a method for solving differential equations by turning
them into algebraic equations in s. For this method to be effective we need
to be able, not only to solve the transformed equation for Z(s), but to invert
the Laplace transform to obtain xz(¢). In simple cases this last step will be
achieved reading Table 2.1 from right to left. In more complicated cases it
will be necessary to apply the inversion formula (2.23), which often requires
a knowledge of contour integration in the complex plane. We first consider a
simple example.

Example 2.3.1 Consider the differential equation

B(t) +2wd(t) +wa(t) = 0. (2.56)
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Table 2.1: Table of particular Laplace transforms and their general

properties.
Cp! )
Ct? pere p > 0 an integer, R{s} > 0.
v r(l/ + 1)
¢ — A v —1,-2,-3,.., R{s} > 0.
1
exp(—at) P R{s} > R{al.
s
cosh(at) o R{s} > |R{a}|.
. o
sinh(at) P R{s} > [R{a}|.
5 x
cos(wt) T R{s} > |S{w)].
sin(wt) v Ris} > [S{w)].
52+ w?

C1]J1(t) —+ coxo (t)

c1T1 (8) + CQi‘Q(S)

The linear property.

z(ct) (1/e)x(s/c)
exp(—at)x(t) Z(s+ o) The shift theorem.
d?z(s) .
p
tPx(t) (-1) P p > 0 an integer.
d”z(t) P S i () >0 an int
T sPx(s) — Zs ), p > 0 an integer.

2 (£)F(t — to)

to > 0, where z1(t) = z(t + to).

2(£)6° (t — to)

to >0

/Ot z(uw)y(t — u)du

The convolution integral.
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This is the case of a particle of unit mass moving on a line with simple harmonic
oscillations of angular frequency w, in a medium of viscosity {w. Suppose that
x(0) = xo and ©(0) = 0. Then from Table 2.1 line 12

L{E(t)} = s*T(s) — sxo,

(2.57)
L{#(t)} = s2(s) — o-
So the Laplace transform of the whole of (2.56) is
Z(s)[s* + 28ws + w?] = w0 (s + 2¢w). (2.58)
Giving
3(s) = — Jols +2w) (2.59)

(s +&w)* +w?(1—-¢2)

To find the required solution we must invert the transform. Suppose that £2 < 1
and let 02 = w?(1 — £2).5 Then (2.59) can be re-expressed in the form

_ s+ &w Ew
= . 2-
Fls) =0 [(s TEr 10 st 02} (260
Using Table 2.1 lines 6, 7 and 10 to invert these transforms gives
z(t) = xzg exp(—E&wt) [cos(@t) + %u sin(@t)] . (2.61)

Let ¢ = £w/0 and defined ¢ such that tan(¢) = ¢. Then (2.61) can be expressed
in the form

z(t) = 2o/ 1 + (2 exp(—&wt) cos(0t — ). (2.62)

This is a periodic solution with angular frequency € subject to exponential
damping. We can use MAPLE to plot x(t) for particular values of w, £ and x¢:

> theta:=(omega,xi)->omega*sqrt (1-xi~2);
0:=(w, &) »>wy1—-¢2

> zeta:=(omega,xi)->xi*omega/theta(omega,xi);

Ew

> phi:=(omega,xi)->arcsin(zeta(omega,xi));

¢ = (w, §) — arcsin(¢(w, &))

5The case of a strong viscosity is included by taking @ imaginary.
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> y:=(t,omega,xi,x0)->x0xexp(-xi*omega*t)/sqrt(1-(zeta(omega,xi))~2) ;#

20 e(=Ewt)

Y= (t,w, &, IO)%W

> x:=(t,omega,xi,x0)->y(t,omega,xi,x0)*cos(theta(omega,xi)*t-phi(omega,xi));

z:=(t w, & 20) = y(t, w, & 20) cos(0(w, §) t — ¢(w, §))

> plot(

> {y(t,2,0.2,1),-y(t,2,0.2,1),x(t,2,0.2,1)},t=0..5,style=[point,point,line]);

1

0.5-

Suppose that (2.56) is modified to
F(t) 4+ 26w (t) + w? x(t) = f(t). (2.63)

In physical terms the function f(t) is a forcing term imposed on the behaviour
of the oscillator. As we saw in Sect. 1.4, the general solution of (2.63) consists of
the general solution of (2.56) (now called the complementary function) together
with a particular solution of (2.63). The Laplace transform of (2.63) with the
initial conditions z(0) = xo and #(0) = 0 is

T(s)[s% + 26ws + w?] = 2o (s + 2&w) + f(s). (2.64)
Giving

(5t ew)? w21 —€) ' (s 1 &) + w2l — &)
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Comparing with (2.59), we see that the solution of (2.63) consists of the sum of
the solution (2.62) of (2.56) and the inverse Laplace transform of

e f(s)

From Table 2.1 lines 7, 10 and 15
1 t
zp(t) = 9 / f(t —u) exp(—&wu) sin(Qu)du. (2.67)
0

So for a particular f(¢) we can complete the problem by solving this integral.
However, this will not necessarily be the simplest approach. There are two other
possibilities:

(i) Decompose Zp(s) into a set of terms which can be individually inverse-
transformed using the lines of Table 2.1 read from right to left.

(ii) Use the integral formula (2.23) for the inverse transform.

If you are familiar with the techniques of contour integration (ii) is often the most
straightforward method. We have already used method (i) to derive (2.60) from
(2.59). In more complicated cases it often involves the use of partial fractions.
As an illustration of the method suppose that

f(t) = Fexp(—at), (2.68)
for some constant F. Then, from Table 2.1,
Ip(s) = F (2.69)
P (st a)[(s + Ew)2 + 67 '

Suppose now that (2.69) is decomposed into

A B(s+&w)+CH
(s +a) (s +&w)2+62 "

Tp(s) =
Then
xp(t) = Aexp(—at) + exp(—&wt)[B cos(0t) 4+ Csin(0t)]. (2.71)

(2.70)

It then remains only to determine A, B and C. This is done by recombining
the terms of (2.70) into one quotient and equating the numerator with that of
(2.69). This gives

s%(A +B) + s[2A fw + B(éw + a) + CH)

+A 0%+ Béwa + Cha + AL%w? =F. (2.72)
Equating powers of s gives
F
= —B = —
A 2fwa — a2 — 02 — 202’ 573
C— Féw — «) (2.73)

C0(28wa — a? — 02 — £202)°
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In general the Laplace transform of the n-th order equation with constant coef-
ficients (1.40) will be of the form

(s)d(s) —w(s) = f(s). (2.74)

where ¢(s) is the polynomial (1.43) and w(s) is some polynomial arising from
the application of line 12 of Table 2.1 and the choice of initial conditions. So

w(s) | f(s)

Z(s) = + —=. 2.75
)= 56 T ) (279)
since the coefficients ag, a1, ..., a,_1 are real it has a decomposition of the form
m 4
¢(s) = [[(s+ay) {H[(S+6T)2+%2]}, (2.76)
j=1 r=1
where all a;, j =1,2,...,m and ,, 7, 7 =1,...,£ are real. The terms in the

first product correspond to the real factors of ¢(s) and the terms in the second
product correspond to conjugate pairs of complex factors. Thus m + 2¢ = n.
When all the factors in (2.76) are distinct the method for obtaining the inverse
transform of the first term on the right of (2.75) is to express it in the form

w(s) &~ A, L B.(s+5B)+Cs
o) " ira T AR @77)

Jj=1

Recombining the quotients to form the denominator ¢(s) and comparing co-
efficients of s in the numerator will give all the constants A;, B, and C,. If
;= Qg1 = -+ = Q4p—1, that is, ¢(s) has a real root of degeneracy p then
in place of the p terms in the first summation in (2.77) corresponding to these
factors we include the terms

p (i)
2.
Z S+aj (2.78)

=1

In a similar way for a p-th fold degenerate complex pair the corresponding term
is

>

=1

(@) (i)
BJ( s+ 5)+ G (2.79)

5"'5] ""Y]Q']i .

Another, often simpler, way to extract the constants A;i) in (2.78) (and A; in
(2.77) as the special case p = 1) is to observe that

s a,p@ = p s+a;)P AW
( + ]) ¢(8) 2::( + ]) AJ

=1
+ (s + a;)P x [terms not involving (s + «;)].  (2.80)
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Thus

A0 - 1 _ [ @ ((s + aj)f’w(s)ﬂs_aj . i=1,..p  (281)

ST 0! [ o(s)

and in particular, when p = 1 and —¢; is a simple root of ¢(s),

A= [(s + aj)%] . (2.82)

Once the constants have been obtained it is straightforward to invert the Laplace
transform. Using the shift theorem and the first line of Table 2.1

4 1 _ exp(—at)t !
£ {<s+a>i}‘ - (283)

This result is also obtainable from line 11 of Table 2.1 and the observation that

L _(yrd ( L ) (2.84)

(s+a) (GE—-1)!ds I \s+a

The situation is somewhat more complicated for the complex quadratic factors.
However, the approach exemplified by (2.84) can still be used.® As we saw in
the example given above. The second term of the right hand side of (2.75) can
be treated in the same way except that now f(s) may contribute additional
factors in the denominator. Further discussion of Laplace transforms will be in
the context of control theory.

2.4 The Z Transform

Equations (2.9) and (2.10), which define the Fourier series transform, are an
example of a transform from a function of a continuous variable to a function of
a discrete variable. The Z transform is similar to this except that we normally
think of it as a transformation from a sequence, that is a function z(k) of a
discrete time variable kK = 0,1,2, ..., to its transform Z(z), which is a function
of the continuous variable z. The definition of the transform is

#(2) = Z{z(k)} = 2(0) + 2(1)z" + 2(2)z72 +-- -, (2.85)

where conditions are applied to z to ensure convergence of the series. Again, for
later reference, we record the fact that, as a consequence of Cauchy’s theorem,
the inverse of the transform is

x(k) L]{Czk_lj(z)dz, (2.86)

~ %ir

6We just have to be more careful because differentiation throws up linear terms in s in the
numerator.
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where the integration is anticlockwise around a simple closed contour C' enclos-
ing the singularities of Z(z). It is clear that this transform satisfies the linearity
property (2.1) since

Z{cix1 (k) + cawa(k)} = [c12(0) 4+ cowa(0)] + [cr2(1) + caza(1)]z7F
+ [12(2) + com2(2)]272 +
= 1 (Z) + CQ.%Q(Z). (287)

Just as in the case of the Laplace transform we determine the Z transform of
some particular sequences and derive some more general properties.

2.4.1 Some Particular Transforms

A number of particular transforms can be derived from

z

Z{a"} =1+az ' +ad®22+a273 ... = Pt |z| > |a|. (2.88)
Thus
Z{C} = ZC_Zl, 2| > 1, (2.89)
Z{exp(—ak)} = #p(_a), 2] > exp (—R{a}). (2.90)
Also
Z{cosh(ak)} = 3 [Z{exp(ak)} + Z{exp(—ak)}]

- el s ea(Ri) oy

and in a similar way

z sinh(a)

ZlsmbaR) = s eo(Rla)), (292
2eosr} = s ep(sgl). (29
Z{sin(wh)} = —250E) 2> exp (IS{w}) . (2.94)

22 — 2zcos(w) + 1’

Other important results can be derived from these using the general properties
derived below. The Kronecker delta function §¥*(k) is defined in (1.149). With
m > 0, the terms of the sequence 6¥"(k —m), k = 0,1,... are all zero except
that for which & = m, which is unity. Thus

Z{%(k —m)} = Zim m > 0. (2.95)
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2.4.2 Some General Properties

For p >0

Z{z(k+p)} = z@)+ap+Dz " +a(p+2)2+ -
= zpa?(z)—‘ x(j)2P. (2.96)

[}

If we continue the sequence to negative indices by defining (k) = 0if k¥ < 0
then

Z{z(k—p)} = 20)zP+2(1)z P +2(2)zP %4
= z7P%(2). (2.97)

As a generalization of (2.88)

Z{a*z(k)} = 2(0)+ax(l)z™! +ax(2)z7 2+
= 2(0) +2(1)(z/a)" +2(2)(z/a) "2 + - -
= Z(z/a). (2.98)

With the result

Z{kz(k)} = z(1)z7'+22(2)27 2 +32(3)2 3 + - -

(2.99)

= —z
formulae for any derivative of the Z transform can be derived. Consider now

i(z) = 2(0)+x()z +2(2)2z 2 +2(3)z 2+, (2.100)
G(z) = y0)+y(L)zt +y(2)z72 +y(3)z 2 +---. (2.101)

The coefficient of z=* in the product #(2)§(z) is

) +x(2)y(k=2) + -

2(O)y(k) + 2 (D)y(k — 1 2
+az(k—1y(1) + z(k)y(0) (2.102)
So
k
z { z(7)y(k — j)} = I(2)y(z). (2.103)
j=0

This is the Z transform analogue of the convolution formula (2.55). The results
of Sects. 2.4.1 and 2.4.2 are summarized in Table 2.2.

2.4.3 Using Z Transforms to Solve Difference Equations

This is most easily illustrated by giving some examples
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Table 2.2: Table of particular Z transforms and their

general properties.

Cat Zc_za 2] > |al.
exp(—ak) m 2| > exp (—R{a}).
cosh(ak) po> Z_[ZQ;C(;ZZh(EIO;)L T |z| > exp (|R{a}]).
sinh(ak) o ;;LI;};}(I?L) 1 |z| > exp (|R{a}]).
cos(u) el I T (1)
sin(wk) " ;;E;S(JBJ) — 12| > exp (|S{w}]).

55 (s — m) Zim m>0

c1T1 (k’) + ca2x2 (k’)

c17%1 (Z) + 025:2(7:)

The linear property.

a”z(k) %(z/a)
p—1 )
z(k +p) 2PE(2) — Zx(j)z(”_]) p > 0 an integer.
3=0
z(k —p) 2 PE(2) p > 0 an integer.
(x(k)=0,k<0)
dz(z)
kx(k) 2=
k
Z z(j)y(k —7) 2(2)§(2) The convolution formula.
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Example 2.4.1 Solve the difference equation

z(k+2)+ 5z(k+1) + 62(k) =0, (2.104)
subject to the conditions z(0) = «, z(1) = 5.
From (2.96)

Z{x(k+2)} = 223(2) — az? — Bz,

(2.105)

Z{x(k+ 1)} = 22(2) — az,
So transforming (2.104) gives

#(2)[z2 + 52 + 6] = az® + (B + 5a)z (2.106)
and thus

#(2) = = {%] (2.107)
giving

#(z) = Z(ia:f ) _ Z(iajf ). (2.108)
Inverting the transform using line 1 of Table 2.2

z(k) = [Ba + B](—2)" — [2a + B](—3). (2.109)

The method can also be used to study systems of difference equations. This is
an example based on a simple model for the buffalo population in the American
West starting in the year 1830.7

Example 2.4.2 Let z(k) and y(k) be the number of female and male buffalo
at the start of any one year (k = 0 is 1830). Five percent of adults die each
year. Buffalo reach maturity at two years and the number of new females alive
at the beginning of year k + 2, taking into account infant mortality, is 12% of
x(k). More male calves than female are born and the corresponding figure is
14% of (k). Show that in the limit k& — co the population grows by 6.3% per
year.
The difference equations are
z(k+2) = 0.95z(k + 1) + 0.12z(k), (2.110)
y(k +2) =0.95y(k + 1) + 0.14x(k).

Applying the Z transform to these equations and using z(0) = zo, (1) = z1,
y(0) = yo and y(1) =y
225(2) — w022 — w12 = 0.95[23(2) — zx0] + 0.127(2),

(2.111)
224(2) — yoz? — y12 = 0.95[29(2) — zyo] + 0.143(2)

TTaken from Barnett and Cameron(1985) p. 21.
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Since we are interested only in the long-time behaviour of the total population
p(k) = z(k) + y(k) we need extract simply the formula for p(z) from these
equations. With pg = g + yo, p1 = 21 + 11

(poz + p1 — 0.95pg) 0.26(x0z + x1 — 0.95x0)

PE) =2 = 505) (- —095) (7 — 095, —0.12) | * >112)

The reason for retaining the factor z in the numerators (with a consequent z in
the denominators) can be seen by looking at the first line of Table 2.2. Factors
of the form z/(z — a) are easier to handle than 1/(z — a). We now resolve the
contents of the brackets into partial fractions. You can if you like use MAPLE
to do this. The code is

> convert (0.26% (x0%z+x1-0.95*x0) / (z*(2-0.95) *(z~2-0.95%2-0.12) ) ,parfrac,z);

1.958625701 0 — 1.842720774 z1  —2.280701754 1 4 2.166666667 20

z +.1128988008 z
1058808501 1078 20 + 2.280701750 z1 " .2080409669 z0 + 1.842720770 z1
z — 9500000000 z — 1.062898801

> convert ((pO*z+pl-0.95%p0) / (z*(z-0.95)) ,parfrac,z);

pl —1.052631579 p1 + p0

1052631579 z — 9500000000 z

Thus we have
2(1.053p; — 2.281x1)

p(z) = (po—1.053p; — 2.16Txg + 2.281x1) + 005
2(1.959z¢ — 1.843z1)  2(0.208x0 + 1.843x1) (2.113)
z+0.113 z —1.063 '
and inverting the transform using lines 1 and 7 of Table 2.2 gives
p(k) = (po—1.053p; — 2.167zo + 2.281x1)5%7(0)
+ (1.053p; — 2.28121)(0.95)"
+(1.95920 — 1.84321)(—0.113)"
+ (0.2080 + 1.843x1)(1.063)*. (2.114)
In the limit of large & this expression is dominated by the last term
p(k) ~ (0.208z¢ + 1.843x;)(1.063)". (2.115)
The percentage yearly increase is
1) —
pli+ 1) =ptk) 00— g3 (2.116)

p(k)
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Problems 2

1) Show, using the standard results in the table of Laplace transforms, that:

2ws
(w2 + s2)2°

(i) L{tsin(wt)} =

23

(Ld2 + 52)2 !

Hence solve the differential equation

(i) L£{sin(wt) — wtcos(wt)} =

#(t) + w?x(t) = sin(wt),
when z(0) = £(0) = 0.
2) Use Laplace transforms to solve the differential equation

d3z(t) B
EPTER +a(t) =1,
where z(0) = £(0) = #(0) = 0.

3) Given that x(t) = —t and

)
y(S) - (8 _ 1)27

find y(t).

4) Show using your notes that

L{t™2} = VT

1
S2

The error function Erf(z) is defined by

Erf(z) = % /02 exp(—u?)du.

Show that

1 1
LIErf(t2)p = ———.
{ rf( )} S5t 1)
5) Find the sequences x(0),z(1),x(2),... for which Z{x(k)} = Z(z) are:
z

O ey
(i) 5=

22 4+ a2’
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Lo 2222241

(lll) T

6) Use the Z transform to solve the following difference equations for k& > 0:
(i) 8z(k+2) — 6x(k+ 1) + 2(k) = 9, where 2(0) = 1 and z(1) = 3,
(ii) x(k 4 2) + 22(k) = 0, where (0) = 1 and z(1) = v/2.

7) A person’s capital at the beginning of year k is z(k) and their expenditure
during year k is y(k). Given that these satisfy the difference equations

x(k+1) = 1.5z(k) — y(k),
y(k +1) =0.21z(k) + 0.5y(k)

Show that in the long time limit the person’s capital changes at a rate of
20% per annum.



Chapter 3

Transter Functions and
Feedback

3.1 Introduction

Linear control theory deals with a linear time-invariant system having a set of
inputs {ui(t), ua(t), ...} and outputs {x1(t), x2(t),...}. The input functions are
controlled by the experimenter, that is, they are known functions. The aim of
control theory is to

(i) Construct a model relating inputs to outputs. (Usually differential equa-
tions for continuous time and difference equations for discrete time.) The
time invariant nature of the system implies that the equations are au-
tonomous.

(ii) Devise a strategy for choosing the input functions and possibly changing
the design of the system (and hence the equations) so that the output have
some specific required form. If the aim is to produce outputs as close as
possible to some reference functions {pi(t), p2(t),...} then the system is
called a servomechanism. If each of the reference functions is constant the
system is a regulator.

Consider, for example, the simple case of one input function u(¢) and one output
function x(t) related by the differential equation

qn O gt Wqp T
d™u dm 1y du
g R S pun— R — , 1
b g +b Vgt T +b1dt + bou (3.1)

99
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and with
di
(d;) -0, i=0,1,....n—1,
"y t=0 (3.2)
(—) =0, j=0,1,....,m—1.
e J,_,
Now taking the Laplace transform of (3.1) gives
¢(s)7(s) = P(s)u(s), (3.3)
where
(s) = 8" +a,_18"" L+ +ais + ag,
(3.4)
P(8) = 8™ + byp_18™ L+ -+ + bys + by.
(Cf (1.43).) Equation (3. 3) can be written
Z(s) = G(s)u(s), (3.5)
where
G(s) = L) (3.6)

o(s)
is called the transfer function. This system can be represented in block dia-
grammatic form as

Input @(s) Output z(s)

G(s)

Three simple examples of transfer functions are:

(i) Proportional control when

x(t) = Ku(t), (3.7)
where K is a constant. This gives

G(s) =K. (3.8)

(ii) Integral control when

t
2(t) = / K u(r)dr, (3.9)
0
where K is a constant. This gives!
K
G(s) = " (3.10)

!From the last line of Table 2.1 with y(t) = 1, g(s) = 1/s.
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(iii) Differential control when

du(t)
t)=K 3.11
r(t) =k 0, (3.11)
where K is a constant and «(0) = 0. This gives
G(s) =Ks. (3.12)

3.2 Systems in Cascade

If the output variable (or variables) are used as control variables for a second
system then the two systems are said to be in cascade. For the one control
function/one output function case the block diagram takes the form

a(s)

———Gs(s)

z(s) y(s)

Gl(s) >

with equations
I(s) = Ga(s)u(s),
y(s) = Gi(s)Z(s),

where G1(s) is called the process transfer function and Ga(s) is called the con-
troller transfer function. Combining these equations gives

y(s) = G(s)u(s), (3.14)
where

G(s) = G1(s)Ga(s) (3.15)

(3.13)

and the block diagram is

u(s) y(s)

B

For many-variable systems the z-variables may be large in number or difficult to
handle. The y-variables may then represent a smaller or more easily accessible
set. Thus in Example 2.4.2 the two x-variables could be the numbers of males
and females. I don’t know a lot about buffalo, but in practice it may be difficult
to count these and the sum of the two (the whole population) may be easier to
count. Thus the second stage would be simply to sum the populations of the
two sexes.
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Example 3.2.1 We want to construct a model for the temperature control of
an oven.

Let the control variable u(t) be the position on the heating dial of the oven
and suppose that this is directly proportional to the heat x(¢) supplied to the
oven by the heat source. This is the situation of proportional control with
x(t) = Kyu(t). Let the output variable y(t) be the temperature difference at
time ¢ between the oven and its surroundings. Some of the heat supplied to the
oven will be lost by radiation; this will be proportional to y(¢). So the heat used
to raise the temperature of the oven is x(t) — Koy(t). According to the laws of
thermodynamics this is Q¢(t), where Q is the heat capacity of the oven. Then
we have

z(t) = Kuu(t), (3.16)
Qi)+ Kaylt) = a(t) (3.17)

Suppose that the oven is at the temperature of its surroundings at t = 0. Then
the Laplace transforms of (3.16)—(3.17) are

z(s) = Kyu(s), (3.18)
(sQ +Ka)y(s) = z(s) (3.19)

with block diagram

CUNENT ) IEUR e

From (3.18)—(3.19)

a Q8+K2

Suppose the dial is turned from zero to a value ug at t = 0. Then, remembering
that we always assume ¢ > 0, u(t) = ug and a(s) = ug/s. So

y(s) (s). (3.20)

(s) = 8(557_]?](2) (3.21)
Using partial fractions this gives

3(6) = w0 (1 - %) | (3.22)
where T = Q/Kq. Inverting the Laplace transform gives

y(t) = uom -1 — exp(—t/T)]. (3.23)

Kz
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Suppose now that the proportional control condition (3.16) is replaced by the
integral control condition

2(t) = Ky /0 u(r)dr. (3.24)

giving in place of (3.18)

Z(s) = — a(s). (3.25)
The formula (3.20) is now replaced by

Ky

j(s) = Qs £ Ka) a(s). (3.26)

If we now use the form u(t) = ug this is in fact equivalent to z(t) = K ugt which
implies a linear buildup of heat input over the time interval [0, ¢]. Formula (3.21)
is replaced by

U()K1

g(s) = ————. 3.27
7) = 51 (3.27)
Resolving into partial fractions gives
Ky /1 T T
g(s) =up— [ = — — + —— ), 3.28
y(S) UOKQ <52 s + T—l + S) ( )
where, as before, T = Q/K,. Inverting the Laplace transform gives
Ky [ ¢
y(t) = up—— | = — 1+ exp(—t/T)| . (3.29)
Ko |T

We now use MAPLE to compare the results of (3.23) and (3.29) (with uoK;/Kz =
1, T=2).

> plot({t-2+2xexp(-t/2),1-exp(-t/2)
> },t=0..5,style=[point,line]);
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It will be see that with proportional control the temperature of the oven reaches
a steady state, whereas (if it were allowed to do so) it would rise steadily with
time for the case of integral control.

3.3 Combinations and Distribution of Inputs

In some cases, particularly in relation to feedback, we need to handle sums
or differences of inputs. To represent these on block diagrams the following
notation is convenient:

u(s) u(s)

ﬂz(s)

means 1 (s) + aa(s) = u(s).

77,1 (S)

ﬂz (S)

means 4 (s) — tz(s) = a(s).
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We shall also need to represent a device which receives an input and transmits
it unchanged in two (or more) directions. This will be represented by

y(s) y(s)

<

—
3

N

A simple example of the use of this formalism is the case where equations (3.13)
are modified to

(3.30)

The block diagram is then

()
G3(s)
Zo(s)
w), T (R T

3.4 Feedback

Feedback is present in a system when the output is fed, usually via some feedback
transfer function, back into the input to the system. The classical linear control
system with feedback can be represented by the block diagram
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The equations relating parts of the system are
f(s) = H(s)y(s),
a(s) = (s) — f(s), (3.31)
y(s) = G(s)o(s).

Eliminating f(s) and o(s) gives

§(s) = — 20

=TT GG u(s). (3.32)

Example 3.4.1 We modify the model of Example 3.2.1 by introducing a feed-
back.

The block diagram for this problem is obtained by introducing feedback into
the block diagram of Example 3.2.1.

u(s) N (s) E z(s) Qs-1-K2 y(s) y(s)
f(s) y(s)
H(s)

From (3.20)

oy K

g(s) = 15 o(s) (3.33)
and

o(s) = u(s) — H(s)y(s). (3.34)
Giving

_ Ky _

y(s) u(s). (3.35)
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To complete this problem we need to make some assumptions about the nature
of the feedback and we must also know the form of u(t). Suppose as in Example
3.2.1 u(t) = wo, giving u(s) = up/s and assume a proportional feedback. That
is H(s) = H, a constant. Then

uoKy

y(s) = s[Qs + (Ko + HKy)”

Comparing with equations (3.21)—(3.23) we see that the effect of the feedback
is to replace Ko by Ko + HK;. The solution is therefore

(3.36)

1 !

t) = ug——s—[1 — exp(—t/T .
(®) = g 1 - exp(—t/T') (3.37)
where T = Q/(Kz + HKy). With HK; > 0, T" < T, so the feedback promotes
a faster response of the output to the input. A typical case is that of unitary
feedback where H(s) = 1.

Example 3.4.2 We have a heavy flywheel, centre O, of moment of inertia
I. Suppose that P designates a point on the circumference with the flywheel
initially at rest and P vertically below O. We need to devise a system such that,
by applying a torque Ku(t) to the wheel, in the long-time limit OP subtends an
angle y* with the downward vertical.

Ku(t)

The equation of motion of the wheel is

d2y
Let ] = I/K and take the Laplace transform of (3.38). Remembering that

y(0) =5(0)=0
g(s) = J%ﬂ(s) (3.39)

and the block diagram is
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u(s) 1 y(s)
Js2

Suppose that the torque is u(t) = wo. Then 4(s) = wuo/s and inverting the
transform
Up ,o
t) = —t*. 3.40
TORES (3.40)
The angle grows, with increasing angular velocity, which does not achieve the

required result. Suppose now that we introduce feedback H(s). The block
diagram is modified to

u(s) oY o(s) %2 y(s) y(s)

B

With a unitary feedback (H(s) = 1)

Js?5(s) = als) — g(s), (3.41)
Again with u(t) = up this gives

_ U () UpS

y(s) = 020 s SZi)T (3.42)

Inverting the Laplace transform this gives
y(t) = ug[l — cos(wot)], (3.43)

where wo = 1/4/]. Again the objective is not achieved since y(t) oscillates about
ug. Suppose we now modify the feedback to

H(s) =1+ as. (3.44)
Then

Js*g(s) = als) — y(s)(1 + as) (3.45)
and with u(t) = uo this gives

_ ug _w (s + sawd) + 2awd 346
= - o () 1 2\2 9 ( . )
s(Js?2+as+1) s (s + sawg)? +w

y(s)
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where w? = w§ — Ya®wg. Inverting the Laplace transform this gives

y(t) = uo {1 —exp (—2atw]) |cos(wt) + ‘;—? sin(wt)} } : (3.47)

As t — oo y(t) — uo.2 So by setting up = y* we have achieve the required
objective. From (3.44), the feedback is

F(t) = adi’i—(tt) Ly, (3.48)
Problems 3

1) For the system with block diagram

u(s K y(s
(s) A\ T y(s)
show that
o Ka(s)
y(S)_82+QS+K

Given that u(t) = ug, where ug is constant, show that
(i) when K — Q% =w? >0,
1 ‘ Q .

y(t) = uo {1 — exp (—EQt> {co&(wt) + o sln(wt)H ,

(ii) when 1Q? —K=¢%>0,
1
y(t) =uo {1 ~ 3¢ &P (—%Qt) {[3Q+ Jexp(Ct) = [3Q — Jexp(=¢t)} ] -
2) For the system with block diagram

2The term involving exp (f%atwg) is known as the transient contribution.
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show that

s2+s(Ha+ Q) +Hy '

y(s) =

(Hint: Put in all the intermediate variables, write down the equations associ-
ated with each box and switch and eliminate to find the relationship between

u(s) and §(s).)

Discrete time systems, where input u(k) is related to output (response) y(k)
by a difference equation can be solved by using the Z transform to obtain a
formula of the type §(z) = G(z)u(z), where G(%) is the discrete time version
of the transfer function. For the following two cases find the transfer function

(i) y(k) = 2y(k —1) = u(k - 1),
(i) y(k) +5y(k—1)+6y(k —2) =u(k—1) + u(k — 2).

Obtain y(k), in each case when u(k) =1 for all k.



Chapter 4

Controllability and
Observability

4.1 Introduction

In Sect. 3.1 we introduced a system with inputs {u;(t), uz(t),...} and outputs
{z1(t), z2(t),...}. In Sect. 3.2 this was modified to take into account the fact
that the number of x-variables may be large or be difficult to handle. They may
also include unnecessary details about the system. If the z-variables are now
renamed state-space variables a new, possibly smaller, set {y1(t),y2(t),...} of
output variables can be introduced. In terms of transfer functions this situation
is represented by systems in cascade with one set of equations relating input
variables to state-space variables and a second set relating state-space variables
to output variables. The Laplace transformed equations for one variable of each
type are (3.13). In general if there are m input variables n state-space variables
and r output variables we need a matrix formulation to specify the system. The
most general form for a linear system with continuous time is

@(t) = A®)z(t)+ B(t)u(t), (4.1)

y(t) = C)z(t), (4.2)

where u(t) is the m-dimensional column vector of input variables, x(t) is the
n-dimensional column vector of input variables and y(t) is the r-dimensional
column vector of output variables. The matrices A(t), B(t) and C(t) are re-
spectively n x n, n x m and r x n. Equation (4.1) is a system of n first-order
differential equations. They will be equations with constant coefficients if the
elements of the matrix A are not time-dependent. The control system repre-
sented by the pair of equations (4.1) and (4.2) is said to be a constant system if
none of the matrices A, B and C is time-dependent.

The concentration on first-order differential equations is not a serious re-
striction. As we saw in Sect. 1.5, a single n-th order differential equation can

71
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be replaced by an equivalent set of n first-order equations. In a similar way
a number of higher-order differential equations could be replaced by a larger
number of first-order equations.

A simple case would be the problem of Example 3.4.2. Let z1(¢) = y(¢) and
x2(t) = y(t). Then,

y(t) = c'=(t) (4.3)
and, from (3.48),

7(t) = ava(t), (4.4)
where

(4.6)
do(t) =] o(t) = ] u(t) — (1)),
giving
(t) = Ax(t) + bu(t), (4.7)
where
0 0 1
b - ( ) X:( ) ws)
]t 0 0
0 1
4 - X_baT:< ) w9)
_]71 _alfl

Equations (4.3) and (4.7) are a particular case of (4.1) and (4.2) withm =r =1
and n = 2.

4.2 The Exponential Matrix

We shall now concentrate on the solution of (4.1) for a constant system. That
is

(t) = Az(t) + Bu(t). (4.10)
We can define the exponential matriz exp(At) by the expansion

1

k Ak
AR (4.11)

1
exp(At) :I—|—tA—|—§t2A2_|_..._|_
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and it then follows, as is the case for a scalar (1 x 1 matrix) A, that
d exp(At)
dt
Then (4.10) can be transformed by premultiplication by exp(—At) into the form
dexp(—At)x(t)
dt

This is, of course, equivalent to exp(—At) being the integrating factor for (4.10)
(see Sect. 1.3.3), except that here, since we are dealing with matrices, the order
of the terms in any product is important. Integrating (4.13) gives

= exp(At)A. (4.12)

= exp(—At)Bu(t). (4.13)

x(t) = exp(At) {m(O) + /Olexp(—AT)Bu(T)dT . (4.14)

Of course, this formula is of practical use for determining x(¢) only if we have
a closed-form expression for exp(At). One case of this kind would be when
A has a set of n distinct eigenvalues A?), j = 1,2,...,n and we are able to
calculate all the left eigenvectors pl/) and right eigenvectors ¢\/), which satisfy
the orthonormality condition (1.148).! Then the matrix P formed by having
the vectors [p(j)]T (in order) as rows and the matrix @ formed by having the
vectors qU) (in order) as columns satisfy the conditions

P = Q' (4.15)
PAQ = A, (4.16)

where A is the diagonal matrix with the eigenvalues (in order) as diagonal
elements. Then

1 1
exp(At) = I+tQAP+ t*(QAP)" + -+ Etk(QAP)k L
1 1
= Qexp(AD)P, (4.17)

where exp(At) is the diagonal matrix with diagonal elements exp(A\)t), j =
1,2,...n (in order).

The problem with this method is that it involves calculating (or using
MAPLE to calculate) all the eigenvalues and the left and right eigenvectors.
It is also valid only when all the eigenvalues are distinct, so that the left and
right eigenvectors are orthonormalizible. We now develop a method of obtaining
exp(At) as a polynomial in A which depends only on deriving the eigenvalues
and which is valid even if some are degenerate. The characteristic equation of
Ais

A(N) =0, (4.18)

1We have changed the letters from those used in Sect. 1.6.2 to avoid a clash with present
usage.
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where
AA) =Det{AI — A} = X"+ ap 1 X" 4 +ard +ao (4.19)

is called the characteristic polynomial. The zeros of A()\) are the eigenvalues of
A. Suppose that the eigenvalues are A A A where A9 is u()-fold
degenerate. Then

S0 (4.20)
j=1
and
‘ M(j),l
A()\(J)): (M) =... = w =0,
Ao dar = A (D)

i=12....m (4.21)

An important result of linear algebra is the Cayley-Hamilton Theorem. This
asserts that A satisfies its own characteristic equation. That is

A(A)= A"+ a, 1 A" - A+ ol = 0. (4.22)

This is easily proved when (4.15) and (4.16) are valid (no degenerate eigenvalues,
p;=1,for j=1,2,...,m). Then

A = QAP, (4.23)
A® = QA°P, s=1,2,... (4.24)

and
A(A) = QA" + a1 A"+ -+ a1 A + o] P. (4.25)

Since the eigenvalues satisfy the characteristic equation, the matrix obtained
by summing all the terms in the square brackets has every element zero, which
establishes the theorem. The result still holds for repeated eigenvalues but the
proof is a little longer. An important result for our discussion is the following:

Theorem 4.2.1 The power series for exp(zt) can be decomposed in the form
exp(zt) = D(z;t) + A(2) f(2) (4.26)
where
(i) D(t)=Bolt) + Bilt)z + -+ Bur (£)2! (4.27)
(i) A(z) is the characteristic polynomial of an n X n matriz A.

(iii) f(z) is a regular function of z.
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This theorem is established by considering the Laurent expansion of

exp(zt)
= =7 4.2
o2) = 5 (1.25)
about each of its poles z = XM X2 X in order. Thus, for A1),
e
gz) = Y —L— Zpk = - w]
i=1 [ (1) k=0
P,
= % +91(2), (4.29)

[z — )\(1)]

where Pi(z) is a polynomial in z of degree p) — 1 and gi(z) is regular at
z = A1) but with the same poles as g(z) at all the other eigenvalues. Repeating
this process gives

R N 16 B
/) ; [z—)\(j)]"(” +1(2), (4.30)

Multiplying through by A(z) gives
A(2)f(2). (4.31)

Each of the terms in the summation is a polynomial of degree n — 1; so together
they form a polynomial D(z;t) of degree n—1 and given by (4.27). To determine
the coefficients ﬁo( ), .-+, Bn_1(t) we use (4.21) and (4.26). For the eigenvalue
A9) we have p(9) linear equations for these coefficients given by

exp ()\(j)t> =D ()\(j);t) ,
t exp ()\(j)t) - <%>2_M L i=1,2,. 09 1

This then gives in all n linear equations in n unknowns. It is not difficult to
show that they are independent and will thus yield the coefficients.

It now follows from the Cayley-Hamilton result (4.22) and (4.26) and (4.27)
that

(4.32)

exp(At) = Bo()I + B1(H) A+ -+ + Bn1(t) A" . (4.33)

Example 4.2.1 Consider the matrix

0 1
A= ( ) (4.34)
6 1
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Then
AN) =X -\ —6, (4.35)
with eigenvalues A1) = 3, A(?) = —2. Now let
exp(zt) = fo(t) + Bi(t)z + A(2) f(2), (4.36)
giving
exp(3t) = Bo(t) + 3B (1),
exp(—2t) = Bo(t) — 261(1).

(4.37)

Thus

exp(At) = %I[2 exp(3t) + 3exp(—2t)] + %A[exp(?)t) — exp(—2t)]
= Lagen( 2 )t tewan T 438
= 5exp(t)<63>—|—5exp(—t)<_6 2). (4.38)

An alternative approach to deriving a compact form for exp(At) is to use a
Laplace transform. Taking the Laplace transform of (4.10) gives

s&(s) —x(0) = Az(s) + Bu(s). (4.39)
Writing this equation in the form

z(s) = (sI — A)"'x(0) + (sI — A)~' Ba(s) (4.40)
and inverting the Laplace transform it follows, on comparison with (4.14) that

L7{(sI — A)7'} = exp(At). (4.41)

Now we apply this method to Example 4.2.1.

s -1
sI — A= ( ) (4.42)
-6 s—1

and

S

. 1 s—1 1
(T= A7 = 5 . , (4.43)

where A(s) is given by (4.35). Inverting this Laplace transformed matrix ele-
ment by element gives (4.38).
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4.3 Realizations of Systems

For simplicity we shall, in most of the work which follows, consider a constant
system with one (scalar) input u(t) and one (scalar) output y(¢). Thus we have

&(t) = Awm(t)+bu(t), (4.44)
y(t) = c'=z(1), (4.45)

where the n-dimensional column vector b replaces the matrix B and the n-
dimensional row vector ¢” replaces the matrix C. Let T be an nx n non-singular
matrix. Equations (4.44) and (4.45) can be expressed in the form

dTTa;(t) = TAT 'Tx(t) + Tbult), (4.46)
y(t) = T 'Tx(t). (4.47)
With
x'(t) = Tx(t), TAT ' = A/,
(4.48)
Tb=1V, T = ()7,
this gives
d“;lt(t) = A'z'(t) + b u(t), (4.49)
y(t) = ()"Z'(t). (4.50)

These equations still have the same input and output variables, but the state
variables and matrices have been transformed. These equivalent expressions of
the problem are called realizations and are denoted by [A, b, c™] and [A", b, (¢/)7].
The Laplace transforms of (4.44) and (4.45) are

sz(s) —x(0) = AZ(s)+bu(s), (4.51)
y(s) = c'z(s). (4.52)
With «(0) = 0 these give
y(s) = G(s)u(s), (4.53)
where
G(s)=c"(sI — A)~'b (4.54)

is the transfer function. It is clear that it is invariant under the change of
realization given by (4.48). So these are said to be different realizations of the
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transfer function. From the definition of the inverse of a matrix and (4.19),
equation (4.54) can also be written in the form?
c"Adj{sI — A}b
G(s) = 4.55
(5 A (4.55)

It follows that the poles of the transfer function are the eigenvalues of A, which
are, of course, invariant under the transformation TAT ! = A’.

Since the inverse of the transpose of a matrix is equal to the transpose of
the inverse it is clear that (4.54) can be rewritten in the form

G(s) =b"(sI — A™) e (4.56)
It follows that [AT, ¢, b"], that is to say,

z(t) = ATx(t)+ cu(t), (4.57)

y@t) = brx(t), (4.58)

is also a realization of the system. It is called the dual realization.

4.3.1 The Companion Realization

Suppose we have a system with one input variable u(¢) and one output variable
y(t) related by

dny dnfly dy B
Qe g T e ey =
d™u dm—1ly du
oy —— ] e - , 4.
b o +b L pro + +b1dt+b0u (4.59)
with n > m and initial conditions
(ig) -0, i=0,1,...,n—1,
din t=0 (4.60)
—_— =0, i=0,1,...,m—1.
dtr J,_,
Then
y(s) = G(s)u(s), (4.61)
where the transfer function
¥(s)
G(s) = , 4.62
() =55 (462)
with
d(s) = 8"+ ap_ 15"+ +ais +ao,
(4.63)

P(8) = 8™ + byp_18™ L+ -+ + bys + by.

2The adjoint Adj{X} of a square matrix X is the transpose of the matrix of cofactors.
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We now construct a particular realization of the system by defining a set of

input variables x1 (t),...,z,(t). Let z1(t) be a solution of
d™axy dm_ll‘l dx
) = byt p, S L b bo1, 4.64
y(®) qpm T Omt gt T g T hom (4.64)
and define

T2 (t) = x'l (t),

) d2xy
z3(t) = da(t) = PR
(4.65)
. d" oy
Then (4.64) becomes
Y(t) = binZmr1(t) + bn—12m () + - - - + boz1 (1), (4.66)
which can be expressed in the form (4.50) with
xl(t)
322(75)
c"=(by - by 0 - 0), z(t) = _ (4.67)
T (t)
Let
)+ > Ye—1zn(t) (4.68)
k=1
which is equivalent to
o 1d" oy d i mdrr
R e R Tl
(4.69)
We now substitute into (4.59) from (4.64) and (4.69). This gives
" dw
jz bz =0 (4.70)

B 1\ d"z; iy ~i\ dizy
wlt) = <1 - E) TR (ai + E) . (4.71)

1=
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Thus, by choosing
k=1, vi=—a;, 1=1,2,...,n—1, (4.72)

(4.70), and hence (4.59), are identically satisfied and (4.68) and (4.65) can be
combined in the matrix form (4.44) with

0 1 0 0 0
0 0 1 0 0 0
A = E L E (4.73)
0O 0 0 0 0 1
_ao _al DR DR DR DY ... _a'n,—l
0
0
b = . (4.74)
0
1

When A, b and " are of this type they are said to be in companion form. It is
not difficult to show that the characteristic function for A is

A(A) = ¢(N), (4.75)

again establishing that the poles of the transfer function are the eigenvalues of
A.

For any realization, the n x n matrix
U=(b Ab A’ -~ A"'b), (4.76)

that is the matrix with j-th column A7~'b, is® called the controllability matriz.
The n x n matrix

cT

ctA

T A2
v=| ¢4 (4.77)

cTA™ !

3For reasons which we shall see below.
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that is the matrix with j-th row ¢* A7~ is* called the observability matriz.

For a companion realization it is not difficult to see that the controllability
matrix has determinant of plus or minus one, depending on its order. We now
prove an important theorem:

Theorem 4.3.1 A realization given by (4.44) and (4.45) can be transformed
by (4.48) into a companion realization if and only if the controllability matriz
is mon-singular.

Proof:

Sufficiency. If U is non-singular U ™" exists. Let £€* be the n-th row of U ™",
That is

£ =)U, (4.78)
where
()" =(00---01) (4.79)
and define the matrix
£*
§'A
T = : (4.80)
£rAnl

We need to show that T~ ! exists, which is the case when T is non-singular,
that is when the rows of the matrix are independent. Suppose the contrary,
that there exist v1,...,7vn, not all zero, such that

NET+7E A+ 47,7 A" =0, (4.81)

Multiplying on the right by A"b the coefficient of 7 is €T ARy, The vector
AT is the (j + k)-th column of U so this coefficient is non-zero (and equal
to unity) if and only if j + k = n. So by varying k from 0 to n — 1 we establish

that 1 =72 = --- = 7, = 0 and thus that the matrix T is non-singular. Now
&b 0
ETAb 0
Tb = : = . =b. (4.82)
éTAnflb 1

4 Again for reasons which we shall see below.
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Let the columns of 77! be denoted by ej,j=1,2,...,n. Then
¢TARe; = oK (k +1 - j), k=0,1,...,n—1. (4.83)

Now the matrix A’ given in (4.48) has k—j-th element given by
=& A Aey = 5 (k+1— ), k=1,2,...,n—1. (4.84)

So in each row of A’ apart from the last there is one non-zero element equal to
unity. In the k-th row the element is the k£ + 1-th which is exactly the form of
(4.73) if we define

a; = —ETA"ej_H, j = 0,1,...,’{7,— 1. (485)
Finally we note that
(cl)T = ( CTel CTEQ cee CTen ) (4.86)

Necessity. Suppose that a transformation by a non-singular matrix 7" exists. We
know that in this companion realization the controllablity matrix

U=(b Ab (A) .. (A)" '), (4.87)
is non-singular (|Det{U’}| = 1). But

U =TU, (4.88)
So U is also non-singular.

From (4.77) and (4.76)

Vi=(c A%¢ (A")%c --- (A")"le), (4.89)
and
bT
bTAT
T T\2
ur=| b4 (4.90)
b" (ATt

It follows that the controllability and observability matrices of a realization
(4.44)—(4.45) are the transposes of the observability and controllability matrices
of it dual (4.57)—(4.58). This is, of course, a symmetric relationship because the
transpose of the transpose of a matrix is the matrix itself and the dual of the
dual of a realization is the realization itself. This idea can be developed further
by defining an alternative companion realization. This is one where the matrix
A has a form like the transpose of (4.73) and c replaces b in (4.74). We then
have the theorem:
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Theorem 4.3.2 A realization given by (4.44) and (4.45) can be transformed by
(4.48) into an alternative companion realization if and only if the observability
matriz is non-singular.

Proof: We first take the dual [A", ¢, b"] of [A, b, c"]. Since V™" is the control-
lability matrix of [AT, ¢, b"], there exists a matrix T giving a companion real-
ization [TA™T ™', Tc,b™T '] if and only if V is nonsingular. Taking the dual of
this realization gives an alternative companion realization
[T'AT' ", T'b, ¢*(T") 1], where T' = (T*)~! = (T~ 1)".

Example 4.3.1 Consider the system with a realization [A, b, ¢"] given by

-1 0 1 1 -2
A= -1 =2 -1 |, b=|o0]|, e=| -5 |. (4.91)
—2 -2 -3 1 5

From (4.76) and (4.91) the controllability matrix is

1 0 =5
U=]0 -2 9 (4.92)
1 -5 19
Since Det{U} = —3 a transformation to a companion realization exists. Invert-

ing the controllability matrix

7 25 10
3 3 3
vl=| -3 -8 3 (4.93)
2 5 2
3 3 3
and, from (4.78) and (4.80),
2 5 2
3 3 3
&=(-%2 -5 2, T = 12 -1 |, (4.94)
-1 -2 2
with
6 6 1
Det{T}:%, T'=| 3 -2 0 |. (4.95)

0 11
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Then the companion realization is given by

0 1 0
A=TAT'=| 0 0 1|,
; —6 —11 -6 (4.96)
bV=Tb=| 0 |, ()T"=cT "'=(3 3 3).
1
From (4.77) and (4.91) the observability matrix is
-2 =5 5)
V=] -3 0 -12 (4.97)
27 24 33

Since Det{V'} = 189 a transformation to an alternative companion realization
exists. Inverting the observability matrix

32 95 20

21 63 63

-1 _ 2 _ 67 _ 13
Vo= 21 ~63 63 |- (4.98)

_8 29 _ 5

21 63 63

Take the last column of this matrix an denote it by x. Then the matrix T,
required to obtain alternative companion realization is given by

(L)™' = (x Ax A’x)
20 _25 26
63 63 63
3 1 2
_5 125
63 63 63
and
—13 =31 16
T.=| —-15 —-30 18 |. (4.100)
-2 =5 5
Then the alternative companion realization is given by
0 0 —6
A"=TAT)'*=|1 0 —-11 |,
01 -6
3 (4.101)
b'=T.b=| 3 |, (c”)Tch(fI})_lz( 0 0 1 )
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4.3.2 The Diagonal and Jordan Realizations

We already know that the poles of the transfer function are the eigenvalues of
the matrix A for any realization of the system. We also know that when A has
distinct eigenvalues it can be diagonalized to A by the matrix P according to
equations (4.15) and (4.16). The realization [A,b”, (¢”)*], where " = Pb and
(") = " P~ is called a diagonal realization. An alternative way of obtaining
a diagonal realization is from the transfer function.

Example 4.3.2 Determine a diagonal realization for the system given by g(s) =
G(s)u(s), where

3(s?+s+1)
(s+1)(s+2)(s+3)

G(s) = (4.102)

First express the transfer function in partial fractions so that

o 3a(s)  9u(s) 21u(s)
V) = 364D G+ 2618 (4.103)

Then define state variables x1(t), x2(t) and x3(t) with Laplace transforms re-
lated to the input variable by

_ a(s) _ o u(s) _ o als)

Zi(s) = o $2(8)—m, Z3(s) = 513’ (4.104)
giving

7(s) = 221(s) — 9za(s) + Zas(s). (4.105)

Inverting the Laplace transforms and expressing the results in matrix form gives
(4.44) and (4.45) with

3

-1 0 0 1 2
A= 0 -2 o], b=|1], e=]| -9 |. (4.106)

- 21

0 0 -3 1 2

Example 4.3.3 Try applying the procedure of Example 4.3.2 when

1
(s+1)3(s+2)(s+3)°

G(s) = (4.107)

This case corresponds to a 3-fold degenerate eigenvalue —1, so we do not expect
to be able to obtain a diagonal realization. Resolving the transfer functions into
partial fractions gives

o auls)  3u(s) Tu(s) u(s) a(s)
U) = 51 T+ 12 T8+ D (549 8613
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Let
_ u(s) . T3(s) _ _u(s)
Tals) = 5 208) = 137 = G
~ ~ ~ ~ (4.109)
71 (s) if'fl) = (S“fl))g, Za(s) = Suf; Zs5(s) = S“f .
Then
sz1(s) = —Z1(s) + Za(s),
$Ta(s) = —Za(s) + Ta(s),
st3(s) = —z3(s) + u(s), (4.110)
sT4(s) = —2T4(s) + u(s),
sT5(s) = —3%s5(s) + a(s),
G(s) = 531(s) — 27a(s) + 5T3(s) — Ta(s) + §75(s). (4.111)

Inverting the Laplace transforms and expressing the results in matrix form gives
(4.44) and (4.45) with

o=

this is an example of a Jordan realization.

-1

o o o O

1
2

3
4

7
I -1

o O o O

)

In this case A is diagonal in the rows and columns containing the non-degenerate
eigenvalues —2 and —3 but has a 3 x 3 block corresponding to the 3-fold de-
generate eigenvalue —1. The matrix is said to be in Jordan canonical form and

(4.112)

(=)
Il
= o= = O O

We have seen that a system defined by its transfer function can lead to different
realization of the same dimensions related by a transformation (4.48). In fact
the realizations need not be of the same dimension.

Example 4.3.4 Consider the system with a realization for which

-1

. c= 1. (4.113)
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We can now find the transfer function using (4.54). The code to do the calcu-
lation in MAPLE is

> with(linalg):

Warning, new definition for norm

Warning, new definition for trace

> A:=array([[-1,0,11,[-1,-2,-11,[-2,-2,-3]11);

-1 0 1
A=| -1 -2 -1
-2 -2 -3

> b:=array([[1]1,[0],[1]11);

> II:=array([[1,0,0],[0,1,0],[0,0,1]1]1);

|

> W:=s->inverse(s*II-A);

S O =
S = O
— o O

W := s — inverse(s II — A)

> W(s);
s+ 4 1 1
$2+5s5+6  B+6s2+11s+6 s2+4s+3
1 s2+4s+5 1
T s2+5s5+6 $3+6s2+11s+6  s2+4s+3
DU S PSS S 1
s24+5s5+6 s24+5s5+6 s+3

> G:=s->simplify(multiply(ct,W(s),b));
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G := s — simplify (multiply(ct, W(s), b))

> G(s);

313 (1)

It is not difficult to show that this system, with the transfer function
3
G(s) = ———,
() (s+2)(s+3)

also has the two-dimensional diagonal realization

() e ()
A= . b= . c= . (4.115)
0 —3 1 -3

4.4 Controllability

(4.114)

As indicated above an essential step in dealing with many control problems is
to determine whether a desired outcome can be achieved by manipulating the
input (control) variable. The outcome is determined in terms of a particular set
of state variables and the controllability is that of the realization rather than
the system. In fact the outcome y(t) does not play a role and the equation of
interest is (4.44).

The realization given by (4.44) is controllable if, given a finite time interval
[to, t¢] and state vectors xo and x¢, we can find an input u(t) over the interval
[to, t¢] such that x(tg) = xo and x(t) = @s.

Since we are concerned with a constant system we can, without loss of generality,
set to = 0. Then from (4.14),

xr = exp (Aty) [mo + /tf exp(—AT7)bu(r)dr| . (4.116)
0
This equation can be rewritten in the form
exp (—Atg) s — xo = /tf exp(—AT7)bu(7)dr. (4.117)
0
Since xf, g and t¢ are all arbitrary it is both sufficient and necessary for con-
trollability that for any state vector * and time interval ¢ we can find an input

u(t) to satisfy

:c*z/ofexp(—AT)bu(T)dT. (4.118)
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Theorem 4.4.1 (The controllability theorem.) A realization is control-
lable if and only if the controllability matriz U given by (4.76) is non-singular.

Proof:

We use the polynomial formula (4.33) for the exponential matrix and thus, from
(4.118)

n—1 te
z* = A% | Br(—m)u(r)dr
)

= UQ (4.119)
where
Qr = ( Qo 9 - Qyua ) (4.120)
and
123
Qs :/ Br(—7)u(r)dr. (4.121)
0

Sufficiency. If U is non-singular it has an inverse and the values of Q, k =
0,1,...,n — 1 are uniquely given by @ = U 'z*. By using an input with n
adjustable parameters these values can be satisfied by the integrals.

Necessity. If U is singular then the set of linear equations in ¢1, g2, - . ., g, given
by ¢q"U = 0 has a non-trivial solution. Thus gTx* = q"U Q2 = 0. Which is true
only if * is orthogonal to g. So (4.118) cannot be satisfied for arbitrary a*.

Example 4.4.1 Investigate the controllability of the realization

() ()
A= , b= . (4.122)
0 -2 1

The controllability matrix is

o 4.123
(1) (1129

with Det{U} = —1; so the realization is controllable and

U= 21 4.124
_<1 0>' (4.124)

The eigenvalues of A are both —2 so, using the method of Sect. 4.2,
exp(At) = Bo(H)T + B1(t)A, (4.125)
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where 5y (t) and 51 (¢) are given by

exp(—2t) = Bo(t) — 2B1(2),

(4.126)
texp(—2t) = S (t).
Thus
exp(At) = (14 2t)exp(—2t)I +texp(—2t)A
2t bt 4.127
= exp(—2t) 01 (4.127)
and
1 —t
exp(—At) = exp(2t) < ) . (4.128)
0 1
From (4.121), (4.125) and (4.127)
Qo = /tf[l — 27] exp(27)u(T)dr,
0 . (4.129)
O =— 2 dr.
1 /0 Texp(27)u(r)dr
From (4.119) and (4.123)
:CT = Ql, x; = Q() - 291. (4130)

We know because the system is controllable that for any given ¢, 7 and z3 we
can find a form for w(¢) which will satisfy (4.129) and (4.130). Suppose we try
the form

u(t) = (Ao + Ait) exp(—2t). (4.131)
Then by substituting into (4.129) and then (4.130)

1

. 1

Alt?7

. (4.132)
w3 = Aoty + 5A1tE.

The determinant of this pair of linear equations is %t?, so they have a unique

solution for any ¢¢. In particular suppose we want to control the system to

produce z] = z5 = 1 in time ¢ = 1, then we choose

u(t) = (10 — 18t) exp(—2t). (4.133)
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4.5 Observability

Allied to the concept of controllability is that of observability. The essence of
this concept is that by observing the the input and output of a system over a
period of time the state at the beginning of that time can be inferred. More
formally:

The realization given by (4.44) and (4.45) is observable if, given a time
to, there exists a time interval [tg,t¢] such that the initial state x(to) = x is
determined by the input function u(t) and the output function y(t) over [to, tt].

As for controllability, since we are concerned with a constant system, we can
set to = 0. From (4.14) and (4.45)

¢
y(t) = c" exp (At) {a:o +/ exp(—A7T)bu(r)dr|, 0<1t<ts. (4.134)
0
Let
¢
y*(t) = y(t) — c" exp (Atl) / exp(—AT)bu(r)dr. (4.135)
0
Then (4.134) is equivalent to

Y (t) =c"exp(At) o, 0<1 <t (4.136)

and thus a realization is observable if @y can be obtained from (4.136) for any
arbitrary function y*(t).

Theorem 4.5.1 (The observability theorem.) A realization is observable
if and only if the observability matriz V' given by (4.77) is non-singular.

Proof:
We use the polynomial form (4.33) for the exponential matrix and, from (4.136)

y () = ni:lﬁk(t)cTAkwg
k=0
= B (t)Vao, (4.137)
where
B ()= ( Bo(t) Bi(t) -+ Bu-alt)) (4.138)

Sufficiency. Suppose V is non-singular and suppose that two states x¢ and
both satisfy (4.137). Then

BT (t)VAzy =0, (4.139)
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where Az = xp — x{,. Since (4.139) holds for all ¢ in the interval [0, ¢¢], it must
be the case that

VAzy =0, (4.140)

Since V' is non-singular (4.140) has the unique solution Axy = 0. That is
o = x[, which means that the realization is observable.

Necessity. Suppose that V is singular. Then there exists a vector p such the
Vp = 0. Then if x satisfies (4.137) so does @o+pp for any p and the realization
is not observable.

It is clear from these results that a realization is controllable if and only if its
dual realization is observable.

4.6 Minimal Realizations

We have seen that for a system with transfer function G(s) any realization
[A,b, c"] must satisfy (4.54) and equivalently (4.56). We have also seen by
means of example 4.3.4 that the dimension n need not be the same for all real-
izations of a system. Let nnyi, be the least possible dimension for any realization
of a system. Then any realization which has this dimension is called minimal.
We state without proof an important theorem.

Theorem 4.6.1 (The minimality theorem.) A realization is minimal if
and only if it is both controllable and observable.

An obvious corollary to this theorem which scarcely needs proof is:

Theorem 4.6.2 If a realization of dimension n is

(i) controllable and observable then all realizations of dimension n are con-
trollable and observable.

(7i) mot both controllable and observable then no realization of dimension n is
both controllable and observable.

Example 4.6.1 Compare the realizations given by (4.91) and (4.113).

They differ only in the vector ¢. We showed in Example 4.3.1 that (4.91) was
both controllable and observable and it is therefore minimal, with ny,;, = 3. In
Example 4.3.4 we derived the transfer function (4.114) corresponding to (4.113)
and showed that it also had a realization of dimension 2. This means, of course,
that (4.113) cannot be minimal. Since it is controllable (in this respect it is
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identical to (4.91)) it cannot be observable. We confirm this by working out the
observability matrix. From (4.77) and (4.113)

11 -1
v=| 0 o0 3 (4.141)
—6 —6 -9

which is clearly singular. So this realization is controllable but not observ-
able. What about the two-dimensional realization of the same system given by
(4.115)? From this equation and (4.76) and (4.77)

( 1 -2 ) ( 3 -3 )
U = , V= . (4.142)
1 -3 -6 9

Since neither of these matrices is singular the realization is both controllable
and observable and therefore minimal with ny;, = 2. All other two-dimensional
realizations will also be both controllable and observable and no realization of
larger dimension can be both.

Example 4.6.2 Now consider the system with transfer function

(s +¢

G(s) = TG (4.143)
where c¢ is some constant.
Resolving the transfer function into partial fractions gives

o a(s)(e—=1) a(s)(2—c)  u(s)(l—c)

y(s) = Gr) T (ston D (4.144)
Let

G s Ts(s) _uls)

1'1(3)— (8+1)7 x3(s)_8+27 :CQ(S)— s+2 - (S+2)2 (4145)
Then

g(s) = (¢ — DZT1(s) + (2 — ¢)Ta(s) + (1 — ¢)Z3(s). (4.146)

Inverting the Laplace transforms and expressing the results in matrix form gives
(4.44) and (4.45) with

-1 0 0 1
A= o0 -2 1|, =] 0],
0 0 -2 1

(4.147)
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Since A and b are not functions of ¢ it is clear that the controllability or un-
controllability of the system is not affected by the value of ¢. From (4.76) and
(4.147)

1 -1 1
u=|0o 1 -4 |. (4.148)
1 -2 4

Since Det{U} = —1 the realization is controllable. Now from (4.77) and (4.147)
c—1 2—-¢c 1l-c
V=|1-c 2¢c—4 ¢ . (4.149)
c—1 8—4c —4

Since Det{V'} = (c—1)(c—2)? the realization is observable unless ¢ = 1 or ¢ = 2.
These are precisely the cases where there is cancellation in the transfer function
leading to a quadratic denominator. The procedure for deriving a realization
used here will now lead to two-dimensional realizations. You can easily check
that

Forc=1
-2 1 0
A= s b= )
0 -2 1
(4.150)
ct = ( 1 0 )
with
0 1 1 0
U= , V= . (4.151)
1 -2 -2 1
For ¢ =2
-1 0 1
A= ) b= )
0 -2 1
(4.152)
c"=(1 -1)
with

U= , V = ) (4.153)
1 -2 -1 2
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In each case the realization is both controllable and observable and this minimal
with NMmin = 2.

It is clear, from this example, that the dimension of a realization, that is the
number of state variables, corresponds, when it is derived from a transfer func-
tion G(s), to the number of partial fractions of G(s). This in term is simply
the degree of the polynomial denominator of G(s). In the cases we have ob-
served, the realization was minimal unless there was some cancellation in fac-
tors between the numerator and denominator of G(s). The following theorem,
therefore, comes as no surprise.

Theorem 4.6.3 Suppose that a system is given by (4.61)—(4.63) where m < n.

Then ¢(s) and 1(s) have no common factors, the degree n of the denominator
@(s) is the dimension of minimal realizations of the system.

Problems 4

1) Let A be a 2 x 2 matrix with eigenvalues A and p. Show that, when A # p,

[Aexp(ut) — pexp(A)]T + [exp(At) — exp(ut)]A

exp(At) = Py

What is the corresponding result when A = p?

2) Consider the system with realization

0 1 0 0

z(t) = 00 1 [xz@)+ | 0 [u(),
2 1 =2 1

yt) = (1 2 0)=().

Use the exponential matrix to find the output y(t), for u(t) = K¢, where K
is a constant and 2(0) = 0.

3) For the system with realization

yt) = (4 2)=()

calculate the transfer function G(s), the controllability matrix U and the
observability matrix V.
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4) For the system with realization

-1 -1 1
( ) _4>w(t)+<3>u(t),

u(t) = (-1 1)a()

8
—~
~
N

verify that the controllability matrix is non-singular and find the matrix T
which transforms it to the companion realization.

5) Obtain Jordan representations for the systems which have transfer functions:

: _ 24 s+1
() Gs) = F kL,

(11) G(S)— (S+1)2(S+3)



Chapter 5

Stability

5.1 Two Types of Stability

Given an m x n matrix @ with elements Q;;, the Euclidean norm ||Q|| of Q is
defined by

m

> > 1Qis1 (5.1)

i=1 j=1

QI =

The Euclidean norm of a vector of real elements is, of course, the ‘usual’ modulus
of the vector. For any two matrices P and Q (with appropriate dimensions)
and any scalar p the following properties hold:

(i) 1|Q|] > 0 unless Q = 0.
(i) [[QIl = [ul QI

(ii)) [[P+ Q[ < [[PI|+ Q]
) [1PQI| < |IP]l[|Ql.

(iv

The n x n matrix A is called a stability matrix if each of its eigenvalues
has a (strictly) negative real part.

Theorem 5.1.1 If the n x n matriz A is a stability matriz then there exist
positive constants K and k such that

exp(Af)]| < Kexp(—kt) (5.2)
for all t > 0 and hence

exp(At) -0, as t— oo. (5.3)
If A is not a stability matriz (5.3) does not hold.

97
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In Sect. 1.6.1 we discussed the dynamic system
z(t) = F(x) (5.4)
and defined what it meant to say that the equilibrium point x*, which satisfies
F(z*) =0, (5.5)

is asymptotically stable (in the sense of Lyapunov). For a linear autonomous
system (5.4) takes the form

() = Ax(t), (5.6)

where A is a constant matrix. In this case the only equilibrium point is * = 0
and we have the following result:

Theorem 5.1.2 (Cf. Thm. 1.6.1.) x* = 0 is an asymptotically stable equi-
librium point of (5.6) if and only if A is a stability matriz.

Proof:
According to the definition, * = 0 is an asymptotically stable equilibrium
point of (5.6) if «(¢t) — 0 as ¢t — co. The solution of (5.6) is

z(t) = exp[A(t — to)x(to). (5.7)

and thus z(t) — 0 as t — oo if and only if exp[A(t — )] — 0 as t — oco. It
follows from Thm. 5.1.1 that * = 0 is an asymptotically stable equilibrium
point if and only if A is a stability matrix. This result provides most of a rather
belated proof of Thm. 1.6.1.

We now need to to generalize the discussion of stability to the case of a system
with input u(t), output y(¢) and a realization

@(t) = Az(t)+bu(t), (5.8)

y(t) = c"z(t). (5.9)

The system with realization (5.8)—(5.9) is said to be bounded input—
bounded output stable for t > ty if any bounded input produces a bounded
output. That is, given, that there exists a positive constant Bq, such that

|u(t)] < By, forall t>to, (5.10)
then there exists a positive constant B, such that

ly(t)| < Ba, forall t>to, (5.11)

regardless of the initial state x(to).

Two important theorems relate these two types of stability.
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Theorem 5.1.3 Ifx* = 0 is an asymptotically stable equilibrium point of (5.6),
then the system given by (5.8)—(5.9) is bounded input-bounded output stable for
all to.

Proof: From (5.9) and (4.134), with the intial time ¢ = ¢, replacing t = 0,

y(t) = c" exp[A(t — to)]x(to) + c* / exp[A(t — 7)]bu(T)dT. (5.12)

to

Since A is a stability matrix, it follows from Thm. 5.1.1 that there exist positive
constants K and k such that

ly@Il < IICIIIIexp[A(t—to)]IIIIw(to)||+|ICII/t [lexp[A(t — ][ [bl| [u(7)|dr

< K| IIw(to)llexp[k(to—t)]+||b||31/t eXP[k(T—t)]dT}
= Kllel[ {llz(to)[| exp[k(to — )] + k7 ||l|Br[1 — exp[k(to — )] }
< Kllel| {llz(to)ll + &~ "{[B]|B1} -

(5.13)

So the system is bounded input—bounded output stable.

Theorem 5.1.4 If the system with a minimal realization (5.8)-(5.9) is bounded
input—bounded output stable for all ty then x* = 0 is an asymptotically stable
equilibrium point of (5.6).

The proof of this theorem is somewhat more complicated and will be omitted.
We can see on the basis of these two theorems that the asymptotic stability of
x* = 0 is a stronger condition than bounded input-bounded output stability
and can be deduced from the bounded input—bounded output stability only for
minimal' realizations.

5.2 Stability and the Transfer Function

In the development of the companion realization in Sect. 4.3.1 we Laplace trans-
formed (4.59), assuming, with (4.60), that all the initial conditions were zero.
If this assumption is not made (4.61) is replaced by

y(s) = G(s)u(s) + Go(s), (5.14)

I That is, from Thm. 4.6.1, controllable and observable.
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G(s) = L) Go(s) = =2 (5.15)

are respectively the transfer function, as before, and the contribution from the
initial conditions, with

B#(8) = "+ an_18"" L+ +a1s+ ao,
P(8) = byns™ + by 18"+ - 4 bys + bo, (5.16)

0(s) = 8"+ cro18" "+ -+ €15 + co.

Both m and r are less than n. Suppose now that ¢(s) and 1 (s) have no common
factors. It then follows from Thm. 4.6.3 that any realization derived from (5.14)
will be minimal with the characteristic polynomial of A being ¢(\). Thus, from
Thms. 5.1.2-5.1.4,

Theorem 5.2.1 If (5.8)-(5.9) is a realization derived from the transfer func-
tion, G(s) = ¥(s)/¢(s), where ¥(s) and ¢(s) have no common factors, then it
will be bounded input-bounded output stable, and the corresponding system (5.6)
will have x* = 0 as an asymptotically stable equilibrium point, if all the zeros
of ¢(s) have (strictly) negative real parts.

So far we have used the phrase asymptotically stable qualified by reference to
the origin for the system (5.6). We shall henceforth use it freely for the system
itself. We now know that the criterion for asymptotic stability is that the poles
of the transfer function or equivalently the eigenvalues of the matrix A must
all have (strictly) negative real parts. In each case there is a qualification. For
the transfer function it is that the denominator and numerator of G(s) do not
have a common factor and equivalently for the matrix A the realization must
be minimal. It is easy to see that these conditions are important. Otherwise
we could remove the stability of the system by multiplying the transfer function
top and bottom by (s — w) for some w with #{w} > 0. In the corresponding
realization derived from this there would be a new eigenvalue w, but, of course
the realization would no longer be minimal. When at least one of the poles of
the transfer function has (strictly) positive part the system (like the equilibrium
point at the origin for (5.6) is called unstable. The intermediate case, where the
system is not unstable but some of the poles have zero real part is sometimes
called stable and sometimes conditionally or marginally stable.

5.2.1 The Routh—Hurwitz Criterion

We now concentrate on using Thm. 5.2.1 to determine the stability of a system
from the location of the zeros of the polynomial?

P(s) = ans™ + an_15" "' + - +a1s + ao. (5.17)

2For convenience we include a leading coefficient of a,, which can always, as in (5.16) be
set equal to one.
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We define the n x n determinant

Ap—1 an 0 0 0 0
ap—3 (Ap—2 Gp—1 Gnp 0 0
ap—5 Ap—4 Gp-3 0aAp—2 Gp-1 Oan
P, =
0
0
0

The way to build this determinant is as follows:

0 ap ai
0 0 O
0 0 O

101
ag as
ap aj
0 0

(i) Extend the range of the definition of the coefficients over all integer values

by defining ag =0 if £ > n or £ < 0.

(ii) The i—j-th element is an—2;+;.

Thus
(a) Forn=2
_ 2
o(s) = ags®+ais+ ag,
aq as ar ag
@2 = =
a_1 agp 0 ag
(b) Forn=3
_ 3 2
d(s) = ass® +ass” 4+ a1s+ ao,
a2 as aq az a3
(I)3 = aq aq as = | ay a1
a_s a_1 ap 0 0
(c) Forn=14
4 3 2
d(s) = ass” +azs’ + ags® + a1s + ag,
as (e2] as ae as
a1 as as a4 al
(I)4 = =
a_1 ap ai G 0
a_3 a_2 aA_1 Qo 0

0
a

ao

Gy
ag
ao

0

0
as
ai

0

0
a4
a2

ao

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

a4

az

ao

(5.18)
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For any n we now define a hierarchy of subdeterminants @%k), k=1,2,...,n—17
where &) is the (n — k) x (n — k) determinant obtained by deleting the last k

rows and columns from ®,,. Thus, for example,

az a4

o) — (5.25)

ap a2
Then the following theorem holds:
Theorem 5.2.2 (The Routh—Hurwitz criterion.) If ¢(s), given by (5.17),

has a, > 0 then the roots of ¢(s) = 0 all have (strictly) negative real parts if
and only if

ak) >0, forall k=0,1,...,n—1. (5.26)
From (5.18)

o= = ¢, 4, (5.27)

®, =00 = g, (5.28)

These results mean that (5.26) can be confined to the range k =1,2,...,n —2
with the additional conditions a,_1 > 0 and ag > 0.

Example 5.2.1 Investigate the roots of the cubic equation
s34+ ks 4+354+2=0 (5.29)

as k varies.

The conditions a3 = 1 > 0 and ag = 2 > 0 are satisfied and another necessary
condition for all the roots to have negative real part is as = x > 0. The only
other condition for sufficiency is, from (5.22), given using

k 1

=3k —2. 5.30
2 3 ( )

o) =

So according to the Routh-Hurwitz criterion the roots all have a negative real
part if k > 2/3. We can check this out using MAPLE .

> phi:=(s,k)->s"3+k*s~2+3*s+2;
¢:=(s, k) > s> +ks>+3s+2

> fsolve(phi(s,1)=0,s,complex);

3We shall also, for convenience, use <I>£LO) = Py,
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—.7152252384, —.1423873808 — 1.666147574 I, —.1423873808 + 1.666147574 I

> fsolve(phi(s,3/4)=0,s,complex) ;

—.6777314603, —.03613426987 — 1.717473625 I, —.03613426987 + 1.717473625 I

> fsolve(phi(s,2/3)=0,s,complex) ;

—.6666666667, —1.732050808 I, 1.732050808 I

> fsolve(phi(s,1/2)=0,s,complex) ;

—.6462972136, .07314860682 — 1.757612233 I, .07314860682 + 1.757612233 I

> fsolve(phi(s,0)=0,s,complex);

—.5960716380, 2980358190 — 1.807339494 I, .2980358190 + 1.807339494 1

Example 5.2.2 Show, using the Routh-Hurwitz criterion, that, when ag, ..., a4
are all real and greater than zero, the roots of the equation

o(s) = ass® + azs® + ass® + a1s + ag = 0, (5.31)
all have (strictly) negative real parts if and only if
ai(azaz — ajas) > apai. (5.32)

Hence show that the system given by this block diagram

u(s)

1+Qas 1 y(s)
K1+Q18 I?
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where Q1, Q2,Qs,J, K are all positive, can be stable only if
Q2 > Q1+ Qs. (5.33)

With this condition satisfied, find the maximum value of K for stability.

In this example we are given that a, = a4, a,—1 = as and ag are all positive.
The only remaining conditions for the zeros to have negative real parts are

az Qa4 0

(1)511) = a1 as as | = ai(agas —ajay) — a0a§ >0, (5.34)
0 apg Qi
az Qa4

<I>4(12) S = asasz — ayay > 0, (5.35)
a; a2

Condition (5.34) is equivalent to (5.32) and if it is satisfied, then because all
the coefficients are positive, (5.35) is automatically satisfied. If we use the same
intermediate variables for this block diagram as we did in Example 3.4.1

u(s) =0(s) + f(s),

TRN[C)
f(S) - 1 4 Q3S,
(5.36)

1+ Qas

J?(S) = KTleU(S),

o a(s)

y(s) = ]S—g
Eliminating the intermediate variables, the transfer function is

_ K(1+ Q2s)(1 + Qss)

) T Qo)+ Qe + KO+ Qas) 37
The stability condition is deduced from the denominator

¢(s) =JQ1Qss" +J(Q1 + Q3) s* + ] s> + KQz 5 + K. (5.38)
Substituting into (5.32) gives

Q2[J(Q1 + Qa) — KQ1Q2Qs] > J(Q1 + Q3)*. (5.39)
This simplifies to

J(Q1 +Q5)(Qz — Q1 — Q3) > KQ:1Q3Qs, (5.40)

which shows that (5.33) is a necessary condition for stability. The maximum
value of K is given, from (5.40) by

J(Q1 +Q3)(Q2 — Q1 — Q3)
Q:1Q3Qs

> K. (5.41)
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5.3 Stability and Feedback
5.3.1 Output Feedback

In Sect. 3.4 we discussed the introduction of a feedback H(s) into a system
giving a block diagram of the form:

The transfer function in the absence of feedback would be Go.(s) and in the
presence of feedback it becomes

Gow(s)

Gorls) = TG (D H)

(5.42)
Gow(s) and Ggr(s) are often referred to as open-loop and closed-loop transfer
functions (hence the notation) and the signal

0(s) = u(s) — f(s) = u(s) — H(s)j(s) (5.43)

is called the error. In the present context this type of feedback will be called
output feedback. For a system which is unstable it is sometimes possible, as we
saw in Example 3.4.2, to achieve stability by altering parameters in the feedback.
The way this happens can be seen if we let

Gew(s) = z((g (5.44)

with

¢(s) = 8" + an_15""" +--- + a5 + ao,
(5.45)
P(8) = by 8™ 4 by _18™ L - 4 bys + by.

Now suppose that the change in feedback leads to the modification of the closed-
loop transfer function to

P(s)

G/CL(S) = m,

(5.46)
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where
X(8) = hp—18""1 + - + hys + ho. (5.47)

We know that the system is stable if the zeros of the denominator of the closed-
loop transfer function all have negative real parts and that this can be ascer-
tained using the Routh-Hurwitz criterion. If the system is unstable with ¢(s)
alone in the denominator, then the introduction of the extra factor x(s) can be
used to stabilize it. Now suppose that the introduction of x(s) corresponds to
replacing the feedback H(s) in the block diagram by H(s) + AH(s). Then

Gow(5) _ ()
1+ Gor(S)[H(s) + AH(3)]  0(5) + x(s) (5.48)
From (5.42), (5.44) and (5.48)
Al = ] (5.49)

¥(s)

Although we have considered AH(s) simply to be an additive factor in the
feedback, it could also be applied as an additional feedback on the system.
Consider the block diagram

From (5.42)

_ Gow(s) _ Gor(s)
14 Gen(s)AH(s) 14 Gon(s)[H(s)+ AH(s)]

G, (s) (5.50)

This result does, of course, illustrate the general point that feedback can be
added either as elements of one feedback loop or as a succession of separate
loops as shown in this block diagram.
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5.3.2 State Feedback

State variables normally arise in the context of a realization. Suppose that
(5.8)—(5.9) is a minimal realization. It is, therefore, controllable and we can
assume that it is in companion form. The matrix A is given by (4.73), where
the elements of the last row are the negatives of coefficients of the denominator
of the transfer function, or equivalently of the characteristic function of A. State
feedback is introduced by replacing u(t) in (5.8) by u(t) — h*x(t), where

h*=(ho hi - hp_1) (5.51)
thus giving
z(t) = [A — bh™)x(t) + bu(t). (5.52)

The vector b is given by (4.74) and so

0 0 O v o oo 0 0
bRT = | ¢ ¢ttt (5.53)
ho hy v+ e eee e een By

The net effect of this change is to replace the coefficients a; in the characteristic
polynomial A(\), or equivalently in ¢(s) by a; + h;. Thus ¢(s) is replaced by
o(s) + x(s) as was the case in going from the transfer function of (5.44) to that
of (5.46). It is clear that the state feedback can be used to ensure that A is a
stability matrix, or equivalently, that all the zeros of ¢(s) + x(s) have negative
real parts.

Example 5.3.1 Show that companion realization

0 1 0 0
A= 0 0 1 B b= 0 5
6 —11 6 1

(5.54)

c"=(10 0).

is minimal but that the system is unstable. By the use of a state feedback obtain
a stable realization with eigenvalues —1, —2 and —3. Determine the transfer
function of the original system and the form of AH(s) required to produce the
stabilization.
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From (4.76) and (4.77) the controllability and observability matrices are respec-
tively

0 0 1 1 00
U=]01 61|, V=]0120 (5.55)
1 6 25 0 01

Since neither of these matrices is singular the realization is both controllable
and observable and, therefore, minimal. The characteristic equation for A is

AN) =A% =622 + 11X — 6 = 0. (5.56)
It is easy to see that this equation has one root A = 1 and thus to extract the
remaining roots A = 2 and A = 3. It follows that the system is unstable. The
polynomial with the required roots is

A+FDA+F2)A+3) =2 4617+ 11\ +6. (5.57)

Subtracting (5.56) and (5.57) we see that the coefficients of the state feedback
are hg =12, hy = 0 and hy = 12 with

x(s) = 12s% + 12. (5.58)

We now calculate the transfer function from this realization using (4.55). It is
not difficult to show that

P(s) = c"Adj{sI — A}b=1. (5.59)

and, of course,

#(s) = A(s) = s* — 65> + 115 — 6, (5.60)
Giving
1
G(s) = (5.61)

3 —6s2+11s—6"
The transfer function modified to produce stability is

1N 1 B 1
Glo) = &(s) +x(s)  s3+6s2+11s+6 (5.62)

From (5.49) this can be interpreted as an output feedback

AH(s) =125 +12. (5.63)
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5.4 Discrete-Time Systems

In Problems, question 3, we used the Z transform to derive the transfer function
for two discrete-time systems. In each case the difference equation is a particular
case of

y(k) + a1y(k — 1) + apy(k — 2) = bru(k — 1) + bou(k — 2) (5.64)
and applying the Z transform we have
b b
G(z) = —ETP0 gy (5.65)

22+ a1z +ag
Now rewrite (5.64) as
y(k+2) + ary(k+ 1) + agy(k) = bru(k + 1) + bou(k). (5.66)

By treating y(k + j) and u(k + j) like the j-th derivatives of y(k) and u(k)
respectively we can now mirror the derivation of the companion realization in

Sect. 4.3.1 to obtain
x(k+1) = Ax(k) + bu(k),
( ) (k) (k) (5.67)
y(k) = cz(k)

where
z1(k) 0 1
k) = B A= ’
= ( ) ) ( A )
b 0 T bop b
= < 1 )7 c :( 0 1 )

For simplicity we have considered a two-dimensional case, but as for the continuous-
time case the analysis applies for an n-dimensional realization When wu(k) = 0
for all k the solution of the first of equations (5.68) is

x(k) = A¥z(0). (5.69)

(5.68)

Equation (5.69) is the discrete-time equivalent of (5.7) so we might expect a
result similar to Thm. 5.1.2 to be true here. This is given by the definition

The n x n matrix A is called a convergent matrix if each of its eigenvalues
is of magnitude (strictly) less than one.

and the theorem

Theorem 5.4.1 x* = 0 is an asymptotically stable equilibrium point of
x(k+1) = Az (k) (5.70)

if and only if A is a convergent matriz.
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This change from a condition on the real part of the eigenvalues to their mag-
nitudes is easily understood when when realize that we have changed from the
exponential matrix to the matrix itself.* The definition of bounded input—
bounded output stability of Sect. 5.1 carries over to the discrete-time case with
the index k replacing t. Thm. 5.1.3, relating the asymptotic stability of x = 0
and bounded input—-bounded output stability is also valid and can be proved in
a similar way from (5.67). A slightly different approach, which we shall outline
for the two-dimensional case, is to note that the characteristic function of A is

AN =2\ +ai )+ ao. (5.71)

With a change of variable this is the denominator in (5.65), which on applying
partial fractions can be written in the form

_ . Ciza(z) | Cozu(z)
y(Z)— Z_)\l + Z_)\Z ’
for constants C;, Co and the eigenvalues A; and A2 of A. Using the last line of
Table 2.2 to invert the Z transform gives

(5.72)

k k
y(k) =C1 Y Mu(k —j)+ C2 > Mu(k —j). (5.73)
§=0 §=0
If |u(k)| < By then
ly(k)| < |Ci| By Z A1) + |Ca| By Z | Azl (5.74)
§=0 j=0

If A is a convergent matrix each sum is less that the infinite binomial series and

|Ci |Ca }
k) <B + . 5.75
pl <3 { 1S+ 1S (5.75)
The system is bounded input-bounded output stable. Equation (5.65) is a
particular case of the discrete time analogue

9(2) = G(2)a(z) (5.76)

of (4.53), with G(z) being the discrete-time transfer function. As in the case
of continuous time we have seen that the poles of the transfer function are the
eigenvalues of the matrix A when a realization is derived from it. Again we
shall use asymptotically stable and unstable as descriptions of the system itself
(with stable or conditionally stable or marginally stable denoting the intermediate
cases). The only difference is that the criterion for stability is now whether the
magnitudes of all the eigenvalues are less than one.

Example 5.4.1 Consider the stability of the female and male buffalo popula-
tions discussed in Example 2.4.2.

4Note that |exp(¢)| < 1 if and only if R{¢} < 0.
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We define the state variables
z1(k) = z(k), zo(k) = z(k +1),

(5.77)
z3(k) = y(k), z4(k) =y(k +1).
Then (2.110) can be expressed in the form (5.70) with
0 1 0 0
0.12 095 0 O
A= . (5.78)
0 0o 0 1
014 0 0 095
It is easy to show that the characteristic function for this matrix is
A(N) = A(A —0.95)(A — 1.063)(A + 0.113). (5.79)

In fact, of course these are precisely the numbers which appear in our solu-
tion (2.114). A is not a convergent matrix and the zero-population state is not
asymptotically stable. According to this simplified model, as we saw in Exam-
ple 2.4.2 the buffalo population would grow by 6.3% a year. In fact, due to
indiscriminate slaughter,® the population of buffalo fell from 60 million in 1830
to 200 in 1887. Attempts are currently being made to reintroduce buffalo in
the plains of South Dakota. Even then of course it may ultimately be necessary
and economically desirable to implement a policy of culling.® Suppose that v%
of females and €% of males are culled each year. Then

x2(k +1) = 0.12z1(k) 4 (0.95 — 0.017)z2(k),

(5.80)
and A is replaced by
0 1 0 0
, 0.12 0.95—-0.01y 0 0
A = , (5.81)
0 0 0 1
0.14 0 0 0.95—0.01¢
with characteristic equation
A'(A) = A = (0.95 = 0.01)][A — P ()X =D (7)), (5.82)
where
1
wH () = 500 [95 — £ /13825 — 190 + 72} . (5.83)

5Encouraged by the United States Government.
6 A single buffalo carcass will provide about 250 kg. of meat, enough for 10 people for year.
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It will be observed that the culling of male has no affect on the long-term pop-
ulation. This is because we have assumed, perhaps unrealistically, that the
number of calves born is proportional to the number of female adults, irrespec-
tive of the number of males. The root of A’(\) which leads to the explosion in
population is w(*)(v). This is a decreasing function of v with w(*)(7) = 1. So
a 7% cull of females will have the effect of stabilizing the population at a fixed
value. The size of this population and the proportions of males and females,
given particular initial populations can be calculated as in Example 2.4.2. This
is an example of stabilization by linear feedback.

Problems 5

1) Show that the system with state-space equations

Z1(t) = =221 () + 4x2(2),

Eo(t) = 4y (t) — 4o (t) + u(t), y(t) = z1(2)

is unstable. Derive the transfer function. Now investigate the situation
when the input is changed to u(t) — vx1(t) for some constant v and inter-
pret this change as an output feedback AH(s). Show that the system is
asymptotically stable if v > 2 and find y(¢) given that v = 5, u(t) = up and
:El(()) = :EQ(O) =0.

2) Consider the system with block diagram given on page 105 of the notes and

K(a + Bs)

Gor(s) = S+ 25)2

where « and [ are positive. Determine the closed loop transfer function and
using the Routh-Hurwitz stability criterion show that

(i) If B < « then the system is asymptotically stable for 0 < K < (a—p3)71.
(ii) If @ < B the system is asymptotically stable for all K > 0.

Find a minimal realization when a =1, =2, K= —6.
3) Consider the system with block diagram given on page 105 of the notes and

1

GOL(8)253+52+5+15

H(s) = 7.

Determine the closed loop transfer function and show that the system is
unstable for all v > 0. Show by including the output feedback AH(s) =
as? 4 Bs with suitable values of o 8 and +y the system can be stabilized with
poles of the closed-loop transfer function at s = —1,—2,—3. With these
values of «, 8 and 7 determine the output when u(t) = wg. (The initial
values of y(t) and any derivatives may be assumed zero.)



Chapter 6

Optimal Control

6.1 Digression: The Calculus of Variations

The calculus of variations developed from a problem posed by the Swiss mathe-
matician Johann Bernouilli (1667-1748). Suppose a wire lies in a vertical plane
and stretches between two points A and B, with A higher than B. Given that a
bead is able to move under gravity without friction on the wire and that it is
released from rest at A. What form should the wire take in order that the time
taken in going from A to B is a minimum?

This is called the brachistochrone problem.! Its solution is non-trivial? and
to get some idea of how it might be tackled we will now generalize. Suppose
that

y=A{x(r):a <7< T8} (6.1)

is a curve parameterized by 7 in the phase space I, of the vector & between the
points A and B. At any point on the path the tangent vector is in the direction
of (7). Now for any function f(z(7),&(7);7) we define

Ta] = / * fla(r), i () 7) dr. (6.2)

For fixed 74 and 75 the curve <, including in general the points A and B will
vary with the functional form of x(7), as will Z, which known as a functional.
The technique for finding a form for (7) which, for a specific f(x(7), z(7);7)
and designated constraints on A and B, gives an extreme value for Z[z] is the
calculus of variations.

Example 6.1.1 (The brachistochrone problem.) Consider cartesian axes
with the y—axis vertically upwards and the x—axis horizontal. The bead on the

IFrom the Greek: brachist meaning shortest and chronos meaning time.
2Unless B is vertically below A the answer is not the straight line AB.
3We now extend the use of the dot notation to include differentiation with respect to 7.

113
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wire descends from one end of the wire at z = y = 0 to the other end for which
T = xs, Yy = Ys. If the particle has mass m and the acceleration due to gravity
is g then the total energy is conserved with

L { (%)2 + (%)2} 4+ mgy = 0. (6.3)

Now suppose the equation of the path is @ = w(y) with w(0) = 0. Then

() 11+ WP} = 200 (6.4

This equation can be integrated to find the total time

==L \/ (6:5)

that the bead takes for the path z = w(y). The problem now is to find the
function w(y), describing the shape of the wire, which minimizes 7 [w] subject
to whatever constraint we impose on zg.

6.1.1 The Euler-Lagrange Equations

We suppose that *(7) is the functional form for x(7) with gives an extremum
for Z[x]. Let

x(r) =x* (1) + c&(7), (6.6)

where &€(7) is a continuous, differentiable function of 7. Thus € parameterizes
a family of curves over the parameter interval 7, < 7 < 7. The variation of 7
over the members of the family is given by

iz _ [™df
< - /TA L (6.7)
Since
dz(r) d(r)
e, B =g, (6
df

—= = Vaof[z"(7) +e&(r),&"(7) +&(r);7] - &(7)

+ Ve flz* (1) +e&(r),&" (1) + £ &(7); 7] - &(7). (6.9)

Now we need to substitute from (6.9) into (6.7). In doing so we apply integration
by parts to the second term

[Vt &= [var-eo)]” - [T e 60

A dr




6.1. DIGRESSION: THE CALCULUS OF VARIATIONS 115

@ (1) +e&(7)

Figure 6.1: Two paths (one the extremum) from A to B in the phase space I7,.

For a stationary value

(j—f)ro =0 (6.11)

and, from (6.7), (6.9) and (6.10),
(dz)g_o —[var €] [T 5o - D) ean o

de A dr

where now the gradients of f with respect to (7) and &(7) are evaluated along
the extremum curve *(7). We now apply this analysis to two cases:

(i) Both A and B are fixed points with vector locations ®, and xg

respectively.
In this case all paths pass through the same end-points (see Fig. 6.1) and
SO

&(ma) = &(18) = 0. (6.13)

The first term on the right-hand side of (6.12) is zero and for (6.11) and
(6.12) to be satisfied for any &(7) satisfying (6.13) we must have

d(Vgf)

———= —V,.f=0. (6.14)
dr
In scalar form this equation is
d [of of .
— =)= = =12,...,n. 1
(F)-aE-0 -2 (6.15)

These are two forms of the Euler-Lagrange equations.
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(ii) A is a fixed point but the location of the final point on the path
is allowed to vary.
In this case the Euler-Lagrange equations must still be satisfied but we
must also have

Vi f(®(7s), 2(7s); 7a) = O, (6.16)

or in scalar form

of B o
(%)T_TB =0, i=1,2,....n. (6.17)

For reasons which will be explained below (6.16) and (6.17) are known as
transversality conditions.

From (6.14)

#(r) ) sy v =0 (6.18)
giving

W —&(7)Vaf —x(1)-Vaf =0. (6.19)
Now

& () Vaf +8(r) Vel + oL (6.20)
so we have the alternative form

d .. of

e [&(7)-Vaf — f]+ 7, =0 (6.21)

for the Euler-Lagrange equations.

In whatever form they are represented and given a particular function f(x, &, 7),
the Euler-Lagrange equations are a set of n second-order differential equations
for the variables x1(7), z2(7),..., 2z, (7). In two special cases first-integrals can
be derived immediately:

(a) When f is not a function of z; for some j it follows from (6.15) that

8—,f = constant. (6.22)
8{Ej

(b) When f is not an explicit function of 7 it follows from (6.21)

(7)-Vaf(z, &) — f(x, &) = constant. (6.23)
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Strictly speaking condition (6.11) gives a stationary value which could be a
maximum rather than a minimum. However, in most cases there are good
physical reasons for supposing that the result gives a minimum.

It is also the case that in many problems the parameter 7 is in fact ¢ the
time. However, this is not always so as we see in the next example.

Example 6.1.2 (The brachistochrone problem.) In this case 7 is the vari-
able y and

f@(y), 2(y);y) = % (6.24)

Since f is not an explicit function of x(y) condition (6.22) is applicable giving

of _ (y) _1 (6.25)

9% —y(1+[z(y)]?) €
We first note that if xg is allowed to vary along the line y = ys then the
transversality condition (6.17) applies giving C = oo, and thus #(y) = 0. The
wire is vertically downwards with g = 0, as would be expected. We now
suppose that both ends of the wire are fixed. Let #(y) = cot(#). Then, from
(6.25),

Y= —%CQ[I + cos(20)]. (6.26)
Thus

U201 4 cos(20 6.27

35 = ~ClL+ cos(20)]. (6.27)

When y = 0, § = $m, so integrating (6.27) and choosing the constant of inte-
gration so that £ = 0 when 6 = %71’ gives

x = %CQ[QH — m + sin(20)]. (6.28)

These are the parametric equations of a cycloid. A plot for C =1 is given by
> x:=(theta,c)->c"~2*%(2*theta-Pi+sin(2*theta))/2;
1 5 .
z:= (0, c)— 5¢ (20 — 7 +sin(20))
> y:=(theta,c)->-c™2x(1l+cos(2*theta))/2;
12
y:=(0,c) — —5¢ (1 + cos(26))

> plot([x(theta,l),y(theta,l),theta=Pi/2..2%Pi]);
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-0.2 1
~0.4 -
-0.6 -

-0.8 -

Given particular values for zg and yg the equations can be solved to obtain C
and 0.

6.1.2 Hamilton’s Principle of Least Action

Suppose we have a collection of v particles of mass m moving in three-dimensional
space. The the location of all the particles at time ¢ is given by a vector
x(t) = (x1(t), z2(t),...,2,(t))" in phase space I, where n = 3v. If the forces
acting on the particles are G(z;t) = (Gi(x;t), Ga(z; t), ..., Gr(x;t))" then the
usual starting point for mechanics is Newton’s second law

mi(t) = G(x; 1), (6.29)

(see (1.102)). Now suppose that there exists a potential function V(«;t) related
to G(z;t) by (1.106). Then

m&(t) = —VV(x;t), (6.30)
An alternative axiomatic approach to mechanics is to define the Lagrangian
L(@(t), &(t);1) = yma® — V (z;1), (6.31)
and the action
te
Ix] = / L(z(t), &(t);t)dt (6.32)
ta

Then Hamilton’s principle of least action states that the path in I, which rep-
resents the configuration of the particles in a time interval [ta, 5] from a fixed
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initial configuration x, to a fixed final configuration xg is that which minimizes
the action. Thus we have from the Euler-Lagrange equations (6.15)

d /oL\ 0L )
&(3_3_)_8_%_0, i=1,2,....,n. (6.33)

These are call Lagrange’s equations. From (6.31) and (6.33)

ov
J

which is just the scalar form of (6.30).

6.1.3 Constrained Problems

Suppose that we wish to find an extremum of Z[x] given by (6.2) but that now
the paths are subject to a constrain. This can be of two forms

Integral Constraints In this case the constraint is of the form

Tiel = [ " gla(r). d(r)ir)dr = ), (6.35)

where ] is some constant. To solve this problem we use the method of Lagrange’s
undetermined multipliers. We find an extremum for

Tial + 0] = [ (@) a()i) + ol a@hnlan, (636)

TA

for some constant p. This replaces the Euler-Lagrange equations by

d[Ve(f +pg)

I —Va(f+pg) =0. (6.37)

Once the extremum function x*(¢) has been found, p is determined by substi-
tuting into (6.35).

Example 6.1.3 Consider all the curves in the z—y plane between (0,0) and
(2,0) which are of length 7. Find the equation of the one which encloses the
maximum area between it and the z—axis.

The area enclosed is

2
(@) = [ yta)da. (6.39)
0
Now the length of an element of the curve y = y(x) is

V(dz)? + (dy)? = /1 + [y(x)]2da. (6.39)
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So the length of the curve is

Lly(z)] = / T+ @) P

and the constraint is

giving

Now let

y(z) = cot(6),
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(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

with the range [0y, 01] for 0 corresponding to the range [0, 2] for x. Substituting

into (6.43) gives

x = plcos(8) — cos(ho)] (6.45)
and then from (6.44)
dy
A 3 4
0 p cos(0) (6.46)
giving
y = p[sin(fy) — sin()] (6.47)
From the constraint condition given by (6.40) and (6.42)
01 dx
= / cosec(0)—df = —p (61 — 0). (6.48)
9o dé
and from (6.45) and (6.47)
2 = —pJcos(fy) — cos(61)]
(6.49)
sin(fy) = sin(61)
These equations are satisfied by 6y =0, 6 = m and p = —1. The curve is give
by
x=1—cos(f),
0<0<m, (6.50)

y =sin(f),
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which is the upper semicircle of the circle radius one centre (1,0). This is an
example where we have needed a maximum rather than a minimum stationary
value. As is usually the case with variational problems the evidence that this
result does indeed correspond to the enclosing of a maximum area is not difficult
to find. You can reduce the area to almost zero with a smooth curve of length
7 in the first quadrant from (0,0) to (2,0).

Non-Integral Constraints In this case the constraint is of the form
g9(x(7), &(7);7) = 0. (6.51)

Again we use the method of Lagrange’s undetermined multipliers and find an
extremum for

B

Lfal = [ Uf(alr).d(r):im) + plngla(r) ér))]dr, (652
TA

except there here p is a function of 7. The form of the Euler-Lagrange equations

is again (6.37) but now we must not forget the derivative of p with respect to

7 which arises from the first term.

The case of both integral and non-integral constraints can be easily generalized
to a number of constraints.

6.2 The Optimal Control Problem

The optimal control problem is concerned with developing quantitative criteria
for the efficiency of control systems and obtaining the form for the input w(t)
which best satisfies the criteria. Since we are normally interested in the perfor-
mance of the system over some period of time [t;, x| the measure of efficiency
will be a time integral which must be minimized relative to input, output and,
in general, state space variables. This quantity is called the cost functional. The
ability to reduce this quantity is a performance indicator and the challenge is
to devise the input function which will produce a minimum value.

6.2.1 Problems Without State-Space Variables

In this case the cost functional is of the form

Tluy] = / " Fult).at), y(t), (). (6.53)

I

Example 6.2.1 Suppose we have a system with the block diagram shown at
the beginning of Sect. 5.3.1 with

1

GOL(S) = @7

H(s)=1. (6.54)
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The aim it to run the system so that y(¢;) = y; and y(tr) = y» while at the
same time minimizing the time average of the square error [v(t)]?, where, from
(5.43)

o(t) = u(t) —y(t). (6.55)

Thus we have

Tluy] = / “lult) — y(t)Pat. (6.56)

tr

The standard formula g(s) = G(s)u(s) with, in this case,

G(s) = 1+1Qs’ (6.57)
gives
Qy(t) = u(t) — y(t). (6.58)

This relationship could be used to give a constraint on the minimization of
T[u,y]. However, in this particular case, it is simpler just to substitute from
(6.58) into (6.56) to give

tp
Ty = Q* [ Lot (6.59)
tr
The Euler-Lagrange equation then gives an extremum for Z[u, y] when
i(t) = 0. (6.60)
Using the initial and final conditions on y(t) gives

(yl - yF)t + (yFtI - yItF)

y(t) = —y , (6.61)
and from (6.58)
6.2.2 Problems With State-Space Variables
In this case the cost functional is of the form
ty
Tua) = [ f(u(t). (o), s(0):0) dr (6.63)
t1

with the constraints

&(t) = X (u(t), z(t); 1) (6.64)
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and the output given by
y(t) =Y (u(t), z(t); ). (6.65)

For simplicity we have excluded possible dependence of the integrand of the cost
functional on %(t) and y(¢t). It is also convenient to remove any dependence on
y(t) by substituting from (6.65). In the linear problems, which we have so far
considered, (6.64) and (6.65) take the usual forms

&(t) = Az(t) + bu(t), (6.66)

yt) = cTz(t). (6.67)

respectively, although neither (6.65) nor its linear form (6.67) play any role in
our discussion. The essence of the task is to determine forms for x(¢) and u(t)
which give a minimum for Z[u, z] subject to the constraints (6.64)

Example 6.2.2 Suppose we have a system with
z(t) = ax(t) + u(t), (6.68)

The aim is to minimize
tp
Tlua) = [ {lule)? + Bla(t)} dr (6.69)
t1
subject to the constraint (6.68) with z(¢;) = x; but z(¢r) unrestricted.

The simplest way to do the problem is to use (6.68) to replace u(t) in (6.69).
Alternatively (6.68) can be included by using an undetermined multiplier. As
an exercise we shall try the second method. Thus (6.68) can be treated as a
constraint. From (6.52)

Iy [u, ] = /tF {[u®) + Bla()]® + p(t)[E(t) — az(t) —u(t)]}dt  (6.70)
and the Euler-Lagrange equations give
2u(t) — p(t) =0,
p(t) —2Bx(t) +p(t)a =0

Since z(t) is not constrained we have, from the transversality condition (6.17),

(6.71)

p(ts) = 0. (6.72)
From (6.71)
u(t) = Ba(t) — ault). (6.73)

A simple way to solve the pair of differential equations (6.68) and (6.73) is by
Laplace transforming. We have

s—a —1 Z(s) xy
= . 6.74
() Ga)- () o7
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Inverting the matrix and extracting @(s) gives

(s — @)u; + By

ws) =gy 15 (6.75)
Assuming that o + 8 = w? > 0 gives
u(t) = u; cosh(wt) + w1 (Bx; — au,) sinh(wt). (6.76)

Now using the transversality condition u(tz) = 0 to eliminate u, gives

u(t) = aslf}?:g;;:?[iugic;ﬁz]wtp) (6.77)

Example 6.2.3 Suppose we have a system with

i(t) = —2(t) + u(t), (6.78)
The aim is to minimize

T, 2] = /0 TR + 4]} dt. (6.79)

subject to the constraint (6.78) with x(0) = 0, £(0) = 1 and x(¢t) — 0 and
&(t) = 0 as t — oo.

By writing x1(t) = z(t) and z2(t) = £(¢) (6.78) can be written
iy (t) = wa(t),

. (6.80)
xTo (t) = —(Eg(t) + U(t)
Thus we have two constraints. From (6.52)
L] = [ {lmOF + 4] + p@) a0 - )
+ pa(t) [i2(t) — u(t) + w2(t)] hat (6.81)

and the Euler-Lagrange equations give
p1(t) —2z1(t) =0,
p2(t) + p1(t) —p2(t) =0, (6.82)
8u(t) — pa2(t) = 0.
Eliminating p;(¢) and pa(t) gives
44i(t) = 4u(t) — x(t). (6.83)

We could now proceed by Laplace transforming (6.78) and (6.83). In this case
it is probably easier to eliminate u(t) to give

4d4a:(t) B 4d2x(t)

pTE Sz T =0 (6.84)
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The auxiliary equation is

ANY AN 1= (202 —1)2 =0. (6.85)
So the general solution is
z(t) = Aexp(—t/V2) + Btexp(—t/v2) + Cexp(t/v2) + Dtexp(t/V2). (6.86)
Since both z(t) and ©(t) tend to zero as t — co C = D = 0. Using the initial
conditions, A = 0 and B = 1. Then substituting into (6.78)

u(t) = (1 - V2) (1 + %t) exp(—t/v/2). (6.87)

6.3 The Hamilton-Pontriagin Method

In proposing the form (6.63) for the cost functional we remarked that any depen-
dence of the integrand on the output y(¢) could be removed by substitution from
(6.65). In the Hamilton-Pontriagin method the process is taken a step further
by removing explicit dependence on &(t) by substituting from the constraint
conditions (6.64).* Thus we have the cost functional

Tlu, x] = t ’ fu(t), =(t);t) dt. (6.88)
with the constraints
z(t) = X(u(t), z(t);t) (6.89)

For these n constraints we introduce n undetermined (time dependent) multipli-
ers p;(t), 7 =1,2,...,n. The variables z;(t) and p;(t) are said to be conjugate.
With p(t) = (p1(t), p2(t), - .., pn(t))" we have

Fu(t), z(t),p(t);t) = f(u(t), z(t);t) + p(t) - [&(t) — X (u(t), z(t);t)]  (6.90)
and

T, [u, 2] = /t " Plu(t), @), p(t): ) dt. (6.91)

The task is now to find an extremum for Z,[u, z]. Before deriving the equations
for this we reformulate the problem slightly by defining the Hamiltonian

H(u(t), ®(t),p(t);t) = p(t) - X (u(t), 2(t); 1) — f(u(t), 2();1). (6.92)
Then (6.91) becomes

Iplu, x] = / F [p(t) - &(t) — H(u(t), z(t), p(t);1)] dt. (6.93)

t1

41f in particular problems time derivatives appear in the integrand which do not correspond
to constraints then they can be removed by ‘inventing’ new variables, rather in the way that
we treated the second-order time derivative in Example 6.2.3.
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Since Vz[p(t) - &(t)] = p(t) the Euler-Lagrange equations are

p(t) = —VaH, (6.94)
%—Z = 0. (6.95)

In this context these are often referred to as the Hamilton-Pontriagin equations.
It is also interesting (but not particularly useful) to note that (6.89) can be
rewritten as

z(t) =Vp H. (6.96)
In scalar form (6.94) and (6.96) are

. oH
pi(t) = iy (6.97)
J
. oH
z(t) = o (6.98)
J

for j =1,2,...,n. Examples 6.2.2 and 6.2.3 can both be formulated in the way
described here. In fact in these cases, since the integrand of the cost functional
does not involve time derivatives, no substitutions from the constraint conditions
are needed. For Example 6.2.2 the Hamiltonian is

H(u(t), (), p(t)) = p(t)[u(t) + az(t)] - [u(®)]? — Bla()] (6.99)
and (6.95) and (6.98) yield (6.71). For Example 6.2.3 the Hamiltonian is
H(u(t), 21(8), 22(8), p1 (£), p2()) = pa ()22(8) + pa(®)[u(t) — w2(8)] — 4fu()]? — a1 (1)]2
(6.100)

and (6.95) and (6.98) yield (6.82).

In cases like Example 6.2.2 where the location of the final point on the path
is unrestricted we need transversality conditions. From (6.90) and (6.91) these
are given by

pj(te) =0, if ;(te) is unrestricted for j =1,...,n. (6.101)

in agreement with the transversality condition (6.72) of Example 6.2.2.

6.3.1 The Connection with Dynamics: Hamilton’s Equa-
tions

For the dynamic system described in Sect. 6.1.2 we need first to express the
Lagrangian without using time-derivative variables. To do this we introduce
the new variables

() = v;(t), i=12,...n, (6.102)
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or in vector form

&(t) = v(t). (6.103)
Then
Lz (t),v(t);t) = 3mv* — V(a;t) (6.104)
and from (6.92) the Hamiltonian is
H(z(t),v(t),p(t);t) = p(t)v(t) — L(z(t),v(t);t), (6.105)
= p(t)v(t) — 3mv? + V(z;t) (6.106)
giving
F(z(t),2(t),v(t);t) = p(t) - &(t) — H(x(t),p(t), v(t); 1) (6.107)

The Euler-Lagrange equation using this expression for the state-space variables
x(t) simply give (6.94) or its scalar form (6.97). However, we also have an
equation using v. Since ©(t) is not present this is simply

VoF = p(t) — mo(t) = 0. (6.108)
Substituting into (6.106) gives the expression

H(=(t), p(t);t) = ﬁpz + V(s t), (6.109)

for the Hamiltonian. Equations (6.97) and (6.98) (or their vector forms (6.94)
and (6.96)) are in this context called Hamilton’s equations [see (1.100) and the
following discussion].

6.4 Pontriagin’s Principle

In real-life problems the input control variable w(t) is usually subject to some
constraint on its magnitude. Typically this is of the form

ur, < u(t) < ug. (6.110)

Such a constraint will, of course, affect the derivation of an optimal control
if the unconstrained optimum value for u(t) given by (6.95) lies outside the
range given by (6.110). We now need to obtain the ‘best’ value subject to the
constraint. This will depend on whether we are looking for a maximum or
minimum extremum for Z[u, z] given by (6.88). It follows from (6.92) that a
minimum for f(u(t),z(t);t) corresponds to a maximum for H (u(t), z(t), p(t);t)
and vice-versa. If you are uncomfortable with this crossover you can change the
sign in the definition of the Hamiltonian by replacing H by —H in (6.92). This
has the disadvantage of giving the wrong sign for the mechanics Hamiltonian
(6.109).5 We shall for the sake of definiteness assume that we are looking for a

5Because of this choice of sign in the problem Pontriagin’s principle is variously referred
to as Pontriagin’s minimum principle and Pontriagin’s mazimum principle in the literature.
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minimum of f(u(t),x(t);t) and thus a maximum of H (u(t), x(t), p(t);t), which
we assume to be a continuous differentiable function of u over the range (6.110).
Then the condition for an optimum «*(¢) for u(¢) is that

H(u"(t), z(t),p(t);t) > H(u"(t) + du, z(t), p(t); ), (6.111)

for all du compatible with (6.110). Expanding in powers of ju we have

OH\" 1 (?H\", . ., 3
(%> du+ 5 (W) (6u)* 4+ O ([6u)?) < 0. (6.112)
If there is an extremum of H in the allowed range (6.112) gives the usual con-
ditions for a maximum. Otherwise (6.112) can be approximated by its leading
term to give

(%—H> Su < 0. (6.113)

u

In these circumstances H is a monotonic function of u. If it is increasing then
du < 0, which means that u*(t) = uy, if it is decreasing then du > 0 which means
that u*(¢) = ur,. The optimum value of u will be at one of the boundaries of the
range. Since the sign of 0H/0u will depend on the other variables «(¢) and p(t)
there may, as ¢ varies, be a sudden change of u*(t) between u; and uy. This
sudden change is called bang-bang control and

_oH
T du

is called the switching function.

S(t) (6.114)

Example 6.4.1 The motor-racing problem. A vehicle of mass m moves in
a straight line Oz under an engine thrust mu(t), where the control variable u(t)
is constrained by the condition |u(t)| < ug. Assuming that friction is absent
find the control strategy which takes the vehicle from rest at * = 0 to rest at
T = zp in the least time.

Let 21 (t) = x(¢t) and z2(t) = x(¢). Then

j?l (t) = X9 (t),

. (6.115)
Zo(t) = u(t).
If ¢z is the time of the drive
ty
Tlu, x1,20] = tp = / dt. (6.116)
0

This gives f(u(t),z1(t),z2(t);t) =1 and, from (6.92),

H(u(t), z1(t), 22(t), p1(t), p2(t)) = p1(t)z2(t) + p2(t)u(t) — 1. (6.117)
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Then, from (6.97)
pi(t)
pa(t) = —Pl( )

and (6.98) gives, of course, (6.115). From (6.118)

(6.118)

p1

g
(t) =

6.119
(1) = (6.119)

p2(t

and
T2 pa(t) =B — At (6.120)

Thus H is a monotonic strictly increasing or strictly decreasing function of u(t)
for all ¢ except at ¢ = B/A if this lies in the interval of time of the journey.
Since the vehicle starts from rest at ¢ = 0 and comes to rest at ¢t = ¢, it must
be the case that #(0) = u(0) > 0 and #(tx) = u(tx) < 0. So in the early part
of the journey u(t) = ug and in the later part of the journey u(t) = —ug. The
switch over occurs when po(t) changes sign. So pa(t) is the switching function
8(t). For the first part of the journey

Z(t) = us,
i(t) = uat, (6.121)
z(t) = %u.;t2

Z(t) = —us,
() = ug(ty — 1), (6.122)
z(t) = zp — gus(te —1)°

Since both (¢) and z(t) are continuous over the whole journey the switch occurs
at

t=ts = tn/2, (6.123)
with
tp = 24/ Tr /Ug, (6.124)
x(ts) = zr/2.

These results give us the strategy for completing the journey in the minimum
time. Suppose alternatively we chose

u(t) = ug — ut (6.125)
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throughout the whole journey. Then

. 1 2
Z(t) = ugt — 5ut”,
L o , (6.126)
z(t) = sust” — Fut’.
The conditions that the journey ends with zero velocity and x = z gives

W= /2u?/3xy,
ty = /62p/Us.

Comparing this result with (6.124) we see that this procedure yield a journey
time 1/3/2 longer. Plots of velocity against distance can be obtained using
MAPLE :

(6.127)

> tF1:=(uB,xF)->2*sqrt (xF/uB) ;

| zF

> vl:=(uB,xF,t)->uB*t;

vl = (uB, zF, t) » uBt
> x1:=(uB,xF,t)->uB*t~2/2;
1 2
zl = (uB, zF, t) — 5 uBt
>  v2:=(uB,xF,t)->uB*(tF1(uB,xF)-t);
v2 := (uB, zF', t) — uB (tF1(uB, zF) — t)
> x2:=(uB,xF,t)->xF-uB*(tF1(uB,xF)-t)~2/2;
1
z2 := (uB, zF, t) — «F — 3 uB (tF1(uB, zF) — t)*
>  tF2:=(uB,xF)->sqrt (6*xF/uB) ;

zF
F2 := (uB, oF —
tF2 := (uB, zF) — 6uB

> v3:=(uB,xF,t)->t*uB* (tF2(uB,xF)-t) /tF2(uB,xF);
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tuB (tF2(uB, zF) —t)

= (uB, zF
vdi= (uB, oF's 1) = —— B, 2F)

> x3:=(uB,xF,t)->t"2%uB* (3*%tF2 (uB,xF) -2*t) / (6*tF2 (uB,xF)) ;

1 ¢ uB (3tF2(uB, aF) — 2t)
6

23 := (uB, zF, t) — tF2(uB, zF)

plot(

{[x1(1,1,t),v1(1,1,t),t=0..tF1(1,1)/2], [x2(1,1,t),v2(1,1,t),
t=tF1(1,1)/2..tF1(1,1)],[x3(1,1,t),v3(1,1,t),t=0..tF2(1,1)]
},linestyle=1);

vV V V V

1
0.85
0.65
o.4—f

0.2

The upper curve corresponds to the optimum control and the lower to the control
with linearly decreasing thrust. Since the area under the plot of the reciprocal
of the velocity against distance would give the time of the journey the larger
area in this plot corresponds to a shorter journey time. The latter part of the
upper curve and its extension, which are given parametrically by the second and
third of equations (6.122) is called the switching curve. It represents the points
in the velocity-position space from which the final destination can be reached,
arriving with zero velocity, by applying maximum deceleration. So the point
where this curve is crossed by the first branch of the journey is the point when
switching from acceleration to deceleration must occur.
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Example 6.4.2 The soft-landing problem. A space vehicle of mass m is
released at a height x; above the surface of a planet with an upward velocity
v;. The engine exerts a downward thrust mu(t), where |u(t)| < ug and v2 <
2x;(ug — g), g being the acceleration due to gravity. It is required to reach the
surface in minimum time arriving there with zero velocity.

Let x1(t) = z(t) and x2(t) = &(t). Then

£'E1 (t) = T2 (t),

(6.128)
ia(t) = —[u(t) + 9]
If ¢z is the time taken to land
Tlu, x1,22] = tp = /tF dt. (6.129)
0
This gives f(u(t),z1(t),z2(t);t) =1 and, from (6.92),
H(u(t), 1 (t), 22(t), p1(t), p2(t)) = pr(t)z2(t) — pa(t)[u(t) + 9] — 1.
(6.130)
Then, from (6.97)
él(t) -0 (6.131)
pa(t) = —p1(t)
giving (6.118)
p2(t) =B — At
and
%—Z = —pat) = —B + At. (6.133)

Now —pa(t) is the switching function. H is a monotonic strictly increasing or
strictly decreasing function of u(t) for all ¢ except at ¢ = B/A if this lies in the
interval of time of the journey. Since the vehicle begins the landing process with
an upward velocity its engine thrust must be initially downwards. (Otherwise
the initial total downward thrust would be m(g — ug) which is negative.) There
is one switch to an upward engine thrust to give a soft landing. For the first
part of the journey

i(t) = —(us +9),
L(t) = vy — t(us + 9), (6.134)
a(t) = 21+ vit — 5t%(us + g).
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For the second part of the journey

(t) = (us — 9),
i(t) = (us — g)(t — tx), (6.135)
x(t) = 5(ue — )t — tx)?.
Since both (t) and z(t) are continuous over the whole journey the switch occurs
at
te(us — g) + vy
t=1y = ——F—— 6.136
ol mo)rn, (6136)
with
1 2 242
to = {UI n \/ us[vf + 23:(us + 9)] } : (6.137)
Ug + ¢ Ug — 9

These results give us the strategy for completing the journey in the minimum
time. The plot of velocity against distance is given by:

> v1l:=(uB,xI,vI,g,t)->vI-t*(uB+g);
vl = (uB, zI, vl, g, t) — vI —t (uB + g)

> x1:=(uB,xI,vI,g,t)->xI+vI*t-t~2%(uB+g)/2;
zl == (uB, zl, vl, g, t) = ol + vl t— %t2(uB+g)

> tF:=(uB,xI,vI,g)->(vI+sqrt (2*uB* (vI~2+2*xI*(uB+g))/(uB-g)))/(uB+g);

2
ol + 2uB(vI + 2zl (uB +g))
F = (uB, oI, vl, g) — Wy
tF = (uB, zl, vl, g BTy

> v2:=(uB,xI,vI,g,t)->(uB-g)*(t-tF(uB,xI,vI,g));
v2 = (uB, zI, vl, g, t) = (uB — g) (t — tF(uB, zI, vI, g))

> x2:=(uB,xI,vI,g,t)->(uB-g)*(t-tF(uB,xI,vI,g))"~2/2;
z2 = (uB, zI, vl, g, t) — % (uB — g) (t —tF(uB, «I, vI, g))*

> tS:=(uB,xI,vI,g)->(tF(uB,xI,vI,g)*(uB-g)+vI)/(2*uB);
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1 tF(uB, «f, vl B — 1
tS::(uB,a:I,UI,g)%§t(u ol ol 9) (uB —g) + v

uB
> plot(
> {[x1(2,10,5,1,t),v1(2,10,5,1,t),t=0..t5(2,10,5,1)],
> [x2(2,10,5,1,%t),v2(2,10,5,1,t),t=tS(2,10,5,1)..tF(2,10,5,1)]
> 1

The lower branch of the plot is the switching curve.

Example 6.4.3 The flywheel problem. The equation of motion of a fly-
wheel with friction is

0(t) + 20(t) = u(t),

where the input variable u is restricted by |u(t)| < 2. It is required to bring the
flywheel from 6(0) = 0, #(0) = 0 to § = 7 with § = 0 in minimum time. Use
the Hamilton-Pontriagin method with 1 = 6 and x5 = 0 to show that during

the motion either u(t) = 2 or u(t) = —2, and that the variables p;(t) and pa(t)
conjugate to z1(t) and za(t) are given by

pi(t) = C, pa(t) = 1C + Bexp(2t),

where C and B are constants. Deduce that there is exactly one switch between
u(t) =2 and u(t) = —2.
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Given that the total time for the motion of the flywheel is ¢, and that the
switch occurs when ¢ = tg5, show that

ts = %(71’ + ) with t, = arccosh[exp(7)].

The two constraints are
:ﬁl(t) = :Eg(t),
Zo(t) = u(t) — 2x2(t)

Since we are looking for an extremum of time f(u(t),z1(¢),z2(t);t) = 1 and
the Hamiltonian is

H(u(t), z1(t), 22(t), p1(t), p2(t)) = p1(t)2(t) + p2(t)[u(t) — 222(t)] — 1.

Then the Hamiltonian-Pontriagin equations are

p1(t) =0, Pa2(t) = 2p2(t) — pa(t),
with

88—15 = pa(t).
Thus

pi(t) =C
and

< pa(t) exp(~26)] = —C exp(~21)
giving

pa(t) = 2C + Bexp(21).
This is the switching function. Since it is a monotonically increasing function
it has at most one zero in the range 0 < t < t;, so there will be at most one

switch between u(t) = 2 and u(t) = —2. So there must be exactly one switch in
order for the wheel to begin from rest and return to rest.

For the first part of the motion

o(t) + 260(t) = 2.

The auxiliary equation is A2 + 2\ = 0, giving the complementary function
0.(t) = A + Bexp(—2t) and a particular solution is ,(¢t) = ¢t. Thus the general
solution is

0(t) =t+ A + Bexp(—2t).

Since 6(0) = 6(0) =0, A+ B =0 and 1 — 2B = 0. Thus

0(t) =t — 2[1 — exp(—2t)].
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For the second part of the motion

0(t) +26(t) = —2.
This simply changes the sign of the particular solution. So
0(t) = —t + A + Bexp(—2t).

Since 0(ty) = m and O(tz) = 0, —tz + A + Bexp(—2tz) = 7 and —1 —
2B exp(—2tx) = 0. Thus

O(t) = te —t + 7+ 5[1 — exp{2(tx — t)}].
At the switching time ¢ = 5 both 6(¢) and 6(t) are continuous.
ts — 2[1 — exp(—2ts)] = tr — ts + 7+ £[1 — exp[2(te — ts)],
1 —exp(—2ts) = —1 4 exp[2(tr — ts)].
Adding the first equation to one half the second gives
ts = %[71’ + ti]
and substituting back into the second gives
1 —exp(—7 —tr) = —1 4+ exp(ty — 7).
This simplifies to exp(m) = cosh(tz), and thus

ty = arccosh[exp(m)].

Problems 6

1) Find the extremum of

I[a] = /01 {3 +a(n)i(r) } ar

with (0) = 0 and x(1) = 5, subject to the constraint

1
Jlz] = / z(r)dr = 2.
0
2) Find the extremum of
2
Zla) = [ {a(r) + a(r)} dr
0
with 2(0) = 1 and z(2) = 48, subject to the constraint

2
Jlz] = /0 z(7)rdT = 43.
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3)

The equation of a control system is

Find the input u(t) which minimizes
tp
Tlu, o] = [ {[=(0)] + [u(®)]*} dt,
0

given that z(0) = z(ty) = . Find the minimum value of Z[x].

The equation of a control system is

Find the input u(t) which minimizes

IM=Am@mu

given that z(0) = z(1) = 0 and #(0) = ¢(1) = 1.
A system is governed by the equation
z(t) = u(t) — x(¢).

With z(0) = z(tx) = zo, where ¢, > 0, find the input u(¢) which minimizes

Find the minimized value of Z[u] and show that it is less than the value
of Z obtained by putting x(t) = xo over the whole range of ¢. Given that
the condition z(tr) = ¢ is dropped and z(tr) is unrestricted show that the
minimum value of 7 is zero.

A system is governed by the equation

With z(0) = 0 find the input u(¢) which minimizes

ﬂm=%A?mwﬁ+mm%a

when

(a) z(ty) = 1.
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(b) x(tr) is unrestricted.
Show that for case (a)

cosh(t) sinh(t)

u(t) =1+ nh(5,) a(t) = Snh(6)
and for case (b)

Without evaluating the minimized Z show from these results that it is smaller
in case (b) than in case (a). Think about why this is what you should expect.

The equation of motion of a flywheel with friction is

() + pb(t) = u(t),

where p is a positive constant and the input variable w is restricted by |u(t)| <
ug. It is required to bring the flywheel from 6(0) = 6, 0(0) = 0 to # = 6, with
6 =0in minimum time. Use the Hamilton-Pontriagin method with x; = 6
and zo = 6 to show that during the motion either u = ug or v = —ug, and
that the variables p1(¢t) and po(t) conjugate to x1(¢) an x2(t) are given by

pi(t)=C, pa(t) = p='C + Bexp(ut),

where C and B are constants. Deduce that there is at most one switch
between ug and —ug.

Show from the transversality condition that there is no switch if 6 is unre-
stricted at t = ¢ and that in this case ¢ is give by the implicit equation

12 (0p — 01) = uplpty — 1+ exp(—pute)].
A rocket is ascending vertically above the earth. Its equations of motion are

Cu(t)
m(t)

() =

-9, m(t) = —u(t).

The propellant mass flow can be controlled subject to 0 < u(t) < ugy. The
mass, height and velocity at time ¢ = 0 are all known and it is required to
mazimize the height subsequently reached (when the time is taken to be ty).
Show that the optimum control has the form

Uy, S(t 0,
u*(t) = { () i
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where the switching function 8(t) satisfies the equation $(t) = D/m(t), for
some positive constant D. Given that the switch occurs at t5, show that

D, [m)
uu1 {m(ts)}’ O=t=ts
8(t) =
D(ts — 1) te <t <t
m(ts) 9 S F

A vehicle moves along a straight road, its distance from the starting point
at time ¢ being denoted by xz(¢). The motion of the vehicle is governed by

#(t) = ult) — k, k>0,

where u(t), the thrust per unit mass, is the control variable. At time ¢ = 0,
r = & = 0 and the vehicle is required to reach = L > 0, with £ = 0,
in minimum time, subject to the condition that |u(t)| < ug, where ug > k.
Using the state-space variables 1 = x and x5 = Z, construct the Hamiltonian
for the Hamiltonian-Pontryagin method and show that during the motion
either u(t) = ug or u(t) = —usg.

Show that u(t) cannot switch values more than once and that a switch occurs
when

L(ug + k)

2ug

Find the time taken for the journey.
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Chapter 7

Complex Variable Methods

7.1 Introduction

At some stage in many problems in linear control theory we need to analyze a
relationship of the form

5(s) = Gls)a(s), (7.1)

where @(s) and g(s) are respectively the Laplace transforms of the input u(t)
and output y(¢). The transfer function G(s) is a rational function of s. That is

¥(s)
where 1 (s) and ¢(s) are polynomials in s. Our interest has been, not only in
obtaining y(t) for a given form for u(t) for which we have usually used partial
fraction methods, but in determining the stability of the system, for which we
have the Routh-Hurwitz criterion described in Sect. 5.2.1. In this chapter we
shall describe other methods which rely on using the properties of (7.1) in the
complex s-plane.

7.2 Results in Complex Variable Theory

7.2.1 Cauchy’s Residue Theorem

We consider a meromorphic function F(s) of the complex variable s. Suppose
that sg is a pole of order m of F(s). Then

m ﬁj
F(s) = —_— 7.3
(9= 1)+ 2, (73)
Jj=1
where f(z) is analytic in a neighbourhood of sq and fi, ..., 8, are constants.

Then B is called the residue of F(s) at so and is denoted by Res(F'; so).

141
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Example 7.2.1 Suppose

F(s) = %. (7.4)

This has a third-order pole at s = 5. Expand exp(st) about s =5
exp(st) = exp(bt)+t(s—5)exp(5t)+ %t2(s —5)%exp(5t)
+3;t3(s — 5)% exp(5¢) + O[(s — 5)]. (7.5)
So dividing by (s — 5) we see that
Res(F;5) = %t2 exp(51t). (7.6)
A result which is very useful in this context is:!
Theorem 7.2.1 If F(s) has a pole of order m at sg

Y
G e g |

Res(F; sg) = (s = s0) F(s)], (7.7)

for any j > m.

With j = 3 you will see that this gives you a quick way to obtain (7.6).2 A
closed contour is a closed curve in the complex plane with a direction. Given
any closed contour v and some point sg not lying on v the winding number or
index of v with respect to sg, denoted by Ind(~; s¢) is the number of times the
contour passes around sgp in the anticlockwise direction minus the number it
passes around sg in the clockwise direction.

Theorem 7.2.2 Let v be a closed contour and sy a point not lying on ~y then

1 ds
Y

We can now state the Cauchy residue theorem.

Theorem 7.2.3 Let F(s) be a meromorphic function with poles s1,S2,...,Sn
and let v be a contour not passing through any of these points. Then

i, F(s)ds = zn: Res(f; s;)Ind(y; s;5). (7.9)
27i J, =

L Proofs for this theorem and the Cauchy residue theorem are given in any book on Complex
Variable Theory and in particular in the notes for course CM322C.
21t is also easy to check that it give the correct result with j =4
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7.2.2 The Argument Principle

A useful consequence of the residue theorem is the argument principle.’

Theorem 7.2.4 Let F(s) be a meromorphic function and let v be a simple
closed curve transcribed in the anticlockwise direction* not passing through any
of the poles or zeros of F(s). Then

1 [ F(s)
2ir ), F(s)

ds = {Number of zeros in v} — {Number of poles in v}, (7.10)

where in each case multiplicity is included in the counting.

This result can be re-expressed in a slightly different way by writing

F'(s), dF(s) _ 0l F(s

Fs) ds = Fis) d{In[F(s)]} . (7.11)
Now let

F(s) = |F(s)|exp(i®). (7.12)

So, since In|F'(s)] is single-valued,

ﬁfy?((j))ds _ %fyd{ln[F(s)]}
. 1
_ %/Vd{lan(Sﬂ}‘Fg/vd@

S / de. (7.13)
2 y

This final term measures the change in argument (hence the name ‘argument
principle’) of F(s) along v in units of 27. Suppose now we consider the mapping

s = F(s). (7.14)

As s describes the curve v, F'(s) will describe some other closed curve I'r and
the last term in (7.13) is just the number of times that I'; passes around the
origin, or simply the winding number Ind(I's;0). Thus

Ind(T'y; 0) = {Number of zeros in v} — {Number of poles in ~}. (7.15)

3 Again proved in the notes for CM322C.

4For a simple closed curve described in the anticlockwise direction the winding number of
every point in the complex plane is either zero (corresponding to outside) or one (corresponding
to inside).
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7.3 The Inverse Laplace Transform
According to (2.23) the Laplace transform in (7.1) can be inverted by

a-+ico
y(t) L/ G(s)u(s) exp(st)ds, (7.16)

21 Joiso

where « > n and the integral is along the vertical line R{s} = « in the complex
s—plane. According to Sect. 2.3 the parameter 7 is such that the integral defining
the Laplace transform converges when ${s} > n. This might seem to be a
problem for solving the integral (7.16). However, we do have some information.
We know that G(s) is a meromorphic function, that is its only singularities are
poles. Suppose that these are located at the points s1, so, ..., s, in the complex
s—plane. The pole s; will contribute a factor exp(s;t) to the Laplace transform.
Thus for convergence we must have R{s} > R{s,} and so a > n > R{s;}. This
applies to all the poles of G(s). If we also assume that @(s) is also a meromorphic
function these must also be included and we final have the conclusion that the
vertical line of integration in (7.16) must be to the right of all the poles of
G(s)a(s).

The problem now is to evaluate the integral (7.16). We have assumed the
@(s) is meromorphic, so the integrand is meromophic with poles denoted by
81,52,...,5,.> Now define

yr(t) = —— / G(s)i(s) exp(st)ds, (7.17)

2mi

where vy is

S9 R
[ ]
51
°
(%
°
53
—R

5These are all the poles of G(s) and all the poles of @(s) unless one of these functions has
a zero which annihilates a pole of the other.
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We take R to be sufficiently large so that all the poles of the integrand are
within the contour. Then since the winding number of v; with respect to each
of the poles is one

1

7 . G(s)u(s) exp(st)ds

Yx(t)

Z Res(G(s)a(s) exp(st); s;). (7.18)

The final part of this argument, on which we shall not spend any time, is to show
that, subject to certain boundedness conditions on the integrand, in the limit
R — oo the contributions to the contour integral from the horizontal sections
and from the semicircle become negligible. Thus

1 a+ioco n
y(t) = — / G(s)u(s) exp(st)ds = Z Res(G(s)u(s) exp(st);s;).  (7.19)

271—1 —ico =1

Example 7.3.1 Consider the final part of Example 3.4.2 where

y(t) = 20 / o {1 _ s + awp }exp(st)dt (7.20)

27 S, s 2
1o (8 + %aw%) 4 w?

and w? = w3 — iazwg.
The first term has a simple pole at the origin and the second has two simple
poles at

s = —3awp + iw. (7.21)

According to sign of a we now need to choose « so that the line of integration
is to the right of these poles. Then the contribution to the pole at the origin,
which can be treated separately is just ug. The contributions from the other
poles are

(5 + aw?) exp(st)

—ug 4 (s+ %awg Fiw) 5
(s + %aw%) + w?

{ (5 + aw?) exp(st) }
= —uo 1 2 N
s+ 5&0.10 + iw szféang:iw

f o2
= —%Uo [(1 F %) exp (:I:iwt - %awgt)] . (7.22)

=20
s=—5 awd fiw

Adding these contributions together gives (3.47).
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7.4 The Stability of a System with Unit Feedback

7.4.1 The Frequency Response Function

In Example 7.3.1 we considered a system with u(t) = ug, a constant input turned
on at t = 0. The effect on the output was a constant contribution given by the
pole at the origin. If, for the general case (7.1), we choose u(t) = exp(iwt), then
i(s) = (s —iw)~! and

a~+ioco s
y(t) L/ ¢ izu exp(st)ds. (7.23)

2 Joy—ioo S —

Uunless G(s) itself has a pole at s = iw, which would produce a resonance effect,
the contribution to y(¢) from this pole is G(iw) exp(iwt). The amplitude factor
G(iw) is called the frequency response function.

7.4.2 The Nyquist Criterion

Now suppose that G(s) is the open-loop transfer function and we introduce a
unit feedback to give

7(s) = Gen(s)u(s), (7.24)
where
GCL(S) = % (725)

We consider the mapping
s = G(s). (7.26)

The imaginary axis in the s plane is s = iw, —00 < w < +o0o. This will be
mapped into a curve I'g in the Z = X 4+ 1Y plane given by

X(w)+1Y (w) = G(iw), —00 < w < 4o00. (7.27)

Assuming that ¢ (s) and ¢(s) in (7.2) are both polynomials with real coefficients
with 1 (s) a lower degree that ¢(s) then I'y is a closed curve® in the Z-plane
with G(ico) = G(—ico) = 0 and symmetry about the X—axis. This curve is
called the Nyquist locus” of G(s). We now prove the following theorem:

Theorem 7.4.1 If the number of poles of G(s) with R{s} > 0 is equal to
Ind(T¢; —1), the index of the Nyquist locus of G(s) with respect to Z = —1,
then the closed-loop transfer function Go.(s) is asymptotically stable.

6 Although, in Example 7.4.2, we see a case where this ‘closed’ curve has a discontinuous
jump from +ioco to —ico as w passes zero.
7Or sometimes ‘plot’ or ‘diagram’.
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Proof: Let

1
F(s) =1+ G(s) = Gals)’ (7.28)
The poles of Ge.(s) will be the zeros of F(s).

Let g be the the closed contour (traversed in the clockwise direction) con-
sisting of the imaginary axis in the s-plane from s = —iR to s = iR, together
with a semicircle, centre the origin, of radius R to the right of the imaginary
axis. We assume for simplicity that G(s) has no poles on the imaginary axis.?
Then for sufficiently large R all the poles and zeros of G(s) and F(s) with
R{s} > 0 will be enclosed within 5. This closed curve in the s—plane is called
the Nyquist contour. Now plot F(iw) = U(w) +iV(w) in the W = U 41V plane.
The contour I'y, produced by this is, apart from an infinitesimal arc near the
origin the image of ~g in the s—plane. (With very large R the arc of radius R is
contracted into a very small arc around the origin in the Z—plane.) Thus, from
(7.15),°

Ind(I'y;0) = {Number of poles of F(s) with R{s} > 0}
— {Number of zeros of F(s) with #{s} > 0}. (7.29)
When F(iw) =0, G(iw) = —1; so
Ind(Tp; 0) = Ind(Ta; —1). (7.30)

Since it is also the case that the poles of F(s) and G(s) coincide, if

Ind(T'q; —1) = {Number of poles of G(s) with ®{s} > 0} (7.31)
then

{Number of zeros of F(s) with R{s} >0} =0 (7.32)
and thus

{Number of poles of Gcy(s) with R{s} >0} =0, (7.33)

which means that G (s) is asymptotically stable.

An immediate consequence of this is the Nyquist criterion'® that: If G(s) is itself
asymptotically stable, and thus has no poles with R{s} > 0, then the closed-loop
transfer function is asymptotically stable if ' does not encircle the point -1.

Example 7.4.1 Let

K
G(s) = ——= K> 0. 7.34
(0)=1—g (7:34)
81f it does the contour can be diverted around them.
9The change of sign, as compared to (7.15), is because the Nyquist contour is transcribed
in the clockwise direction.
10In some texts the more general result Thm. 7.4.1 is called the Nyquist criterion.
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with the closed-loop transfer function

_ G(s) K
Gouls) =106 ~ 501K (7.35)
With X (w) 4+ 1Y (w) = G(iw)
___kQ L. C
X(w) = T Y (w) = T (7.36)
This gives
[X + (K/2Q)]2 +Y? = (K/2Q)>. (7.37)

Thus T, is a circle centre X = —(K/2Q), Y = 0 and radius |K/2Q|. Now G(s)
has a pole at s = Q. So, for Q > 0, the open-loop transfer function is unstable
and we need to use Thm. 7.4.1 rather than the special case which is the Nyquist
criterion. For the closed-loop transfer function to be stable I'g must pass around
—1 once, which will be the case when K > Q. The reasoning for Q < 0 follows
in the same way with the open-loop transfer function now stable, leading to
an application of the Nyquist criterion. In all cases the results agree with the
straightforward deductions made by our usual methods.

Example 7.4.2 In Problem Sheet 7, Example 2, we consider the system with
open-loop transfer function

G(s) = K(a + 8s)

= iray (7.38)

and unit feedback. We used the Routh-Hurwitz method to show that the closed-
loop transfer function was asymptotically stable if 3 < cand 0 < K < (a—3)71,
or « < f and K > 0. We now investigate this result using MAPLE and the
Nyquist method.

In this case G(s) has no poles so G¢.(s) will be asymptotically stable if the
Nyquist plot does not pass around Z = —1. We first use MAPLE to find the
real and imaginary parts of G(iw).

> G:=(s,K,a,b)->K*(atb*s)/(s*(1+2%s)"2):

> X:=(w,K,a,b)->simplify(evalc(Re(G(I*w,K,a,b)))):

> X(w,K,a,b);

K(=b+4bw? +4a)
1+ 8w? + 16w

> Y:=(w,K,a,b)->simplify(evalc(Im(G(I*w,K,a,b)))):
> Y(w,K,a,b);
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K(—a+4aw?® —4bw?)
w (14 8w? 4+ 16w*)

We see that Y (—w) = =Y (w). The Nyquist plot is symmetric about the X —axis
with both ends of the curve at the origin (X(£o0) = Y (£o0) = 0). Unless
a =0, Y(w) - F0 x (Ka), as w — =£0, giving an infinite discontinuity in
the plot as w passes through zero. If « = 0 then Y(w) — 0 as, w — 0, with
X(w) = Kp.

In the case a # 0 the plot cuts the X—axis when Y (w) = 0 giving

w== TP (7.39)

Ifa>0and > g or a <0 and 8 > a the two branches of the plot cross
at this value of w. We calculate the point on the X—axis where this occurs for
B =a/2> 0. In this case (7.39) gives w = 1/v/2.

> X1:=(w,K,a)->simplify(X(w,K,a,a/2)):

> Xi1(w,K,a);

1 Ka(7+4w?)

214+ 8w?+ 16w

> Yi:=(w,K,a)->simplify(Y¥(w,K,a,a/2)):

> Yi(w,K,a);

Ka(-1+2w?)
w (14 8w? 4+ 16w?)

> simplify(X1(1/sqrt(2),K,a));
—% Ka
So, for 8 = a/2 > 0, the closed-loop transfer function is stable if —%Ka > —1.

That is if K < 2/, which is the result obtained by the Routh-Hurwitz method.
We compute the Nyquist plot for an unstable case when K=1, a =6, 5 = 3.

> with(plots):
> plot([X(w,1,6,3),Y(w,1,6,3),

> w=-infinity..infinity],X=-6..2,Y=-2..2,numpoints=1000);
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52
-1y
6 -5 -4 -3 0 1 2
X
1
Lo

When o = 0, the system will be stable if the point where the plot cuts the
X—axis is to the right of the origin. That is K5 > 0. We plot the case K = %,
B=1.

S plot ( [X(w ’05’ G ,1),Y(w,05,0,1),

> w=-infinity..infinity],X=-0.2..0.6,Y=-0.6..0.6,numpoints=1000) ;
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Problems 7

1) For the system with block diagram:

Determine the closed loop transfer function Gew(s) and use the Routh-
Hurwitz stability criteria to show that the system is stable for —1 < K < 8.

Find the functions X (w) and Y (w) so that G(iw) = X (w) + 1Y (w). Define
the Nyquist plot and state the Nyquist criterion which relates the form of
this curve to the stability of G (s). Show that, for the given example, the
result obtained from the Nyquist criterion confirms the result obtained by
the Routh-Hurwitz procedure.
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Chapter 8

Non-Linear Systems

8.1 Introduction

In Sects. 1.5 and 1.6 we discussed systems of differential equations most of which
were non-linear. As we have seen, it is no restriction to concentrate on a first-
order system since higher-order equations governing a system can be expressed
as a system of first-order equations by introducing additional variables. For
simplicity we shall again consider single input/single output systems and we
shall also suppose the system is autonomous. A realization will then be of the
form

z(t) = X(u(),=z()), (8.1)

y(t) = Y(x(t)). (8.2)

where x(t) is the n-dimensional state-space vector, just as in the linear version
(4.44)—(4.45) of these equations.

8.2 Laplace Transforms and Transfer Functions

Because the Laplace transform is a linear transform its use in non-linear prob-
lems is very limited. To illustrate this point consider the system with equations

_ w(s)

s) = G
(s) = F{o(s)},
o(s) = (s) — a(s),
is) = (1+ Hs)g(s)

and block diagram

153
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y(s)

1
Qs?

where F is some non-linear operator. Assuming all the variables and necessary
derivatives are zero for ¢ < 0 we eliminate all the intermediate variables to give

Qij(t) = L7 {F{L{ut) - Hy(t) —y(O)}}} - (8.4)

For a linear system the operator F would simply apply a multiplicative rational
function of s to the Laplace transform of u(t) — H¢(t) — y(¢) and the final effect
of the sequence of operators £~ {F{L{-}}} would be to produce some linear
combination of u(t) and y(t) and their derivatives. For a non-linear system we
define the non-linear function

1) = g£ LD (83)

Now introduce the two state-space variables

1 (t) = y(t) + Hy(t),

za(t) = —y(t)
and we have the realization

a1 (t) = H f(u(t) — 21(t) — z2(t),

o (t) = —f(u(t) — z1(t)), (8.7)

y(t) = z1(t) + Hao(t),
which is of the form (8.1)-(8.2) with n = 2.

(8.6)

8.3 Constant Control-Variable Systems

In the cases where the realization is one-dimensional there is not much scope
or advantage for y(¢) to be anything other than z(t), so we assume that (8.2) is
simply y(¢) = z(t) and (8.1) is

#(t) = X (u(t), z(¢)). (8.8)
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In Sect. 1.6.1 we considered a number of examples where, although we didn’t
speak of it in these terms, we had a constant input w(t) = wg, for which we
usually used the variable a. We examined the equilibrium points of the system to
determine their stability and showed that this can alter as uy changes. This leads
to bifurcations at particular values of ug, where the stability of an equilibrium
point changes and/or new equilibrium points appear. The simplest case we
considered was Example 1.6.1, which in our present notation is

#(t) = ug — 22(t). (2.9)

We saw that, for ug > 0, there were two equilibrium points 2 = ,/ug being stable
and x = —,/ug being unstable. These merged at a turning-point bifurcation
when ug = 0 and there were no equilibrium points for ug < 0. The modification
of (8.9) with ug replaced by a variable u(t) leads in even the simplest cases,
u(t) = wupt say, to very complicated problems. So we shall concentrate on
systems with constant control. Examples 1.6.1-1.6.3 can all now be interpreted
as examples of this situation where we examined the structure of the equilibrium
points for different ranges of value of the control. In most cases a detailed
solution of the problem, to give an explicit form of x(ug,t), would have been
difficult. The only case for which we gave a full solution was (8.9) with up = 0. In
Examples 1.6.6 and 1.6.7 we consider two-dimensional systems and linearized
about equilibrium points to determine their stability from the eigenvalues of
the stability matrix according to Thm. 1.6.1. In Example 1.6.7 we also found a
limit cycle or periodic orbit, which is another possible equilibrium solution to a
system of non-linear equations. We now concentrate on an investigation of the
equilibrium solutions of the system

z(t) = X (ug, z(t)). (8.10)
Such an equilibrium solution & = &(uo, t) will be a solution of

X (ug, z(t)) = 0. (8.11)

8.3.1 The Stability of Trajectories

In this section we consider the general stability properties of a solution x(t)
of (8.10). With x(t,) = =, specifying the solution at time ¢,, «(t) defines a

trajectory' in the space I, of the n variables x1, 2o, ..., Zn.
The map ¢: Iy — I, for all ¢ > 0 is defined by
Gele(t)] = x(t +t) (8.12)
and the set of maps {¢; : t > 0} is called a flow. Since
Ot [P, [2(81)]] = (b + 1 + t2) t1,t2 >0 (8.13)

the flow satisfies the conditions

¢t1 ¢t2 = ¢t1+t2 = ¢t2¢t1' (814)

LAlso called the path or orbit.
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It thus has all the properties of an Abelian (commutative) group apart from the
possible non-existence of an inverse; it is therefore an Abelian semigroup.

The important question concerning a solution x(t) of (8.10) is whether it is
stable. There are many different definitions of stability in the literature. As we
did for equilibrium points in Sect. 1.6 we shall use the one due to Lyapunov:

The solution x(t) to (8.10), with x(t,) = x,, is said to be uniformly stable
or stable in the sense of Lyapunov if there exists, for every e > 0, ad(e) > 0,
such that any other solution &(t), for which &(t;) = &, and

| — & < d(e), (8.15)
satisfies
lz(t) —2(t)| <e, (8.16)

for all t > t;. If no such §(e) exists then x(t) is said to be unstable in the
sense of Lyapunov. If (t) is uniformly stable and

lim [a(t) - &(t)] = 0. (8.17)

it is said to be asymptotically stable in the sense of Lyapunov.

Lyapunov stability could be characterized by saying that, for stability, the two
solutions are forced to lie in a ‘tube’ of thickness €, for ¢t > t;, by the initial
condition (8.15). The following definitions are also useful:

The solution x(t) to (8.10), with x(t;) = x,, is a periodic solution of
period T if, x(t + T) = x(t), for all t > t;, and there does not exist a T < T
with x(t +T") = x(t), for all t > t;.

A cluster (or limit) point x of the solution x(t) to (8.10), with z(t,) =
x;, is such that, for all T > 0 and € > 0, there exists a t1(¢) > 7 with

oo — x(t1)] < €. (8.18)

The set of cluster points is called the w-limit set of the trajectory.

Given that the solution (t) to (8.10) is defined for all (positive and negative)
t and x(0) = x, the reverse trajectory x"(t) is defined by x"(t) = x(—t).
The set of cluster points of the reverse trajectory is called the a-limit set of
the trajectory x(t).

It is clear that the existence of a cluster point &, implies the existence of a
sequence t; < to < -+ < t,, — 00 such that, for the specified trajectory,

Z(tm) = Too, as m — oo. (8.19)
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Let 2 be the w-limit set of a particular solution x(t) to (8.10). If there
exists a region D(R), in I,,, which contains 2 and for which the trajectories
with x(0) = x,, for all x, in D(2), have A as their w-limit set, then A is called
an attractor with basin (or domain) D(2). An a-limit with the same
property for reverse trajectories is called a repellor.

8.3.2 The Lyapunov Direct Method

An interesting method for establishing the stability of an equilibrium point is
given by Lyapunov’s first theorem for stability:

Theorem 8.3.1 Let x*(ug) be an equilibrium point of (8.10). Suppose that
there exists a continuous differentiable function L(x) such that

L(x*)=0 (8.20)
and for some p >0

L(x) >0, when0< |z*—x| < p. (8.21)
Then x* is

(i) stable if

X (ug,x).VL(x) <0, when |x*—x| < p, (8.22)
(ii) asymptotically stable if

X (ug,x).VL(x) <0, when |x*—x| < p, (8.23)
(iii) unstable if

X (ug, ). VL(x) >0, when |x*—x| < p. (8.24)

Proof: From (8.10) along a trajectory

dL(x)
dt

From (8.20) and (8.21), «* is a local minimum of £(x). So we can find an R > 0,
with g > R, such that, for all R > |* —x1| > |* —x2|, L(x1) > L(x2). Then if
(8.22) applies, it follows from (8.25) that a trajectory cannot move further from
x* and, given any € > 0, (1.114) can be satisfied by choosing d(¢) in (1.113)
to be the smaller of ¢ and R. If the strict inequality (8.23) applies it follows
from (8.25) that the trajectory must converge to *. The condition for «* to
be unstable is established in a similar way.

= VL(x).x(t) = X (uo, x).VL(x). (8.25)

A function £(x) which satisfies (8.22) is called a Lyapunov function and which
satisfies (8.23) a strict Lyapunov function. The method of establishing stability
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of an equilibrium point by finding a Lyapunov function is called the Lyapunov
direct method. If

X (uo, ) = — VU (uo, ), (8.26)

(cf. (1.108)) and U(uo, x) has a local minimum at =*, for some fixed ug. Then
the choice

satisfies (8.20) and (8.21), with
X (ug, ). VL(x) = —|VU (uj, z)|* < 0. (8.28)

So a local minimum of U (ug, «) is, as we might expect, an asymptotically stable
equilibrium point. To establish that a local maximum is an unstable equilibrium
point simply make the choice

L(x) =U(uj, =) — U(ug, ). (8.29)
Example 8.3.1 Show that (0,0) is a stable equilibrium point of

a(t) = —2z(t) — y*(1), g(t) = —2*(t) — y(2). (8.30)
Try

L(z,y) = ax’® + By (8.31)
For o and 8 positive (8.20) and (8.21) are satisfied and
X(2,y).VL(z,y) = —{202(22+y?) +2By(y +2?)}

= —22°(2a+ By) — 2*(B + 2ax). (8.32)

So in the neighbourhood |z| < f/a, |y| < 2a/B of the origin (8.22) is satisfied
and the equilibrium point is stable.

The problem in this method is to find a suitable Lyapunov function. This in
general can be quite difficult. There are, however, two cases where the choice is
straightforward:

A conservative system given by
&(t) = —VV(ug, x), (8.33)

(cf. (1.102) and (1.104)), which in terms of the 2n variables z1, ..., zp, v1,..., 0y
can be expressed in the form

&(t) = v, b(t) = —VV. (8.34)
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An equilibrium point with uy = ug is given by v = 0 and a value = * which
satisfies VV = 0. Now try

£(@,v) = Tv.v + V(g @) - Vg, 2"). (8.35)
With

V() = ( V,UV ) (8.36)

X (uy, x).VL(x) = 0. (8.37)

Since, from (8.35) L(x*,0) = 0 it follows from (8.37) that the equilibrium point
is stable (but not asymptotically stable) if (8.21) holds. From (8.35) this will
certainly be the case if * is a local minimum of V' (u§, ). It can be shown
that such a minimum of the potential is a centre, which is stable in the sense of
Lyapunov.

A Hamiltonian system given by (1.100), in terms of the 2n variables
L1,y Tm,P1,- -+, Pm. If the system is autonomous and we have an equilibrium
point (z*, p*) then, with

we have, from (1.101)

d¢ dH

_— — = . L = U. .

7= = X@p)VLizp)=0 (8.39)
The equilibrium point is stable if it is a local minimum of the Hamiltonian. An

example where this is true is the equilibrium point at the origin for the simple
harmonic oscillator with Hamiltonian

1 1
H(xz,p) = %pQ + §w2x2. (8.40)

Even when the equilibrium point is not a local minimum of the Hamiltonian,
its form can often be a guide to finding an appropriate Lyapunov function.

Example 8.3.2 Consider the stability of the equilibrium point at the origin for
the system with Hamiltonian

1
H(u()vxlvx?aplap?) = 5{(5% + l’% +p% +p%} + Uo{ple _prl}' (841)

From (1.100) the equations of motion for this system are

. OH . 0H
xl(t)za—m:pl+u0x25 pl(t):—%z—m + ugp2,
1
(8.42)
. OH . 0H
$2(t)=8—p2=p2—uox1, pz(t):—a—xzz—xz—uopy
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The origin is clearly an equilibrium point. However, in the plane zo = p; =0,

0*H 0*H
0z3 O0x10p2

=1—uy’ 8.43
0*H  0H 1o (8.43)

Opadx1 p3
So the origin is a saddle point in this plane when |ug| > 1. However, the function
L(z1,22,p1,p2) = H(0,71,72,p1,p2) (8.44)

has a minimum at the origin with

X(Uo,xl,$2,p1,p2)-VL($1,332,]91,]92) =0. (8-45)

So we have found a Lyapunov function which establishes the stability of the
equilibrium point.

8.4 The Stability of Periodic Solutions

In Example 1.6.7 we investigated the Hopf bifurcation at which a stable limit
cycle emerged from a stable equilibrium point. It is clear that a limit cycle is
a type of periodic orbit but we have yet to give a more formal definition. This
can be done using the definitions of stability of trajectories given in Sect. 8.3.1.

The periodic solution x(t) to (8.10) is a stable limit cycle if it is asymp-
totically stable and an unstable limit cycle if it is unstable.

We now consider the case of periodic solutions for a two-dimensional system
:ﬁl(t) =X1(u0,x1,x2), :ﬁg(t) :XQ(U(),wl,:EQ). (846)

which we suppose to have a unique solution at all points in {z1, z2} which are not
equilibrium points [X1(ug, z1,22) = Xa(z1,22) = 0]. We state two important
results for such systems. The second of these, which is the Poincaré-Bendizson
theorem will be shown to be a consequence of the first result, which is stated
without proof.

Theorem 8.4.1 If a trajectory of (8.46) has a bounded w-set, then that set is
either an equilibrium point or a periodic trajectory.

Theorem 8.4.2 Let C be a closed, bounded (i.e. compact) subset of the x1—x2
plane. If there exists a solution v = (x1(t), z2(t)) of (8.46), which is contained
in C for all t > 0, then it tends either to an equilibrium point or to a periodic
solution as t — oo.
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Proof: Consider the infinite sequence (x1(to + ne),za(tg + ne)) of points of
v, with tg > 0, ¢ > 0, n = 0,1,2,.... All these points lie in the compact set
C so it follows from the Bolzano-Weierstrass theorem that the sequence has at
least one limit point. This point must belong to the w-limit set of ~, which is
thus non-empty. From Thm. 8.4.1 this w-limit set is an equilibrium point or a
periodic solution to which ~ tends.

It follows from the Poincaré-Bendixson theorem that the existence of a trajec-
tory v of the type described in the theorem guarantees the existence of either
a periodic trajectory or an equilibrium point in C. It is clear that a periodic
solution which is the w-set of v cannot be an unstable limit cycle, but it also
need not be a stable limit cycle.

Example 8.4.1

i1(t) = 11 — w9 — 21 (2 + 223),

(8.47)
do(t) = w1 + w9 — 2o (2F + 23).
In polar coordinates (8.47) take the form
i) = - {1s %sinz(%)} , (8.48)
0(t) = 14 r?sin®(0)cos(h). (8.49)
From (8.48)
5 3 _dr 3
r—gr Sagr—r, for all 0, (8.50)
and thus
7(t) <0, forall 0,if r >ry =1,
(8.51)

#(t) >0,  forall@,ifr<ry=2/v5=0.8944.

So any trajectory with (z1(0),22(0)) in the annulus C = {(z1,22) : 2 <
V2? + 23 < ri} remains in this region for all ¢ > 0. The minimum value
of 14 72 sin?(A) cos(#) as @ varies at constant r is 1 — 2r2/(3v/3) and thus

0(t) > 1 ﬁ—l 8~ 069208 (8.52)
N TV Ak . .

So G(t) is never zero and there are no equilibrium points in C. Thus, from the
Poincaré-Bendixson theorem there is at least one periodic orbit.

Problems 8

1) Systems are given by
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(i) () = -2 -2y%  Y(t) =2y —y>,

(i) @(t) =y —2%  y(t) = —a®
Using a trial form of L(z,y) = 2™ 4+ ay™ for the Lyapunov function show
that, in each case the equilibrium point x = y = 0 is asymptotically stable.
A system is given by

#(t) =2y —wy® + 2%, gt) =y —a®
Show that = = y = 0 is the only equilibrium point and, using a trial form of
L(z,y) = 2%+ axy+ By? for the Lyapunov function, show that it is unstable.

Consider the system

@(t) = Flz,y),  y(t) = G(z,y).

Let C be a closed bounded subset of the {z,y} plane. Show that if there
exists a solution v = (z(t), y(t)) to these equations which is contained in C
for all £ < 0 then C contains either an equilibrium point or a periodic solution
of the system. For the particular case

F(z,y) = -z —y+a(2*+2y°), Gz,y) =z —y+ya®+2y°)

show that the origin is the only equilibrium point and determine its type.
Express the equations in polar form and, by considering the directions in
which trajectories cross suitable closed curves, show that the system has at
least one periodic solution. As an optional extra solve the equations and
determine the equation of the periodic solution. Try plotting it in MAPLE .



Chapter 9

Solutions

9.1 Problems 1

1) (a) This equation is separable and can be rearranged to give

/dx /dt . tant
— = | — + constant.
2z t

This gives

%m |z] = In || + constant,
and hence

= At?,
for any constant A.

(b) This equation is homogeneous so write y = =/t with

dz +tdy
a YA

This is now separable and can be rearranged to give

dit
/ cos(y) dy = — / " + constant.

sin(y)

Integrating
In|sin(y)| = — In |¢| + constant.
Solving for y and substituting x = yt gives
x =t arcsin(A/t),

for any constant A.

163
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(c) Again let x = yt to give

dy 2
2 t— ¢ = 1
Z/{Z/+ dt} Yo+

This can be rearranged to give

2yd dt
/1352 = /7—|—constant.

Integrating
In|1 — % = —In|t| + constant.
Thus
A
=44/1——,
Y t
giving

r =12 —tA.

(d) Rearrange the equation in the form
dz 1+t exp(t)
— | — ) =—.
dt t t

The integrating factor is

exp{—/(l + 1/t)dt} - %H).

So

giving
x = (At — 1) exp(t).
(e) Rearrange the equation in the form

dx+ ot t
dt  2-1 t2-1'

The integrating factor is

tdt
exp{/m} :exp{%ln|t2 - 1|} =/[t2 —1].

Take first the case |t| > 1. Then

d o t
_ t2 _ 1} — ,
dt {x 21
giving

V2 —1=A—-Vt2 -1
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and thus
A
t2 —

-1

Tr =

[t

If you now repeat the calculation for |¢| < 1 you will get the solution

T = A -1
Vi—e o
So the solution for all ¢ # £1 is
A
T = -1
1]

In fact with some care you could retain the modulus signs throughout
and do both cases together.

2) (a) The auxiliary equation for

A2z dz

- _ 57 -9 _

e 5 T + 6z exp(t) + 6t —5
is

M —5\A+6=0

with roots A = 2, 3. So the complementary function is
xc(t) = Aexp(2t) 4+ B exp(3t).

To find a particular integral we construct a trial function T(¢) from f(t) =
2exp(t) + 6t — 5. Since A =1 is not a root of the auxiliary equation the
trial function for the exponential term 2 exp(t) is Cexp(t). Since A =0
is not a root of the auxiliary equation the trial function for 6¢ is Et + G
and the constant just adds a constant. So the total trial function is

T(t) = Cexp(t) + Et + G.
Now substitute into the equation
{Cexp(t)} — 5{Cexp(t) + E} + 6{Cexp(t) + Et + G} = 2exp(t) + 6t — 5.
Equating coefficients on the left and right
2C =2, 6E = 6, G=0.
So the particular integral is
zp(t) = exp(t) +t
and the general solution is

x(t) = Aexp(2t) + B exp(3t) + exp(t) + t.



166 CHAPTER 9. SOLUTIONS

(b) The auxiliary equation for
((1;7;5 + z = 25sin(?)
is
N 4+1=0
with roots A = +i. So the complementary function is
xc(t) = Acos(t) + Bsin(t).

Now A% + 1 is a factor of the auxiliary equation of multiplicity one; (in
fact it is the whole function). So the trial function is

T(t) = t[C cos(t) + Esin(t)].

Substituting into the equation
—t[C cos(t) 4+ Esin(t)] — 2[Csin(¢) — E cos(t)] + t[C cos(t) + Esin(¢)] = 2 sin(¢).

Equating coefficients C = —1 and E = 0. So the general solution is
x(t) = —tcos(t) + A cos(t) + Bsin(¢).

(c) For

(;37:; + 2(3127? + 6((11—? =1+ 2exp(—t),

the auxiliary equation is
A3 4+ 2X% + 61 = 0.

This equation has the real root A = 0 and the complex pair
A=—1+iV5.

So the complementary function is

ze(t) = A 4 exp(—t)[B cos(V/5t) + Csin(v/5t)].

Since A = —1 is not a root of the auxiliary equation, the trial function
for 2exp(—t) is Eexp(—t). However, A = 0 is a root of multiplicity one,
so the trial function for 1 is Gt. So

T(t) = Gt + Eexp(—1).
Substituting in the equation

—Eexp(—t) + 2Eexp(—t) — 6Eexp(—t) + 6G = 1 + 2 exp(—t).
So G =1/6 and E = —2/5 and the general solution is

z(t) = ét — % exp(—t) + A + exp(—t)[B cos(\/gt) + Csin(\/gt)].
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3) The auxiliary equation of

d%z dx

3 L fp =

T Sdt+ =0
is

M —3\+4=0

with roots A = % + 14. So

x.(t) = exp (gt) A cos (g t) + Bsin <g t)} .

This is the complementary function for

d?z dx 9
@ — 35 + 4£E =t exp(t).

Since A =1 is not a root of the auxiliary equation the trial function is
T(t) = exp(t)[Ct* + Gt + H].

Now

dre) _ exp(t)[Ct* + (2C + G)t + (G + H)],

d2T(t)
dt?

= exp(t)[Ct? + (4C + G)t + (2C + 2G + H)].

and substituting into the equation and equating coefficients 2C =1, —2C +
2G =0, 2C — G + 2H = 0 giving the general solution

A cos (gt) + Bsin (g t) ]

Now applying the conditions z = 0 and dz/dt =1 at t =0

x(t) = iexp(t)[?t2 +2t— 1]+ exp (% t)

This gives A = 1, B = 31/7/28 and

x(t) = iexp(t)[%2 +2t—-1]+ iexp (; t) [cos (g t) + % sin <g t) ]
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(i) The equilibrium points are given by z = 0 and z = 2* = (a — ¢)/ab.

Linearizing about x =0
dAzx

dt
with solution

Ac = Cexpl(a — ¢)t].

= (a — o)A,

So this solution is stable if ¢ < ¢ and unstable if a > c. Linearize about

r=zx*
dAx
dt

with solution

Ac = Cexp|(c — a)t].

= (c—a)Ax,

So this solution is stable if a > ¢ and unstable if a < ¢. There are five
different cases:

When ¢ = 0, z* = 1/b and the lines of equilibrium points are parallel to
the a-axis. There is no bifurcation but the stability changes at a = 0.
(Fig. 9.1.)

When b > 0 and ¢ > 0, there is a transcritical bifurcation at z = 0,
a = c on one branch of x = z*(a). The second branch is unstable.
(Fig. 9.2.) The case b < 0, ¢ > 0 is the mirror image of this in the
vertical axis.

When b < 0 and ¢ < 0, there is a transcritical bifurcation at xz = 0,
a = ¢ on one branch of z = z*(a). The second branch is stable. (Fig.
9.3.) The case b > 0, ¢ < 0 is the mirror image of this in the vertical
axis. The equation is separable so

/ do t + constant
—————— ={+ constant.
x(a — ¢ — abx)

Using partial fractions it is easy to do the integration and the final
solution is

o) = C(a — ¢) exp[(a — ¢)t]

1+ abCexp|(a — c)t]

3

for some constant C. If a < ¢, + — 0 ast — oo and, if a > ¢,
x— (a—c)/abas t — co.

(ii) The equilibrium solutions are = 0 and

a/b, if c=0,
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x=1/b

-

Figure 9.2: Bifurcation diagram for question 4(i) with ¢ > 0, b > 0.
Linearizing about x = 0

= alx.

dt
So this equilibrium point is stable if ¢ < 0 and unstable if a > 0.
Linearizing about x = z*
dAz
dt

So z* is stable if z*(22*¢ — b) < 0 and unstable if 2*(2z*c — b) > 0.
When ¢ = 0 these conditions reduce to a > 0 and a < 0 respectively.

=z*(2z"c — b)Ax.

When ¢ = 0 and b > 0, there is a transcritical bifurcation at the origin.
(Fig. 9.4.) For ¢ = 0 and b < 0 the bifurcation diagram is obtained
from this by reflection in the vertical axis.
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c<0, b<0 —

c=0, b>0 1o x

Figure 9.4: Bifurcation diagram for question 4(ii) with ¢ =0, b > 0.

When ¢ > 0 and b > 0, there is a transcritical bifurcation at the origin
and a turning-point bifurcation at z = b/2c, a = b*/4c. (Fig. 9.5.) The
case ¢ > 0, b < 0 is obtained from this by reflection in the vertical axis.

c>0, b>0

Figure 9.5: Bifurcation diagram for question 4(ii) with ¢ > 0, b > 0.
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c<0, b<0 U R
\ :
\ :
N :
N :
b?/4c|...... \\V/

Figure 9.6: Bifurcation diagram for question 4(ii) with ¢ <0, b < 0.

When ¢ < 0 and b < 0, there are again a transcritical and a turning-
point bifurcation at the same locations. (Fig. 9.6.) The case ¢ < 0 and
b > 0 is obtained from this by reflection in the vertical axis.

Each of these ¢ # 0 systems of bifurcations goes into a pitchfork bi-
furcation when b — 0. Denoting the two branches of z* by z(*), the
equation can separated into

dx
= constant + at
/ z[r — D]z — 2(-)]
Decomposing into partial fractions and integrating gives
xx — x(+)]7(+) [ — x(_)]WH = Cexp(at).

where a = 2(H (7)) = (B [z(#) — £(F)]. The limiting behaviour
as t — oo can be obtained by considering the various signs of the
parameters.

5) In both parts of this problem the only equilibrium point is x = y = 0 and in
a neighbourhood of the origin

d?_tw = Az, (%) where x < N )

and

-(11)

This matrix has eigenvalues A = —2,4. The equilibrium point is unsta-
ble because it has a positive (real) eigenvalue, but since it also has one
negative (real) eigenvalue it is a saddle-point.
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as ()

This matrix has eigenvalues A = 1,4. The equilibrium point is unstable
because it has two positive (real) eigenvalues. In this case since both
eigenvalues are positive it is called an unstable node.

6) The right-hand sides of these two equations are both zero when x =y = 0.
Now the Taylor expansions of sin(z) and cos(x) give

sin(Az) = Az + O(Ax?), cos(Ax) =1+ O(Ax?).

So when linearized to the same form as (x) we have

1 1
A_<0_2)
This matrix has eigenvalues A = —2,1. The equilibrium point is a saddle-
point.

7) All the equilibrium points are given by the simultaneous solutions of

2=y, 8z = 1°.

This gives 2* = 8x, which has the solutions

x =0, implying y=0, (1)

T =2, implying y=4. (2)

For (1)

0 1
A=(3 0 )
This matrix has eigenvalues A\ = /8 giving a saddle-point.
For (2)

as(7h ).

This matrix has eigenvalues A = —6 £ 2+/3. Both these eigenvalues are
negative so the equilibrium point is a stable node.
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9.2 Problems 2

1) (i) From lines 7 and 11 of the table

) d w 2ws
Litsinwh} = ds <s2 +w2) T (W2t 22

(ii) From lines 6, 7 and 11 of the table

. w d S w3
L{sin(wt) —wtcos(wi)} = 55 +wa ( T oﬂ) 1

Taking the Laplace transform of the differential equation gives

- 2 21 _ w
Z‘(S)[S +UJ ] - (JJ2+S2,
giving

_ w

T(s) = _(o.)2 I 82)2'
So

x(t) = ﬁ[sin(wt) — wt cos(wt)].

2) Taking the Laplace transform of the differential equation gives

1 1 1

Z(s)

- s(14+s%)  s(s+1)(s2—s+1) s(s+1)[(s— %)2 + %]

Resolving into partial fractions

1 1 1 2s—1

s(s+1)[(s—2)2+3] s 3(s+1) 3(s2—s+1)

and

o

L
—
®» | =
——
Il

—

]

w2 + 82)2 :
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z(t)=1-— %exp(—t) - %exp (%t) cos (?t) .

£t {ﬁ} = texp(t)

and the convolution integral formula

t
y(t) = —/ u(t —u) exp(t — u)du.
0
Now just use integration by parts and you will find that
y(t) = {2+t +exp(t)[t — 2]}

4) From the second line of the table and the value of I'(3) given below equation
(2.15)

E{t—%} _ r(%) _ \/7_T

1 1
S2 S2

For part two of this question there are (at least) two methods:
Method 1:

L {Erf(t%)} % /000 dt exp(—st) 0“ du exp(—u?)

Let v = u?.

1 /OO t .
= — dt exp(—st)/ dvv™ 2 exp(—v)
VT Jo 0

Now go through the procedure for changing

the order of integration as in pages 44 and 45 of the notes.

1 A t
= AH—EEO\/_E/O dt exp(—st)/o dvv*%exp(—v)

1 A 1 A
= im / dvov=4 exp(—v) / dt exp(—st)

Now let t = w + v.
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1 A . A—v
= lim —/ dvv™2 exp(—v)/ dw exp[—s(w + v)
V7 Jo : | |

A—00
Now take the A\ limit.

The integral factors into two parts.

- % VOOO dvo™ 2 exp[—v(s + 1)]] VOOO dwexp(—sw)]

The second integral contributes 1/s

and the first is the ‘shifted’ Laplace transform of t=2.

1
s(s+ 1)z

Method 2:

Using the same change of variable v = u?

L {Erf(t%)} = %L {/Ot \/Lﬂ exp(—v)dv} .

Using the shift theorem

1 T
L —exp(—t)p =
{ i p( )} 155
and the result follows from the formula for the Laplace transform of a con-
volution with y(t —u) = 1.

(1)
2 emmemm) - 2]
- Zl{ziz}_zl{z:}

= 2k_1.

Z-1 z _ oz A 1
(22 + a? 2ia |z—ia z+ia
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34 2:2 41
(ii) T by
z

Sox(0)=1,z(1) =2, 2(2) =0, (3) =1 and z(k) =0 for k > 3.

6) (i) Taking the Z transform

8227 (2) — 822 — 122 — 623(2) + 62 + #(2) = 9Z1.
- _
So
#(2) : { 8 +6]
= z
8(z—3)(z—13) Lz —1
_ 2z B 4z " 3z
oz i z—3 z—-1
Giving

k k
z(k)=2(3)" —4(3)" +3.
(ii) Taking the Z transform

2205(2) — 22 — 2V2 + 2i(2) = 0.

So
_ 22+ V2)
O T
_ o 2(+) 2(1— i)
20z +2i)  2(z —/2i)
Giving
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7) Taking the Z transform
2%(2) — xoz = 1.5Z(2) — g(2),
29(2) — yoz = 0.21%(z) + 0.57(2).
Eliminating g(2)

zxo(z —0.5) — yoz

) = TTisGoos+oa
_ 2o(z —0.5) — yo
22— 22+ 0.96
_ 2(L.75z9 — 2.5y0)  2(0.75z9 — 2.5y0)
B z—1.2 z—0.8 '
Giving

z(k) = (1.75z0 — 2.5y0)(1.2)% — (0.75z0 — 2.530)(0.8)*.
In the limit of large k

v(k+1)
—a — 2

which is a 20% increase or decrease according to the sign of (1.75z9 —2.5y0).

9.3 Problems 3

1) Since there is a unit feedback the block diagram represents the situation

y(s) = G(s)luls) — y(s)l;

where
K
G(s) = 78(5_’_ Q)
Thus
_ G(s)u(s) Ku(s)

V)= G+l QK
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where
s =1 [—Q +./Q% — 4K} .

i) when K — 1Q% =w? >0,
1

s = —%Q:l:iw

and
_ Kug
yls) = PRy
s [(s +3Q) +w2}
A B (s+4Q)+C
S (s+5Q)" +u?
Then recombining the partial fractions A = ug, B = —ug and C =

—%Quo, giving
y(t) = uo {1 — exp (—%Qt) {cos(wt) + % sin(wt)}] ,
(ii) when $Q? —K=¢*>0,

1
s =-5Q+¢

and
Kug

s[(s+3Q) + (] [(s +3Q) = ¢

A B C

S TETIQ A GrIQ ¢

Then recombining the partial fractions A = ug, B = uo(3Q — ¢)/(2¢)
and C = —uo(3Q + ¢)/(2¢), giving

y(s) =

y(t) = o [1 - ;Cexp (-3Qt) {[2Q+ J exp(ct) — [3Q ~ J exp(~Ct)} | -

2) Put the intermediate variables on the diagram as follows:
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i) <

Then
171(8) = E(S) - fl(s)a
Ua(s) = v1(s) — fa(s),
_ 1 =
yl(S) = s+ QUQ;
f_2(3) = H2gl(5)7
y(s) = %ﬂl(s)’
fi(s) = Hiy(s).

Thus

a(s) = oi(s)+ fi(s)
= fat02(s) + f1(s)
= Hazi(s) + (s + Q)7 (s) + Hig(s)
= sHay(s) + s(s + Q)y(s) + Hiy(s).
Giving the required result.
3) (i) Taking the Z transform of y(k) — 2y(k — 1) = u(k — 1) gives

7(2) = 2271(2) = 27 ().

Thus
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If u(k) =1, for all k, a(z) = z/(2 — 1) So
z

(=) = G-2)z-1)

B .z
z—2 z-1
So
y(k) =2~ — 1.
(ii) Taking the Z transform of y(k) + 5y(k — 1) + 6y(k —2) = u(k — 1) +
u(k — 2),
9(2) +5271G(2) + 6272G(2) = 27 Ma(z) + 27 a(2),
giving
§=) = 32(2(;;;12'
With the same (z) as in (i)
i) = )

(z—1)(22 +52+6)

A n B n C
z—1 z+43 z4+2|°

z

Recombining the partial fractions and equating gives A = %, B=-
and C = % So inverting the Z transform

u(k) = § —5(=3)" + 5(=".

9.4 Problems 4
1) If the polynomial
exp(zt) = B(t) + C(t)z

is satisfied by each of the the eigenvalues of A it is also satisfied by A itself.
Thus

exp(At) = B() + C(t)A,
exp(pt) = B(t) + C(t)p.
So

) = eXp(Ati - pr(ut)

_ Aexp(ut) — pexp(At)
- -

; B(t)

)
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giving

[Aexp(ut) — pexp(A)]I + [exp(At) — exp(ut)]A

exp(At) = py—

When X is a double root it also satisfies the derivative of the equation
texp(At) = C(t).

Thus
C(t) = texp(At), B(t) = exp(At)[1 — At],

giving

exp(At) = exp(At)[1 — M]T + texp(At) A.

The eigenvalues of the matrix
01 0
A=1]10 0 1
2 1 -2

are 1,—1,—2. So if

exp(zt) = B(t) + C(t)z + D(t)2?

181

is satisfied by each of the the eigenvalues of A it is also satisfied by A itself.

Thus
exp(t) = B(t)+ C(t)+D(1),
exp(—t) = B(t)— C(t) + D),
exp(~2t) = B(t) - 2C(t) +4D(2),
giving
B(t) = slexp(t) + 3exp(~) - exp(—2t)],

[exp(t) — exp(—t)],

(@)
—~
~
N
I
No|—

D(t) = glexp(t) —Bexp(~t) + 2exp(~20)].
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We need to substitute
exp(At) = B(t)T + C(t)A + D(t)A?
into
t
y(t) = / c" exp[A(t — 7)]bu(T)dT,
0
[see (4.134)]. Now with u(t) = K¢ and the given forms for b and ¢
cTexplA(t — 7)bu(t) = Kr[2C(t—7)—3D(t —71)]
= %KT[exp(t —7) +exp(T —t) — 2exp(27 — 2t)].

Substituting into the integral

y(t) = —iK[S + 2t — 2exp(t) — 2exp(—t) + exp(—2t)].

s-i—§ !
3) (sI — A) = Yy
2 T3
2541 _ 1
2 2
(sI—A)_lz 4s2+5s5+1 4s2+5s5+1
9 1 4543
4s2+5s+1 4s2+5s+1
G(s)=c"(sI — A)'b= 0
s+1°

1 -1 4 2
U= , V= .
1 -1 -4 =2
(Since both these matrices are singular the realization is neither controllable

nor observable. In fact we knew that it couldn’t be both since, from the form
of G(s), Nmin = 1.)

| o 1 —4 Det (1) o1 —10 4
4 - , et{U} =2, -1_ 2 .
3 —10 2\ 31

So the system is controllable.
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and

TAT ' = 01 .
-6 -5

5) (i) Decomposing into partial fractions gives

yls) = 1+s (1482 (14s)3
Then let
- 2

%(8) = T T Ty sy
Then
Y(s) = T1(s) — Z2(s) + Ts(s)
y(t) = w1 (t) — 22(t) + x3(t)
cT=(1 -1 1)
sz1(s) = —21(s) + u(s)
sTa(s) = —Ta(s) + T1(s),
sT3(s) = —T3(s) + Ta(s),
&1(t) = —1(t) + u(t),
La(t) = —w2(t) + x1 (1),
i3(t) = —a3(t) + w2(2),
So

(ii) Decomposing into partial fractions gives

a(s) n 2u(s) u(s)

W) =T s Y 0T T Bre)

183
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Then let
o= 80
o Tals) _u(s)
Ta(s) = 1—}—5 = (1+5)27
- 28

Then

So
-1 0 0 1
A= 1 -1 o [, b=1| 0
0o 0 -3 1

9.5 Problems 5

1) In matrix forms the equations become

(t) = Ax(t) + bu(?),

c(D) ) e

The characteristic equation of A is

AN) =N\ 46X -8,
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The roots are A(¥) = —34/17. Since A(*) > 0 the system is unstable. Now

(sI—A)_lzi1 <8+4 ! )?

s246s—8 4 s+2
giving
G(s) =c"(sI — A)"'b= %
52 +6s—38
Change the input to u(t) — yx1(t).
@(t) = Azt)+but)—y(1 0)=z()],

= [A—7b(1 0)]=(t)+bu(t),
= A'z(t) + bu(t),

where

" —2 4
S \4-—y -4 )

(sT— A" . et
sI — = - ;
s2+6s—8+4y\ 4—~ s42

giving

4 G(s)

"(s) = (s — A)" b= = :
Gl =l = A b= G —8+4y ~ 11 G()AHE)

Thus AH(s) = ~. For the system to be asymptotically stable the real parts
of the roots of

B(s) = s> + 65 — 8+ 4y

must be negative. The roots are s(&) = —3 & /17 — 4v. The larger root is
real and negative if 2 < 7 < 17/4 and both roots are complex with a negative
real part if v > 17/4. So the system is asymptotically stable if v > 2. When
v =5, u(t) =wup and z1(0) = 22(0) =0

dug uo  ug[(s+3) + 3]

W) = T 6s 1 12) 35 Bl(s 1 3213
giving

y(t) = %uo {1 — exp(—3t) [cos(\/gt) + \/gsin(\/gt] } .
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2) With unit feedback

- GOL(S) _ ¢(S)
GCL(S) = 1+GOL(8) = ¢(s)’

where
¥(s) = K(a + Bs),
o(s) = K(a+ Bs) + s(1 + 25)2 = 453 + 452 + (1 + KB)s + Ka.

(If you really prefer the leading coefficient in ¢(s) to be one, divide these
expressions by four.) Now

4 4 0
By = Ka (1+Kpg) 4
0 0 Ko

For asymptotic stability we must have Ka > 0 and since a > 0 this implies
K > 0. The only remaining condition is @gl) > 0, which is

1-K(a=p)=(a=p)lla-p)~" —K]>0.

So if a > B the system is stable if (a« — 8)~! > K. If a < 8 the system is
stable for all positive K. When a =1, § =2, K= -6

i(s) = —61(s) _ 6u(s)  12u(s) .
(2s—=3)(s+2) T(s+2) 7(2s—23)
Then define
o a(s) N C))
N =5y nls) =577y
giving

§(s) = S21(s) — Zaa(s).

Inverting the Laplace transforms
. . 3 1
L1 () = =221 (t) + u(?), La(t) = Saa(t) + Fu(),

6

y(t) = Ser (1) - Baa(t).

Thus the matrix form has

-2 0
A:

N[O

S

I
N[—= =

o)

I
/~
~|

|
~|

0
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3) With H(s) =~

and

0 0 (1+7)

187

From the Routh-Hurwitz criterion the two conditions for asymptotic stability
are 1 +v > 0and 1 > 1+ ~. The latter cannot be satisfied with v > 0. If

output feedback is included

() = s+21+a)+s(1+8)+1+7y

(s+1)(s+2)(s+3)
= 24652+ 11s+6.

Thus a =5, =10, v = 5.

Ug Ug Ug Uuo

Uo

1) = G G126+ 65 26+D) 2612

Inverting the Laplace transform

y(t) = guo {1 — 3exp(—t) + 3exp(—2t)) — exp(—3t)} .
9.6 Problems 6

D T+ pTll = [ (GO +a(it) +pa(r)} ar
The Euler-Lagrange equation is

dli(r) +z(r)]
dr

giving

i(r) = p.

6(s+3)
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Thus
_ 1 2
z(r) = 5pT° + AT+ B.

From the initial and final conditions B =0, A =5 — %p. Substituting into
the constraint

1
/ {%p72 +[5- %p]T} dr =2
0

which gives p = 6 and hence

x(7) = 37% 4 27.

] + pJ[7] / {la( 7)1+ pr]}dr.

The Euler-Lagrange equation gives

&(7) = 3[1+ pr].

a(r) = 55p7° + 172 + AT + B.

From the initial and final conditions A = 23 — %p, B = 1. Substituting into
the constraint and performing the integral gives p = 60 and thus

x(r) =573 + iTz +3r+ 1

[, 7] / ([ 2+ p(Ofi(t) — u(t)]} dt.

The Euler-Lagrange equations give

At this point you could use Laplace transforms to solve this equation with
that given in the question. It is probably easier just to note that they give
Z(t) = z(t), which has the general solution

z(t) = Aexp(t) + B exp(—t).
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From the initial and final conditions

ol —exp(—tg)] B— alexp(ty) — 1]
exp(ty) — exp(—tp)’ exp(ty) — exp(—ty)
Thus
u(t) = Aexp(t) — Bexp(—t)

af[1 — exp(—ti)] exp(t) — [exp(tr) — 1] exp(—1)}
exp(tr) — exp(—tr) '

[z(t)]* + [u(t)]? = 2A% exp(2t) + 2B% exp(—2t).

So
T[z*] = AZlexp(2ty) — 1] — B [exp(—2t,) — 1]

_ 92 exp(ty) — 1
exp(tp) +1°
4) Let z1(t) = x(t) and z2(t) = (¢). Then

a':l(t) = 3?2(75),

a(t) = u(t).

We have two constraints so

Iﬁwwhxﬂ=iél{W@ﬂ2+pﬂﬂﬁn@)—wﬂﬂ]+pﬂﬂha@)—UGﬂ}&
and the Euler-Lagrange equations are

p(t) =0,

p2(t) + pi(t) =0,

2u(t) — p2(t) = 0.
This gives p1(t) = A, pa2(t) = B — At and thus

u(t) = 3(B - Ab),

i(t) = 3Bt — TAt? + C,

w(t) = 1Bt? — SAL + Ct + D.

Applying the initial a final conditions gives A = —24, B = —12, C = 1 and
D =0. Thus

u(t) =12t — 6.
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5) ama»wwh=AF{aMﬂP+pmu@»+ﬂﬂ—qudt

The Euler-Lagrange equations are

p(t) = p(t) =0,
=0

which has the general solution

u*(t) = 2Cexp(t).
Substituting into

#(t) = u(t) - x(t),
gives

%(t) + z(t) = 2Cexp(t).
This becomes

d

T [z(t) exp(t)] = 2C exp(2t)
with the solution

x*(t) = Cexp(t) + D exp(—t).

From the conditions at the boundaries

w1l — exp(—ty)] _ xolexp(tp) — 1]
exp(ty) — exp(—ty)’ exp(ty) — exp(—ty)
Now
Tlu*] = 2¢2 /0 Cexp@)dt = Clexp(2ty) — 1]

2 SPlr) — 1
exp(tr) + 1

= 27 tanh (%tF) .
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If (t) = xo for the whole time then wu(t) = xo for the whole time and
Tlu) = %x%tp.

Now consider
glte) = 2 {Zlu] ~ Z[u']} = tr — 2tanh (%tF) .

Since g(0) = 0 and ¢'(ty) = 1 — sech? (%tF) > 0, for t, >0,

Tu] > Tlu*] for ty > 0.

If x(t) is unrestricted the same Euler-Lagrange equations apply but the
condition at t = ¢ is replaced by the transversality condition p(tr) = u(ts) =
0. From the general solution for u(¢) this implies that u(¢) = 0 for all ¢ and
hence that Z[u] = 0.

i(t) = x(t)
Using

() = u(t) — 1
gives

B(t) = x(t),

which has the solution
x(t) = Asinh(t) + B cosh(t).

With 2(0) = 0 and z(tx) = 1, B = 0 and A = 1/sinh(¢x) which gives the
solution quoted in the problem for (a). w(t) is given from u(t) = 1 + &(t).
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In case (b) we still have B = 0 but the transversality condition gives p(tz) =
u(ty) = 0 which gives A = —1/cosh(tr). Since cosh(y) is an increasing
function greater the sinh(y) for y > 0

o] < o]

cosh(tp) sinh(tz)

{ sinh(t) ]2 _ [ sinh(t) ]2

So Z is less in case (b) than case (a). This is to be expected since for (b) the
minimization is over a range of values for x(tz) and not just z(tr) = 0.

The two constraints are

=
3]
—~
~+
~—

I

u(t) — pas(t)

Since we are looking for an extremum of time f(u(t),z1(t), x2(¢);t) = 1 and
the Hamiltonian is

H(u(t), z1(t), 22(t), p1(t), p2(t)) = pr(t)z2(t) + p2(t)[u(t) — pa2(t)] - 1.

Then the Hamiltonian-Pontriagin equations are

pi(t) =0, Pa(t) = pp2(t) — p1(t),
with

88—15 = pa(t).
Thus

pi(t)=C
and

d

3z [P2(t) exp(—pt)] = —Cexp(—pt),
giving

p2(t) = p~ ' C + Bexp(ut).

This is the switching function. Since it is a monotonically increasing function
it has at most one zero in the range 0 < ¢t < t;, so there will be at most one
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switch between ug and —ug. In fact there must be one switch in order for
the wheel to begin from rest and return to rest.

If x5 = 6 is not restricted at t = ¢, then the transversality condition po(t,) =
0 applies. Thus the switching function is

pa(t) = Blexp(ut) — exp(pute)].

The zero is now at the end of the range so no switching occurs. So u(t) = ug
for the whole motion. So 6 satisfies

O(t) + pf(t) = tn,
which has the solution

0 = A + Bexp(—ut) + tus/ .
This must satisfy the conditions

6, =A+B,

0=—pB+us/p,

Op = A + Bexp(—pty) + tpug/p.
Eliminating A and B gives the required condition.

8) With z1(t) = x(t) and x2(t) = &(t) the three constraints are

a(t) = fn“((f)) g,
m(t) = —u(t)

If ¢r is the time to reach top of the flight then the height reached is

I[{EQ] = AtF :fl (t)dt = AtF xg(t)dt

and it is required to maximize this. The Hamiltonian is

H(u(t), z1(t), z2(t)m(t), p1(t), p2(t),p3(t) = p1(t)x2(t) + p2(t) [ -
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The Hamiltonian-Pontriagin equations are

p1(t) =0,
Pa(t) =1 —pi(t),
pa(t) = pa(t)Cu(t)

(m(®)]*
and the switching function is

_0H p(t)C
T ou m(b)

8(t) — ps(t).

Since we are looking for a maximum rather than a minimum the inequality
(6.113) in the notes is reversed and we require

8(t)du > 0.

Assuming for the moment that 8(¢) as a function of u(t) does not have a zero
in the allowed range of u(t) and that this is a situation of bang-bang control
we must have

R 8(t) <0,
= { 0, 8(t)>0,
Now
pi(t) = A, p2(t) = (1 — A)t +B,

for some constants A and B and

$(t) = D/m(t), where D = C(1 — A).
Thus 8(t) is a monotonic function of ¢ with at most one switch. Since the
rocket must be initially propelled upwards we must have §(0) < 0 and if
a switch is to occur D > 0. If a switch occurs then prior to its occurring
m(t) = —uy

" (t)D
uum(t)’

§(t) = —

Integrating and using the condition 8(¢s) = 0 gives

D
S(t)z——ln{m(t)}, 0<t<t,.
Uy m(ts)
After the switch rn(t) = 0 and
D —
N i te <t < to.

m(ts)
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9) Let z1(t) = x(t) and z2(t) = (¢). Then

If ¢z is the time of the drive

tr
Tlu, z1,x2] = tp = / dt.
0
This gives f(u(t),x1(t),z2(t);t) = 1 and the Hamiltonian is

H(u(t), z1(t), 22(t), p1(t), p2(t)) = pr()z2(t) + p2(t)[u(t) — k] - 1.

Then the Hamiltonian-Pontriagin equations are

p1(t) =0,

pa(t) = —p1(t)
giving

pi(t) = A,

p2(t) =B — At
and

%—Z =po(t) = B — At.

Thus H is a monotonic strictly increasing or strictly decreasing function of
u(t) for all ¢ except at t = B/A if this lies in the interval of time of the
journey. There can be at most one switch. Since the vehicle starts from rest
at t = 0 and comes to rest at ¢t = ¢ it must be the case that #(0) = «(0) > 0
and Z(ty) = u(te) < 0. So in the early part of the journey u(t) = up and in
the later part of the journey u(t) = —ug. The switch over occurs when ps(t)
changes sign. So ps(t) is the switching function 8(¢). For the first part of
the journey

@(t) = (us + k) (te — 1),
w(t) = L — 5(us + k) (te — ).
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Since both @(t) and x(t) are continuous over the whole journey the switch
occurs at

t=ts = (us +k)tF7
2ug
with
uglL
tp =24 | ————=.
" u2 — k2

The distance travelled when switching occurs is

L(ug + k)

2ug

9.7 Problems 7

1) The closed-loop transfer function is

G(s) K K

Col®) = 17 GE) ~ TreP K 3)
where

#(s) = ° +35% + 35 + (1 +K).

From, the Routh-Hurwitz criterion, for stability we must have
(14+K)>0and

) 3 1
o) = > 0.
(1+K) 3
(The remaining condition is as > 0, which is true.) Thus, for stability
-1 <K<8.
Now
o K K1 —iw)?
Glw) = Ay ~ et
So
K(1 — 3w?) Kw(w? — 3)
X(w)=——"77 =—.
((U) (1+w2)3 ’ (w) (1—'—0}2)3
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The Nyquist locus I'g is the curve in the Z = X + 1Y plane given by

X(w)+1Y (w) = G(iw), —00 < w < 4o00.

The Nyquist criterion states that: If G(s) is itself asymptotically stable, and
thus has no poles with R{s} > 0, then the closed-loop transfer function is
asymptotically stable if I'; does not encircle the point -1.

As is normally the case the ends of the curve, where w = +oco are at the origin
and Y (—w) = =Y (w). The curve cuts the X-axis at w = 0, when X = K and
at w = £4/3. These two parameter values coincide with X = —K/8. When
K < 0 the single crossing point is at negative values of X. So Ind(T'q; —1) =1
leading to instability if K < —1 and Ind(T'g; —1) = 0 leading to stability if
K > —1. If K > 0 the double crossing point is at negative values of X. So
Ind(T'¢; —1) = 2 leading to instability if K > 8 and Ind(T'¢; —1) = 0 leading
to stability if K < 8. The following MAPLE program calculates X (w) and
Y (w) and display stable and unstable cases for both signs of K.

\Y

G:=(s,K)->K/((1+s)~3):

> X:=(w,K)->simplify(evalc(Re(G(I*w,K)))):
> X(w,K);
K (=1+3w?)

1+ 3w? + 3wt + wb

> Y:=(w,K)->simplify(evalc(Im(G(I*w,K)))):

\Y

Y(w,K);

Kw(-3+w?)
1+ 3w?+ 3w+ wb

\

with(plots):

V

plot ([X(w,-2),Y(w,-2),

> w=-infinity..infinity],X=-3..2,Y=-2..2,numpoints=1000);
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> plot([X(w,-0.5),Y(w,-0.5),

> w=-infinity..infinity],X=-0.75..0.5,Y=-0.8..0.8,numpoints=1000) ;

;0.8
0.6
~ roay

06 \-04 -02 ‘ 02 04

0.4

0.6

“_08

> plot([X(w,1),Y(w,1),

> w=-infinity..infinity],X=-0.6..1.2,Y=-1..1,numpoints=1000);
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=
0.8+

/oer
Y
0.4-

0.2-

\

06 04 020"

w
-0.64

—-0.8-
-1-

02 04 06 08 1
X

1.2

> plot([X(w,9),Y(w,9),

> =-infinity..infinity] ,X=-6..10,Y=-7..7,numpoints=1000) ;

\

64
2

4

6 8

/

9.8 Problems 8

1) VL = (nz" 1 amy™1).

199
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FVL = —nz" Yo+ 2y +amy™ zy — y?)

= —nz" — 2nz" Y% + amay™ — amy™ 2.

Ifn=m=2and a =2 then
FVL=-22—4y* <0

and £(0,0) = 0, with £(z,y) having a minimum at (0,0). So the
system is asymptotically stable.

FVL = na" 'y —2®) —amy™ 123

1.3

n-1 —amy™ x”.

= nz"ly —na"t?
Ifn=4,m=2and o =2 then
F.VL=—-42°<0

and £(0,0) = 0, with £(x,y) having a minimum at (0,0). So the
system is asymptotically stable.

2) From the second equation 3 = 22 so the equilibrium point is on x = .
From the first equation 0 = 2%y — xy? + 2> = 23. So the only equilibrium
point is x = y.

VL =2z + ay, 28y + az).
So

F.VL (22 + ay)(—zy® + 22y + 23) + (28y + ax)(y® — 223)

= 22 —a)+ 248 + 2%y*(a — 2) + 23y(2 + a — 2).
If « =3 =2 then
F.VL =4y*>0.

Also 22 + 22y + 2y? = 0 has no real roots. So £(z,y) has a zero minimum
at (0,0) and the system is therefore unstable.

3) Counsider the reverse trajectory obtained by replacing ¢ by —¢. The trajec-
tory v = (z(—t),y(—t)) satisfies the conditions of the Poincaré-Bendixson
theorem for (—t) > 0. So the reverse trajectory tends to a periodic solution
or equilibrium point in C. Such a period solution or equilibrium point is
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also a periodic solution or equilibrium point of the forward trajectory. The
equilibrium points of the equation are given by

0 = —z—y+a(@®+27), 1)
0 = x—y+y®+24%). (2)
Multiplying (1) by y and (2) by = and subtracting gives 22 + y? = 0. The

only solution to this (and thus the only equilibrium point) is z =
Linearizing about (0, 0) gives the stability matrix

-1 1
J = .
1 -1
The eigenvalues of this matrix are —1 &+ i, so the origin is a stable focus.
From the given equations

|

<

|
o

Jro e dy
dt at " 7at
= 2" —y?+ (@ +y)(@? + 29
= —r2 441 +sin?()].
So
#(t) = —r 4+ r3[1 + sin?(0)].

Transforming the first equation into polar form

= —cos(f) — rsin(9)

dr _dr a0
dt dt dt

= —rcos(h) — rsin(f) + 3 cos(0)[1 + sin?(6)].

Substituting for 7(t) gives

o(t) =1
and this
0(t) =0y + t.

The angular velocity of the system is constant. With r =1+ 6 and § > 0

#(t) = (14 6)(26 + 6%) + (1 + §)* sin?(0) > 0.
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Rearranging the formula for 7(t) gives
7(t) = r(2r? — 1) 4+ r3[sin*(0) — 1].

With r = 1/v/2 — §, and 6 > 0,

(t) = — (% - 5) (j‘/—‘; - 252) - (% - 6)2 [sin®(0) — 1],

which is negative for sufficiently small . So the region

1
5 <r<146
N

satisfies the conditions of the first part of the problem and thus contains
a periodic solution. (It can’t contain an equilibrium point, since the only
equilibrium point (0, 0) is outside the region.)

From the expression for 7(t)

1 dr 1

_ in2
7"_3&—’—__1_'_5111 (t + 6o).

r2

The integrating factor is exp(—2t) and we obtain

iz = 2A exp(2t) + i{f) + 2sin?(t + 6p) + 2sin(t + 6y) cos(t + 6p)}.
,

A is evaluated by setting r = ¢y at ¢ = 0. So A is finite and as ¢ — oo, r — 0.
As r — —oo the trajectory approaches the curve
r(0) = 2{6 + 2sin(26) — cos(20)} /2.

We can use MAPLE not only to obtain the curve r(6) but the whole of the
solution, parametrized by ¢t. With r =rg=5and 8§ =6y =0 at ¢t = 0 we
have we have

> A:=(r0,thetal)->

> 1/(2%r0°2)-(1/8)*(5+2* (sin(thetal) ) ~2+2*sin(thetal) *cos (thetal)):
> W:=(t,r0,thetal)->

> 2%A(r0,thetal) *exp(2*t)

+(1/4)* (5+2x (sin(t+thetal)) ~2+2*sin(t+thetal)*cos(t+thetal)) :
r:=(t,r0,thetal)->1/sqrt (abs(W(t,r0,theta0))):
theta:=(t,thetal)->t+thetal:

with(plots):
plot([r(t,5,0),theta(t,0),t=25..-25],coords=polar);

vV V. V V V
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