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Chapter 1Di�erential Equations1.1 Basic IdeasWe start by considering a �rst-order (ordinary) di�erential equation of the form
dx

dt
= F (x; t) with the initial condition x(τ) = ξ. (1.1)We say that x = f(t) is a solution of (1.1) if it is satis�ed identically when wesubstitute f(t) for x. That is

df(t)

dt
≡ F (f(t); t) and f(τ) = ξ. (1.2)If we plot (t, f(t)) in the Cartesian t�x plane then we generate a solution curve of(1.1) which passes through the point (τ, ξ) determined by the initial condition. Ifthe initial condition is varied then a family of solution curves is generated. Thisidea corresponds to thinking of the general solution x = f(t, c) with f(t, c0) =

f(t) and f(τ, c0) = ξ. The family of solutions are obtained by plotting (t, f(t, c))for di�erent values of c.Throughout this course the variable t can be thought of as time. Whenconvenient we shall use the `dot' notation to signify di�erentiation with respectto t. Thus
dx

dt
= ẋ(t),

d2x

dt2
= ẍ(t),with (1.1) expressed in the form ẋ(t) = F (x; t).1 We shall also sometimes denotethe solution of (1.1) simply as x(t) rather than using the di�erent letter f(t).In practice it is not possible, in most cases, to obtain a complete solution toa di�erential equation in terms of elementary functions. To see why this is thecase consider the simple case of a separable equation

dx

dt
= T (t)/X(x) with the initial condition x(τ) = ξ. (1.3)1For derivatives of higher than second order this notation becomes cumbersome and willnot be used. 1



2 CHAPTER 1. DIFFERENTIAL EQUATIONSThis can be rearranged to give
∫ t

τ

T (u)du =

∫ x

ξ

X(y)dy. (1.4)So to complete the solution we must be able to perform both integrals andinvert the solution form in x to get an explicit expression for x = f(t). Boththese tasks are not necessary possible. Unlike di�erentiation, integration is askill rather than a science. If you know the rules and can apply them you candi�erentiate anything. You can solve an integral only if you can spot that itbelongs to a class of easily solvable forms (by substitution, integration by partsetc.). So even a separable equation is not necessarily solvable and the problemsincrease for more complicated equations. It is, however, important to knowwhether a given equation possesses a solution and, if so, whether the solution isunique. This information is given by Picard's Theorem:Theorem 1.1.1 Consider the (square) set
A = {(x, t) : |t− τ | ≤ 4, |x− ξ| ≤ 4} (1.5)and suppose that F (x; t) and ∂F/∂x are continuous functions in both x and

t on A. Then the di�erential equation (1.1) has a unique solution x = f(t),satisfying the initial condition ξ = f(τ) on the interval [τ − 41, τ + 41], forsome 41 with 0 < 41 ≤ 4.We shall not give a proof of this theorem, but we shall indicate an approachwhich could lead to a proof. The di�erential equation (1.1) (together with theinitial condition) is equivalent to the integral equation
x(t) = ξ +

∫ t

τ

F (x(u);u)du. (1.6)Suppose now that we de�ne the sequence of functions {x(j)(t)} by
x(0)(t) = ξ,

x(j+1)(t) = ξ +

∫ t

τ

F (x(j)(u);u)du, j = 1, 2, . . . .
(1.7)The members of this sequence are known as Picard iterates. To prove Picard'stheorem we would need to show that, under the stated conditions, the sequenceof iterates converges uniformly to a limit function x(t) and then prove that itis a unique solution to the di�erential equation. Rather than considering thisgeneral task we consider a particular case:Example 1.1.1 Consider the di�erential equation

ẋ(t) = x with the initial condition x(0) = 1. (1.8)



1.2. USING MAPLE TO SOLVE DIFFERENTIAL EQUATIONS 3Using (1.7) we can construct the sequence of Picard iterates:
x(0)(t) = 1,

x(1)(t) = 1 +

∫ t

0

1 du = 1 + t,

x(2)(t) = 1 +

∫ t

0

(1 + u)du = 1 + t+ 1
2!
t2,

x(3)(t) = 1 +

∫ t

0

(

1 + u+ 1
2!
u2
)

du = 1 + t+ 1
2!
t2 + 1

3!
t3,... ...

x(j)(t) = 1 + t+ 1
2!
t2 + · · ·+ 1

j!
tj .

(1.9)
We see that, as j → ∞, x(j)(t) → exp(x), which is indeed the unique solutionof (1.8).1.2 Using MAPLE to Solve Di�erential EquationsThe MAPLE command to di�erentiate a function f(x) with respect to x isdiff(f(x),x)The n-th order derivative can be obtained either by repeating the x n times orusing a dollar sign. Thus the 4th derivative of f(x) with respect to x is obtainedbydiff(f(x),x,x,x,x) or diff(f(x),x$4)This same notation can also be used for partial di�erentiation. Thus for g(x, y, z),the partial derivative ∂4g/∂x2∂y∂z is obtained bydiff(g(x,y,z),x$2,y,z)An n-th order di�erential equation is of the form

dnx

dtn
= F

(

x,
dx

dt
, . . . ,

dn−1x

dtn−1
; t

)

. (1.10)This would be coded into MAPLE asdiff(x(t),t$n)=F(diff(x(t),t),...,diff(x(t),t$(n-1)),t)Thus the MAPLE code for the di�erential equation
d3x

dt3
= x, (1.11)isdiff(x(t),t$3)=x(t)



4 CHAPTER 1. DIFFERENTIAL EQUATIONSThe MAPLE command for solving a di�erential equation is dsolve and theMAPLE code which obtains the general solution for (1.11) is
> dsolve(diff(x(t),t$3)=x(t));

x(t) = _C1 et +_C2 e(−1/2 t) sin(
1

2

√
3 t) +_C3 e(−1/2 t) cos(

1

2

√
3 t)Since this is a third-order di�erential equation the general solution containsthree arbitrary constants for which MAPLE uses the notation _C1 , _C2 and_C3 . Values are given to these constants if we impose three initial conditions.In MAPLE this is coded by enclosing the di�erential equation and the initialconditions in curly brackets and then adding a �nal record of the quantityrequired. Thus to obtain a solution to (1.11) with the initial conditions

x(0) = 2, ẋ(0) = 3, ẍ(0) = 7, (1.12)
> dsolve({diff(x(t),t$3)=x(t),x(0)=2,D(x)(0)=3,
> (D@@2)(x)(0)=7},x(t));

x(t) = 4 et − 4

3

√
3 e(−1/2 t) sin(

1

2

√
3 t)− 2 e(−1/2 t) cos(

1

2

√
3 t)Note that in the context of the initial condition the code D(x) is used for the�rst derivative of x with respect to t. The corresponding n-th order derivativeis denoted by (D@@n)(x).1.3 General Solution of Speci�c EquationsAn n-th order di�erential equation like (1.10) is said to be linear if F is a linearfunction of x and its derivatives; (the dependence of F on t need not be linearfor the system to be linear). The equation is said to be autonomous if F doesnot depend explicitly on t. (The �rst-order equation of Example 1.1.1 is bothlinear and autonomous.) The general solution of an n-th order equation contains

n arbitrary constants. These can be given speci�c values if we have n initial2conditions. These may be values for x(t) at n di�erent values of t or they maybe values for x and its �rst n− 1 derivatives at one value of t. We shall use C,
C′, C1,C2, . . . to denote arbitrary constants.1.3.1 First-Order Separable EquationsIf a di�erential equation is of the type of (1.3), it is said to be separable becauseit is equivalent to (1.4), where the variables have been separated onto opposite2The terms initial and boundary conditions are both used in this context. Initial conditionshave the connotation of being speci�ed at a �xed or initial time and boundary conditions at�xed points in space at the ends or boundaries of the system.



1.3. GENERAL SOLUTION OF SPECIFIC EQUATIONS 5sides of the equation. The solution is now more or less easy to �nd accordingto whether it is easy or di�cult to perform the integrations.Example 1.3.1 A simple separable equation is the exponential growth equation
ẋ(t) = µx. The variable x(t) could be the size of a population (e.g. of rabbits)which grows in proportion to its size. A modi�ed version of this equation iswhen the rate of growth is zero when x = κ. Such an equation is

dx

dt
=
µ

κ
x(κ− x). (1.13)This is equivalent to

∫

κdx

x(κ− x)
= µ

∫

dt+ C. (1.14)Using partial fractions
µt =

∫

dx

x
+

∫

dx

κ− x
− C

= ln |x| − ln |κ− x| − C. (1.15)This gives
x

κ− x
= C′ exp(µt), (1.16)which can be solved for x to give

x(t) =
C′κ exp(µt)

1 + C′ exp(µt)
. (1.17)The MAPLE code for solving this equation is

> dsolve(diff(x(t),t)=mu*x(t)*(kappa-x(t))/kappa);
x(t) =

κ

1 + e(−µ t) _C1 κIt can be seen that x(t) → κ, as t→ ∞.1.3.2 First-Order Homogeneous EquationsA �rst-order equation of the form
dx

dt
=
P (x, t)

Q(x, t)
, (1.18)is said to be homogeneous if P and Q are functions such that

P (λt, t) = tmP (λ, 1), Q(λt, t) = tmQ(λ, 1), (1.19)



6 CHAPTER 1. DIFFERENTIAL EQUATIONSfor some m. The method of solution is to make the change of variable y(t) =
x(t)/t. Since

ẋ(t) = y + t ẏ(t), (1.20)(1.18) can be re-expressed in the form
t
dy

dt
+ y =

P (y, 1)

Q(y, 1)
, (1.21)which is separable and equivalent to

∫ x/t Q(y, 1)dy

P (y, 1)− yQ(y, 1)
=

∫

dt

t
+ C = ln |t|+ C. (1.22)Example 1.3.2 Find the general solution of

dx

dt
=

2x2 + t2

xt
. (1.23)In terms of the variable y = x/t the equation becomes

t
dy

dt
=

1 + y2

y
. (1.24)So

∫

dt

t
=

∫ x/t y dy

1 + y2
+ C, (1.25)giving

ln |t| = 1
2
ln |1 + x2/t2|+ C. (1.26)This can be solved to give

x(t) = ±
√

C′t4 − t2. (1.27)1.3.3 First-Order Linear EquationsConsider the equation
ẋ(t) + f(t)x(t) = g(t). (1.28)Multiplying through by µ(t) (a function to be chosen later) we have
µ
dx

dt
+ µfx = µg, (1.29)or equivalently

d(µx)

dt
− x

dµ

dt
+ µfx = µg. (1.30)



1.3. GENERAL SOLUTION OF SPECIFIC EQUATIONS 7Now we choose µ(t) to be a solution of
dµ

dt
= µf (1.31)and (1.30) becomes

d(µx)

dt
= µg (1.32)which has the solution

µ(t)x(t) =

∫

µ(t)g(t)dt + C. (1.33)The function µ(t) given, from (1.31), by
µ(t) = exp

(∫

f(t)dt

)

. (1.34)is an integrating factor.Example 1.3.3 Find the general solution of
dx

dt
+ x cot(t) = 2 cos(t). (1.35)The integrating factor is

exp

(∫

cot(t)dt

)

= exp [ln sin(t)] = sin(t), (1.36)giving
sin(t)

dx

dt
+ x cos(t) = 2 sin(t) cos(t) = sin(2t),

d[x sin(t)]

dt
= sin(2t). (1.37)So

x sin(t) =

∫

sin(2t)dt+ C

= −1
2
cos(2t) + C, (1.38)giving

x(t) =
C′ − cos2(t)

sin(t)
. (1.39)The MAPLE code for solving this equation is

> dsolve(diff(x(t),t)+x(t)*cot(t)=2*cos(t));
x(t) =

−1

2
cos(2 t) +_C1

sin(t)



8 CHAPTER 1. DIFFERENTIAL EQUATIONS1.4 Equations with Constant Coe�cientsConsider the n-th order linear di�erential equation
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a1

dx

dt
+ a0x = f(t), (1.40)where a0, a1, . . . , an−1 are real constants. We use the D-operator notation. With

D =
d

dt
(1.41)(1.40) can be expressed in the form

φ(D)x(t) = f(t), (1.42)where
φ(λ) = λn + an−1λ

n−1 + · · ·+ a1λ+ a0. (1.43)Equation (1.40) (or (1.42)) is said to be homogeneous or inhomogeneous accord-ing to whether f(t) is or is not identically zero. An important result for thesolution of this equation is the following:Theorem 1.4.1 The general solution of the inhomogeneous equation (1.42)(with f(t) 6≡ 0) is given by the sum of the general solution of the homogeneousequation
φ(D)x(t) = 0, (1.44)and any particular solution of (1.42).Proof: Let xc(t) be the general solution of (1.44) and let xp(t) be a particularsolution to (1.42). Since φ(D)xc(t) = 0 and φ(D)xp(t) = f(t)

φ(D)[xc(t) + xp(t)] = f(t). (1.45)So
x(t) = xc(t) + xp(t) (1.46)is a solution of (1.42). That it is the general solution follows from the fact that,since xc(t) contains n arbitrary constants, then so does x(t). If
x′(t) = xc(t) + x′p(t) (1.47)were the solution obtained with a di�erent particular solution then it is easyto see that the di�erence between x(t) and x′(t) is just a particular solution of(1.44). So going from x(t) to x′(t) simply involves a change in the arbitraryconstants.We divide the problem of �nding the solution to (1.42) into two parts. We �rstdescribe a method for �nding xc(t), usually called the complementary function,and then we develop a method for �nding a particular solution xp(t).



1.4. EQUATIONS WITH CONSTANT COEFFICIENTS 91.4.1 Finding the Complementary FunctionIt is a consequence of the fundamental theorem of algebra that the n-th degreepolynomial equation
φ(λ) = 0 (1.48)has exactly n (possibly complex and not necessarily distinct) solutions. Inthis context (1.48) is called the auxiliary equation and we see that, since thecoe�cients a0, a1, . . . , an−1 in (1.43) are all real, complex solutions of the aux-iliary equation appear in conjugate complex pairs. Suppose the solutions are

λ1, λ2, . . . , λn. Then the homogeneous equation (1.44) can be expressed in theform
(D − λ1)(D − λ2) · · · (D − λn)x(t) = 0. (1.49)It follows that the solutions of the n �rst-order equations
(D − λj)x(t) = 0, j = 1, 2, . . . , n (1.50)are also solutions of (1.49) and hence of (1.44). The equations (1.50) are simply
dx

dt
= λjx, j = 1, 2, . . . , n (1.51)with solutions

xj(t) = Cj exp(λjt). (1.52)If all of the roots λ1, λ2, . . . , λn are distinct we have the complementary functiongiven by
xc(t) = C1 exp(λ1t) + C2 exp(λ2t) + · · ·+ Cn exp(λnt). (1.53)Setting aside for the moment the case of equal roots, we observe that (1.53)includes the possibility of:(i) A zero root, when the contribution to the complementary function is justa constant term.(ii) Pairs of complex roots. Suppose that for some j

λj = α+ iβ, λj+1 = α− iβ. (1.54)Then
Cj exp(λjt) + Cj+1 exp(λj+1t) = exp(αt)

{

Cj [cos(βt) + i sin(βt)]

+Cj+1[cos(βt)− i sin(βt)]
}

= exp(αt) {C cos(βt) + C′ sin(βt)} ,(1.55)where
C = Cj + Cj+1, C′ = i[Cj − Cj+1]. (1.56)



10 CHAPTER 1. DIFFERENTIAL EQUATIONSIn order to consider the case of equal roots we need the following result:Theorem 1.4.2 For any positive integer n and function u(t)
Dnu(t) exp(λt) = exp(λt)(D + λ)nu(t) (1.57)Proof: We prove the result by induction. For n = 1

Du(t) exp(λt) = exp(λt)Du(t) + u(t)D exp(λt)

= exp(λt)Du(t) + exp(λt)λu(t)

= exp(λt)(D + λ)u(t). (1.58)Now suppose the result is true for some n. Then
Dn+1u(t) exp(λt) = D exp(λt)(D + λ)nu(t)

= (D + λ)nu(t)D exp(λt)

+ exp(λt)D(D + λ)nu(t)

= exp(λt)λ(D + λ)nu(t)

+ exp(λt)D(D + λ)nu(t)

= exp(λt)(D + λ)n+1u(t). (1.59)and the result is established for all n.An immediate consequence of this theorem is that, for any polynomial φ(D)with constant coe�cients,
φ(D)u(t) exp(λt) = exp(λt)φ(D + λ)u(t) (1.60)Suppose now that (D − λ′)m is a factor in the expansion of φ(D) and thatall the other roots of the auxiliary equation are distinct from λ′. It is clearthat one solution of the homogeneous equation (1.44) is C exp(λ′t), but we need

m− 1 more solutions associated with this root to complete the complementaryfunction. Suppose we try the solution u(t) exp(λ′t) for some polynomial u(t).From (1.60)
(D − λ′)mu(t) exp(λ′t) = exp(λ′t)(D + λ′ − λ′)mu(t)

= exp(λ′t)Dmu(t). (1.61)The general solution of
Dmu(t) = 0 (1.62)is
u(t) =

[

C(0) + C(1)t+ · · ·+ C(m−1)tm−1
]

. (1.63)So the contribution to the complementary function from an m-fold degenerateroot λ′ of the auxiliary equation is
x′c(t) =

[

C(0) + C(1)t+ · · ·+ C(m−1)tm−1
]

exp(λ′t) (1.64)



1.4. EQUATIONS WITH CONSTANT COEFFICIENTS 11Example 1.4.1 Find the general solution of
d2x

dt2
− 3

dx

dt
− 4x = 0. (1.65)The auxiliary equation λ2 − 3λ− 4 = 0 has roots λ = −1, 4. So the solution is

x(t) = C1 exp(−t) + C2 exp(4t). (1.66)Example 1.4.2 Find the general solution of
d2x

dt2
+ 4

dx

dt
+ 13x = 0. (1.67)The auxiliary equation λ2 +4λ+13 = 0 has roots λ = −2± 3i. So the solutionis

x(t) = exp(−2t) [C1 cos(3t) + C2 sin(3t)] . (1.68)Example 1.4.3 Find the general solution of
d3x

dt3
+ 3

d2x

dt2
− 4x = 0. (1.69)The auxiliary equation is a cubic λ3 + 3λ2 − 4 = 0. It is easy to spot that oneroot is λ = 1. Once this is factorized out we have (λ− 1)(λ2 + 4λ+ 4) = 0 andthe quadratic part has the two-fold degenerate root λ = −2. So the solution is

x(t) = C1 exp(t) + [C2 + C3t] exp(−2t). (1.70)Of course, it is possible for a degenerate root to be complex. Then the form ofthat part of the solution will be a product of the appropriate polynomial in tand the form for a pair of complex conjugate roots.1.4.2 A Particular SolutionThere are a number of methods for �nding a particular solution xp(t) to theinhomogeneous equation (1.42). We shall use the method of trial functions. Wesubstitute a trial function T(t), containing a number of arbitrary constants (A,
B etc.) into the equation and then adjust the values of the constants to achievea solution. Suppose, for example,

f(t) = a exp(bt). (1.71)Now take the trial function T(t) = A exp(bt). From (1.60)
φ(D)T(t) = A exp(bt)φ(b). (1.72)Equating this with f(t), given by (1.71), we see that the trial function is asolution of (1.42) if
A =

a

φ(b)
, (1.73)



12 CHAPTER 1. DIFFERENTIAL EQUATIONSas long as φ(b) 6= 0, that is, when b is not a root of the auxiliary equation (1.48).To consider that case suppose that
φ(λ) = ψ(λ)(λ − b)m, ψ(b) 6= 0. (1.74)That is b is an m-fold root of the auxiliary equation. Now try the trial function

T(t) = Atm exp(bt). From (1.60)
φ(D)T(t) = ψ(D)(D − b)mAtm exp(bt)

= A exp(bt)ψ(D + b)[(D + b)− b]mtm

= A exp(bt)ψ(D + b)Dmtm

= A exp(bt)ψ(b)m! (1.75)Equating this with f(t), given by (1.71), we see that the trial function is asolution of (1.42) if
A =

a

m!ψ(b)
. (1.76)Table 1.1 contains a list of trial functions to be used for di�erent forms of f(t).Trial functions when f(t) is a linear combination of the forms given are simplythe corresponding linear combination of the trial functions. Although thereseems to be a lot of di�erent cases it can be seen that they are all special casesof either the eighth or tenth lines. We conclude this section with two examples.Example 1.4.4 Find the general solution of

d2x

dt2
− 4

dx

dt
+ 3x = 6t− 11 + 8 exp(−t). (1.77)The auxiliary equation is

λ2 − 4λ+ 3 = 0, (1.78)with roots λ = 1, 3. So
xc(t) = C1 exp(t) + C2 exp(3t). (1.79)From Table 1.1 the trial function for

• 6t is B1t+ B2, since zero is not a root of (1.78).
• −11 is B3, since zero is not a root of (1.78).
• 8 exp(−t) is A exp(−t), since −1 is not a root of (1.78).The constant B3 can be neglected and we have

T(t) = B1t+ B2 +A exp(−t). (1.80)Now
φ(D)T(t) = 3B1t+ 3B2 − 4B1 + 8A exp(−t) (1.81)



1.4.EQUATIONSWITHCONSTANTCOEFFICIENTS
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Table 1.1: Table of trial functions for �nding a particular integral for φ(D)x = f(t)

f(t) T(t) Comments
a exp(bt) A exp(bt) b not a root of φ(λ) = 0.
a exp(bt) Atk exp(bt) b a root of φ(λ) = 0 of multiplicity k.

a sin(bt) or a cos(bt) A sin(bt) + B cos(bt) λ2 + b2 not a factor of φ(λ).
a sin(bt) or a cos(bt) tk[A sin(bt) + B cos(bt)] λ2 + b2 a factor of φ(λ) of multiplicity k.

atn Ant
n + An−1t

n−1 + · · ·+A0 Zero is not a root of φ(λ) = 0.

atn tk[Ant
n + An−1t

n−1 + · · ·+ A0] Zero is a root of φ(λ) = 0 of multiplicity k.

atn exp(bt) exp(bt)[Ant
n + An−1t

n−1 + · · ·+ A0] b is not a root of φ(λ) = 0.

atn exp(bt) tk exp(bt)[Ant
n + An−1t

n−1 + · · ·+ A0] b is a root of φ(λ) = 0 of multiplicity k.

atn sin(bt) or atn cos(bt) [B1 sin(bt) + B2 cos(bt)][t
n +An−1t

n−1 + · · ·+ A0] λ2 + b2 not a factor of φ(λ).

atn sin(bt) or atn cos(bt) tk[B1 sin(bt) + B2 cos(bt)][t
n +An−1t

n−1 + · · ·+ A0] λ2 + b2 a factor of φ(λ) of multiplicity k.



14 CHAPTER 1. DIFFERENTIAL EQUATIONSand comparing with f(t) gives B1 = 2, B2 = −1 and A = 1. Thus
xp(t) = 2t− 1 + exp(−t) (1.82)and
x(t) = C1 exp(t) + C2 exp(3t) + 2t− 1 + exp(−t). (1.83)The MAPLE code for solving this equation is

> dsolve(diff(x(t),t$2)-4*diff(x(t),t)+3*x(t)=6*t-11+8*exp(-t));
x(t) = 2 t− 1 + e(−t) +_C1 et +_C2 e(3 t)Example 1.4.5 Find the general solution of
d3x

dt3
+

d2x

dt2
= 4− 12 exp(2t). (1.84)The auxiliary equation is

λ2(λ+ 1) = 0, (1.85)with roots λ = 0 (twice) and λ = −1. So
xc(t) = C0 + C1t+ C3 exp(−t). (1.86)From Table 1.1 the trial function for

• 4 is Bt2, since zero is double root of (1.85).
• −12 exp(2t) is A exp(2t), since 2 is not a root of (1.85).We have

T(t) = Bt2 +A exp(2t) (1.87)and
φ(D)T(t) = 2B+ 12A exp(2t). (1.88)Comparing with f(t) gives B = 2 and A = −1. Thus
x(t) = C0 + C1t+ C3 exp(−t) + 2t2 − exp(2t). (1.89)



1.5. SYSTEMS OF DIFFERENTIAL EQUATIONS 151.5 Systems of Di�erential EquationsIf, for the n-th order di�erential equation (1.10), we de�ne the new set of vari-ables x1 = x, x2 = dx/dt, . . . , xn = dn−1x/dtn−1 then the one n-th orderdi�erential equation with independent variable t and one dependent variable xcan be replaced by the system
dx1
dt

= x2(t),

dx2
dt

= x3(t),... ...
dxn−1

dt
= xn(t),

dxn
dt

= F (x1, x2, . . . , xn; t)

(1.90)
of n �rst-order equations with independent variable t and n dependent variables
x1, . . . , xn. In fact this is just a special case of

dx1
dt

= F1(x1, x2, . . . , xn; t),

dx2
dt

= F2(x1, x2, . . . , xn; t),... ...
dxn−1

dt
= Fn−1(x1, x2, . . . , xn; t),

dxn
dt

= Fn(x1, x2, . . . , xn; t),

(1.91)
where the right-hand sides of all the equations are now functions of the variables
x1, x2, . . . , xn.3 The system de�ned by (1.91) is called an n-th order dynamicalsystem. Such a system is said to be autonomous if none of the functions F` isan explicit function of t.Picard's theorem generalizes in the natural way to this n-variable case asdoes also the procedure for obtained approximations to a solution with Picarditerates. That is, with the initial condition x`(τ) = ξ`, ` = 1, 2, . . . , n, we de�nethe set of sequences {x(j)` (t)}, ` = 1, 2, . . . , n with

x
(0)
` (t) = ξ`,

x
(j+1)
` (t) = ξ` +

∫ t

τ

F`(x
(j)
1 (u), . . . , x(j)n (u);u)du, j = 1, 2, . . .

(1.92)for all ` = 1, 2, . . . , n.3Of course, such a system is not, in general, equivalent to one n-th order equation.



16 CHAPTER 1. DIFFERENTIAL EQUATIONSExample 1.5.1 Consider the simple harmonic di�erential equation
ẍ(t) = −ω2x(t) (1.93)with the initial conditions x(0) = 0 and ẋ(0) = ω.This equation is equivalent to the system
ẋ1(t) = x2(t), ẋ2(t) = −ω2x1(t),

x1(0) = 0, x2(0) = ω
(1.94)which is a second-order autonomous system. From (1.92)

x
(0)
1 (t) = 0, x

(0)
2 (t) = ω,

x
(1)
1 (t) = 0 +

∫ t

0

ωdu, x
(1)
2 (t) = ω − ω2

∫ t

0

0du

= ωt, = ω,

x
(2)
1 (t) = 0 +

∫ t

0

ωdu, x
(2)
2 (t) = ω −

∫ t

0

ω3udu

= ωt, = ω
{

1− (ωt)2

2!

}

,

x
(3)
1 (t) = 0 +

∫ t

0

ω
{

1− (ωt)2

2!

}

du, x
(3)
2 (t) = ω −

∫ t

0

ω3udu

= ωt− (ωt)3

3!
, = ω

{

1− (ωt)2

2!

}

,

(1.95)
The pattern which is emerging is clear

x
(2j−1)
1 (t) = x

(2j)
1 (t) = ωt− (ωt)3

3!
+ · · ·+ (−1)j+1 (ωt)

(2j−1)

(2j−1)!
,

j = 1, 2, . . . , (1.96)
x
(2j)
2 (t) = x

(2j+1)
1 (t) = ω

{

1− (ωt)2

2!
+ · · ·+ (−1)j

(ωt)(2j)

(2j)!

}

,

j = 0, 1, . . . . (1.97)In the limit j → ∞ (1.96) becomes the MacLaurin expansion for sin(ωt) and(1.97) the MacLaurin expansion for ω cos(ωt).The set of equations (1.91) can be written in the vector form
ẋ(t) = F (x; t), (1.98)where
x =











x1
x2...
xn











, F (x; t) =











F1(x; t)
F2(x; t)...
Fn(x; t)











. (1.99)
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x(t0)

x(t)

0Figure 1.1: A trajectory in the phase space Γn.As time passes the vector x(t) describes a trajectory in an n-dimensional phasespace Γn (Fig. 1.1). The trajectory is determined by the nature of the vector�eld F (x; t) and the location x(t0) of the phase point at some time t0. Animportant property of autonomous dynamical systems is that, if the system isat x(0) at time t0 then the state x(1) of the system at t1 is dependent on x(0)and t1 − t0, but not on t0 and t1 individually.A dynamical system with 2m degrees of freedom and variables
{x1, . . . , xm, p1, . . . , pm} is a Hamiltonian system if there exists a Hamiltonianfunction H(x1, . . . , xm, p1, . . . , pm; t) in terms of which the evolution of the sys-tem is given by Hamilton's equations

ẋs =
∂H

∂ps
,

ṗs = − ∂H

∂xs
,

s = 1, 2, . . . ,m. (1.100)It follows that the rate of change of H along a trajectory is given by
dH

dt
=

m
∑

s=1

{

∂H

∂xs

dxs
dt

+
∂H

∂ps

dps
dt

}

+
∂H

∂t

=

m
∑

s=1

{

∂H

∂xs

∂H

∂ps
− ∂H

∂ps

∂H

∂xs

}

+
∂H

∂t

=
∂H

∂t
. (1.101)So if the system is autonomous (∂H/∂t = 0) the value of H does not changealong a trajectory. It is said to be a constant of motion. In the case of many



18 CHAPTER 1. DIFFERENTIAL EQUATIONSphysical systems the Hamiltonian is the total energy of the system and thetrajectory is a path lying on the energy surface in phase space.As we have already seen, a system with m variables {x1, x2, . . . , xm} determinedby second-order di�erential equations, given in vector form by
ẍ(t) = G(x; t), (1.102)where
x =











x1
x2...
xm











, G(x; t) =











G1(x; t)
G2(x; t)...
Gm(x; t)











, (1.103)is equivalent to the 2m-th order dynamical system
ẋ(t) = p(t), ṗ(t) = G(x; t), (1.104)where
p =











p1
p2...
pm











=











∂x1/∂t
∂x2/∂t...
∂xm/∂t











. (1.105)If there exists a scalar potential V (x; t), such that
G(x; t) = −∇V (x; t), (1.106)the system is said to be conservative. By de�ning
H(x,p; t) = 1

2
p2 + V (x; t), (1.107)we see that a conservative system is also a Hamiltonian system. In a physicalcontext this system can be taken to represent the motion of a set ofm/d particlesof unit mass moving in a space of dimension d, with position and momentumcoordinates x1.x2, . . . , xm and p1, p2, . . . , pm respectively. Then 1

2
p2 and V (x; t)are respectively the kinetic and potential energies.A rather more general case is when, for the system de�ned by equations (1.98)and (1.99), there exists a scalar �eld U(x; t) with

F (x; t) = −∇U(x; t). (1.108)1.5.1 MAPLE for Systems of Di�erential EquationsIn the discussion of systems of di�erential equations we shall be less concernedwith the analytic form of the solutions than with their qualitative structure.As we shall show below, a lot of information can be gained by �nding theequilibrium points and determining their stability. It is also useful to be able to



1.5. SYSTEMS OF DIFFERENTIAL EQUATIONS 19plot a trajectory with given initial conditions. MAPLE can be used for this intwo (and possibly three) dimensions. Suppose we want to obtain a plot of thesolution of
ẋ(t) = x(t)− y(t), ẏ(t) = x(t), (1.109)over the range t = 0 to t = 10, with initial conditions x(0) = 1, y(0) = −1.The MAPLE routine dsolve can be used for systems with the equations andthe initial conditions enclosed in curly brackets. Unfortunately the solution isreturned as a set {x(t) = · · · , y(t) = · · ·}, which cannot be fed directly intothe plot routine. To get round this di�culty we set the solution to somevariable (Fset in this case) and extract x(t) and y(t) (renamed as fx(t) and

fy(t)) by using the MAPLE function subs. These functions can now be plottedparametrically. The complete MAPLE code and results are:
> Fset:=dsolve(
> {diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t),x(0)=1,y(0)=-1},
> {x(t),y(t)}):
> fx:=t->subs(Fset,x(t)):
> fx(t);

1

3
e(1/2 t) (3 cos(

1

2
t
√
3) + 3

√
3 sin(

1

2
t
√
3))

> fy:=t->subs(Fset,y(t)):
> fy(t);

1

3
e(1/2 t) (3

√
3 sin(

1

2
t
√
3)− 3 cos(

1

2
t
√
3))

> plot([fx(t),fy(t),t=0..10]);
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1.6 Autonomous SystemsWe shall now concentrate on systems of the type described by equations (1.98)and (1.99) but, where the vector �eld F is not an explicit function of time. Theseare called autonomous systems. In fact being autonomous is not such a severerestraint. A non-autonomous system can be made equivalent to an autonomoussystem by the following trick. We include the time dimension in the phase spaceby adding the time line Υ to Γn. The path in the (n + 1)-dimensional space
Γn ×Υ is then given by the dynamical system

ẋ(t) = F (x, xt), ẋt(t) = 1. (1.110)This is called a suspended system.In general the determination of the trajectories in phase space, even forautonomous systems, can be a di�cult problem. However, we can often obtaina qualitative idea of the phase pattern of trajectories by considering particularlysimple trajectories. The most simple of all are the equilibrium points.4 Theseare trajectories which consist of one single point. If the phase point starts atan equilibrium point it stays there. The condition for x∗ to be an equilibriumpoint of the autonomous system
ẋ(t) = F (x), (1.111)is
F (x∗) = 0. (1.112)4Also called, �xed points, critical points or nodes.



1.6. AUTONOMOUS SYSTEMS 21For the system given by (1.108) it is clear that a equilibrium point is a sta-tionary point of U(x) and for the conservative system given by (1.103)�(1.106)equilibrium points have p = 0 and are stationary points of V (x). An equilib-rium point is useful for obtaining information about phase behaviour only ifwe can determine the behaviour of trajectories in its neighbourhood. This is amatter of the stability of the equilibrium point, which in formal terms can bede�ned in the following way:The equilibrium point x∗ of (1.111) is said to be stable (in the sense ofLyapunov) if there exists, for every ε > 0, a δ(ε) > 0, such that any solution
x(t), for which x(t0) = x(0) and

|x∗ − x(0)| < δ(ε), (1.113)satis�es
|x∗ − x(t)| < ε, (1.114)for all t ≥ t0. If no such δ(ε) exists then x∗ is said to be unstable (in thesense of Lyapunov). If x∗ is stable and
lim
t→∞

|x∗ − x(t)| = 0. (1.115)it is said to be asymptotically stable. If the equilibrium point is stable and(1.115) holds for every x(0) then it is said to be globally asymptoticallystable. In this case x∗ must be the unique equilibrium point.There is a warning you should note in relation to these de�nitions. In some textsthe term stable is used to mean what we have called `asymptotically stable' andequilibrium points which are stable (in our sense) but not asymptotically stableare called conditionally or marginally stable.An asymptotically stable equilibrium point is a type of attractor. Other typesof attractors can exist. For example, a close (periodic) trajectory to which allneighbouring trajectories converge. These more general questions of stabilitywill be discussed in a later chapter.1.6.1 One-Variable Autonomous SystemsWe �rst consider a �rst-order autonomous system. In general a system maycontain a number of adjustable parameters a, b, c, . . . and it is of interest toconsider the way in which the equilibrium points and their stability changewith changes of these parameters. We consider the equation
ẋ(t) = F (a, b, c, . . . , x), (1.116)where a, b, c, . . . is some a set of one or more independent parameters. Anequilibrium point x∗(a, b, c, . . .) is a solution of
F (a, b, c, . . . , x∗) = 0. (1.117)
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a

x

x2 = a

0

Figure 1.2: The bifurcation diagram for Example 1.6.1. The stable and unstableequilibrium solutions are shown by continuous and broken lines and the directionof the �ow is shown by arrows. This is an example of a simple turning pointbifurcation.According to the Lyapunov criterion it is stable if, when the phase point isperturbed a small amount from x∗ it remains in a neighbourhood of x∗, asymp-totically stable if it converges on x∗ and unstable if it moves away from x∗.We shall, therefore, determine the stability of equilibrium points by linearizingabout the point.5Example 1.6.1 Consider one-variable non-linear system given by
ẋ(t) = a− x2. (1.118)The parameter a can vary over all real values and the nature of equilibriumpoints will vary accordingly.The equilibrium points are given by x = x∗ = ±√

a. They exist only when
a ≥ 0 and form the parabolic curve shown in Fig. 1.2. Let x = x∗ + 4x andsubstitute into (1.118) neglecting all but the linear terms in 4x.

d4x
dt

= a− (x∗)2 − 2x∗4x. (1.119)5A theorem establishing the formal relationship between this linear stability and the Lya-punov criteria will be stated below.



1.6. AUTONOMOUS SYSTEMS 23Since a = (x∗)2 this gives
d4x
dt

= −2x∗4x, (1.120)which has the solution
4x = C exp(−2x∗t). (1.121)Thus the equilibrium point x∗ =

√
a > 0 is asymptotically stable (denoted by acontinuous line in Fig. 1.2) and the equilibrium point x∗ = −√

a < 0 is unstable(denoted by a broken line in Fig. 1.2). When a ≤ 0 it is clear that ẋ(t) < 0so x(t) decreases monotonically from its initial value x(0). In fact for a = 0equation (1.118) is easily solved:
∫ x

x(0)

x−2dx = −
∫ t

0

dt (1.122)gives
x(t) =

x(0)

1 + tx(0)
ẋ(t) = −

(

x(0)

1 + tx(0)

)2

. (1.123)Then
x(t) →

{

0, as t→ ∞ if x(0) > 0,
−∞, as t→ 1/|x(0)| if x(0) < 0. (1.124)In each case x(t) decreases with increasing t. When x(0) > 0 it takes `forever'to reach the origin. For x(0) < 0 it attains minus in�nity in a �nite amount oftime and then `reappears' at in�nity and decreases to the origin as t→ ∞. Thelinear equation (1.120) cannot be applied to determine the stability of x∗ = 0as it gives (d4x/dt)∗ = 0. If we retain the quadratic term we have

d4x
dt

= −(4x)2. (1.125)So including the second degree term we see that d4x/dt < 0. If 4x > 0 x(t)moves towards the equilibrium point and if 4x < 0 it moves away. In thestrict Lyapunov sense the equilibrium point x∗ = 0 is unstable. But it is `lessunstable' that x∗ = −√
a, for a > 0, since there is a path of attraction. Itis at the boundary between the region where there are no equilibrium pointsand the region where there are two equilibrium points. It is said to be on themargin of stability. The value a = 0 separates the stable range from the unstablerange. Such equilibrium points are bifurcation points. This particular type ofbifurcation is variously called a simple turning point, a fold or a saddle-nodebifurcation. Fig.1.2 is the bifurcation diagram.



24 CHAPTER 1. DIFFERENTIAL EQUATIONSExample 1.6.2 The system with equation
ẋ(t) = x{(a+ c2)− (x− c)2} (1.126)has two parameters a and c.The equilibrium points are x = 0 and x = x∗ = c±

√
a+ c2, which exist when

a+ c2 > 0. Linearizing about x = 0 gives
x(t) = C exp(at) (1.127)The equilibrium point x = 0 is asymptotically stable if a < 0 and unstable for

a > 0. Now let x = x∗ +4x giving
d4x
dt

= −24xx∗(x∗ − c)

= ∓24x
√

a+ c2
[

c±
√

a+ c2
]

. (1.128)This has the solution
4x = C exp

[

∓2t
√

a+ c2
(

c±
√

a+ c2
)]

. (1.129)We consider separately the three cases:
c = 0.Both equilibrium points x∗ = ±√

a are stable. The bifurcation diagram forthis case is shown in Fig.1.3. This is an example of a supercritical pitchforkbifurcation with one stable equilibrium point becomes unstable and two newstable solutions emerge each side of it. The similar situation with the stabilityreversed is a subcritical pitchfork bifurcation.
a

x

x2 = a

0Figure 1.3: The bifurcation diagram for Example 1.6.2, c = 0. The stable andunstable equilibrium solutions are shown by continuous and broken lines and thedirection of the �ow is shown by arrows. This is an example of a supercriticalpitchfork bifurcation.
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a

x

x2 − 2cx = a

c

−c2

0

Figure 1.4: The bifurcation diagram for Example 1.6.2, c > 0. The stable andunstable equilibrium solutions are shown by continuous and broken lines andthe direction of the �ow is shown by arrows. This gives examples of both simpleturning point and transcritical bifurcations.
c > 0.The equilibrium point x = c +

√
a+ c2 is stable. The equilibrium point x =

c −
√
a+ c2 is unstable for a < 0 and stable for a > 0. The point x = c,

a = −c2 is a simple turning point bifurcation and x = a = 0 is a transcriticalbifurcation. That is the situation when the stability of two crossing lines ofequilibrium points interchange. The bifurcation diagram for this example isshown in Fig.1.4.
c < 0.This is the mirror image (with respect to the vertical axis) of the case c > 0.Example 1.6.3

ẋ(t) = cx(b − x). (1.130)This is the logistic equation.The equilibrium points are x = 0 and x = b. Linearizing about x = 0 gives
x(t) = C exp(cbt) (1.131)The equilibrium point x = 0 is stable or unstable according as if cb <,> 0. Nowlet x = b+4x giving
d4x
dt

= −cb4x. (1.132)



26 CHAPTER 1. DIFFERENTIAL EQUATIONSSo the equilibrium point x = b is stable or unstable according as cb >,< 0. Nowplot the equilibrium points with the �ow and stability indicated:
• In the (b, x) plane for �xed c > 0 and c < 0.
• In the (c, x) plane for �xed b > 0, b = 0 and b < 0.You will see that in the (b, x) plane the bifurcation is easily identi�ed as trans-critical but in the (c, x) plane it looks rather di�erent.Now consider the di�erence equation corresponding to (1.130). Using thetwo-point forward derivative,
xn+1 = xn[(εcb + 1)− cεxn]. (1.133)Now substituting
x =

(1− εcb)y + εcb

cε
(1.134)into (1.133) gives

yn+1 = ayn(1− yn), (1.135)where
a = 1− εcb. (1.136)(1.135) is the usual form of the logistic di�erence equation. The equilibriumpoints of (1.135), given by setting yn+1 = yn = y∗ are
y∗ = 0 −→ x∗ = b,

y∗ = 1− 1/a −→ x∗ = 0.
(1.137)Now linearize (1.135) by setting yn = 4yn + y∗ to give

4yn+1 = a(1− 2y∗)4yn. (1.138)The equilibrium point y∗ is stable or unstable according as |a(1− 2y∗)| <,> 1.So
• y∗ = 0, (x∗ = b) is stable if −1 < a < 1, (0 < εcb < 2).
• y∗ = 1− 1/a, (x∗ = 0) is stable if 1 < a < 3, (−2 < εcb < 0).Since the di�erential equation corresponds to small, positive ε, these stabilityconditions agree with those derived for the di�erential equation (1.130). Youmay know that the whole picture for the behaviour of the di�erence equation(1.135) involves cycles, period doubling and chaos.6 Here, however, we are justconcerned with the situation for small ε when
y ' (cε)x, a = 1− (cε)b. (1.139)The whole of the (b, x) plane is mapped into a small rectangle centred around

(1, 0) in the (a, y) plane, where a transcritical bifurcation occurs between theequilibrium points y = 0 and y = 1− 1/a.6Ian Stewart,Does God Play Dice?, Chapter 8, Penguin (1990)



1.6. AUTONOMOUS SYSTEMS 271.6.2 Digression: Matrix AlgebraBefore considering systems of more than variable we need to revise our knowl-edge of matrix algebra. An n×n matrix A is said to be singular or non-singularaccording as the determinant ofA, denoted by Det{A}, is zero or non-zero. Therank of any matrix B, denoted by Rank{B}, is de�ned, whether the matrix issquare or not, as the dimension of the largest non-singular (square) submatrixof B. For the n× n matrix A the following are equivalent:(i) The matrix A is non-singular.(ii) The matrix A has an inverse denoted by A−1.(iii) Rank{A} = n.(iv) The set of n linear equations
Ax = c, (1.140)where
x =

















x1

x2...
xn

















, c =

















c1

c2...
cn

















, (1.141)has a unique solution for the variables x1, x2, . . . , xn for any numbers
c1, c2, . . . , cn given by

x = A−1c. (1.142)(Of course, when c1 = c2 = · · · = cn = 0 the unique solution is the trivialsolution x1 = x2 = · · · = xn = 0.)When A is singular we form the n × (n + 1) augmented matrix matrix A′by adding the vector c as a �nal column. Then the following results can beestablished:(a) If
Rank{A} = Rank{A′} = m < n (1.143)then (1.140) has an in�nite number of solutions corresponding to makingan arbitrary choice of n−m of the variables x1, x2, . . . , xn.(b) If
Rank{A} < Rank{A′} ≤ n (1.144)then (1.140) has no solution.



28 CHAPTER 1. DIFFERENTIAL EQUATIONSLet A be a non-singular matrix. The eigenvalues of A are the roots of the
n-degree polynomial

Det{A− λI} = 0, (1.145)in the variable λ. Suppose that there are n distinct roots λ(1), λ(2), . . . , λ(n).Then Rank{A−λ(k)I} = n−1 for all k = 1, 2, . . . , n. So there is, correspondingto each eigenvalue λ(k), a left eigenvector v(k) and a right eigenvector u(k) whichare solutions of the linear equations
[v(k)]TA = λ(k)[v(k)]T, Au(k) = u(k)λ(k). (1.146)The eigenvectors are unique to within the choice of one arbitrary component.Or equivalently they can be thought of a unique in direction and arbitrary inlength. If A is symmetric it is easy to see that the left and right eigenvectorsare the same.7 Now
[v(k)]TAu(j) = λ(k)[v(k)]Tu(j) = [vk)]Tu(j)λ(j) (1.147)and since λ(k) 6= λ(j) for k 6= j the vectors v(k) and u(j) are orthogonal. In factsince, as we have seen, eigenvectors can always be multiplied by an arbitraryconstant we can ensure that the sets {u(k)} and {v(k)} are orthonormal bydividing each for u(k) and v(k) by √

u(k).v(k) for k = 1, 2, . . . , n. Thus
u(k) · v(j) = δKr(k − j), (1.148)where
δKr(k − j) =

{

1, k = j,
0, k 6= j,

(1.149)is called the Kronecker delta function.1.6.3 Linear Autonomous SystemsThe n-th order autonomous system (1.111) is linear if
F = Ax− c, (1.150)for some n× n matrix A and a vector c of constants. Thus we have
ẋ(t) = Ax(t)− c, (1.151)An equilibrium point x∗, if it exists, is a solution of
Ax = c. (1.152)7The vectors referred to in many texts simply as `eigenvectors' are usually the right eigen-vectors. But it should be remembered that non-symmetric matrices have two distinct sets ofeigenvectors. The left eigenvectors of A are of course the right eigenvectors of AT and viceversa.



1.6. AUTONOMOUS SYSTEMS 29As we saw in Sect. 1.6.2 these can be either no solutions points, one solution oran in�nite number of solutions. We shall concentrate on the case where A isnon-singular and there is a unique solution given by
x∗ = A−1c. (1.153)As in the case of the �rst-order system we consider a neighbourhood of theequilibrium point by writing
x = x∗ +4x. (1.154)Substituting into (1.151) and using (1.153) gives
d4x

dt
= A4x. (1.155)Of course, in this case, the `linearization' used to achieve (1.155) was exactbecause the original equation (1.151) was itself linear.As in Sect. 1.6.2 we assume that all the eigenvectors of A are distinct andadopt all the notation for eigenvalues and eigenvectors de�ned there. The vector

4x can be expanded as the linear combination
4x(t) = w1(t)u

(1) + w2(t)u
(2) + · · ·+ wn(t)u

(n), (1.156)of the right eigenvectors of A, where, from (1.148),
wk(t) = v(k) · 4x(t), k = 1, 2, . . . , n. (1.157)Now
A4x(t) = w1(t)Au(1) + w2(t)Au(2) + · · ·+ wn(t)Au(n)

= λ(1)w1(t)u
(1) + λ(2)w2(t)u

(2) + · · ·+ λ(n)wn(t)u
(n) (1.158)and

d4x

dt
= ẇ1(t)u

(1) + ẇ2(t)u
(2) + · · ·+ ẇn(t)u

(n). (1.159)Substituting from (1.158) and (1.159) into (1.155) and dotting with v(k) gives
ẇk(t) = λ(k)wk(t), (1.160)with solution
wk(t) = C exp

(

λ(k)t
)

. (1.161)So 4x will grow or shrink in the direction of u(k) according as <{λ(k)} >, < 0.The equilibrium point will be unstable if at least one eigenvalue has a positivereal part and stable otherwise. It will be asymptotically stable if the real partof every eigenvalue is (strictly) negative. Although these conclusions are basedon arguments which use both eigenvalues and eigenvectors, it can be seen thatknowledge simply of the eigenvalues is su�cient to determine stability. Theeigenvectors give the directions of attraction and repulsion.



30 CHAPTER 1. DIFFERENTIAL EQUATIONSExample 1.6.4 Analyze the stability of the equilibrium points of the linearsysteṁ
x(t) = y(t), ẏ(t) = 4x(t) + 3y(t). (1.162)The matrix is
A =

(

0 1

4 3

)

, (1.163)with Det{A} = −4 and the unique equilibrium point is x = y = 0. Theeigenvalues of A are λ(1) = −1 and λ(2) = 4. The equilibrium point is unstablebecause it is attractive in one direction but repulsive in the other. Such anequilibrium point is called a saddle-point.For a two-variable system the matrix A, obtained for a particular equilibriumpoint, has two eigenvalues λ(1) and λ(2). Setting aside special cases of zero orequal eigenvalues there are the following possibilities:(i) λ(1) and λ(2) both real and (strictly) positive. 4x grows in all directions.This is called an unstable node.(ii) λ(1) and λ(2) both real with λ(1) > 0 and λ(2) < 0. 4x grows in all direc-tions, apart from that given by the eigenvector associated with λ(2). This,as indicated above, is called a saddle-point.(iii) λ(1) and λ(2) both real and (strictly) negative.4x shrinks in all directions.This is called a stable node.(iv) λ(1) and λ(2) conjugate complex with <{λ(1)} = <{λ(2)} > 0.4x grows inall directions, but by spiraling outward. This is called an unstable focus.(v) λ(1) = −λ(2) are purely imaginary. Close to the equilibrium point, the lengthof 4x remains approximately constant with the phase point performing aclosed loop around the equilibrium point. This is called an centre.(vi) λ(1) and λ(2) conjugate complex with <{λ(1)} = <{λ(2)} < 0. 4x shrinksin all directions, but by spiraling inwards. This is called an stable focus.It is not di�cult to see that the eigenvalues of the matrix for the equilibriumpoint x = y = 0 of (1.109) are 1
2 (1 ± i

√
3). The point is an unstable focus asshown by the MAPLE plot.Example 1.6.5 Analyze the stability of the equilibrium points of the linearsysteṁ

x(t) = 2x(t)− 3y(t) + 4, ẏ(t) = −x(t) + 2y(t)− 1. (1.164)This can be written in the form
ẋ(t) = Ax(t)− c, (1.165)
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x =

(

x

y

)

, A =

(

2 −3

−1 2

)

, c =

(

−4

1

)

. (1.166)The matrix is
A =

(

2 −3

−1 2

)

, (1.167)with Det{A} = 1, has inverse
A−1 =

(

2 3

1 2

)

. (1.168)So the unique equilibrium point is
x∗ =

(

2 3

1 2

)(

−4

1

)

=

(

−5

−2

)

. (1.169)Linearizing about x∗ gives an equation of the form (1.155). The eigenvalues of
A are 2 ±

√
3. Both these numbers are positive so the equilibrium point is anunstable node.1.6.4 Linearizing Non-Linear SystemsConsider now the general autonomous system (1.111) and let there by an equi-librium point given by (1.112). To investigate the stability of x∗ we again makethe substitution (1.154). Then for a particular member of the set of equations

d4x`
dt

= F`(x
∗ +4x)

=

n
∑

k=1

(

∂F`

∂xk

)∗
4xk +O(4xi4xj), (1.170)where non-linear contributions in general involve all produces of pairs of thecomponents of 4x. Neglecting nonlinear contributions and taking all the set ofequations gives

d4x

dt
= J∗4x, (1.171)where J∗ = J(x) is the stability matrix with

J(x) =



















∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xm
∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xm... ... . . . ...
∂Fn

∂x1

∂Fn

∂x2
· · · ∂Fn

∂xm



















. (1.172)



32 CHAPTER 1. DIFFERENTIAL EQUATIONSAnalysis of the stability of the equilibrium point using the eigenvalues of J∗proceeds in exactly the same way as for the linear case. In fact it can berigorously justi�ed by the following theorem (also due to Lyapunov):Theorem 1.6.1 The equilibrium point x∗ is asymptotically stable if the realparts of all the eigenvalues of the stability matrix J∗ are (strictly) negative. Itis unstable if they are all non-zero and at least one is positive.It will be see that the case where one or more eigenvalues are zero or purelyimaginary is not covered by this theorem (and by linear analysis). This wasthe case in Example 1.6.1 at a = 0, where we needed the quadratic term todetermine the stability.Example 1.6.6 Investigate the stability of the equilibrium point of
ẋ(t) = sin[x(t)] − y(t), ẏ(t) = x(t). (1.173)The equilibrium point is x∗ = y∗ = 0. Using the McLaurin expansion of sin(x) =

4x+O(4x3) the equations take the form (1.171), where the stability matrix is
J∗ =

(

1 −1

1 0

)

. (1.174)This is the same stability matrix as for the linear problem (1.109) and theequilibrium point is an unstable focus.Example 1.6.7
ẋ(t) = −y(t) + x(t)[a − x2(t)− y2(t)], (1.175)
ẏ(t) = x(t) + y(t)[a− x2(t)− y2(t)]. (1.176)The only equilibrium point for (1.175)�(1.176) is x = y = 0. Linearizing aboutthe equilibrium point gives an equation of the form (1.171) with
J∗ =

(

a −1
1 a

)

. (1.177)The eigenvalues of J∗ are a± i. So the equilibrium point is stable or unstableaccording as a < 0 or a > 0. When a = 0 the eigenvalues are purely imaginary,so the equilibrium point is a centre.We can �nd two integrals of (1.175)�(1.176). If (1.175) is multiplied by xand (1.176) by y and the pair are added this gives
x
dx

dt
+ y

dy

dt
= (x2 + y2)(a− x2 − y2). (1.178)With r2 = x2 + y2, if the trajectory starts with r = r0 when t = 0,

2

∫ t

0

dt =



















1

a

∫ r

r0

{

1

a− r2
+

1

r2

}

d(r2), a 6= 0,
−
∫ r

r0

1

r4
d(r2), a = 0, (1.179)
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r2(t) =



















ar20
r20 + exp(−2at){a− r20}

, a 6= 0,
r20

1 + 2tr20
, a = 0. (1.180)This gives

r(t) −→







0, a ≤ 0,
√
a, a > 0. (1.181)Now let x = r cos(θ), y = r sin(θ). Substituting into (1.175)�(1.176) and elimi-nating dr/dt gives

dθ

dt
= 1. (1.182)If θ starts with the value θ(0) = θ0 then

θ = t+ θ0. (1.183)When a < 0 trajectories spiral with a constant angular velocity into the origin.When a = 0 linear analysis indicates that the origin is a centre. However, the fullsolution shows that orbits converge to the origin as t → ∞, with r(t) ' 1/
√
2t,which is a slower rate of convergence than any exponential.

y

x(a)
y

x

x2 + y2 = a(b)Figure 1.5: A Hopf bifurcation with (a) a ≤ 0, (b) a > 0.
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a

y

x

Figure 1.6: A Hopf bifurcation in the space of {a, x, y}.When a > 0, if r(0) = r0 =
√
a, r(t) = √

a. The circle x2 + y2 = a is invariantunder the evolution of the system. The circle x2+y2 = a is a new type of stablesolution called a limit cycle. Trajectories spiral, with a constant angular velocitytowards the limit cycle circle, either from outside if r0 > √
a or from inside if

r0 <
√
a see Fig. 1.5. The change over in behaviour at a = 0 is an example ofthe Hopf bifurcation. If the behaviour is plotted in the three-dimensional spaceof {a, x, y} then it resembles the supercritical pitchfork bifurcation (Fig. 1.6).Problems 11) Find the general solutions of the following di�erential equations:(a) t ẋ(t) = 2x(t)(b) ẋ(t) =

x(t)

t
− tan

{

x(t)

t

}(c) 2t x(t) ẋ(t) = x2(t) + t2(d) t ẋ(t)− t x(t) = x(t) + exp(t)(e) (1− t2)ẋ(t)− t x(t) = t[There are each of one of the types described in Sects. 1.3.1-3. The �rst thingto do is identify the type.]



1.6. AUTONOMOUS SYSTEMS 352) Find the general solutions of the following di�erential equations:(a) ẍ(t)− 5ẋ(t) + 6x(t) = 2 exp(t) + 6t− 5(b) ẍ(t) + x(t) = 2 sin(t)(c) d3x

dt3
+ 2

d2x

dt2
+ 6

dx

dt
= 1 + 2 exp(−t)[These are all equations with constant coe�cients as described in Sect. 1.4.]3) Find the general solution of the di�erential equation

ẍ(t)− 3ẋ(t) + 4x(t) = 0and solve the equation
ẍ(t)− 3ẋ(t) + 4x(t) = t2 exp(t)with the initial conditions x(0) = 0 and ẋ(0) = 1.4) Find out as much as you can about the one-dimensional dynamic systems:(i) ẋ(t) = x(t)[a− c− ab x(t)],(ii) ẋ(t) = a x(t)− b x2(t) + c x3(t),You may assume that a and b are non-zero but you can consider the case

c = 0. You should be able to(a) Find the equilibrium points and use linear analysis to determine theirstability.(b) Draw the bifurcation diagrams in the {x, a}�plane for the di�erent rangesof b and c.(c) Solve the equations explicitly.5) Determine the nature of the equilibrium point (0, 0) of the systems(i) ẋ(t) = x(t) + 3 y(t),

ẏ(t) = 3 x(t) + y(t) .(ii) ẋ(t) = 3 x(t) + 2 y(t),

ẏ(t) = x(t) + 2 y(t).6) Verify that the system
ẋ(t) = x(t) + sin[y(t)],

ẏ(t) = cos[x(t)] − 2 y(t)− 1has an equilibrium point at x = y = 0 and determine its type.



36 CHAPTER 1. DIFFERENTIAL EQUATIONS7) Find all the equilibrium points of
ẋ(t) = −x2(t) + y(t),

ẏ(t) = 8 x(t)− y2(t)and determine their type.



Chapter 2Linear Transform Theory2.1 IntroductionConsider a function x(t), where the variable t can be regarded as time.Throughout the rest of the course we shall be concerned only with systemsdriven by autonomous di�erential (or di�erence) equations. This means thattime is a relative variable and we can set, without loss of generality, the initialtime to be t = 0.A linear transform G is an operation on x(t) to produce a new function x̄(s). Itcan be pictured asInput x(t)
x̄(s) = G{x(t)}

Output x̄(s)

The linear property of the transform is given by
G{c1x1(t) + c2x2(t)} = c1x̄1(s) + c2x̄2(s), (2.1)for any functions x1(t) and x2(t) and constants c1 and c2. The variables t and

s can both take a continuous range of variables or one or both of them can takea set of discrete values. In simple cases it is often the practice to use the sameletter `t' for both the input and output function variables. Thus the ampli�er
x̄(t) = cx(t), (2.2)di�erentiator
x̄(t) = ẋ(t) (2.3)37



38 CHAPTER 2. LINEAR TRANSFORM THEORYand integrator
x̄(t) =

∫ t

0

x(u)du + x̄(0) (2.4)are all examples of linear transformations. Now let us examine the case of thetransform given by the di�erential equation
dx̄(t)

dt
+
x̄(t)

T
=

c

T
x(t). (2.5)The integrating factor (see Sect. 1.3.3) is exp(t/T ) and

exp(t/T )
dx̄(t)

dt
+ exp(t/T )

x̄(t)

T
=

d

dt
[exp(t/T )x̄(t)]

= exp(t/T )
c

T
x(t). (2.6)This gives

x̄(t) =
c

T

∫ t

0

exp[−(t− u)/T ]x(u)du+ x̄(0) exp(−t/T ). (2.7)In the special case of a constant input x(t) = 1, with the initial condition
x̄(0) = 0,

x̄(t) = c[1− exp(−t/T )]. (2.8)A well-known example of a linear transform is the Fourier series transformation
x̄(s) =

1

2π

∫ π

−π

x(t) exp(−ist)dt (2.9)where x(t) is periodic in t with period 2π and s now takes the discrete values
s = 0,±1,±2, . . .. The inverse of this transformation is the `usual' Fourier series

x(t) =
s=∞
∑

s=−∞
x̄(s) exp(ist). (2.10)A periodic function can be thought of as a superposition of harmonic com-ponents exp(ist) = cos(st) − i sin(st) and x̄(s), s = 0,±1,±2, . . . are just theweights or amplitudes of these components.11In the case of a light wave the Fourier series transformation determines the spectrum.Since di�erent elements give o� light of di�erent frequencies the spectrum of light from a starcan be used to determine the elements present on that star.



2.2. SOME SPECIAL FUNCTIONS 392.2 Some Special Functions2.2.1 The Gamma FunctionThe gamma function Γ(z) is de�ned by
Γ(z) =

∫ ∞

0

uz−1 exp(−u)du, for <{z} > 0. (2.11)It is not di�cult to show that
Γ(z + 1) = zΓ(z), (2.12)

Γ(1) = 1. (2.13)So p! = Γ(p+ 1) for any integer p ≥ 0. The gamma function is a generalizationof factorial. Two other results for the gamma function are of importance
Γ(z)Γ(1 − z) = π cosec(πz), (2.14)

22z−1Γ(z)Γ
(

z + 1
2

)

= Γ(2z)Γ
(

1
2

)

. (2.15)From (2.14), Γ ( 12) =
√
π and this, together with (2.12), gives values for allhalf-integer values of z.2.2.2 The Heaviside FunctionThe Heaviside function H(t) is de�ned by

H(t) =

{

1, if t ≥ 0,
0, if t < 0. (2.16)Clearly, as it stands, the Heaviside function does not have much relevance to ussince it is equal to one for all times (t ≥ 0) which interest us. However, with

t0 > 0,
H(t− t0) =

{

1, if t ≥ t0,
0, if t < t0, (2.17)is very useful (see Fig. 2.1). It e�ectively `turns on and o�' the integrand in anintegral. Thus, for 0 ≤ a < b,

∫ b

a

H(t − t0)x(t)dt =



































0, if b ≤ t0,
∫ b

t0

x(t)dt, if b > t0 ≥ a,
∫ b

a

x(t)dt, if t0 ≤ a. (2.18)



40 CHAPTER 2. LINEAR TRANSFORM THEORY
0 t0 t

1

H(t − t0)
Figure 2.1: The Heaviside function H(t − t0).2.2.3 The Dirac Delta FunctionThe Dirac Delta function δD(t) is de�ned by

δD(t) = dH(t)

dt
. (2.19)This function is clearly zero everywhere apart from t = 0. At this point it isstrictly speaking unde�ned. However, it can be thought of as being in�nite atthat single point2 leading to it often being called the impulse function. In spiteof its peculiar nature the Dirac delta function plays an easily understood roleas part of an integrand.

∫ b

a

δD(t− t0)x(t)dt =

∫ b

a

dH(t− t0)

dt
x(t)dt

=
[

H(t− t0)x(t)
]b

a
−
∫ b

a

H(t− t0)
dx(t)

dt
dt

=

{

x(t0), if a ≤ t0 < b,
0, otherwise. (2.20)The Dirac delta function selects a number of values from an integrand. Thusfor example if a < 0 and b > p, for some positive integer p.

∫ b

a

x(t)

p
∑

j=0

δD(t− j)dt =

p
∑

j=0

x(j). (2.21)2More rigorous de�nitions can be given for this delta function. It can, for example, bede�ned using the limit of a normal distribution curve as the width contacts and the heightincreases, while maintaining the area under the curve.



2.3. LAPLACE TRANSFORMS 412.3 Laplace TransformsA particular example of a linear transform3 is the Laplace transform de�ned by
x̄(s) = L{x(t)} =

∫ ∞

0

x(t) exp(−st)dt. (2.22)In this case s is taken to be a complex variable with <{s} > η, where η issu�ciently large to ensure the convergence of the integral for the particularfunction x(t). For later use we record the information that the inverse of theLaplace transform is given by
x(t) =

1

2πi

∫ α+i∞

α−i∞
x̄(s) exp(st)ds, (2.23)where α > η and the integral is along the vertical line <{s} = α in the complex

s-plane.It is clear that the Laplace transform satis�es the linear property (2.1). Thatis
L{c1x1(t) + c2x2(t)} = c1x̄1(s) + c2x̄2(s). (2.24)It is also not di�cult to show that
L{x(c t)} =

1

c
x̄
(s

c

)

. (2.25)We now determine the transforms of some particular function and then derivesome more general properties.2.3.1 Some Particular TransformsA constant C.
L{C} =

∫ ∞

0

C exp(−st)dt = C

s
, <{s} > 0. (2.26)A monomial tp, where p ≥ 0 is an integer. To establish this result useintegration by parts

L{tp} =

∫ ∞

0

tp exp(−st)dt

=

[

− t
p exp(−st)

s

]∞

0

+
p

s

∫ ∞

0

tp−1 exp(−st)dt

=
p

s

∫ ∞

0

tp−1 exp(−st)dt. (2.27)3Henceforth, unless otherwise stated, we shall use x̄(s) to mean the Laplace transform of
x(t).



42 CHAPTER 2. LINEAR TRANSFORM THEORYFrom (2.27) and the result (2.26) for p = 0, it follows by induction that
L{tp} =

p!

sp+1
, <{s} > 0. (2.28)It is of some interest to note that this result can be generalized to tν , for complex

ν with <{ν} ≥ 0. Now
L{tν} =

∫ ∞

0

tν exp(−st)dt (2.29)and making the change of variable st = u

L{tν} =
1

sν+1

∫ ∞

0

uν exp(−u)du =
Γ(ν + 1)

sν+1
, <{s} > 0, (2.30)where the gamma function is de�ned by (2.11). In fact the result is valid for allcomplex ν apart from at the singularities ν = −1,−2, . . . of Γ(ν + 1).The exponential function exp(−αt).

L{exp(−αt)} =

∫ ∞

0

exp[−(s+ α)t]dt

=
1

s+ α
, <{s} > −<{α}. (2.31)This result can now be used to obtain the Laplace transforms of the hyperbolicfunctions

L{cosh(αt)} = 1
2
[L{exp(αt)} + L{exp(−αt)}]

= 1
2

[

1

s− α
+

1

s+ α

]

=
s

s2 − α2
, <{s} > |<{α}|, (2.32)and in a similar way

L{sinh(αt)} =
α

s2 − α2
, <{s} > |<{α}|, (2.33)Formulae (2.32) and (2.33) can then be used to obtain the Laplace transformsof the harmonic functions

L{cos(ωt)} = L{cosh(iωt)} =
s

s2 + ω2
, <{s} > |={ω}|, (2.34)

L{sin(ωt)} = −iL{sinh(iωt)} =
ω

s2 + ω2
, <{s} > |={ω}|. (2.35)



2.3. LAPLACE TRANSFORMS 43The Heaviside function H(t − t0) with t0 > 0.
L{H(t− t0)} =

∫ ∞

0

H(t− t0) exp(−st)dt

=

∫ ∞

t0

exp(−st)dt = exp(−st0)
s

, <{s} > 0. (2.36)The Dirac delta function δD(t− t0) with t0 > 0.
L{δD(t− t0)} = exp(−st0), <{s} > 0. (2.37)2.3.2 Some General PropertiesThe shift theorem.
L{exp(−αt)x(t)} =

∫ ∞

0

x(t) exp[−(s+ α)t]dt (2.38)
= x̄(s+ α), (2.39)as long as <{s+ α} is large enough to achieve the convergence of the integral.It is clear that (2.31) is a special case of this result with x(t) = 1 and, from(2.26) x̄(s) = 1/s.Derivatives of the Laplace transform. From (2.22)

dpx̄(s)

dsp
=

∫ ∞

0

x(t)
dp exp(−st)

dsp
dt (2.40)

= (−1)p
∫ ∞

0

tpx(t) exp(−st)dt, (2.41)as long as the function is such as to allow di�erentiation under the integral sign.In these circumstances we have, therefore,
L{tpx(t)} = (−1)p

dpL{x(t)}
dsp

, for integer p ≥ 0. (2.42)It is clear the (2.28) is the special case of this result with x(t) = 1.The Laplace transform of the derivatives of a function.
L
{

dpx(t)

dtp

}

=

∫ ∞

0

dpx(t)

dtp
exp(−st)dt

=

[

dp−1x(t)

dtp−1
exp(−st)

]∞

0

+ s

∫ ∞

0

dp−1x(t)

dtp−1
exp(−st)dt

= −
(

dp−1x(t)

dtp−1

)

t=0

+ sL
{

dp−1x(t)

dtp−1

}

. (2.43)



44 CHAPTER 2. LINEAR TRANSFORM THEORYIt then follows by induction that
L
{

dpx(t)

dtp

}

= spL{x(t)} −
p−1
∑

j=0

sp−j−1

(

djx(t)

dtj

)

t=0

. (2.44)The product of a function with the Heaviside function. With t0 > 0,
L{x(t)H(t − t0)} =

∫ ∞

0

x(t)H(t − t0) exp(−st)dt

=

∫ ∞

t0

x(t) exp(−st)dt. (2.45)Making the change of variable u = t− t0,
L{x(t)H(t − t0)} = exp(−st0)L{x(t+ t0)}. (2.46)The product of a function with the Dirac delta function. With t0 > 0,
L{x(t)δD(t− t0)} = x(t0) exp(−st0), (2.47)The Laplace transform of a convolution. The integral
∫ t

0

x(u)y(t− u)du (2.48)is called the convolution of x(t) and y(t). It is not di�cult to see that
∫ t

0

x(u)y(t− u)du =

∫ t

0

y(u)x(t− u)du. (2.49)So the convolution of two functions is independent of the order of the functions.
L
{∫ t

0

x(u)y(t− u)du

}

=

∫ ∞

0

dt

∫ t

0

dux(u)y(t− u) exp(−st). (2.50)Now de�ne
Iλ(s) =

∫ λ

0

dt

∫ t

0

du x(u)y(t− u) exp(−st). (2.51)The region of integration is shown in Fig. 2.2. Suppose now that the functionsare such that we can reverse the order of integration4 Then (2.51) becomes
Iλ(s) =

∫ λ

0

du

∫ λ

u

dt x(u)y(t− u) exp(−st). (2.52)4To do this it is su�cient that x(t) and y(t) are piecewise continuous.
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0 λ

λ

t

u

t = u

Figure 2.2: The region of integration (shaded) for Iλ(s).Now make the change of variable t = u+ v. Equation (2.52) becomes
Iλ(s) =

∫ λ

0

du x(u) exp(−su)
∫ λ−u

0

dv y(v) exp(−sv). (2.53)Now take the limit λ → ∞ and, given that x(t), y(t) and s are such that theintegrals converge it follows from (2.50), (2.51) and (2.53) that
L
{∫ t

0

x(u)y(t− u)du

}

= x̄(s)ȳ(s). (2.54)A special case of this result is when y(t) = 1 giving ȳ(s) = 1/s and
L
{∫ t

0

x(u)du

}

=
x̄(s)

s
. (2.55)The results of Sects. 2.3.1 and 2.3.2 are summarized in Table 2.12.3.3 Using Laplace Transforms to Solve Di�erentialEquationsEquation (2.44) suggests a method for solving di�erential equations by turningthem into algebraic equations in s. For this method to be e�ective we needto be able, not only to solve the transformed equation for x̄(s), but to invertthe Laplace transform to obtain x(t). In simple cases this last step will beachieved reading Table 2.1 from right to left. In more complicated cases itwill be necessary to apply the inversion formula (2.23), which often requiresa knowledge of contour integration in the complex plane. We �rst consider asimple example.Example 2.3.1 Consider the di�erential equation

ẍ(t) + 2ξω ẋ(t) + ω2 x(t) = 0. (2.56)



46 CHAPTER 2. LINEAR TRANSFORM THEORYTable 2.1: Table of particular Laplace transforms and their generalproperties.
Ctp

Cp!

sp+1
p ≥ 0 an integer, <{s} > 0.

tν
Γ(ν + 1)

sν+1
ν 6= −1,−2,−3, . . ., <{s} > 0.

exp(−αt)
1

s+ α
<{s} > <{α}.

cosh(αt)
s

s2 − α2
<{s} > |<{α}|.

sinh(αt)
α

s2 − α2
<{s} > |<{α}|.

cos(ωt)
s

s2 + ω2
<{s} > |={ω}|.

sin(ωt)
ω

s2 + ω2
<{s} > |={ω}|.

c1x1(t) + c2x2(t) c1x̄1(s) + c2x̄2(s) The linear property.
x(c t) (1/c)x̄(s/c)

exp(−αt)x(t) x̄(s+ α) The shift theorem.
tpx(t) (−1)p

dpx̄(s)

dsp
p ≥ 0 an integer.

dpx(t)

dtp
spx̄(s)−

p−1
∑

j=0

sp−j−1

(

djx(t)

dtj

)

t=0

p ≥ 0 an integer.
x(t)H(t− t0) exp(−st0)x̄1(s) t0 > 0, where x1(t) = x(t+ t0).
x(t)δD(t− t0) x(t0) exp(−st0) t0 > 0

∫ t

0

x(u)y(t− u)du x̄(s)ȳ(s) The convolution integral.



2.3. LAPLACE TRANSFORMS 47This is the case of a particle of unit mass moving on a line with simple harmonicoscillations of angular frequency ω, in a medium of viscosity ξω. Suppose that
x(0) = x0 and ẋ(0) = 0. Then from Table 2.1 line 12

L{ẍ(t)} = s2x̄(s)− sx0,

L{ẋ(t)} = sx̄(s)− x0.
(2.57)So the Laplace transform of the whole of (2.56) is

x̄(s)[s2 + 2ξωs+ ω2] = x0(s+ 2ξω). (2.58)Givinḡ
x(s) =

x0(s+ 2ξω)

(s+ ξω)2 + ω2(1− ξ2)
. (2.59)To �nd the required solution we must invert the transform. Suppose that ξ2 < 1and let θ2 = ω2(1− ξ2).5 Then (2.59) can be re-expressed in the form

x̄(s) = x0

[

s+ ξω

(s+ ξω)2 + θ2
+

ξω

(s+ ξω)2 + θ2

]

. (2.60)Using Table 2.1 lines 6, 7 and 10 to invert these transforms gives
x(t) = x0 exp(−ξωt)

[

cos(θt) +
ξω

θ
sin(θt)

]

. (2.61)Let ζ = ξω/θ and de�ned φ such that tan(φ) = ζ. Then (2.61) can be expressedin the form
x(t) = x0

√

1 + ζ2 exp(−ξωt) cos(θt− φ). (2.62)This is a periodic solution with angular frequency θ subject to exponentialdamping. We can use MAPLE to plot x(t) for particular values of ω, ξ and x0:
> theta:=(omega,xi)->omega*sqrt(1-xi^2);

θ := (ω, ξ) → ω
√

1− ξ2

> zeta:=(omega,xi)->xi*omega/theta(omega,xi);
ζ := (ω, ξ) → ξ ω

θ(ω, ξ)

> phi:=(omega,xi)->arcsin(zeta(omega,xi));
φ := (ω, ξ) → arcsin(ζ(ω, ξ))5The case of a strong viscosity is included by taking θ imaginary.
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> y:=(t,omega,xi,x0)->x0*exp(-xi*omega*t)/sqrt(1-(zeta(omega,xi))^2);#

y := (t, ω, ξ, x0 ) → x0 e(−ξ ω t)

√

1− ζ(ω, ξ)2

> x:=(t,omega,xi,x0)->y(t,omega,xi,x0)*cos(theta(omega,xi)*t-phi(omega,xi));
x := (t, ω, ξ, x0 ) → y(t, ω, ξ, x0 ) cos(θ(ω, ξ) t− φ(ω, ξ))

> plot(
> {y(t,2,0.2,1),-y(t,2,0.2,1),x(t,2,0.2,1)},t=0..5,style=[point,point,line]);

–1

–0.5

0

0.5

1

1 2 3 4 5t

Suppose that (2.56) is modi�ed to
ẍ(t) + 2ξ ωẋ(t) + ω2 x(t) = f(t). (2.63)In physical terms the function f(t) is a forcing term imposed on the behaviourof the oscillator. As we saw in Sect. 1.4, the general solution of (2.63) consists ofthe general solution of (2.56) (now called the complementary function) togetherwith a particular solution of (2.63). The Laplace transform of (2.63) with theinitial conditions x(0) = x0 and ẋ(0) = 0 is
x̄(s)[s2 + 2ξωs+ ω2] = x0(s+ 2ξω) + f̄(s). (2.64)Givinḡ
x(s) =

x0(s+ 2ξω)

(s+ ξω)2 + ω2(1 − ξ2)
+

f̄(s)

(s+ ξω)2 + ω2(1− ξ2)
. (2.65)



2.3. LAPLACE TRANSFORMS 49Comparing with (2.59), we see that the solution of (2.63) consists of the sum ofthe solution (2.62) of (2.56) and the inverse Laplace transform of
x̄p(s) =

f̄(s)

(s+ ξω)2 + θ2
. (2.66)From Table 2.1 lines 7, 10 and 15

xp(t) =
1

θ

∫ t

0

f(t− u) exp(−ξωu) sin(θu)du. (2.67)So for a particular f(t) we can complete the problem by solving this integral.However, this will not necessarily be the simplest approach. There are two otherpossibilities:(i) Decompose x̄p(s) into a set of terms which can be individually inverse-transformed using the lines of Table 2.1 read from right to left.(ii) Use the integral formula (2.23) for the inverse transform.If you are familiar with the techniques of contour integration (ii) is often the moststraightforward method. We have already used method (i) to derive (2.60) from(2.59). In more complicated cases it often involves the use of partial fractions.As an illustration of the method suppose that
f(t) = F exp(−αt), (2.68)for some constant F. Then, from Table 2.1,
x̄p(s) =

F

(s+ α)[(s + ξω)2 + θ2]
. (2.69)Suppose now that (2.69) is decomposed into

x̄p(s) =
A

(s+ α)
+

B(s+ ξω) + C θ

(s+ ξω)2 + θ2
. (2.70)Then

xp(t) = A exp(−αt) + exp(−ξωt)[B cos(θt) + C sin(θt)]. (2.71)It then remains only to determine A, B and C. This is done by recombiningthe terms of (2.70) into one quotient and equating the numerator with that of(2.69). This gives
s2(A+ B) + s[2A ξω + B(ξω + α) + C θ]

+A θ2 + Bξωα+ C θα+Aξ2ω2 = F. (2.72)Equating powers of s gives
A = −B = − F

2ξωα− α2 − θ2 − ξ2ω2
,

C =
F(ξω − α)

θ(2ξωα− α2 − θ2 − ξ2ω2)
.

(2.73)



50 CHAPTER 2. LINEAR TRANSFORM THEORYIn general the Laplace transform of the n-th order equation with constant coef-�cients (1.40) will be of the form
x̄(s)φ(s) − w(s) = f̄(s). (2.74)where φ(s) is the polynomial (1.43) and w(s) is some polynomial arising fromthe application of line 12 of Table 2.1 and the choice of initial conditions. So
x̄(s) =

w(s)

φ(s)
+
f̄(s)

φ(s)
. (2.75)since the coe�cients a0, a1, . . . , an−1 are real it has a decomposition of the form

φ(s) =







m
∏

j=1

(s+ αj)







{

∏̀

r=1

[(s+ βr)
2 + γ2r ]

}

, (2.76)where all αj , j = 1, 2, . . . ,m and βr, γr, r = 1, . . . , ` are real. The terms in the�rst product correspond to the real factors of φ(s) and the terms in the secondproduct correspond to conjugate pairs of complex factors. Thus m + 2` = n.When all the factors in (2.76) are distinct the method for obtaining the inversetransform of the �rst term on the right of (2.75) is to express it in the form
w(s)

φ(s)
=

m
∑

j=1

Aj

s+ αj
+
∑̀

r=1

Br(s+ βr) + Cr

(s+ βr)2 + γ2r
, (2.77)Recombining the quotients to form the denominator φ(s) and comparing co-e�cients of s in the numerator will give all the constants Aj , Br and Cr. If

αj = αj+1 = · · · = αj+p−1, that is, φ(s) has a real root of degeneracy p thenin place of the p terms in the �rst summation in (2.77) corresponding to thesefactors we include the terms
p
∑

i=1

A
(i)
j

(s+ αj)i
. (2.78)In a similar way for a p-th fold degenerate complex pair the corresponding termis

p
∑

i=1

B
(i)
j (s+ βj) + C

(i)
j

[(s+ βj)2 + γ2j ]
i
. (2.79)Another, often simpler, way to extract the constants A(i)

j in (2.78) (and Aj in(2.77) as the special case p = 1) is to observe that
(s+ αj)

pw(s)

φ(s)
=

p
∑

i=1

(s+ αj)
p−iA

(i)
j

+(s+ αj)
p × [terms not involving (s+ αj)]. (2.80)
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A

(i)
j =

1

(p− i)!

[

dp−i

dsp−i

(

(s+ αj)
pw(s)

φ(s)

)]

s=−αj

, i = 1, .., p (2.81)and in particular, when p = 1 and −αj is a simple root of φ(s),
Aj =

[

(s+ αj)
w(s)

φ(s)

]

s=−αj

. (2.82)Once the constants have been obtained it is straightforward to invert the Laplacetransform. Using the shift theorem and the �rst line of Table 2.1
L−1

{

1

(s+ α)i

}

=
exp(−αt)ti−1

(i− 1)!
. (2.83)This result is also obtainable from line 11 of Table 2.1 and the observation that

1

(s+ α)i
=

(−1)i−1

(i− 1)!

di−1

dsi−1

(

1

s+ α

)

. (2.84)The situation is somewhat more complicated for the complex quadratic factors.However, the approach exempli�ed by (2.84) can still be used.6 As we saw inthe example given above. The second term of the right hand side of (2.75) canbe treated in the same way except that now f̄(s) may contribute additionalfactors in the denominator. Further discussion of Laplace transforms will be inthe context of control theory.2.4 The Z TransformEquations (2.9) and (2.10), which de�ne the Fourier series transform, are anexample of a transform from a function of a continuous variable to a function ofa discrete variable. The Z transform is similar to this except that we normallythink of it as a transformation from a sequence, that is a function x(k) of adiscrete time variable k = 0, 1, 2, . . ., to its transform x̃(z), which is a functionof the continuous variable z. The de�nition of the transform is
x̃(z) = Z{x(k)} = x(0) + x(1)z−1 + x(2)z−2 + · · · , (2.85)where conditions are applied to z to ensure convergence of the series. Again, forlater reference, we record the fact that, as a consequence of Cauchy's theorem,the inverse of the transform is
x(k) =

1

2iπ

∮

C

zk−1x̃(z)dz, (2.86)6We just have to be more careful because di�erentiation throws up linear terms in s in thenumerator.



52 CHAPTER 2. LINEAR TRANSFORM THEORYwhere the integration is anticlockwise around a simple closed contour C enclos-ing the singularities of x̃(z). It is clear that this transform satis�es the linearityproperty (2.1) since
Z{c1x1(k) + c2x2(k)} = [c1x(0) + c2x2(0)] + [c1x(1) + c2x2(1)]z

−1

+ [c1x(2) + c2x2(2)]z
−2 + · · ·

= c1x̃1(z) + c2x̃2(z). (2.87)Just as in the case of the Laplace transform we determine the Z transform ofsome particular sequences and derive some more general properties.2.4.1 Some Particular TransformsA number of particular transforms can be derived from
Z{ak} = 1 + az−1 + a2z−2 + a3z−3 + · · · = z

z − a
, |z| > |a|. (2.88)Thus

Z{C} =
C z

z − 1
, |z| > 1, (2.89)

Z{exp(−αk)} =
z

z − exp(−α) , |z| > exp (−<{α}) . (2.90)Also
Z{cosh(αk)} =

1
2 [Z{exp(αk)} + Z{exp(−αk)}]

=
z[z − cosh(α)]

z2 − 2z cosh(α) + 1
, |z| > exp (|<{α}|) (2.91)and in a similar way

Z{sinh(αk)} =
z sinh(α)

z2 − 2z cosh(α) + 1
, |z| > exp (|<{α}|) , (2.92)

Z{cos(ωk)} =
z[z − cos(ω)]

z2 − 2z cos(ω) + 1
, |z| > exp (|={ω}|) , (2.93)

Z{sin(ωk)} =
z sin(ω)

z2 − 2z cos(ω) + 1
, |z| > exp (|={ω}|) . (2.94)Other important results can be derived from these using the general propertiesderived below. The Kronecker delta function δKr(k) is de�ned in (1.149). With

m ≥ 0, the terms of the sequence δKr(k −m), k = 0, 1, . . . are all zero exceptthat for which k = m, which is unity. Thus
Z{δKr(k −m)} =

1

zm
, m ≥ 0. (2.95)



2.4. THE Z TRANSFORM 532.4.2 Some General PropertiesFor p > 0

Z{x(k + p)} = x(p) + x(p+ 1)z−1 + x(p+ 2)z−2 + · · ·

= zpx̃(z)−
p−1
∑

j=0

x(j)zp−j . (2.96)If we continue the sequence to negative indices by de�ning x(k) = 0 if k < 0then
Z{x(k − p)} = x(0)z−p + x(1)z−p−1 + x(2)z−p−2 + · · ·

= z−px̃(z). (2.97)As a generalization of (2.88)
Z{akx(k)} = x(0) + ax(1)z−1 + a2x(2)z−2 + · · ·

= x(0) + x(1)(z/a)−1 + x(2)(z/a)−2 + · · ·
= x̃(z/a). (2.98)With the result

Z{kx(k)} = x(1)z−1 + 2x(2)z−2 + 3x(3)z−3 + · · ·

= −z dx̃(z)
dz

, (2.99)formulae for any derivative of the Z transform can be derived. Consider now
x̃(z) = x(0) + x(1)z−1 + x(2)z−2 + x(3)z−3 + · · · , (2.100)
ỹ(z) = y(0) + y(1)z−1 + y(2)z−2 + y(3)z−3 + · · · . (2.101)The coe�cient of z−k in the product x̃(z)ỹ(z) is

x(0)y(k) + x(1)y(k − 1) + x(2)y(k − 2) + · · ·
+ x(k − 1)y(1) + x(k)y(0). (2.102)So

Z







k
∑

j=0

x(j)y(k − j)







= x̃(z)ỹ(z). (2.103)This is the Z transform analogue of the convolution formula (2.55). The resultsof Sects. 2.4.1 and 2.4.2 are summarized in Table 2.2.2.4.3 Using Z Transforms to Solve Di�erence EquationsThis is most easily illustrated by giving some examples



54 CHAPTER 2. LINEAR TRANSFORM THEORYTable 2.2: Table of particular Z transforms and theirgeneral properties.
Cak Cz

z − a
|z| > |a|.

exp(−αk)
z

z − exp(−α)
|z| > exp (−<{α}).

cosh(αk)
z[z − cosh(α)]

z2 − 2z cosh(α) + 1
|z| > exp (|<{α}|).

sinh(αk)
z sinh(α)

z2 − 2z cosh(α) + 1
|z| > exp (|<{α}|).

cos(ωk)
z[z − cos(ω)]

z2 − 2z cos(ω) + 1
|z| > exp (|={ω}|).

sin(ωk)
z sin(ω)

z2 − 2z cos(ω) + 1
|z| > exp (|={ω}|).

δKr(k −m)
1

zm
m ≥ 0.

c1x1(k) + c2x2(k) c1x̃1(z) + c2x̃2(z) The linear property.
akx(k) x̃(z/a)

x(k + p) zpx̃(z)−
p−1
∑

j=0

x(j)z(p−j) p > 0 an integer.
x(k − p) z−px̃(z) p ≥ 0 an integer.(x(k) = 0, k < 0.)
kx(k) −z

dx̃(z)

dz

k
∑

j=0

x(j)y(k − j) x̃(z)ỹ(z) The convolution formula.



2.4. THE Z TRANSFORM 55Example 2.4.1 Solve the di�erence equation
x(k + 2) + 5x(k + 1) + 6x(k) = 0, (2.104)subject to the conditions x(0) = α, x(1) = β.From (2.96)
Z{x(k + 2)} = z2x̃(z)− αz2 − βz,

Z{x(k + 1)} = zx̃(z)− αz,
(2.105)So transforming (2.104) gives

x̃(z)[z2 + 5z + 6] = αz2 + (β + 5α)z (2.106)and thus
x̃(z) = z

[

αz + (β + 5α)

(z + 2)(z + 3)

] (2.107)giving̃
x(z) =

z(3α+ β)

z + 2
− z(2α+ β)

z + 3
. (2.108)Inverting the transform using line 1 of Table 2.2

x(k) = [3α+ β](−2)k − [2α+ β](−3)k. (2.109)The method can also be used to study systems of di�erence equations. This isan example based on a simple model for the bu�alo population in the AmericanWest starting in the year 1830.7Example 2.4.2 Let x(k) and y(k) be the number of female and male bu�aloat the start of any one year (k = 0 is 1830). Five percent of adults die eachyear. Bu�alo reach maturity at two years and the number of new females aliveat the beginning of year k + 2, taking into account infant mortality, is 12% of
x(k). More male calves than female are born and the corresponding �gure is
14% of x(k). Show that in the limit k → ∞ the population grows by 6.3% peryear.The di�erence equations are

x(k + 2) = 0.95x(k + 1) + 0.12x(k),

y(k + 2) = 0.95y(k + 1) + 0.14x(k).
(2.110)Applying the Z transform to these equations and using x(0) = x0, x(1) = x1,

y(0) = y0 and y(1) = y1

z2x̃(z)− x0z
2 − x1z = 0.95[zx̃(z)− zx0] + 0.12x̃(z),

z2ỹ(z)− y0z
2 − y1z = 0.95[zỹ(z)− zy0] + 0.14x̃(z)

(2.111)7Taken from Barnett and Cameron(1985) p. 21.



56 CHAPTER 2. LINEAR TRANSFORM THEORYSince we are interested only in the long-time behaviour of the total population
p(k) = x(k) + y(k) we need extract simply the formula for p̃(z) from theseequations. With p0 = x0 + y0, p1 = x1 + y1

p̃(z) = z

[

(p0z + p1 − 0.95p0)

z(z − 0.95)
+

0.26(x0z + x1 − 0.95x0)

z(z − 0.95)(z2 − 0.95z − 0.12)

]

. (2.112)The reason for retaining the factor z in the numerators (with a consequent z inthe denominators) can be seen by looking at the �rst line of Table 2.2. Factorsof the form z/(z − a) are easier to handle than 1/(z − a). We now resolve thecontents of the brackets into partial fractions. You can if you like use MAPLEto do this. The code is
> convert(0.26*(x0*z+x1-0.95*x0)/(z*(z-0.95)*(z^2-0.95*z-0.12)),parfrac,z);

1.958625701 x0 − 1.842720774 x1

z + .1128988008
− −2.280701754 x1 + 2.166666667 x0

z

− .1058808501 10−8 x0 + 2.280701750 x1

z − .9500000000
+

.2080409669 x0 + 1.842720770 x1

z − 1.062898801

> convert((p0*z+p1-0.95*p0)/(z*(z-0.95)),parfrac,z);
1.052631579

p1

z − .9500000000
+

−1.052631579 p1 + p0

zThus we have
p̃(z) = (p0 − 1.053p1 − 2.167x0 + 2.281x1) +

z(1.053p1 − 2.281x1)

z − 0.95

+
z(1.959x0 − 1.843x1)

z + 0.113
+
z(0.208x0 + 1.843x1)

z − 1.063
(2.113)and inverting the transform using lines 1 and 7 of Table 2.2 gives

p(k) = (p0 − 1.053p1 − 2.167x0 + 2.281x1)δ
Kr(0)

+ (1.053p1 − 2.281x1)(0.95)
k

+(1.959x0 − 1.843x1)(−0.113)k

+(0.208x0 + 1.843x1)(1.063)
k. (2.114)In the limit of large k this expression is dominated by the last term

p(k) ' (0.208x0 + 1.843x1)(1.063)
k. (2.115)The percentage yearly increase is

p(k + 1)− p(k)

p(k)
× 100 = 6.3. (2.116)



2.4. THE Z TRANSFORM 57Problems 21) Show, using the standard results in the table of Laplace transforms, that:(i) L{t sin(ωt)} =
2ωs

(ω2 + s2)2
,(ii) L{sin(ωt)− ωt cos(ωt)} =

2ω3

(ω2 + s2)2
.Hence solve the di�erential equation

ẍ(t) + ω2x(t) = sin(ωt),when x(0) = ẋ(0) = 0.2) Use Laplace transforms to solve the di�erential equation
d3x(t)

dt3
+ x(t) = 1,where x(0) = ẋ(0) = ẍ(0) = 0.3) Given that x(t) = −t and

ȳ(s) =
x̄(s)

(s− 1)2
,�nd y(t).4) Show using your notes that

L{t− 1
2 } =

√
π

s
1
2

.The error function Erf(z) is de�ned by
Erf(z) =

2√
π

∫ z

0

exp(−u2)du.Show that
L
{

Erf(t
1
2 )
}

=
1

s(s+ 1)
1
2

.5) Find the sequences x(0), x(1), x(2), . . . for which Z{x(k)} = x̃(z) are:(i) z

(z − 1)(z − 2)
,(ii) z

z2 + a2
,



58 CHAPTER 2. LINEAR TRANSFORM THEORY(iii) z3 + 2z2 + 1

z3
.6) Use the Z transform to solve the following di�erence equations for k ≥ 0:(i) 8x(k + 2)− 6x(k + 1) + x(k) = 9, where x(0) = 1 and x(1) = 3

2 ,(ii) x(k + 2) + 2x(k) = 0, where x(0) = 1 and x(1) = √
2.7) A person's capital at the beginning of year k is x(k) and their expenditureduring year k is y(k). Given that these satisfy the di�erence equations

x(k + 1) = 1.5x(k)− y(k),

y(k + 1) = 0.21x(k) + 0.5y(k)Show that in the long time limit the person's capital changes at a rate of
20% per annum.



Chapter 3Transfer Functions andFeedback
3.1 IntroductionLinear control theory deals with a linear time-invariant system having a set ofinputs {u1(t), u2(t), . . .} and outputs {x1(t), x2(t), . . .}. The input functions arecontrolled by the experimenter, that is, they are known functions. The aim ofcontrol theory is to(i) Construct a model relating inputs to outputs. (Usually di�erential equa-tions for continuous time and di�erence equations for discrete time.) Thetime invariant nature of the system implies that the equations are au-tonomous.(ii) Devise a strategy for choosing the input functions and possibly changingthe design of the system (and hence the equations) so that the output havesome speci�c required form. If the aim is to produce outputs as close aspossible to some reference functions {ρ1(t), ρ2(t), . . .} then the system iscalled a servomechanism. If each of the reference functions is constant thesystem is a regulator.Consider, for example, the simple case of one input function u(t) and one outputfunction x(t) related by the di�erential equation

dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a1

dx

dt
+ a0x =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u, (3.1)59



60 CHAPTER 3. TRANSFER FUNCTIONS AND FEEDBACKand with
(

dix

dti

)

t=0

= 0, i = 0, 1, . . . , n− 1,

(

dju

dtj

)

t=0

= 0, j = 0, 1, . . . ,m− 1.

(3.2)Now taking the Laplace transform of (3.1) gives
φ(s)x̄(s) = ψ(s)ū(s), (3.3)where
φ(s) = sn + an−1s

n−1 + · · ·+ a1s+ a0,

ψ(s) = bms
m + bm−1s

m−1 + · · ·+ b1s+ b0.
(3.4)(Cf (1.43).) Equation (3.3) can be written

x̄(s) = G(s)ū(s), (3.5)where
G(s) =

ψ(s)

φ(s)
(3.6)is called the transfer function. This system can be represented in block dia-grammatic form as Input ū(s)

G(s)
Output x̄(s)

Three simple examples of transfer functions are:(i) Proportional control when
x(t) = K u(t), (3.7)where K is a constant. This gives
G(s) = K. (3.8)(ii) Integral control when
x(t) =

∫ t

0

K u(τ)dτ, (3.9)where K is a constant. This gives1
G(s) =

K

s
. (3.10)1From the last line of Table 2.1 with y(t) = 1, ȳ(s) = 1/s.



3.2. SYSTEMS IN CASCADE 61(iii) Di�erential control when
x(t) = K

du(t)

dt
, (3.11)where K is a constant and u(0) = 0. This gives

G(s) = K s. (3.12)3.2 Systems in CascadeIf the output variable (or variables) are used as control variables for a secondsystem then the two systems are said to be in cascade. For the one controlfunction/one output function case the block diagram takes the form
ū(s)

G2(s)
x̄(s)

G1(s)
ȳ(s)with equations

x̄(s) = G2(s)ū(s),

ȳ(s) = G1(s)x̄(s),
(3.13)where G1(s) is called the process transfer function and G2(s) is called the con-troller transfer function. Combining these equations gives

ȳ(s) = G(s)ū(s), (3.14)where
G(s) = G1(s)G2(s) (3.15)and the block diagram is

ū(s)
G(s)

ȳ(s)For many-variable systems the x-variables may be large in number or di�cult tohandle. The y-variables may then represent a smaller or more easily accessibleset. Thus in Example 2.4.2 the two x-variables could be the numbers of malesand females. I don't know a lot about bu�alo, but in practice it may be di�cultto count these and the sum of the two (the whole population) may be easier tocount. Thus the second stage would be simply to sum the populations of thetwo sexes.



62 CHAPTER 3. TRANSFER FUNCTIONS AND FEEDBACKExample 3.2.1 We want to construct a model for the temperature control ofan oven.Let the control variable u(t) be the position on the heating dial of the ovenand suppose that this is directly proportional to the heat x(t) supplied to theoven by the heat source. This is the situation of proportional control with
x(t) = K1u(t). Let the output variable y(t) be the temperature di�erence attime t between the oven and its surroundings. Some of the heat supplied to theoven will be lost by radiation; this will be proportional to y(t). So the heat usedto raise the temperature of the oven is x(t) − K2y(t). According to the laws ofthermodynamics this is Qẏ(t), where Q is the heat capacity of the oven. Thenwe have

x(t) = K1u(t), (3.16)
Qẏ(t) + K2y(t) = x(t). (3.17)Suppose that the oven is at the temperature of its surroundings at t = 0. Thenthe Laplace transforms of (3.16)�(3.17) are

x̄(s) = K1ū(s), (3.18)
(sQ+ K2)ȳ(s) = x̄(s) (3.19)with block diagram̄

u(s) K1
x̄(s) 1

Qs+K2

ȳ(s)

From (3.18)�(3.19)
ȳ(s) =

K1

Qs+ K2
ū(s). (3.20)Suppose the dial is turned from zero to a value u0 at t = 0. Then, rememberingthat we always assume t ≥ 0, u(t) = u0 and ū(s) = u0/s. So

ȳ(s) =
u0K1

s(Qs+ K2)
. (3.21)Using partial fractions this gives

ȳ(s) = u0
K1

K2

(

1

s
− 1

T−1 + s

)

, (3.22)where T = Q/K2. Inverting the Laplace transform gives
y(t) = u0

K1

K2
[1− exp(−t/T)]. (3.23)



3.2. SYSTEMS IN CASCADE 63Suppose now that the proportional control condition (3.16) is replaced by theintegral control condition
x(t) = K1

∫ t

0

u(τ)dτ. (3.24)giving in place of (3.18)
x̄(s) =

K1

s
ū(s). (3.25)The formula (3.20) is now replaced by

ȳ(s) =
K1

s(Qs+ K2)
ū(s). (3.26)If we now use the form u(t) = u0 this is in fact equivalent to x(t) = K1 u0t whichimplies a linear buildup of heat input over the time interval [0, t]. Formula (3.21)is replaced by

ȳ(s) =
u0K1

s2(Qs+ K2)
. (3.27)Resolving into partial fractions gives

ȳ(s) = u0
K1

K2

(

1

s2
− T

s
+

T

T−1 + s

)

, (3.28)where, as before, T = Q/K2. Inverting the Laplace transform gives
y(t) = u0

TK1

K2

[

t

T
− 1 + exp(−t/T)

]

. (3.29)We now useMAPLE to compare the results of (3.23) and (3.29) (with u0K1/K2 =
1, T = 2).
> plot({t-2+2*exp(-t/2),1-exp(-t/2)
> },t=0..5,style=[point,line]);
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0

1

2

3

4

1 2 3 4 5t

It will be see that with proportional control the temperature of the oven reachesa steady state, whereas (if it were allowed to do so) it would rise steadily withtime for the case of integral control.3.3 Combinations and Distribution of InputsIn some cases, particularly in relation to feedback, we need to handle sumsor di�erences of inputs. To represent these on block diagrams the followingnotation is convenient:
ū1(s)

+
+

ū2(s)

ū(s)

means ū1(s) + ū2(s) = ū(s).
ū1(s)

+
−

ū2(s)

ū(s)

means ū1(s) − ū2(s) = ū(s).



3.4. FEEDBACK 65We shall also need to represent a device which receives an input and transmitsit unchanged in two (or more) directions. This will be represented by
ȳ(s)

ȳ(s)

ȳ(s)

A simple example of the use of this formalism is the case where equations (3.13)are modi�ed to
x̄1(s) = G2(s)ū1(s),

x̄2(s) = G3(s)ū2(s),

x̄(s) = x̄1(s) + x̄2(s),

ȳ(s) = G1(s)x̄(s),

(3.30)The block diagram is then
ū1(s)

G2(s)
x̄1(s)

ū2(s)

+
+

G3(s)

x̄2(s)

x̄(s)
G1(s)

ȳ(s)

3.4 FeedbackFeedback is present in a system when the output is fed, usually via some feedbacktransfer function, back into the input to the system. The classical linear controlsystem with feedback can be represented by the block diagram
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ū(s)

+
−

f̄(s)

v̄(s)
G(s)

ȳ(s)

ȳ(s)

ȳ(s)

H(s)The equations relating parts of the system are
f̄(s) = H(s)ȳ(s),

v̄(s) = ū(s)− f̄(s),

ȳ(s) = G(s)v̄(s).

(3.31)Eliminating f̄(s) and v̄(s) gives
ȳ(s) =

G(s)

1 +G(s)H(s)
ū(s). (3.32)Example 3.4.1 We modify the model of Example 3.2.1 by introducing a feed-back.The block diagram for this problem is obtained by introducing feedback intothe block diagram of Example 3.2.1.

ū(s)
+
−

f̄(s)

v̄(s) K1
x̄(s) 1

Qs+K2

ȳ(s)

ȳ(s)

ȳ(s)

H(s)From (3.20)
ȳ(s) =

K1

Qs+ K2
v̄(s) (3.33)and

v̄(s) = ū(s)−H(s)ȳ(s). (3.34)Givinḡ
y(s) =

K1

Q s+ K2 +H(s)K1
ū(s). (3.35)



3.4. FEEDBACK 67To complete this problem we need to make some assumptions about the natureof the feedback and we must also know the form of u(t). Suppose as in Example3.2.1 u(t) = u0, giving ū(s) = u0/s and assume a proportional feedback. Thatis H(s) = H, a constant. Then
ȳ(s) =

u0K1

s[Q s+ (K2 +HK1)]
. (3.36)Comparing with equations (3.21)�(3.23) we see that the e�ect of the feedbackis to replace K2 by K2 +HK1. The solution is therefore

y(t) = u0
K1

K2 +HK1
[1− exp(−t/T ′)], (3.37)where T ′ = Q/(K2 + HK1). With HK1 > 0, T ′ < T , so the feedback promotesa faster response of the output to the input. A typical case is that of unitaryfeedback where H(s) = 1.Example 3.4.2 We have a heavy �ywheel, centre O, of moment of inertia

I. Suppose that P designates a point on the circumference with the �ywheelinitially at rest and P vertically below O. We need to devise a system such that,by applying a torque Ku(t) to the wheel, in the long-time limit OP subtends anangle y∗ with the downward vertical.
O
P

y

Ku(t)

The equation of motion of the wheel is
I
d2y

dt2
= Ku(t). (3.38)Let J = I/K and take the Laplace transform of (3.38). Remembering that

y(0) = ẏ(0) = 0

ȳ(s) =
1

Js2
ū(s). (3.39)and the block diagram is
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ū(s) 1

Js2

ȳ(s)Suppose that the torque is u(t) = u0. Then ū(s) = u0/s and inverting thetransform
y(t) =

u0
2J
t2. (3.40)The angle grows, with increasing angular velocity, which does not achieve therequired result. Suppose now that we introduce feedback H(s). The blockdiagram is modi�ed to
ū(s)

+
−

f̄(s)

v̄(s) 1
Js2

ȳ(s)

ȳ(s)

ȳ(s)

H(s)With a unitary feedback (H(s) = 1)
Js2ȳ(s) = ū(s)− ȳ(s), (3.41)Again with u(t) = u0 this gives
ȳ(s) =

u0
s(Js2 + 1)

=
u0
s

− u0s

s2 + J−1
. (3.42)Inverting the Laplace transform this gives

y(t) = u0[1− cos(ω0t)], (3.43)where ω0 = 1/
√
J. Again the objective is not achieved since y(t) oscillates about

u0. Suppose we now modify the feedback to
H(s) = 1 + as. (3.44)Then
Js2ȳ(s) = ū(s)− ȳ(s)(1 + as) (3.45)and with u(t) = u0 this gives
ȳ(s) =

u0
s(Js2 + as+ 1)

=
u0
s

− u0
(s+ 1

2aω
2
0) +

1
2aω

2
0

(s+ 1
2aω

2
0)

2 + ω2
, (3.46)



3.4. FEEDBACK 69where ω2 = ω2
0 − 1

4a
2ω4

0 . Inverting the Laplace transform this gives
y(t) = u0

{

1− exp
(

− 1
2atω

2
0

)

[

cos(ωt) +
aω2

0

2ω
sin(ωt)

]}

. (3.47)As t → ∞ y(t) → u0.2 So by setting u0 = y∗ we have achieve the requiredobjective. From (3.44), the feedback is
f(t) = a

dy(t)

dt
+ y(t). (3.48)Problems 31) For the system with block diagram

ū(s)
+
−

K
s(s+Q)

ȳ(s)

show that
ȳ(s) =

Kū(s)

s2 +Qs+ K
.Given that u(t) = u0, where u0 is constant, show that(i) when K− 1

4Q
2 = ω2 > 0,

y(t) = u0

[

1− exp
(

−1
2
Qt
)

{

cos(ωt) +
Q

2ω
sin(ωt)

}]

,(ii) when 1
4Q

2 − K = ζ2 > 0,
y(t) = u0

[

1− 1

2ζ
exp

(

−1
2
Qt
)

{[

1
2Q+ ζ

]

exp(ζt)−
[

1
2Q− ζ

]

exp(−ζt)
}

]

.2) For the system with block diagram
ū(s)

+
−

+
− ȳ(s)1

s+Q
1
s

H1

H2

2The term involving exp
(

− 1
2
atω2

0

) is known as the transient contribution.



70 CHAPTER 3. TRANSFER FUNCTIONS AND FEEDBACKshow that
ȳ(s) =

ū(s)

s2 + s(H2 +Q) +H1
.(Hint: Put in all the intermediate variables, write down the equations associ-ated with each box and switch and eliminate to �nd the relationship between

ū(s) and ȳ(s).)3) Discrete time systems, where input u(k) is related to output (response) y(k)by a di�erence equation can be solved by using the Z transform to obtain aformula of the type ỹ(z) = G(z)ũ(z), where G(z) is the discrete time versionof the transfer function. For the following two cases �nd the transfer function(i) y(k)− 2y(k − 1) = u(k − 1).(ii) y(k) + 5y(k − 1) + 6y(k − 2) = u(k − 1) + u(k − 2).Obtain y(k), in each case when u(k) = 1 for all k.



Chapter 4Controllability andObservability4.1 IntroductionIn Sect. 3.1 we introduced a system with inputs {u1(t), u2(t), . . .} and outputs
{x1(t), x2(t), . . .}. In Sect. 3.2 this was modi�ed to take into account the factthat the number of x-variables may be large or be di�cult to handle. They mayalso include unnecessary details about the system. If the x-variables are nowrenamed state-space variables a new, possibly smaller, set {y1(t), y2(t), . . .} ofoutput variables can be introduced. In terms of transfer functions this situationis represented by systems in cascade with one set of equations relating inputvariables to state-space variables and a second set relating state-space variablesto output variables. The Laplace transformed equations for one variable of eachtype are (3.13). In general if there are m input variables n state-space variablesand r output variables we need a matrix formulation to specify the system. Themost general form for a linear system with continuous time is

ẋ(t) = A(t)x(t) +B(t)u(t), (4.1)
y(t) = C(t)x(t), (4.2)where u(t) is the m-dimensional column vector of input variables, x(t) is the

n-dimensional column vector of input variables and y(t) is the r-dimensionalcolumn vector of output variables. The matrices A(t), B(t) and C(t) are re-spectively n × n, n ×m and r × n. Equation (4.1) is a system of n �rst-orderdi�erential equations. They will be equations with constant coe�cients if theelements of the matrix A are not time-dependent. The control system repre-sented by the pair of equations (4.1) and (4.2) is said to be a constant system ifnone of the matrices A, B and C is time-dependent.The concentration on �rst-order di�erential equations is not a serious re-striction. As we saw in Sect. 1.5, a single n-th order di�erential equation can71



72 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYbe replaced by an equivalent set of n �rst-order equations. In a similar waya number of higher-order di�erential equations could be replaced by a largernumber of �rst-order equations.A simple case would be the problem of Example 3.4.2. Let x1(t) = y(t) and
x2(t) = ẏ(t). Then,

y(t) = cTx(t) (4.3)and, from (3.48),
f(t) = aTx(t), (4.4)where
x(t) =

(

x1(t)

x2(t)

)

, a =

(

1

a

)

, c =

(

1

0

)

. (4.5)With v(t) = u(t)− f(t) replacing u(t) in (3.38)
ẋ1(t) = x2(t),

ẋ2(t) = J−1v(t) = J−1[u(t)− f(t)],
(4.6)giving

ẋ(t) = Ax(t) + bu(t), (4.7)where
b =

(

0

J−1

)

, X =

(

0 1

0 0

)

, (4.8)
A = X − baT =

(

0 1

−J−1 −aJ−1

)

. (4.9)Equations (4.3) and (4.7) are a particular case of (4.1) and (4.2) with m = r = 1and n = 2.4.2 The Exponential MatrixWe shall now concentrate on the solution of (4.1) for a constant system. Thatis
ẋ(t) = Ax(t) +Bu(t). (4.10)We can de�ne the exponential matrix exp(At) by the expansion
exp(At) = I + tA+

1

2!
t2A2 + · · ·+ 1

k!
tkAk + · · · , (4.11)



4.2. THE EXPONENTIAL MATRIX 73and it then follows, as is the case for a scalar (1× 1 matrix) A, that
d exp(At)

dt
= exp(At)A. (4.12)Then (4.10) can be transformed by premultiplication by exp(−At) into the form

d exp(−At)x(t)

dt
= exp(−At)Bu(t). (4.13)This is, of course, equivalent to exp(−At) being the integrating factor for (4.10)(see Sect. 1.3.3), except that here, since we are dealing with matrices, the orderof the terms in any product is important. Integrating (4.13) gives

x(t) = exp(At)

[

x(0) +

∫ t

0

exp(−Aτ)Bu(τ)dτ

]

. (4.14)Of course, this formula is of practical use for determining x(t) only if we havea closed-form expression for exp(At). One case of this kind would be when
A has a set of n distinct eigenvalues λ(j), j = 1, 2, . . . , n and we are able tocalculate all the left eigenvectors p(j) and right eigenvectors q(j), which satisfythe orthonormality condition (1.148).1 Then the matrix P formed by havingthe vectors [p(j)

]T (in order) as rows and the matrix Q formed by having thevectors q(j) (in order) as columns satisfy the conditions
P = Q−1, (4.15)

PAQ = Λ, (4.16)where Λ is the diagonal matrix with the eigenvalues (in order) as diagonalelements. Then
exp(At) = I + tQΛP +

1

2!
t2(QΛP )2 + · · ·+ 1

k!
tk(QΛP )k + · · ·

= Q[I + tΛ+
1

2!
t2Λ2 + · · ·+ 1

k!
tkΛk + · · ·]P

= Q exp(Λt)P , (4.17)where exp(Λt) is the diagonal matrix with diagonal elements exp(λ(j)t), j =
1, 2, . . . n (in order).The problem with this method is that it involves calculating (or usingMAPLE to calculate) all the eigenvalues and the left and right eigenvectors.It is also valid only when all the eigenvalues are distinct, so that the left andright eigenvectors are orthonormalizible. We now develop a method of obtaining
exp(At) as a polynomial in A which depends only on deriving the eigenvaluesand which is valid even if some are degenerate. The characteristic equation of
A is

∆(λ) = 0, (4.18)1We have changed the letters from those used in Sect. 1.6.2 to avoid a clash with presentusage.



74 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYwhere
∆(λ) = Det{λI −A} = λn + αn−1λ

n−1 + · · ·+ α1λ+ α0 (4.19)is called the characteristic polynomial. The zeros of ∆(λ) are the eigenvalues of
A. Suppose that the eigenvalues are λ(1), λ(2), . . . , λ(m), where λ(j) is µ(j)-folddegenerate. Then

m
∑

j=1

µ(j) = n (4.20)and
∆(λ(j)) =

(

d∆(λ)

dλ

)

λ=λ(j)

= · · · =

(

dµ
(j)−1∆(λ)

dλµ(j)−1

)

λ=λ(j)

= 0,

j = 1, 2, . . . ,m (4.21)An important result of linear algebra is the Cayley-Hamilton Theorem. Thisasserts that A satis�es its own characteristic equation. That is
∆(A) = An + αn−1A

n−1 + · · ·+ α1A+ α0I = 0. (4.22)This is easily proved when (4.15) and (4.16) are valid (no degenerate eigenvalues,
µj = 1, for j = 1, 2, . . . ,m). Then

A = QΛP , (4.23)
As = QΛsP , s = 1, 2, . . . (4.24)and
∆(A) = Q[Λn + αn−1Λ

n−1 + · · ·+ α1Λ+ α0I]P . (4.25)Since the eigenvalues satisfy the characteristic equation, the matrix obtainedby summing all the terms in the square brackets has every element zero, whichestablishes the theorem. The result still holds for repeated eigenvalues but theproof is a little longer. An important result for our discussion is the following:Theorem 4.2.1 The power series for exp(zt) can be decomposed in the form
exp(zt) = D(z; t) + ∆(z)f(z) (4.26)where(i) D(z; t) = β0(t) + β1(t)z + · · ·+ βn−1(t)z

n−1 (4.27)(ii) ∆(z) is the characteristic polynomial of an n× n matrix A.(iii) f(z) is a regular function of z.



4.2. THE EXPONENTIAL MATRIX 75This theorem is established by considering the Laurent expansion of
g(z) =

exp(zt)

∆(z)
(4.28)about each of its poles z = λ(1), λ(2), . . . , λ(m) in order. Thus, for λ(1),

g(z) =

µ(1)

∑

i=1

γi
[

z − λ(1)
]i +

∞
∑

k=0

ρk

[

z − λ(1)
]k

=
P1(z)

[

z − λ(1)
]µ(1)

+ g1(z), (4.29)where P1(z) is a polynomial in z of degree µ(1) − 1 and g1(z) is regular at
z = λ(1), but with the same poles as g(z) at all the other eigenvalues. Repeatingthis process gives

g(z) =

m
∑

j=1

Pj(z)
[

z − λ(j)
]µ(j)

+ f(z), (4.30)Multiplying through by ∆(z) gives
exp(zt) =

m
∑

j=1

∆(z)Pj(z)
[

z − λ(j)
]µ(j)

+∆(z)f(z). (4.31)Each of the terms in the summation is a polynomial of degree n− 1; so togetherthey form a polynomialD(z; t) of degree n−1 and given by (4.27). To determinethe coe�cients β0(t), . . . , βn−1(t) we use (4.21) and (4.26). For the eigenvalue
λ(j) we have µ(j) linear equations for these coe�cients given by

exp
(

λ(j)t
)

= D
(

λ(j); t
)

,

ti exp
(

λ(j)t
)

=

(

diD(z; t)

dzi

)

z=λ(j)

, i = 1, 2, . . . , µ(j) − 1.
(4.32)This then gives in all n linear equations in n unknowns. It is not di�cult toshow that they are independent and will thus yield the coe�cients.It now follows from the Cayley-Hamilton result (4.22) and (4.26) and (4.27)that

exp(At) = β0(t)I + β1(t)A+ · · ·+ βn−1(t)A
n−1. (4.33)Example 4.2.1 Consider the matrix

A =

(

0 1

6 1

) (4.34)



76 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYThen
∆(λ) = λ2 − λ− 6, (4.35)with eigenvalues λ(1) = 3, λ(2) = −2. Now let
exp(zt) = β0(t) + β1(t)z +∆(z)f(z), (4.36)giving
exp(3t) = β0(t) + 3β1(t),

exp(−2t) = β0(t)− 2β1(t).
(4.37)Thus

exp(At) = 1
5
I[2 exp(3t) + 3 exp(−2t)] + 1

5
A[exp(3t)− exp(−2t)]

=
1
5 exp(3t)

(

2 1

6 3

)

+
1
5 exp(−2t)

(

3 −1

−6 2

)

. (4.38)An alternative approach to deriving a compact form for exp(At) is to use aLaplace transform. Taking the Laplace transform of (4.10) gives
sx̄(s)− x(0) = Ax̄(s) +Bū(s). (4.39)Writing this equation in the form
x̄(s) = (sI −A)−1x(0) + (sI −A)−1Bū(s) (4.40)and inverting the Laplace transform it follows, on comparison with (4.14) that
L−1

{

(sI −A)−1
}

= exp(At). (4.41)Now we apply this method to Example 4.2.1.
sI −A =

(

s −1

−6 s− 1

) (4.42)and
(sI −A)−1 =

1

∆(s)

(

s− 1 1

6 s

)

, (4.43)where ∆(s) is given by (4.35). Inverting this Laplace transformed matrix ele-ment by element gives (4.38).



4.3. REALIZATIONS OF SYSTEMS 774.3 Realizations of SystemsFor simplicity we shall, in most of the work which follows, consider a constantsystem with one (scalar) input u(t) and one (scalar) output y(t). Thus we have
ẋ(t) = Ax(t) + bu(t), (4.44)
y(t) = cTx(t), (4.45)where the n-dimensional column vector b replaces the matrix B and the n-dimensional row vector cT replaces the matrixC. Let T be an n×n non-singularmatrix. Equations (4.44) and (4.45) can be expressed in the form
dTx(t)

dt
= TAT−1Tx(t) + Tbu(t), (4.46)

y(t) = cTT−1Tx(t). (4.47)With
x′(t) = Tx(t), TAT−1 = A′,

Tb = b′, cTT−1 = (c′)T, (4.48)this gives
dx′(t)

dt
= A′x′(t) + b′ u(t), (4.49)

y(t) = (c′)Tx′(t). (4.50)These equations still have the same input and output variables, but the statevariables and matrices have been transformed. These equivalent expressions ofthe problem are called realizations and are denoted by [A, b, cT] and [A′, b′, (c′)T].The Laplace transforms of (4.44) and (4.45) are
sx̄(s)− x(0) = Ax̄(s) + b ū(s), (4.51)

ȳ(s) = cTx̄(s). (4.52)With x(0) = 0 these give
ȳ(s) = G(s)ū(s), (4.53)where
G(s) = cT(sI −A)−1b (4.54)is the transfer function. It is clear that it is invariant under the change ofrealization given by (4.48). So these are said to be di�erent realizations of the



78 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYtransfer function. From the de�nition of the inverse of a matrix and (4.19),equation (4.54) can also be written in the form2
G(s) =

cTAdj{sI −A}b
∆(s)

(4.55)It follows that the poles of the transfer function are the eigenvalues of A, whichare, of course, invariant under the transformation TAT−1 = A′.Since the inverse of the transpose of a matrix is equal to the transpose ofthe inverse it is clear that (4.54) can be rewritten in the form
G(s) = bT(sI −AT)−1c. (4.56)It follows that [AT, c, bT], that is to say,
ẋ(t) = ATx(t) + c u(t), (4.57)
y(t) = bTx(t), (4.58)is also a realization of the system. It is called the dual realization.4.3.1 The Companion RealizationSuppose we have a system with one input variable u(t) and one output variable

y(t) related by
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u, (4.59)with n > m and initial conditions

(

diy

dti

)

t=0

= 0, i = 0, 1, . . . , n− 1,

(

dju

dtj

)

t=0

= 0, j = 0, 1, . . . ,m− 1.

(4.60)Then
ȳ(s) = G(s)ū(s), (4.61)where the transfer function
G(s) =

ψ(s)

φ(s)
, (4.62)with

φ(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

ψ(s) = bms
m + bm−1s

m−1 + · · ·+ b1s+ b0.
(4.63)2The adjoint Adj{X} of a square matrix X is the transpose of the matrix of cofactors.



4.3. REALIZATIONS OF SYSTEMS 79We now construct a particular realization of the system by de�ning a set ofinput variables x1(t), . . . , xn(t). Let x1(t) be a solution of
y(t) = bm

dmx1
dtm

+ bm−1
dm−1x1
dtm−1

+ · · ·+ b1
dx1
dt

+ b0x1, (4.64)and de�ne
x2(t) = ẋ1(t),

x3(t) = ẋ2(t) =
d2x1
dt2

,... ...
xn(t) = ẋn−1(t) =

dn−1x1
dtn−1

.

(4.65)
Then (4.64) becomes

y(t) = bmxm+1(t) + bm−1xm(t) + · · ·+ b0x1(t), (4.66)which can be expressed in the form (4.50) with
cT =

(

b0 · · · bm 0 · · · 0
)

, x(t) =

















x1(t)

x2(t)...
xn(t)

















(4.67)Let
ẋn(t) = κu(t) +

n
∑

k=1

γk−1xk(t) (4.68)which is equivalent to
u(t) =

1

κ

dnx1
dtn

− γn−1

κ

dn−1x1
dtn−1

− · · · − γ1
κ

dx1
dt

− γ0
κ
x1(t). (4.69)We now substitute into (4.59) from (4.64) and (4.69). This gives

m
∑

j=0

bj
djw

dtj
= 0, (4.70)where

w(t) =

(

1− 1

κ

)

dnx1
dtn

+

n−1
∑

i=0

(

ai +
γi
κ

) dix1
dti

. (4.71)



80 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYThus, by choosing
κ = 1, γi = −ai, i = 1, 2, . . . , n− 1, (4.72)(4.70), and hence (4.59), are identically satis�ed and (4.68) and (4.65) can becombined in the matrix form (4.44) with
A =



























0 1 0 · · · · · · · · · 0 0

0 0 1 0 · · · · · · 0 0... ... ... ... ... ... ... ...
0 0 0 0 · · · · · · 0 1

−a0 −a1 · · · · · · · · · · · · · · · −an−1



























(4.73)
b =



























0

0...
0

1



























. (4.74)
When A, b and cT are of this type they are said to be in companion form. It isnot di�cult to show that the characteristic function for A is

∆(λ) = φ(λ), (4.75)again establishing that the poles of the transfer function are the eigenvalues of
A. For any realization, the n× n matrix

U =
(

b Ab A2b · · · An−1b
)

, (4.76)that is the matrix with j-th column Aj−1b, is3 called the controllability matrix.The n× n matrix
V =























cT
cTA
cTA2...

cTAn−1























, (4.77)3For reasons which we shall see below.



4.3. REALIZATIONS OF SYSTEMS 81that is the matrix with j-th row cTAj−1, is4 called the observability matrix.For a companion realization it is not di�cult to see that the controllabilitymatrix has determinant of plus or minus one, depending on its order. We nowprove an important theorem:Theorem 4.3.1 A realization given by (4.44) and (4.45) can be transformedby (4.48) into a companion realization if and only if the controllability matrixis non-singular.Proof:Su�ciency. If U is non-singular U−1 exists. Let ξ
T be the n-th row of U−1.That is

ξT = (b′)TU−1, (4.78)where
(b′)T = (0 0 · · · 0 1) (4.79)and de�ne the matrix
T =



















ξT
ξTA...

ξTAn−1



















(4.80)We need to show that T−1 exists, which is the case when T is non-singular,that is when the rows of the matrix are independent. Suppose the contrary,that there exist γ1, . . . , γn, not all zero, such that
γ1ξ

T + γ2ξ
TA+ · · ·+ γnξ

TAn−1 = 0. (4.81)Multiplying on the right by Akb the coe�cient of γj is ξTAj−1+kb. The vector
Aj−1+kb is the (j+ k)-th column of U so this coe�cient is non-zero (and equalto unity) if and only if j + k = n. So by varying k from 0 to n− 1 we establishthat γ1 = γ2 = · · · = γn = 0 and thus that the matrix T is non-singular. Now

Tb =



















ξTb
ξTAb...

ξTAn−1b



















=



















0

0...
1



















= b′. (4.82)4Again for reasons which we shall see below.



82 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYLet the columns of T−1 be denoted by ej , j = 1, 2, . . . , n. Then
ξTAkej = δKr(k + 1− j), k = 0, 1, . . . , n− 1. (4.83)Now the matrix A′ given in (4.48) has k�j-th element given by
A′

kj = ξ
T
Ak−1Aej = δKr(k + 1− j), k = 1, 2, . . . , n− 1. (4.84)So in each row of A′ apart from the last there is one non-zero element equal tounity. In the k-th row the element is the k + 1-th which is exactly the form of(4.73) if we de�ne

aj = −ξTAnej+1, j = 0, 1, . . . , n− 1. (4.85)Finally we note that
(c′)T =

(

cTe1 cTe2 · · · cTen ) (4.86)Necessity. Suppose that a transformation by a non-singular matrix T exists. Weknow that in this companion realization the controllablity matrix
U ′ =

(

b′ A′b′ (A′)2b′ · · · (A′)n−1b′
)

, (4.87)is non-singular (|Det{U ′}| = 1). But
U ′ = TU , (4.88)So U is also non-singular.From (4.77) and (4.76)
V T =

(

c ATc (AT)2c · · · (AT)n−1c
)

, (4.89)and
UT =























bT
bTAT

bT(AT)2...
bT(AT)n−1























. (4.90)It follows that the controllability and observability matrices of a realization(4.44)�(4.45) are the transposes of the observability and controllability matricesof it dual (4.57)�(4.58). This is, of course, a symmetric relationship because thetranspose of the transpose of a matrix is the matrix itself and the dual of thedual of a realization is the realization itself. This idea can be developed furtherby de�ning an alternative companion realization. This is one where the matrix
A has a form like the transpose of (4.73) and c replaces b in (4.74). We thenhave the theorem:



4.3. REALIZATIONS OF SYSTEMS 83Theorem 4.3.2 A realization given by (4.44) and (4.45) can be transformed by(4.48) into an alternative companion realization if and only if the observabilitymatrix is non-singular.Proof: We �rst take the dual [AT, c, bT] of [A, b, cT]. Since V T is the control-lability matrix of [AT, c, bT], there exists a matrix T giving a companion real-ization [TATT−1,Tc, bTT−1] if and only if V is nonsingular. Taking the dual ofthis realization gives an alternative companion realization
[T ′AT ′−1

,T ′b, cT(T ′)−1], where T ′ = (T T)−1 = (T−1)T.Example 4.3.1 Consider the system with a realization [A, b, cT] given by
A =









−1 0 1

−1 −2 −1

−2 −2 −3









, b =









1

0

1









, c =









−2

−5

5









. (4.91)From (4.76) and (4.91) the controllability matrix is
U =









1 0 −5

0 −2 9

1 −5 19









(4.92)Since Det{U} = −3 a transformation to a companion realization exists. Invert-ing the controllability matrix
U−1 =









− 7
3 − 25

3
10
3

−3 −8 3

− 2
3 − 5

3
2
3









(4.93)and, from (4.78) and (4.80),
ξT =

(

− 2
3 − 5

3
2
3

)

, T =









− 2
3 − 5

3
2
3

1 2 −1

−1 −2 2









, (4.94)with
Det{T} =

1
3
, T−1 =









6 6 1

−3 −2 0

0 1 1









. (4.95)



84 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYThen the companion realization is given by
A′ = TAT−1 =









0 1 0

0 0 1

−6 −11 −6









,

b′ = Tb =









0

0

1









, (c′)T = cTT−1 =
(

3 3 3
)

.

(4.96)From (4.77) and (4.91) the observability matrix is
V =









−2 −5 5

−3 0 −12

27 24 33









(4.97)Since Det{V } = 189 a transformation to an alternative companion realizationexists. Inverting the observability matrix
V −1 =









32
21

95
63

20
63

− 25
21 − 67

63 − 13
63

− 8
21 − 29

63 − 5
63









. (4.98)Take the last column of this matrix an denote it by χ. Then the matrix TArequired to obtain alternative companion realization is given by
(TA)−1 =

(

χ Aχ A2χ
)

=











20
63 − 25

63
26
63

− 13
63

11
63

2
63

− 5
63

1
63

25
63











(4.99)and
TA =









−13 −31 16

−15 −30 18

−2 −5 5









. (4.100)Then the alternative companion realization is given by
A′′ = TAA(TA)−1 =









0 0 −6

1 0 −11

0 1 −6









,

b′′ = TAb =









3

3

3









, (c′′)T = cT(TA)−1 =
(

0 0 1
)

.

(4.101)



4.3. REALIZATIONS OF SYSTEMS 854.3.2 The Diagonal and Jordan RealizationsWe already know that the poles of the transfer function are the eigenvalues ofthe matrix A for any realization of the system. We also know that when A hasdistinct eigenvalues it can be diagonalized to Λ by the matrix P according toequations (4.15) and (4.16). The realization [Λ, b′′, (c′′)T], where b′′ = Pb and
(c′′)T = cTP−1 is called a diagonal realization. An alternative way of obtaininga diagonal realization is from the transfer function.Example 4.3.2 Determine a diagonal realization for the system given by ȳ(s) =
G(s)ū(s), where

G(s) =
3(s2 + s+ 1)

(s+ 1)(s+ 2)(s+ 3)
. (4.102)First express the transfer function in partial fractions so that

ȳ(s) =
3ū(s)

2(s+ 1)
− 9ū(s)

(s+ 2)
+

21ū(s)

2(s+ 3)
. (4.103)Then de�ne state variables x1(t), x2(t) and x3(t) with Laplace transforms re-lated to the input variable by

x̄1(s) =
ū(s)

s+ 1
, x̄2(s) =

ū(s)

s+ 2
, x̄3(s) =

ū(s)

s+ 3
, (4.104)givinḡ

y(s) = 3
2
x̄1(s)− 9x̄2(s) +

21
2
x̄3(s). (4.105)Inverting the Laplace transforms and expressing the results in matrix form gives(4.44) and (4.45) with

A =









−1 0 0

0 −2 0

0 0 −3









, b =









1

1

1









, c =









3
2

−9

21
2









. (4.106)Example 4.3.3 Try applying the procedure of Example 4.3.2 when
G(s) =

1

(s+ 1)3(s+ 2)(s+ 3)
. (4.107)This case corresponds to a 3-fold degenerate eigenvalue −1, so we do not expectto be able to obtain a diagonal realization. Resolving the transfer functions intopartial fractions gives

ȳ(s) =
ū(s)

2(s+ 1)3
− 3ū(s)

4(s+ 1)2
+

7ū(s)

8(s+ 1)
− ū(s)

(s+ 2)
+

ū(s)

8(s+ 3)
. (4.108)



86 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYLet
x̄3(s) =

ū(s)

s+ 1
, x̄2(s) =

x̄3(s)

s+ 1
=

ū(s)

(s+ 1)2
,

x̄1(s) =
x̄2(s)

s+ 1
=

ū(s)

(s+ 1)3
, x̄4(s) =

ū(s)

s+ 2
, x̄5(s) =

ū(s)

s+ 3

(4.109)Then
sx̄1(s) = −x̄1(s) + x̄2(s),

sx̄2(s) = −x̄2(s) + x̄3(s),

sx̄3(s) = −x̄3(s) + ū(s),

sx̄4(s) = −2x̄4(s) + ū(s),

sx̄5(s) = −3x̄5(s) + ū(s),

(4.110)
ȳ(s) = 1

2
x̄1(s)− 3

4
x̄2(s) +

7
8
x̄3(s)− x̄4(s) +

1
8
x̄5(s). (4.111)Inverting the Laplace transforms and expressing the results in matrix form gives(4.44) and (4.45) with

A =



















−1 1 0 0 0

0 −1 1 0 0

0 0 −1 0 0

0 0 0 −2 0

0 0 0 0 −3



















, b =



















0

0

1

1

1



















,

cT =
(

1
2

−3
4

7
8

−1 1
8

)

.

(4.112)
In this caseA is diagonal in the rows and columns containing the non-degenerateeigenvalues −2 and −3 but has a 3 × 3 block corresponding to the 3-fold de-generate eigenvalue −1. The matrix is said to be in Jordan canonical form andthis is an example of a Jordan realization.We have seen that a system de�ned by its transfer function can lead to di�erentrealization of the same dimensions related by a transformation (4.48). In factthe realizations need not be of the same dimension.Example 4.3.4 Consider the system with a realization for which

A =









−1 0 1

−1 −2 −1

−2 −2 −3









, b =









1

0

1









, c =









1

1

−1









. (4.113)



4.3. REALIZATIONS OF SYSTEMS 87We can now �nd the transfer function using (4.54). The code to do the calcu-lation in MAPLE is
> with(linalg):Warning, new definition for normWarning, new definition for trace
> A:=array([[-1,0,1],[-1,-2,-1],[-2,-2,-3]]);

A :=





−1 0 1
−1 −2 −1
−2 −2 −3





> b:=array([[1],[0],[1]]);
b :=





1
0
1





> ct:=array([[1,1,-1]]);
ct :=

[

1 1 −1
]

> II:=array([[1,0,0],[0,1,0],[0,0,1]]);
II :=





1 0 0
0 1 0
0 0 1





> W:=s->inverse(s*II-A);
W := s → inverse(s II − A)

> W(s);
















s+ 4

s2 + 5 s+ 6
−2

1

s3 + 6 s2 + 11 s+ 6

1

s2 + 4 s+ 3

− 1

s2 + 5 s+ 6

s2 + 4 s+ 5

s3 + 6 s2 + 11 s+ 6
− 1

s2 + 4 s+ 3

−2
1

s2 + 5 s+ 6
−2

1

s2 + 5 s+ 6

1

s+ 3

















> G:=s->simplify(multiply(ct,W(s),b));
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G := s → simplify(multiply(ct , W(s), b))

> G(s);
[

3
1

(s+ 3) (s+ 2)

]

It is not di�cult to show that this system, with the transfer function
G(s) =

3

(s+ 2)(s+ 3)
, (4.114)also has the two-dimensional diagonal realization

A =

(

−2 0

0 −3

)

, b =

(

1

1

)

, c =

(

3

−3

)

. (4.115)4.4 ControllabilityAs indicated above an essential step in dealing with many control problems isto determine whether a desired outcome can be achieved by manipulating theinput (control) variable. The outcome is determined in terms of a particular setof state variables and the controllability is that of the realization rather thanthe system. In fact the outcome y(t) does not play a role and the equation ofinterest is (4.44).The realization given by (4.44) is controllable if, given a �nite time interval
[t0, tf ] and state vectors x0 and xf , we can �nd an input u(t) over the interval
[t0, tf ] such that x(t0) = x0 and x(tf) = xf .Since we are concerned with a constant system we can, without loss of generality,set t0 = 0. Then from (4.14),

xf = exp (Atf)

[

x0 +

∫ tf

0

exp(−Aτ)bu(τ)dτ

]

. (4.116)This equation can be rewritten in the form
exp (−Atf)xf − x0 =

∫ tf

0

exp(−Aτ)bu(τ)dτ. (4.117)Since xf , x0 and tf are all arbitrary it is both su�cient and necessary for con-trollability that for any state vector x∗ and time interval tf we can �nd an input
u(t) to satisfy

x∗ =

∫ tf

0

exp(−Aτ)bu(τ)dτ. (4.118)



4.4. CONTROLLABILITY 89Theorem 4.4.1 (The controllability theorem.) A realization is control-lable if and only if the controllability matrix U given by (4.76) is non-singular.Proof:We use the polynomial formula (4.33) for the exponential matrix and thus, from(4.118)
x∗ =

n−1
∑

k=0

Akb

∫ tf

0

βk(−τ)u(τ)dτ

= UΩ (4.119)where
ΩT =

(

Ω0 Ω1 · · · Ωn−1

) (4.120)and
Ωk =

∫ tf

0

βk(−τ)u(τ)dτ. (4.121)Su�ciency. If U is non-singular it has an inverse and the values of Ωk, k =

0, 1, . . . , n − 1 are uniquely given by Ω = U−1x∗. By using an input with nadjustable parameters these values can be satis�ed by the integrals.Necessity. If U is singular then the set of linear equations in q1, q2, . . . , qn givenby qTU = 0 has a non-trivial solution. Thus qTx∗ = qTUΩ = 0. Which is trueonly if x∗ is orthogonal to q. So (4.118) cannot be satis�ed for arbitrary x∗.Example 4.4.1 Investigate the controllability of the realization
A =

(

−2 1

0 −2

)

, b =

(

0

1

)

. (4.122)The controllability matrix is
U =

(

0 1

1 −2

) (4.123)with Det{U} = −1; so the realization is controllable and
U−1 =

(

2 1

1 0

)

. (4.124)The eigenvalues of A are both −2 so, using the method of Sect. 4.2,
exp(At) = β0(t)I + β1(t)A, (4.125)



90 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYwhere β0(t) and β1(t) are given by
exp(−2t) = β0(t)− 2β1(t),

t exp(−2t) = β1(t).
(4.126)Thus

exp(At) = (1 + 2t) exp(−2t)I + t exp(−2t)A

= exp(−2t)

(

1 t

0 1

) (4.127)and
exp(−At) = exp(2t)

(

1 −t
0 1

)

. (4.128)From (4.121), (4.125) and (4.127)
Ω0 =

∫ tf

0

[1− 2τ ] exp(2τ)u(τ)dτ,

Ω1 = −
∫ tf

0

τ exp(2τ)u(τ)dτ.

(4.129)From (4.119) and (4.123)
x∗1 = Ω1, x∗2 = Ω0 − 2Ω1. (4.130)We know because the system is controllable that for any given tf , x∗1 and x∗2 wecan �nd a form for u(t) which will satisfy (4.129) and (4.130). Suppose we trythe form
u(t) = (A0 +A1t) exp(−2t). (4.131)Then by substituting into (4.129) and then (4.130)
x∗1 = −1

2A0t
2
f −

1
3A1t

3
f ,

x∗2 = A0tf +
1
2
A1t

2
f .

(4.132)The determinant of this pair of linear equations is 1
12 t

4
f , so they have a uniquesolution for any tf . In particular suppose we want to control the system toproduce x∗1 = x∗2 = 1 in time tf = 1, then we choose

u(t) = (10− 18t) exp(−2t). (4.133)



4.5. OBSERVABILITY 914.5 ObservabilityAllied to the concept of controllability is that of observability. The essence ofthis concept is that by observing the the input and output of a system over aperiod of time the state at the beginning of that time can be inferred. Moreformally:The realization given by (4.44) and (4.45) is observable if, given a time
t0, there exists a time interval [t0, tf ] such that the initial state x(t0) = x0 isdetermined by the input function u(t) and the output function y(t) over [t0, tf ].As for controllability, since we are concerned with a constant system, we canset t0 = 0. From (4.14) and (4.45)

y(t) = cT exp (At) [x0 +

∫ t

0

exp(−Aτ)bu(τ)dτ

]

, 0 ≤ t ≤ tf . (4.134)Let
y∗(t) = y(t)− cT exp (At) ∫ t

0

exp(−Aτ)bu(τ)dτ. (4.135)Then (4.134) is equivalent to
y∗(t) = cT exp (At)x0, 0 ≤ t ≤ tf (4.136)and thus a realization is observable if x0 can be obtained from (4.136) for anyarbitrary function y∗(t).Theorem 4.5.1 (The observability theorem.) A realization is observableif and only if the observability matrix V given by (4.77) is non-singular.Proof:We use the polynomial form (4.33) for the exponential matrix and, from (4.136)
y∗(t) =

n−1
∑

k=0

βk(t)c
TAkx0

= βT(t)V x0, (4.137)where
βT(t) = ( β0(t) β1(t) · · · βn−1(t)

) (4.138)Su�ciency. Suppose V is non-singular and suppose that two states x0 and x′
0both satisfy (4.137). Then

βT(t)V 4x0 = 0, (4.139)



92 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYwhere 4x0 = x0−x′
0. Since (4.139) holds for all t in the interval [0, tf ], it mustbe the case that

V 4x0 = 0, (4.140)Since V is non-singular (4.140) has the unique solution 4x0 = 0. That is
x0 = x′

0, which means that the realization is observable.Necessity. Suppose that V is singular. Then there exists a vector p such the
V p = 0. Then if x0 satis�es (4.137) so does x0+µp for any µ and the realizationis not observable.It is clear from these results that a realization is controllable if and only if itsdual realization is observable.4.6 Minimal RealizationsWe have seen that for a system with transfer function G(s) any realization
[A, b, cT] must satisfy (4.54) and equivalently (4.56). We have also seen bymeans of example 4.3.4 that the dimension n need not be the same for all real-izations of a system. Let nmin be the least possible dimension for any realizationof a system. Then any realization which has this dimension is called minimal.We state without proof an important theorem.Theorem 4.6.1 (The minimality theorem.) A realization is minimal ifand only if it is both controllable and observable.An obvious corollary to this theorem which scarcely needs proof is:Theorem 4.6.2 If a realization of dimension n is(i) controllable and observable then all realizations of dimension n are con-trollable and observable.(ii) not both controllable and observable then no realization of dimension n isboth controllable and observable.Example 4.6.1 Compare the realizations given by (4.91) and (4.113).They di�er only in the vector c. We showed in Example 4.3.1 that (4.91) wasboth controllable and observable and it is therefore minimal, with nmin = 3. InExample 4.3.4 we derived the transfer function (4.114) corresponding to (4.113)and showed that it also had a realization of dimension 2. This means, of course,that (4.113) cannot be minimal. Since it is controllable (in this respect it is



4.6. MINIMAL REALIZATIONS 93identical to (4.91)) it cannot be observable. We con�rm this by working out theobservability matrix. From (4.77) and (4.113)
V =









1 1 −1

0 0 3

−6 −6 −9









(4.141)which is clearly singular. So this realization is controllable but not observ-able. What about the two-dimensional realization of the same system given by(4.115)? From this equation and (4.76) and (4.77)
U =

(

1 −2

1 −3

)

, V =

(

3 −3

−6 9

)

. (4.142)Since neither of these matrices is singular the realization is both controllableand observable and therefore minimal with nmin = 2. All other two-dimensionalrealizations will also be both controllable and observable and no realization oflarger dimension can be both.Example 4.6.2 Now consider the system with transfer function
G(s) =

(s+ c)

(s+ 1)(s+ 2)2
, (4.143)where c is some constant.Resolving the transfer function into partial fractions gives

ȳ(s) =
ū(s)(c − 1)

(s+ 1)
+
ū(s)(2 − c)

(s+ 2)2
+
ū(s)(1 − c)

(s+ 2)
. (4.144)Let

x̄1(s) =
ū(s)

(s+ 1)
, x̄3(s) =

ū(s)

s+ 2
, x̄2(s) =

x̄3(s)

s+ 2
=

ū(s)

(s+ 2)2
. (4.145)Then

ȳ(s) = (c− 1)x̄1(s) + (2− c)x̄2(s) + (1 − c)x̄3(s). (4.146)Inverting the Laplace transforms and expressing the results in matrix form gives(4.44) and (4.45) with
A =









−1 0 0

0 −2 1

0 0 −2









, b =









1

0

1









,

cT =
(

c− 1 2− c 1− c
)

.

(4.147)



94 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITYSince A and b are not functions of c it is clear that the controllability or un-controllability of the system is not a�ected by the value of c. From (4.76) and(4.147)
U =









1 −1 1

0 1 −4

1 −2 4









. (4.148)Since Det{U} = −1 the realization is controllable. Now from (4.77) and (4.147)
V =









c− 1 2− c 1− c

1− c 2c− 4 c

c− 1 8− 4c −4









. (4.149)Since Det{V } = (c−1)(c−2)2 the realization is observable unless c = 1 or c = 2.These are precisely the cases where there is cancellation in the transfer functionleading to a quadratic denominator. The procedure for deriving a realizationused here will now lead to two-dimensional realizations. You can easily checkthatFor c = 1

A =

(

−2 1

0 −2

)

, b =

(

0

1

)

,

cT =
(

1 0
)

.

(4.150)with
U =

(

0 1

1 −2

)

, V =

(

1 0

−2 1

)

. (4.151)For c = 2

A =

(

−1 0

0 −2

)

, b =

(

1

1

)

,

cT =
(

1 −1
)

.

(4.152)with
U =

(

1 −1

1 −2

)

, V =

(

1 −1

−1 2

)

. (4.153)



4.6. MINIMAL REALIZATIONS 95In each case the realization is both controllable and observable and this minimalwith nmin = 2.It is clear, from this example, that the dimension of a realization, that is thenumber of state variables, corresponds, when it is derived from a transfer func-tion G(s), to the number of partial fractions of G(s). This in term is simplythe degree of the polynomial denominator of G(s). In the cases we have ob-served, the realization was minimal unless there was some cancellation in fac-tors between the numerator and denominator of G(s). The following theorem,therefore, comes as no surprise.Theorem 4.6.3 Suppose that a system is given by (4.61)�(4.63) where m < n.Then φ(s) and ψ(s) have no common factors, the degree n of the denominator
φ(s) is the dimension of minimal realizations of the system.Problems 41) Let A be a 2× 2 matrix with eigenvalues λ and µ. Show that, when λ 6= µ,

exp(At) =
[λ exp(µt)− µ exp(λt)]I + [exp(λt)− exp(µt)]A

λ− µ
.What is the corresponding result when λ = µ?2) Consider the system with realization

ẋ(t) =









0 1 0

0 0 1

2 1 −2









x(t) +









0

0

1









u(t),

y(t) =
(

1 2 0
)

x(t).Use the exponential matrix to �nd the output y(t), for u(t) = Kt, where Kis a constant and x(0) = 0.3) For the system with realization
ẋ(t) =

(

− 3
4 − 1

4

− 1
2 − 1

2

)

x(t) +

(

1

1

)

u(t),

y(t) =
(

4 2
)

x(t)calculate the transfer function G(s), the controllability matrix U and theobservability matrix V .



96 CHAPTER 4. CONTROLLABILITY AND OBSERVABILITY4) For the system with realization
ẋ(t) =

(

−1 −1

2 −4

)

x(t) +

(

1

3

)

u(t),

y(t) =
(

−1 1
)

x(t)verify that the controllability matrix is non-singular and �nd the matrix Twhich transforms it to the companion realization.5) Obtain Jordan representations for the systems which have transfer functions:(i) G(s) = s2 + s+ 1
(s+ 1)3

,(ii) G(s) = 4
(s+ 1)2(s+ 3)

.



Chapter 5Stability5.1 Two Types of StabilityGiven an m× n matrix Q with elements Qij , the Euclidean norm ||Q|| of Q isde�ned by
||Q|| =

√

√

√

√

m
∑

i=1

n
∑

j=1

|Qij |2. (5.1)The Euclidean norm of a vector of real elements is, of course, the `usual' modulusof the vector. For any two matrices P and Q (with appropriate dimensions)and any scalar µ the following properties hold:(i) ||Q|| > 0 unless Q = 0.(ii) ||µQ|| = |µ| ||Q||.(iii) ||P +Q|| ≤ ||P ||+ ||Q||.(iv) ||PQ|| ≤ ||P || ||Q||.The n × n matrix A is called a stability matrix if each of its eigenvalueshas a (strictly) negative real part.Theorem 5.1.1 If the n × n matrix A is a stability matrix then there existpositive constants K and k such that
|| exp(At)|| ≤ K exp(−kt) (5.2)for all t ≥ 0 and hence
exp(At) → 0, as t→ ∞. (5.3)If A is not a stability matrix (5.3) does not hold.97



98 CHAPTER 5. STABILITYIn Sect. 1.6.1 we discussed the dynamic system
ẋ(t) = F (x) (5.4)and de�ned what it meant to say that the equilibrium point x∗, which satis�es
F (x∗) = 0, (5.5)is asymptotically stable (in the sense of Lyapunov). For a linear autonomoussystem (5.4) takes the form
ẋ(t) = Ax(t), (5.6)where A is a constant matrix. In this case the only equilibrium point is x∗ = 0and we have the following result:Theorem 5.1.2 (Cf. Thm. 1.6.1.) x∗ = 0 is an asymptotically stable equi-librium point of (5.6) if and only if A is a stability matrix.Proof:According to the de�nition, x∗ = 0 is an asymptotically stable equilibriumpoint of (5.6) if x(t) → 0 as t→ ∞. The solution of (5.6) is
x(t) = exp[A(t− t0)]x(t0). (5.7)and thus x(t) → 0 as t → ∞ if and only if exp[A(t − t0)] → 0 as t → ∞. Itfollows from Thm. 5.1.1 that x∗ = 0 is an asymptotically stable equilibriumpoint if and only if A is a stability matrix. This result provides most of a ratherbelated proof of Thm. 1.6.1.We now need to to generalize the discussion of stability to the case of a systemwith input u(t), output y(t) and a realization
ẋ(t) = Ax(t) + bu(t), (5.8)
y(t) = cTx(t). (5.9)The system with realization (5.8)�(5.9) is said to be bounded input�bounded output stable for t ≥ t0 if any bounded input produces a boundedoutput. That is, given, that there exists a positive constant B1, such that
|u(t)| < B1, for all t ≥ t0, (5.10)then there exists a positive constant B2, such that
|y(t)| < B2, for all t ≥ t0, (5.11)regardless of the initial state x(t0).Two important theorems relate these two types of stability.



5.2. STABILITY AND THE TRANSFER FUNCTION 99Theorem 5.1.3 If x∗ = 0 is an asymptotically stable equilibrium point of (5.6),then the system given by (5.8)�(5.9) is bounded input�bounded output stable forall t0.Proof: From (5.9) and (4.134), with the intial time t = t0 replacing t = 0,
y(t) = cT exp[A(t− t0)]x(t0) + cT ∫ t

t0

exp[A(t− τ)]bu(τ)dτ. (5.12)Since A is a stability matrix, it follows from Thm. 5.1.1 that there exist positiveconstants K and k such that
||y(t)|| ≤ ||c|| || exp[A(t− t0)]|| ||x(t0)||+ ||c||

∫ t

t0

|| exp[A(t− τ)]|| ||b|| |u(τ)|dτ

≤ K||c||
[

||x(t0)|| exp[k(t0 − t)] + ||b||B1

∫ t

t0

exp[k(τ − t)]dτ

]

= K||c||
{

||x(t0)|| exp[k(t0 − t)] + k−1||b||B1[1− exp[k(t0 − t)]
}

≤ K||c||
{

||x(t0)||+ k−1||b||B1

}

. (5.13)So the system is bounded input�bounded output stable.Theorem 5.1.4 If the system with a minimal realization (5.8)�(5.9) is boundedinput�bounded output stable for all t0 then x∗ = 0 is an asymptotically stableequilibrium point of (5.6).The proof of this theorem is somewhat more complicated and will be omitted.We can see on the basis of these two theorems that the asymptotic stability of
x∗ = 0 is a stronger condition than bounded input�bounded output stabilityand can be deduced from the bounded input�bounded output stability only forminimal1 realizations.5.2 Stability and the Transfer FunctionIn the development of the companion realization in Sect. 4.3.1 we Laplace trans-formed (4.59), assuming, with (4.60), that all the initial conditions were zero.If this assumption is not made (4.61) is replaced by

ȳ(s) = G(s)ū(s) +G0(s), (5.14)1That is, from Thm. 4.6.1, controllable and observable.



100 CHAPTER 5. STABILITYwhere
G(s) =

ψ(s)

φ(s)
, G0(s) =

θ(s)

φ(s)
(5.15)are respectively the transfer function, as before, and the contribution from theinitial conditions, with

φ(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

ψ(s) = bms
m + bm−1s

m−1 + · · ·+ b1s+ b0,

θ(s) = crs
r + cr−1s

r−1 + · · ·+ c1s+ c0.

(5.16)Both m and r are less than n. Suppose now that φ(s) and ψ(s) have no commonfactors. It then follows from Thm. 4.6.3 that any realization derived from (5.14)will be minimal with the characteristic polynomial of A being φ(λ). Thus, fromThms. 5.1.2�5.1.4,Theorem 5.2.1 If (5.8)�(5.9) is a realization derived from the transfer func-tion, G(s) = ψ(s)/φ(s), where ψ(s) and φ(s) have no common factors, then itwill be bounded input�bounded output stable, and the corresponding system (5.6)will have x∗ = 0 as an asymptotically stable equilibrium point, if all the zerosof φ(s) have (strictly) negative real parts.So far we have used the phrase asymptotically stable quali�ed by reference tothe origin for the system (5.6). We shall henceforth use it freely for the systemitself. We now know that the criterion for asymptotic stability is that the polesof the transfer function or equivalently the eigenvalues of the matrix A mustall have (strictly) negative real parts. In each case there is a quali�cation. Forthe transfer function it is that the denominator and numerator of G(s) do nothave a common factor and equivalently for the matrix A the realization mustbe minimal. It is easy to see that these conditions are important. Otherwisewe could remove the stability of the system by multiplying the transfer functiontop and bottom by (s − ω) for some ω with <{ω} > 0. In the correspondingrealization derived from this there would be a new eigenvalue ω, but, of coursethe realization would no longer be minimal. When at least one of the poles ofthe transfer function has (strictly) positive part the system (like the equilibriumpoint at the origin for (5.6) is called unstable. The intermediate case, where thesystem is not unstable but some of the poles have zero real part is sometimescalled stable and sometimes conditionally or marginally stable.5.2.1 The Routh�Hurwitz CriterionWe now concentrate on using Thm. 5.2.1 to determine the stability of a systemfrom the location of the zeros of the polynomial2
φ(s) = ans

n + an−1s
n−1 + · · ·+ a1s+ a0. (5.17)2For convenience we include a leading coe�cient of an which can always, as in (5.16) beset equal to one.



5.2. STABILITY AND THE TRANSFER FUNCTION 101We de�ne the n× n determinant
Φn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an−1 an 0 0 0 0 0 · · · · · · · 0

an−3 an−2 an−1 an 0 0 0 · · · · · · · 0

an−5 an−4 an−3 an−2 an−1 an 0 · · · · · · · 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 · · · · · · · · 0 a0 a1 a2 a3 a4

0 · · · · · · · · 0 0 0 a0 a1 a2

0 · · · · · · · · 0 0 0 0 0 a0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣(5.18)The way to build this determinant is as follows:(i) Extend the range of the de�nition of the coe�cients over all integer valuesby de�ning a` = 0 if ` > n or ` < 0.(ii) The i�j-th element is an−2i+j .Thus(a) For n = 2

φ(s) = a2s
2 + a1s+ a0, (5.19)

Φ2 =

∣

∣

∣

∣

∣

a1 a2

a−1 a0

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a1 a2

0 a0

∣

∣

∣

∣

∣

. (5.20)(b) For n = 3

φ(s) = a3s
3 + a2s

2 + a1s+ a0, (5.21)
Φ3 =

∣

∣

∣

∣

∣

∣

∣

∣

a2 a3 a4

a0 a1 a2

a−2 a−1 a0

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

a2 a3 0

a0 a1 a2

0 0 a0

∣

∣

∣

∣

∣

∣

∣

∣

. (5.22)(c) For n = 4

φ(s) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0, (5.23)

Φ4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a3 a4 a5 a6

a1 a2 a3 a4

a−1 a0 a1 a2

a−3 a−2 a−1 a0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a3 a4 0 0

a1 a2 a3 a4

0 a0 a1 a2

0 0 0 a0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.24)



102 CHAPTER 5. STABILITYFor any n we now de�ne a hierarchy of subdeterminants Φ(k)
n , k = 1, 2, . . . , n−1,3where Φ(k)

n is the (n− k)× (n− k) determinant obtained by deleting the last krows and columns from Φn. Thus, for example,
Φ

(2)
4 =

∣

∣

∣

∣

∣

a3 a4

a1 a2

∣

∣

∣

∣

∣

. (5.25)Then the following theorem holds:Theorem 5.2.2 (The Routh�Hurwitz criterion.) If φ(s), given by (5.17),has an > 0 then the roots of φ(s) = 0 all have (strictly) negative real parts ifand only if
Φ(k)

n > 0, for all k = 0, 1, . . . , n− 1. (5.26)From (5.18)
Φ(n−1)

n = an−1, (5.27)
Φn = Φ(0)

n = a0Φ
(1)
n . (5.28)These results mean that (5.26) can be con�ned to the range k = 1, 2, . . . , n− 2with the additional conditions an−1 > 0 and a0 > 0.Example 5.2.1 Investigate the roots of the cubic equation

s3 + κs2 + 3s+ 2 = 0 (5.29)as κ varies.The conditions a3 = 1 > 0 and a0 = 2 > 0 are satis�ed and another necessarycondition for all the roots to have negative real part is a2 = κ > 0. The onlyother condition for su�ciency is, from (5.22), given using
Φ

(1)
3 =

∣

∣

∣

∣

∣

κ 1

2 3

∣

∣

∣

∣

∣

= 3κ− 2. (5.30)So according to the Routh-Hurwitz criterion the roots all have a negative realpart if κ > 2/3. We can check this out using MAPLE .
> phi:=(s,k)->s^3+k*s^2+3*s+2;

φ := (s, k) → s3 + k s2 + 3 s+ 2

> fsolve(phi(s,1)=0,s,complex);3We shall also, for convenience, use Φ
(0)
n = Φn.



5.2. STABILITY AND THE TRANSFER FUNCTION 103
−.7152252384, −.1423873808 − 1.666147574 I, −.1423873808 + 1.666147574 I

> fsolve(phi(s,3/4)=0,s,complex);
−.6777314603, −.03613426987 − 1.717473625 I, −.03613426987 + 1.717473625 I

> fsolve(phi(s,2/3)=0,s,complex);
−.6666666667, −1.732050808 I, 1.732050808 I

> fsolve(phi(s,1/2)=0,s,complex);
−.6462972136, .07314860682 − 1.757612233 I, .07314860682 + 1.757612233 I

> fsolve(phi(s,0)=0,s,complex);
−.5960716380, .2980358190 − 1.807339494 I, .2980358190 + 1.807339494 IExample 5.2.2 Show, using the Routh-Hurwitz criterion, that, when a0, . . . , a4are all real and greater than zero, the roots of the equation
φ(s) = a4s

4 + a3s
3 + a2s

2 + a1s+ a0 = 0, (5.31)all have (strictly) negative real parts if and only if
a1(a2a3 − a1a4) > a0a

2
3. (5.32)Hence show that the system given by this block diagram

ū(s)
+
−

K1+Q2s
1+Q1s

1
Js2

ȳ(s)

1
1+Q3s



104 CHAPTER 5. STABILITYwhere Q1,Q2,Q3, J,K are all positive, can be stable only if
Q2 > Q1 +Q3. (5.33)With this condition satis�ed, �nd the maximum value of K for stability.In this example we are given that an = a4, an−1 = a3 and a0 are all positive.The only remaining conditions for the zeros to have negative real parts are
Φ

(1)
4 =

∣

∣

∣

∣

∣

∣

∣

∣

a3 a4 0

a1 a2 a3

0 a0 a1

∣

∣

∣

∣

∣

∣

∣

∣

= a1(a2a3 − a1a4)− a0a
2
3 > 0, (5.34)

Φ
(2)
4 =

∣

∣

∣

∣

∣

a3 a4

a1 a2

∣

∣

∣

∣

∣

= a2a3 − a1a4 > 0, (5.35)Condition (5.34) is equivalent to (5.32) and if it is satis�ed, then because allthe coe�cients are positive, (5.35) is automatically satis�ed. If we use the sameintermediate variables for this block diagram as we did in Example 3.4.1
ū(s) = v̄(s) + f̄(s),

f̄(s) =
ȳ(s)

1 +Q3s
,

x̄(s) = K
1 +Q2s

1 +Q1s
v̄(s),

ȳ(s) =
x̄(s)

Js2
.

(5.36)
Eliminating the intermediate variables, the transfer function is

G(s) =
K(1 +Q2s)(1 +Q3s)

(1 +Q1s)(1 +Q3s)Js2 + K(1 +Q2s)
. (5.37)The stability condition is deduced from the denominator

φ(s) = JQ1Q3 s
4 + J(Q1 +Q3) s

3 + J s2 + KQ2 s+ K. (5.38)Substituting into (5.32) gives
Q2[J(Q1 +Q3)− KQ1Q2Q3] > J(Q1 +Q3)

2. (5.39)This simpli�es to
J(Q1 +Q3)(Q2 −Q1 −Q3) > KQ1Q

2
2Q3, (5.40)which shows that (5.33) is a necessary condition for stability. The maximumvalue of K is given, from (5.40) by

J(Q1 +Q3)(Q2 −Q1 −Q3)

Q1Q
2
2Q3

> K. (5.41)



5.3. STABILITY AND FEEDBACK 1055.3 Stability and Feedback5.3.1 Output FeedbackIn Sect. 3.4 we discussed the introduction of a feedback H(s) into a systemgiving a block diagram of the form:
ū(s)

+
−

f̄(s)

v̄(s)
GOL(s) ȳ(s)

ȳ(s)

ȳ(s)

H(s)The transfer function in the absence of feedback would be GOL(s) and in thepresence of feedback it becomes
GCL(s) = GOL(s)

1 +GOL(s)H(s)
. (5.42)

GOL(s) and GCL(s) are often referred to as open-loop and closed-loop transferfunctions (hence the notation) and the signal
v̄(s) = ū(s)− f̄(s) = ū(s)−H(s)ȳ(s) (5.43)is called the error. In the present context this type of feedback will be calledoutput feedback. For a system which is unstable it is sometimes possible, as wesaw in Example 3.4.2, to achieve stability by altering parameters in the feedback.The way this happens can be seen if we let
GCL(s) = ψ(s)

φ(s)
, (5.44)with

φ(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

ψ(s) = bms
m + bm−1s

m−1 + · · ·+ b1s+ b0.
(5.45)Now suppose that the change in feedback leads to the modi�cation of the closed-loop transfer function to

G′CL(s) = ψ(s)

φ(s) + χ(s)
, (5.46)



106 CHAPTER 5. STABILITYwhere
χ(s) = hn−1s

n−1 + · · ·+ h1s+ h0. (5.47)We know that the system is stable if the zeros of the denominator of the closed-loop transfer function all have negative real parts and that this can be ascer-tained using the Routh-Hurwitz criterion. If the system is unstable with φ(s)alone in the denominator, then the introduction of the extra factor χ(s) can beused to stabilize it. Now suppose that the introduction of χ(s) corresponds toreplacing the feedback H(s) in the block diagram by H(s) +4H(s). Then
GOL(s)

1 +GOL(s)[H(s) +4H(s)]
=

ψ(s)

φ(s) + χ(s)
. (5.48)From (5.42), (5.44) and (5.48)

4H(s) =
χ(s)

ψ(s)
. (5.49)Although we have considered 4H(s) simply to be an additive factor in thefeedback, it could also be applied as an additional feedback on the system.Consider the block diagram

ū(s)
+
−

+
−

GOL(s) ȳ(s)

H(s)

4H(s)From (5.42)
G′CL(s) = GCL(s)

1 +GCL(s)4H(s)
=

GOL(s)
1 +GOL(s)[H(s) +4H(s)]

. (5.50)This result does, of course, illustrate the general point that feedback can beadded either as elements of one feedback loop or as a succession of separateloops as shown in this block diagram.



5.3. STABILITY AND FEEDBACK 1075.3.2 State FeedbackState variables normally arise in the context of a realization. Suppose that(5.8)�(5.9) is a minimal realization. It is, therefore, controllable and we canassume that it is in companion form. The matrix A is given by (4.73), wherethe elements of the last row are the negatives of coe�cients of the denominatorof the transfer function, or equivalently of the characteristic function ofA. Statefeedback is introduced by replacing u(t) in (5.8) by u(t)− hTx(t), where
hT =

(

h0 h1 · · · hn−1

) (5.51)thus giving
ẋ(t) = [A− bh

T]x(t) + bu(t). (5.52)The vector b is given by (4.74) and so
bhT =



























0 0 0 · · · · · · · · · 0 0

0 0 0 0 · · · · · · 0 0... ... ... ... ... ... ... ...
0 0 0 0 · · · · · · 0 0

h0 h1 · · · · · · · · · · · · · · · hn−1



























(5.53)
The net e�ect of this change is to replace the coe�cients aj in the characteristicpolynomial ∆(λ), or equivalently in φ(s) by aj + hj . Thus φ(s) is replaced by
φ(s) +χ(s) as was the case in going from the transfer function of (5.44) to thatof (5.46). It is clear that the state feedback can be used to ensure that A is astability matrix, or equivalently, that all the zeros of φ(s) + χ(s) have negativereal parts.Example 5.3.1 Show that companion realization

A =









0 1 0

0 0 1

6 −11 6









, b =









0

0

1









,

cT =
(

1 0 0
)

.

(5.54)
is minimal but that the system is unstable. By the use of a state feedback obtaina stable realization with eigenvalues −1, −2 and −3. Determine the transferfunction of the original system and the form of 4H(s) required to produce thestabilization.



108 CHAPTER 5. STABILITYFrom (4.76) and (4.77) the controllability and observability matrices are respec-tively
U =









0 0 1

0 1 6

1 6 25









, V =









1 0 0

0 1 0

0 0 1









. (5.55)Since neither of these matrices is singular the realization is both controllableand observable and, therefore, minimal. The characteristic equation for A is
∆(λ) = λ3 − 6λ2 + 11λ− 6 = 0. (5.56)It is easy to see that this equation has one root λ = 1 and thus to extract theremaining roots λ = 2 and λ = 3. It follows that the system is unstable. Thepolynomial with the required roots is
(λ + 1)(λ+ 2)(λ+ 3) = λ3 + 6λ2 + 11λ+ 6. (5.57)Subtracting (5.56) and (5.57) we see that the coe�cients of the state feedbackare h0 = 12, h1 = 0 and h2 = 12 with
χ(s) = 12s2 + 12. (5.58)We now calculate the transfer function from this realization using (4.55). It isnot di�cult to show that
ψ(s) = cTAdj{sI −A}b = 1. (5.59)and, of course,
φ(s) = ∆(s) = s3 − 6s2 + 11s− 6, (5.60)Giving
G(s) =

1

s3 − 6s2 + 11s− 6
. (5.61)The transfer function modi�ed to produce stability is

G′(s) =
1

φ(s) + χ(s)
=

1

s3 + 6s2 + 11s+ 6
. (5.62)From (5.49) this can be interpreted as an output feedback

4H(s) = 12s2 + 12. (5.63)



5.4. DISCRETE-TIME SYSTEMS 1095.4 Discrete-Time SystemsIn Problems, question 3, we used the Z transform to derive the transfer functionfor two discrete-time systems. In each case the di�erence equation is a particularcase of
y(k) + a1y(k − 1) + a0y(k − 2) = b1u(k − 1) + b0u(k − 2) (5.64)and applying the Z transform we have
ỹ(z) =

b1z + b0
z2 + a1z + a0

ũ(z). (5.65)Now rewrite (5.64) as
y(k + 2) + a1y(k + 1) + a0y(k) = b1u(k + 1) + b0u(k). (5.66)By treating y(k + j) and u(k + j) like the j-th derivatives of y(k) and u(k)respectively we can now mirror the derivation of the companion realization inSect. 4.3.1 to obtain
x(k + 1) = Ax(k) + bu(k),

y(k) = cTx(k) (5.67)where
x(k) =

(

x1(k)

x2(k)

)

, A =

(

0 1

−a0 −a1

)

,

b =

(

0

1

)

, cT =
(

b0 b1
)

.

(5.68)For simplicity we have considered a two-dimensional case, but as for the continuous-time case the analysis applies for an n-dimensional realization When u(k) = 0for all k the solution of the �rst of equations (5.68) is
x(k) = Akx(0). (5.69)Equation (5.69) is the discrete-time equivalent of (5.7) so we might expect aresult similar to Thm. 5.1.2 to be true here. This is given by the de�nitionThe n×n matrix A is called a convergent matrix if each of its eigenvaluesis of magnitude (strictly) less than one.and the theoremTheorem 5.4.1 x∗ = 0 is an asymptotically stable equilibrium point of
x(k + 1) = Ax(k) (5.70)if and only if A is a convergent matrix.



110 CHAPTER 5. STABILITYThis change from a condition on the real part of the eigenvalues to their mag-nitudes is easily understood when when realize that we have changed from theexponential matrix to the matrix itself.4 The de�nition of bounded input�bounded output stability of Sect. 5.1 carries over to the discrete-time case withthe index k replacing t. Thm. 5.1.3, relating the asymptotic stability of x = 0and bounded input�bounded output stability is also valid and can be proved ina similar way from (5.67). A slightly di�erent approach, which we shall outlinefor the two-dimensional case, is to note that the characteristic function of A is
∆(λ) = λ2 + a1λ+ a0. (5.71)With a change of variable this is the denominator in (5.65), which on applyingpartial fractions can be written in the form
ỹ(z) =

C1zũ(z)

z − λ1
+

C2zũ(z)

z − λ2
, (5.72)for constants C1, C2 and the eigenvalues λ1 and λ2 of A. Using the last line ofTable 2.2 to invert the Z transform gives

y(k) = C1

k
∑

j=0

λj1u(k − j) + C2

k
∑

j=0

λj2u(k − j). (5.73)If |u(k)| < B1 then
|y(k)| ≤ |C1|B1

k
∑

j=0

|λ1|j + |C2|B1

k
∑

j=0

|λ2|j . (5.74)If A is a convergent matrix each sum is less that the in�nite binomial series and
|y(k)| ≤ B1

{ |C1|
1− |λ1|

+
|C2|

1− |λ2|

}

. (5.75)The system is bounded input�bounded output stable. Equation (5.65) is aparticular case of the discrete time analogue
ỹ(z) = G(z)ũ(z) (5.76)of (4.53), with G(z) being the discrete-time transfer function. As in the caseof continuous time we have seen that the poles of the transfer function are theeigenvalues of the matrix A when a realization is derived from it. Again weshall use asymptotically stable and unstable as descriptions of the system itself(with stable or conditionally stable ormarginally stable denoting the intermediatecases). The only di�erence is that the criterion for stability is now whether themagnitudes of all the eigenvalues are less than one.Example 5.4.1 Consider the stability of the female and male bu�alo popula-tions discussed in Example 2.4.2.4Note that | exp(ζ)| < 1 if and only if <{ζ} < 0.



5.4. DISCRETE-TIME SYSTEMS 111We de�ne the state variables
x1(k) = x(k), x2(k) = x(k + 1),

x3(k) = y(k), x4(k) = y(k + 1).
(5.77)Then (2.110) can be expressed in the form (5.70) with

A =















0 1 0 0

0.12 0.95 0 0

0 0 0 1

0.14 0 0 0.95















. (5.78)It is easy to show that the characteristic function for this matrix is
∆(λ) = λ(λ − 0.95)(λ− 1.063)(λ+ 0.113). (5.79)In fact, of course these are precisely the numbers which appear in our solu-tion (2.114). A is not a convergent matrix and the zero-population state is notasymptotically stable. According to this simpli�ed model, as we saw in Exam-ple 2.4.2 the bu�alo population would grow by 6.3% a year. In fact, due toindiscriminate slaughter,5 the population of bu�alo fell from 60 million in 1830to 200 in 1887. Attempts are currently being made to reintroduce bu�alo inthe plains of South Dakota. Even then of course it may ultimately be necessaryand economically desirable to implement a policy of culling.6 Suppose that γ%of females and ξ% of males are culled each year. Then
x2(k + 1) = 0.12x1(k) + (0.95− 0.01γ)x2(k),

x4(k + 1) = 0.14x1(k) + (0.95− 0.01ξ)x4(k),
(5.80)and A is replaced by

A′ =















0 1 0 0

0.12 0.95− 0.01γ 0 0

0 0 0 1

0.14 0 0 0.95− 0.01ξ















, (5.81)with characteristic equation
∆′(λ) = λ[λ − (0.95− 0.01ξ)][λ− ω(+)(γ)][λ− ω(−)(γ)], (5.82)where
ω(±)(γ) =

1

200

[

95− γ ±
√

13825− 190γ + γ2
]

. (5.83)5Encouraged by the United States Government.6A single bu�alo carcass will provide about 250 kg. of meat, enough for 10 people for year.



112 CHAPTER 5. STABILITYIt will be observed that the culling of male has no a�ect on the long-term pop-ulation. This is because we have assumed, perhaps unrealistically, that thenumber of calves born is proportional to the number of female adults, irrespec-tive of the number of males. The root of ∆′(λ) which leads to the explosion inpopulation is ω(+)(γ). This is a decreasing function of γ with ω(+)(7) = 1. Soa 7% cull of females will have the e�ect of stabilizing the population at a �xedvalue. The size of this population and the proportions of males and females,given particular initial populations can be calculated as in Example 2.4.2. Thisis an example of stabilization by linear feedback.Problems 51) Show that the system with state-space equations
ẋ1(t) = −2x1(t) + 4x2(t),

ẋ2(t) = 4x1(t)− 4x2(t) + u(t),
y(t) = x1(t)is unstable. Derive the transfer function. Now investigate the situationwhen the input is changed to u(t) − γx1(t) for some constant γ and inter-pret this change as an output feedback 4H(s). Show that the system isasymptotically stable if γ > 2 and �nd y(t) given that γ = 5, u(t) = u0 and

x1(0) = x2(0) = 0.2) Consider the system with block diagram given on page 105 of the notes and
GOL(s) = K(α+ βs)

s(1 + 2s)2
, H(s) = 1,where α and β are positive. Determine the closed loop transfer function andusing the Routh-Hurwitz stability criterion show that(i) If β < α then the system is asymptotically stable for 0 < K < (α−β)−1.(ii) If α < β the system is asymptotically stable for all K > 0.Find a minimal realization when α = 1, β = 2, K = −6.3) Consider the system with block diagram given on page 105 of the notes and

GOL(s) = 1

s3 + s2 + s+ 1
, H(s) = γ.Determine the closed loop transfer function and show that the system isunstable for all γ > 0. Show by including the output feedback 4H(s) =

αs2 +βs with suitable values of α β and γ the system can be stabilized withpoles of the closed-loop transfer function at s = −1,−2,−3. With thesevalues of α, β and γ determine the output when u(t) = u0. (The initialvalues of y(t) and any derivatives may be assumed zero.)



Chapter 6Optimal Control6.1 Digression: The Calculus of VariationsThe calculus of variations developed from a problem posed by the Swiss mathe-matician Johann Bernouilli (1667�1748). Suppose a wire lies in a vertical planeand stretches between two points A and B, with A higher than B. Given that abead is able to move under gravity without friction on the wire and that it isreleased from rest at A. What form should the wire take in order that the timetaken in going from A to B is a minimum?This is called the brachistochrone problem.1 Its solution is non-trivial2 andto get some idea of how it might be tackled we will now generalize. Supposethat
γ = {x(τ) : τA ≤ τ ≤ τB} (6.1)is a curve parameterized by τ in the phase space Γn of the vector x between thepoints A and B. At any point on the path the tangent vector is in the directionof ẋ(τ).3 Now for any function f(x(τ), ẋ(τ); τ) we de�ne
I[x] =

∫ τB
τA f(x(τ), ẋ(τ); τ) dτ. (6.2)For �xed τA and τB the curve γ, including in general the points A and B willvary with the functional form of x(τ), as will I, which known as a functional.The technique for �nding a form for x(τ) which, for a speci�c f(x(τ), ẋ(τ); τ)and designated constraints on A and B, gives an extreme value for I[x] is thecalculus of variations.Example 6.1.1 (The brachistochrone problem.) Consider cartesian axeswith the y�axis vertically upwards and the x�axis horizontal. The bead on the1From the Greek: brachist meaning shortest and chronos meaning time.2Unless B is vertically below A the answer is not the straight line AB.3We now extend the use of the dot notation to include di�erentiation with respect to τ .113



114 CHAPTER 6. OPTIMAL CONTROLwire descends from one end of the wire at x = y = 0 to the other end for which
x = xB, y = yB. If the particle has mass m and the acceleration due to gravityis g then the total energy is conserved with

1
2
m

{

(

dx

dt

)2

+

(

dy

dt

)2
}

+mgy = 0. (6.3)Now suppose the equation of the path is x = w(y) with w(0) = 0. Then
(

dy

dt

)2
{

1 + [w′(y)]2
}

= −2gy. (6.4)This equation can be integrated to �nd the total time
T [w] =

1√
2g

∫ yB
0

√

1 + [w′(y)]2

−y dy (6.5)that the bead takes for the path x = w(y). The problem now is to �nd thefunction w(y), describing the shape of the wire, which minimizes T [w] subjectto whatever constraint we impose on xB.6.1.1 The Euler-Lagrange EquationsWe suppose that x∗(τ) is the functional form for x(τ) with gives an extremumfor I[x]. Let
x(τ) = x∗(τ) + ε ξ(τ), (6.6)where ξ(τ) is a continuous, di�erentiable function of τ . Thus ε parameterizesa family of curves over the parameter interval τA ≤ τ ≤ τB. The variation of Iover the members of the family is given by
dI
dε

=

∫ τB
τA df

dε
dτ. (6.7)Since

dx(τ)

dε
= ξ(τ),

dẋ(τ)

dε
= ξ̇(τ), (6.8)

df

dε
= ∇xf [x

∗(τ) + ε ξ(τ), ẋ∗(τ) + ε ξ̇(τ); τ ] · ξ(τ)

+∇ẋf [x
∗(τ) + ε ξ(τ), ẋ∗(τ) + ε ξ̇(τ); τ ] · ξ̇(τ). (6.9)Now we need to substitute from (6.9) into (6.7). In doing so we apply integrationby parts to the second term

∫ τB
τA ∇ẋf · ξ̇(τ)dτ =

[

∇ẋf · ξ(τ)
]τB
τA −

∫ τB
τA d(∇ẋf)

dτ
· ξ(τ)dτ. (6.10)
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x∗(τ)A

Bx∗(τ) + ε ξ(τ)

0Figure 6.1: Two paths (one the extremum) from A to B in the phase space Γn.For a stationary value
(

dI
dε

)

ε=0

= 0 (6.11)and, from (6.7), (6.9) and (6.10),
(

dI
dε

)

ε=0

=
[

∇ẋf · ξ(τ)
]τB
τA +

∫ τB
τA [

∇xf − d(∇ẋf)

dτ

]

· ξ(τ) dτ, (6.12)where now the gradients of f with respect to x(τ) and ẋ(τ) are evaluated alongthe extremum curve x∗(τ). We now apply this analysis to two cases:(i) Both A and B are �xed points with vector locations xA and xBrespectively.In this case all paths pass through the same end-points (see Fig. 6.1) andso
ξ(τA) = ξ(τB) = 0. (6.13)The �rst term on the right-hand side of (6.12) is zero and for (6.11) and(6.12) to be satis�ed for any ξ(τ) satisfying (6.13) we must have
d(∇ẋf)

dτ
−∇xf = 0. (6.14)In scalar form this equation is

d

dτ

(

∂f

∂ẋj

)

− ∂f

∂xj
= 0, j = 1, 2, . . . , n. (6.15)These are two forms of the Euler-Lagrange equations.



116 CHAPTER 6. OPTIMAL CONTROL(ii) A is a �xed point but the location of the �nal point on the pathis allowed to vary.In this case the Euler-Lagrange equations must still be satis�ed but wemust also have
∇ẋf(x(τB), ẋ(τB); τB) = 0, (6.16)or in scalar form
(

∂f

∂ẋj

)

τ=τB = 0, j = 1, 2, . . . , n. (6.17)For reasons which will be explained below (6.16) and (6.17) are known astransversality conditions.From (6.14)
ẋ(τ)·d(∇ẋf)

dτ
− ẋ(τ)·∇xf = 0, (6.18)giving

d[ẋ(τ)·∇ẋf ]

dτ
− ẍ(τ)·∇ẋf − ẋ(τ)·∇xf = 0. (6.19)Now

df

dτ
= ẍ(τ)·∇ẋf + ẋ(τ)·∇xf +

∂f

∂τ
, (6.20)so we have the alternative form

d

dτ
[ẋ(τ)·∇ẋf − f ] +

∂f

∂τ
= 0, (6.21)for the Euler-Lagrange equations.In whatever form they are represented and given a particular function f(x, ẋ, τ),the Euler-Lagrange equations are a set of n second-order di�erential equationsfor the variables x1(τ), x2(τ), . . . , xn(τ). In two special cases �rst-integrals canbe derived immediately:(a) When f is not a function of xj for some j it follows from (6.15) that

∂f

∂ẋj
= constant. (6.22)(b) When f is not an explicit function of τ it follows from (6.21)

ẋ(τ)·∇ẋf(x, ẋ)− f(x, ẋ) = constant. (6.23)



6.1. DIGRESSION: THE CALCULUS OF VARIATIONS 117Strictly speaking condition (6.11) gives a stationary value which could be amaximum rather than a minimum. However, in most cases there are goodphysical reasons for supposing that the result gives a minimum.It is also the case that in many problems the parameter τ is in fact t thetime. However, this is not always so as we see in the next example.Example 6.1.2 (The brachistochrone problem.) In this case τ is the vari-able y and
f(x(y), ẋ(y); y) =

√

1 + [ẋ(y)]2

−y . (6.24)Since f is not an explicit function of x(y) condition (6.22) is applicable giving
∂f

∂ẋ
=

ẋ(y)
√

−y(1 + [ẋ(y)]2)
=

1

C
. (6.25)We �rst note that if xB is allowed to vary along the line y = yB then thetransversality condition (6.17) applies giving C = ∞, and thus ẋ(y) = 0. Thewire is vertically downwards with xB = 0, as would be expected. We nowsuppose that both ends of the wire are �xed. Let ẋ(y) = cot(θ). Then, from(6.25),

y = −1
2
C2[1 + cos(2θ)]. (6.26)Thus

dx

dθ
= −C2[1 + cos(2θ)]. (6.27)When y = 0, θ = 1

2π, so integrating (6.27) and choosing the constant of inte-gration so that x = 0 when θ = 1
2π gives

x = 1
2
C2[2θ − π + sin(2θ)]. (6.28)These are the parametric equations of a cycloid. A plot for C = 1 is given by

> x:=(theta,c)->c^2*(2*theta-Pi+sin(2*theta))/2;
x := (θ, c) → 1

2
c2 (2 θ − π + sin(2 θ))

> y:=(theta,c)->-c^2*(1+cos(2*theta))/2;
y := (θ, c) → −1

2
c2 (1 + cos(2 θ))

> plot([x(theta,1),y(theta,1),theta=Pi/2..2*Pi]);
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Given particular values for xB and yB the equations can be solved to obtain Cand θB.6.1.2 Hamilton's Principle of Least ActionSuppose we have a collection of ν particles of massmmoving in three-dimensionalspace. The the location of all the particles at time t is given by a vector
x(t) = (x1(t), x2(t), . . . , xn(t))

T in phase space Γn, where n = 3ν. If the forcesacting on the particles are G(x; t) = (G1(x; t), G2(x; t), . . . , Gn(x; t))
T then theusual starting point for mechanics is Newton's second law

mẍ(t) = G(x; t), (6.29)(see (1.102)). Now suppose that there exists a potential function V (x; t) relatedto G(x; t) by (1.106). Then
mẍ(t) = −∇V (x; t), (6.30)An alternative axiomatic approach to mechanics is to de�ne the Lagrangian
L(x(t), ẋ(t); t) = 1

2
mẋ2 − V (x; t), (6.31)and the action

I[x] =
∫ tB
tA L(x(t), ẋ(t); t)dt (6.32)Then Hamilton's principle of least action states that the path in Γn which rep-resents the con�guration of the particles in a time interval [tA, tB] from a �xed



6.1. DIGRESSION: THE CALCULUS OF VARIATIONS 119initial con�guration xA to a �xed �nal con�guration xB is that which minimizesthe action. Thus we have from the Euler-Lagrange equations (6.15)
d

dt

(

∂L

ẋj

)

− ∂L

∂xj
= 0, j = 1, 2, . . . , n. (6.33)These are call Lagrange's equations. From (6.31) and (6.33)

mẍj(t) = − ∂V

∂xj
, j = 1, 2, . . . , n, (6.34)which is just the scalar form of (6.30).6.1.3 Constrained ProblemsSuppose that we wish to �nd an extremum of I[x] given by (6.2) but that nowthe paths are subject to a constrain. This can be of two formsIntegral Constraints In this case the constraint is of the form

J [x] =

∫ τB
τA g(x(τ), ẋ(τ); τ) dτ = J, (6.35)where J is some constant. To solve this problem we use the method of Lagrange'sundetermined multipliers. We �nd an extremum for

I[x] + pJ [x] =

∫ τB
τA [f(x(τ), ẋ(τ); τ) + p g(x(τ), ẋ(τ); τ)] dτ, (6.36)for some constant p . This replaces the Euler-Lagrange equations by

d[∇ẋ(f + p g)]

dτ
−∇x(f + p g) = 0. (6.37)Once the extremum function x∗(t) has been found, p is determined by substi-tuting into (6.35).Example 6.1.3 Consider all the curves in the x�y plane between (0, 0) and

(2, 0) which are of length π. Find the equation of the one which encloses themaximum area between it and the x�axis.The area enclosed is
A[y(x)] =

∫ 2

0

y(x)dx. (6.38)Now the length of an element of the curve y = y(x) is
√

(dx)2 + (dy)2 =
√

1 + [ẏ(x)]2dx. (6.39)



120 CHAPTER 6. OPTIMAL CONTROLSo the length of the curve is
L[y(x)] =

∫ 2

0

√

1 + [ẏ(x)]2dx. (6.40)and the constraint is
L[y(x)] = π. (6.41)From (6.36)
d

dx

[

p ẏ(x)
√

1 + [ẏ(x)]2

]

− 1 = 0, (6.42)giving
p ẏ(x)

√

1 + [ẏ(x)]2
= C+ x. (6.43)Now let

ẏ(x) = cot(θ), (6.44)with the range [θ0, θ1] for θ corresponding to the range [0, 2] for x. Substitutinginto (6.43) gives
x = p [cos(θ) − cos(θ0)] (6.45)and then from (6.44)
dy

dθ
= −p cos(θ) (6.46)giving

y = p [sin(θ0)− sin(θ)] (6.47)From the constraint condition given by (6.40) and (6.42)
π =

∫ θ1

θ0

cosec(θ)
dx

dθ
dθ = −p (θ1 − θ0). (6.48)and from (6.45) and (6.47)

2 = −p [cos(θ0)− cos(θ1)]

sin(θ0) = sin(θ1)
(6.49)These equations are satis�ed by θ0 = 0, θ1 = π and p = −1. The curve is giveby

x = 1− cos(θ),

y = sin(θ),
0 ≤ θ ≤ π, (6.50)



6.2. THE OPTIMAL CONTROL PROBLEM 121which is the upper semicircle of the circle radius one centre (1, 0). This is anexample where we have needed a maximum rather than a minimum stationaryvalue. As is usually the case with variational problems the evidence that thisresult does indeed correspond to the enclosing of a maximum area is not di�cultto �nd. You can reduce the area to almost zero with a smooth curve of length
π in the �rst quadrant from (0, 0) to (2, 0).Non-Integral Constraints In this case the constraint is of the form

g(x(τ), ẋ(τ); τ) = 0. (6.51)Again we use the method of Lagrange's undetermined multipliers and �nd anextremum for
Ip [x] =

∫ τB
τA [f(x(τ), ẋ(τ); τ) + p(τ)g(x(τ), ẋ(τ); τ)] dτ, (6.52)except there here p is a function of τ . The form of the Euler-Lagrange equationsis again (6.37) but now we must not forget the derivative of p with respect to

τ which arises from the �rst term.The case of both integral and non-integral constraints can be easily generalizedto a number of constraints.6.2 The Optimal Control ProblemThe optimal control problem is concerned with developing quantitative criteriafor the e�ciency of control systems and obtaining the form for the input u(t)which best satis�es the criteria. Since we are normally interested in the perfor-mance of the system over some period of time [tI, tF] the measure of e�ciencywill be a time integral which must be minimized relative to input, output and,in general, state space variables. This quantity is called the cost functional. Theability to reduce this quantity is a performance indicator and the challenge isto devise the input function which will produce a minimum value.6.2.1 Problems Without State-Space VariablesIn this case the cost functional is of the form
I[u, y] =

∫ tF
tI f(u(t), u̇(t), y(t), ẏ(t))dt. (6.53)Example 6.2.1 Suppose we have a system with the block diagram shown atthe beginning of Sect. 5.3.1 with

GOL(s) = 1

Qs
, H(s) = 1. (6.54)



122 CHAPTER 6. OPTIMAL CONTROLThe aim it to run the system so that y(tI) = yI and y(tF) = yF while at thesame time minimizing the time average of the square error [v(t)]2, where, from(5.43)
v(t) = u(t)− y(t). (6.55)Thus we have
I[u, y] =

∫ tF
tI [u(t)− y(t)]2dt. (6.56)The standard formula ȳ(s) = G(s)ū(s) with, in this case,

G(s) =
1

1 +Qs
, (6.57)gives

Qẏ(t) = u(t)− y(t). (6.58)This relationship could be used to give a constraint on the minimization of
I[u, y]. However, in this particular case, it is simpler just to substitute from(6.58) into (6.56) to give

I[u, y] = Q2

∫ tF
tI [ẏ(t)]2dt. (6.59)The Euler-Lagrange equation then gives an extremum for I[u, y] when

ÿ(t) = 0. (6.60)Using the initial and �nal conditions on y(t) gives
y(t) =

(yI − yF)t+ (yFtI − yItF)
tI − tF , (6.61)and from (6.58)

u(t) =
(yI − yF)(t+Q) + (yFtI − yItF)

tI − tF . (6.62)6.2.2 Problems With State-Space VariablesIn this case the cost functional is of the form
I[u,x] =

∫ tF
tI f(u(t),x(t), ẋ(t); t) dt. (6.63)with the constraints

ẋ(t) = X(u(t),x(t); t) (6.64)



6.2. THE OPTIMAL CONTROL PROBLEM 123and the output given by
y(t) = Y (u(t),x(t); t). (6.65)For simplicity we have excluded possible dependence of the integrand of the costfunctional on u̇(t) and ẏ(t). It is also convenient to remove any dependence on

y(t) by substituting from (6.65). In the linear problems, which we have so farconsidered, (6.64) and (6.65) take the usual forms
ẋ(t) = Ax(t) + bu(t), (6.66)
y(t) = cTx(t). (6.67)respectively, although neither (6.65) nor its linear form (6.67) play any role inour discussion. The essence of the task is to determine forms for x(t) and u(t)which give a minimum for I[u,x] subject to the constraints (6.64)Example 6.2.2 Suppose we have a system with
ẋ(t) = αx(t) + u(t), (6.68)The aim is to minimize
I[u, x] =

∫ tF
tI {

[u(t)]2 + β[x(t)]2
}

dt. (6.69)subject to the constraint (6.68) with x(tI) = xI but x(tF) unrestricted.The simplest way to do the problem is to use (6.68) to replace u(t) in (6.69).Alternatively (6.68) can be included by using an undetermined multiplier. Asan exercise we shall try the second method. Thus (6.68) can be treated as aconstraint. From (6.52)
Ip [u, x] =

∫ tF
tI {

[u(t)]2 + β[x(t)]2 + p(t)[ẋ(t)− αx(t) − u(t)]
}

dt (6.70)and the Euler-Lagrange equations give
2u(t)− p(t) = 0,

ṗ(t)− 2β x(t) + p(t)α = 0
(6.71)Since x(t) is not constrained we have, from the transversality condition (6.17),

p(tF) = 0. (6.72)From (6.71)
u̇(t) = β x(t) − αu(t). (6.73)A simple way to solve the pair of di�erential equations (6.68) and (6.73) is byLaplace transforming. We have
(

s− α −1

−β s+ α

)(

x̄(s)

ū(s)

)

=

(

xI
uI ) . (6.74)



124 CHAPTER 6. OPTIMAL CONTROLInverting the matrix and extracting ū(s) gives
ū(s) =

(s− α)uI + βxI
s2 − (α2 + β)

. (6.75)Assuming that α2 + β = ω2 > 0 gives
u(t) = uI cosh(ωt) + ω−1(βxI − αuI) sinh(ωt). (6.76)Now using the transversality condition u(tF) = 0 to eliminate uI gives
u(t) =

βxI sinh[ω(tF − t)]

α sinh(ωtF)− ω cosh(ωtF) . (6.77)Example 6.2.3 Suppose we have a system with
ẍ(t) = −ẋ(t) + u(t), (6.78)The aim is to minimize
I[u, x] =

∫ ∞

0

{

[x(t)]2 + 4[u(t)]2
}

dt. (6.79)subject to the constraint (6.78) with x(0) = 0, ẋ(0) = 1 and x(t) → 0 and
ẋ(t) → 0 as t→ ∞.By writing x1(t) = x(t) and x2(t) = ẋ(t) (6.78) can be written

ẋ1(t) = x2(t),

ẋ2(t) = −x2(t) + u(t)
(6.80)Thus we have two constraints. From (6.52)

Ip[u, x1, x2] =

∫ ∞

0

{

[x1(t)]
2 + 4[u(t)]2 + p1(t) [ẋ1(t)− x2(t)]

+ p2(t) [ẋ2(t)− u(t) + x2(t)]
}

dt (6.81)and the Euler-Lagrange equations give
ṗ1(t)− 2x1(t) = 0,

ṗ2(t) + p1(t)− p2(t) = 0,

8u(t)− p2(t) = 0.

(6.82)Eliminating p1(t) and p2(t) gives
4ü(t) = 4u̇(t)− x(t). (6.83)We could now proceed by Laplace transforming (6.78) and (6.83). In this caseit is probably easier to eliminate u(t) to give
4
d4x(t)

dt4
− 4

d2x(t)

dt2
+ x(t) = 0. (6.84)
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4λ4 − 4λ2 + 1 = (2λ2 − 1)2 = 0. (6.85)So the general solution is

x(t) = A exp(−t/
√
2) + Bt exp(−t/

√
2) + C exp(t/

√
2) +Dt exp(t/

√
2). (6.86)Since both x(t) and ẋ(t) tend to zero as t → ∞ C = D = 0. Using the initialconditions, A = 0 and B = 1. Then substituting into (6.78)

u(t) = (1−
√
2)
(

1 + 1
2
t
)

exp(−t/
√
2). (6.87)6.3 The Hamilton-Pontriagin MethodIn proposing the form (6.63) for the cost functional we remarked that any depen-dence of the integrand on the output y(t) could be removed by substitution from(6.65). In the Hamilton-Pontriagin method the process is taken a step furtherby removing explicit dependence on ẋ(t) by substituting from the constraintconditions (6.64).4 Thus we have the cost functional

I[u,x] =
∫ tF
tI f(u(t),x(t); t) dt. (6.88)with the constraints

ẋ(t) = X(u(t),x(t); t) (6.89)For these n constraints we introduce n undetermined (time dependent) multipli-ers pj(t), j = 1, 2, . . . , n. The variables xj(t) and pj(t) are said to be conjugate.With p(t) = (p1(t), p2(t), . . . , pn(t))
T we have

F (u(t),x(t),p(t); t) = f(u(t),x(t); t) + p(t) · [ẋ(t)−X(u(t),x(t); t)] (6.90)and
Ip[u,x] =

∫ tF
tI F (u(t),x(t),p(t); t) dt. (6.91)The task is now to �nd an extremum for Ip[u,x]. Before deriving the equationsfor this we reformulate the problem slightly by de�ning the Hamiltonian

H(u(t),x(t),p(t); t) = p(t) ·X(u(t),x(t); t)− f(u(t),x(t); t). (6.92)Then (6.91) becomes
Ip[u,x] =

∫ tF
tI [p(t) · ẋ(t)−H(u(t),x(t),p(t); t)] dt. (6.93)4If in particular problems time derivatives appear in the integrand which do not correspondto constraints then they can be removed by `inventing' new variables, rather in the way thatwe treated the second-order time derivative in Example 6.2.3.



126 CHAPTER 6. OPTIMAL CONTROLSince ∇ẋ[p(t) · ẋ(t)] = p(t) the Euler-Lagrange equations are
ṗ(t) = −∇xH, (6.94)
∂H

∂u
= 0. (6.95)In this context these are often referred to as the Hamilton-Pontriagin equations.It is also interesting (but not particularly useful) to note that (6.89) can berewritten as

ẋ(t) = ∇pH. (6.96)In scalar form (6.94) and (6.96) are
ṗj(t) = − ∂H

∂xj
, (6.97)

ẋj(t) =
∂H

∂pj
, (6.98)for j = 1, 2, . . . , n. Examples 6.2.2 and 6.2.3 can both be formulated in the waydescribed here. In fact in these cases, since the integrand of the cost functionaldoes not involve time derivatives, no substitutions from the constraint conditionsare needed. For Example 6.2.2 the Hamiltonian is

H(u(t), x(t), p(t)) = p(t)[u(t) + αx(t)] − [u(t)]2 − β[x(t)]2 (6.99)and (6.95) and (6.98) yield (6.71). For Example 6.2.3 the Hamiltonian is
H(u(t), x1(t), x2(t), p1(t), p2(t)) = p1(t)x2(t) + p2(t)[u(t)− x2(t)] − 4[u(t)]2 − [x1(t)]

2(6.100)and (6.95) and (6.98) yield (6.82).In cases like Example 6.2.2 where the location of the �nal point on the pathis unrestricted we need transversality conditions. From (6.90) and (6.91) theseare given by
pj(tF) = 0, if xj(tF) is unrestricted for j = 1, . . . , n. (6.101)in agreement with the transversality condition (6.72) of Example 6.2.2.6.3.1 The Connection with Dynamics: Hamilton's Equa-tionsFor the dynamic system described in Sect. 6.1.2 we need �rst to express theLagrangian without using time-derivative variables. To do this we introducethe new variables
ẋj(t) = vj(t), j = 1, 2, . . . , n, (6.102)
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ẋ(t) = v(t). (6.103)Then
L(x(t),v(t); t) = 1

2
mv2 − V (x; t) (6.104)and from (6.92) the Hamiltonian is

H(x(t),v(t),p(t); t) = p(t)·v(t)− L(x(t),v(t); t), (6.105)
= p(t)·v(t)− 1

2
mv2 + V (x; t) (6.106)giving

F (x(t), ẋ(t),v(t); t) = p(t) · ẋ(t)−H(x(t),p(t),v(t); t). (6.107)The Euler-Lagrange equation using this expression for the state-space variables
x(t) simply give (6.94) or its scalar form (6.97). However, we also have anequation using v. Since v̇(t) is not present this is simply

∇vF = p(t)−mv(t) = 0. (6.108)Substituting into (6.106) gives the expression
H(x(t),p(t); t) =

1
2mp2 + V (x; t), (6.109)for the Hamiltonian. Equations (6.97) and (6.98) (or their vector forms (6.94)and (6.96)) are in this context called Hamilton's equations [see (1.100) and thefollowing discussion].6.4 Pontriagin's PrincipleIn real-life problems the input control variable u(t) is usually subject to someconstraint on its magnitude. Typically this is of the form

uL ≤ u(t) ≤ uU. (6.110)Such a constraint will, of course, a�ect the derivation of an optimal controlif the unconstrained optimum value for u(t) given by (6.95) lies outside therange given by (6.110). We now need to obtain the `best' value subject to theconstraint. This will depend on whether we are looking for a maximum orminimum extremum for I[u,x] given by (6.88). It follows from (6.92) that aminimum for f(u(t),x(t); t) corresponds to a maximum for H(u(t),x(t),p(t); t)and vice-versa. If you are uncomfortable with this crossover you can change thesign in the de�nition of the Hamiltonian by replacing H by −H in (6.92). Thishas the disadvantage of giving the wrong sign for the mechanics Hamiltonian(6.109).5 We shall for the sake of de�niteness assume that we are looking for a5Because of this choice of sign in the problem Pontriagin's principle is variously referredto as Pontriagin's minimum principle and Pontriagin's maximum principle in the literature.



128 CHAPTER 6. OPTIMAL CONTROLminimum of f(u(t),x(t); t) and thus a maximum of H(u(t),x(t),p(t); t), whichwe assume to be a continuous di�erentiable function of u over the range (6.110).Then the condition for an optimum u∗(t) for u(t) is that
H(u∗(t),x(t),p(t); t) > H(u∗(t) + δu,x(t),p(t); t), (6.111)for all δu compatible with (6.110). Expanding in powers of δu we have
(

∂H

∂u

)∗
δu+

1
2

(

∂2H

∂u2

)∗
(δu)2 +O

(

[δu]3
)

< 0. (6.112)If there is an extremum of H in the allowed range (6.112) gives the usual con-ditions for a maximum. Otherwise (6.112) can be approximated by its leadingterm to give
(

∂H

∂u

)∗
δu < 0. (6.113)In these circumstances H is a monotonic function of u. If it is increasing then

δu < 0, which means that u∗(t) = uU, if it is decreasing then δu > 0 which meansthat u∗(t) = uL. The optimum value of u will be at one of the boundaries of therange. Since the sign of ∂H/∂u will depend on the other variables x(t) and p(t)there may, as t varies, be a sudden change of u∗(t) between uL and uU. Thissudden change is called bang-bang control and
S(t) =

∂H

∂u
(6.114)is called the switching function.Example 6.4.1 The motor-racing problem. A vehicle of mass m moves ina straight line Ox under an engine thrust mu(t), where the control variable u(t)is constrained by the condition |u(t)| ≤ uB. Assuming that friction is absent�nd the control strategy which takes the vehicle from rest at x = 0 to rest at

x = xF in the least time.Let x1(t) = x(t) and x2(t) = ẋ(t). Then
ẋ1(t) = x2(t),

ẋ2(t) = u(t).
(6.115)If tF is the time of the drive

I[u, x1, x2] = tF =

∫ tF
0

dt. (6.116)This gives f(u(t), x1(t), x2(t); t) = 1 and, from (6.92),
H(u(t), x1(t), x2(t), p1(t), p2(t)) = p1(t)x2(t) + p2(t)u(t)− 1. (6.117)
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ṗ1(t) = 0,

ṗ2(t) = −p1(t)
(6.118)and (6.98) gives, of course, (6.115). From (6.118)

p1(t) = A,

p2(t) = B−At
(6.119)and

∂H

∂u
= p2(t) = B−At. (6.120)Thus H is a monotonic strictly increasing or strictly decreasing function of u(t)for all t except at t = B/A if this lies in the interval of time of the journey.Since the vehicle starts from rest at t = 0 and comes to rest at t = tF it mustbe the case that ẍ(0) = u(0) > 0 and ẍ(tF) = u(tF) < 0. So in the early partof the journey u(t) = uB and in the later part of the journey u(t) = −uB. Theswitch over occurs when p2(t) changes sign. So p2(t) is the switching function

S(t). For the �rst part of the journey
ẍ(t) = uB,
ẋ(t) = uBt,
x(t) = 1

2
uBt2. (6.121)For the second part of the journey

ẍ(t) = −uB,
ẋ(t) = uB(tF − t),

x(t) = xF − 1
2
uB(tF − t)2.

(6.122)Since both ẋ(t) and x(t) are continuous over the whole journey the switch occursat
t = tS = tF/2, (6.123)with
tF = 2

√

xF/uB,
x(tS) = xF/2. (6.124)These results give us the strategy for completing the journey in the minimumtime. Suppose alternatively we chose
u(t) = uB − µt (6.125)



130 CHAPTER 6. OPTIMAL CONTROLthroughout the whole journey. Then
ẋ(t) = uBt− 1

2
µt2,

x(t) = 1
2
uBt2 − 1

6
µt3.

(6.126)The conditions that the journey ends with zero velocity and x = xF gives
µ =

√

2u3B/3xF,
tF =

√

6xF/uB. (6.127)Comparing this result with (6.124) we see that this procedure yield a journeytime √3/2 longer. Plots of velocity against distance can be obtained usingMAPLE :
> tF1:=(uB,xF)->2*sqrt(xF/uB);

tF1 := (uB , xF ) → 2

√

xF

uB

> v1:=(uB,xF,t)->uB*t;
v1 := (uB , xF , t) → uB t

> x1:=(uB,xF,t)->uB*t^2/2;
x1 := (uB , xF , t) → 1

2
uB t2

> v2:=(uB,xF,t)->uB*(tF1(uB,xF)-t);
v2 := (uB , xF , t) → uB (tF1(uB , xF )− t)

> x2:=(uB,xF,t)->xF-uB*(tF1(uB,xF)-t)^2/2;
x2 := (uB , xF , t) → xF − 1

2
uB (tF1(uB , xF )− t)2

> tF2:=(uB,xF)->sqrt(6*xF/uB);
tF2 := (uB , xF ) →

√

6
xF

uB

> v3:=(uB,xF,t)->t*uB*(tF2(uB,xF)-t)/tF2(uB,xF);
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v3 := (uB , xF , t) → t uB (tF2(uB , xF )− t)

tF2(uB , xF )

> x3:=(uB,xF,t)->t^2*uB*(3*tF2(uB,xF)-2*t)/(6*tF2(uB,xF));
x3 := (uB , xF , t) → 1

6

t2 uB (3 tF2(uB , xF )− 2 t)

tF2(uB , xF )

> plot(
> {[x1(1,1,t),v1(1,1,t),t=0..tF1(1,1)/2],[x2(1,1,t),v2(1,1,t),
> t=tF1(1,1)/2..tF1(1,1)],[x3(1,1,t),v3(1,1,t),t=0..tF2(1,1)]
> },linestyle=1);
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The upper curve corresponds to the optimum control and the lower to the controlwith linearly decreasing thrust. Since the area under the plot of the reciprocalof the velocity against distance would give the time of the journey the largerarea in this plot corresponds to a shorter journey time. The latter part of theupper curve and its extension, which are given parametrically by the second andthird of equations (6.122) is called the switching curve. It represents the pointsin the velocity-position space from which the �nal destination can be reached,arriving with zero velocity, by applying maximum deceleration. So the pointwhere this curve is crossed by the �rst branch of the journey is the point whenswitching from acceleration to deceleration must occur.



132 CHAPTER 6. OPTIMAL CONTROLExample 6.4.2 The soft-landing problem. A space vehicle of mass m isreleased at a height xI above the surface of a planet with an upward velocity
vI. The engine exerts a downward thrust mu(t), where |u(t)| ≤ uB and v2I <
2xI(uB − g), g being the acceleration due to gravity. It is required to reach thesurface in minimum time arriving there with zero velocity.Let x1(t) = x(t) and x2(t) = ẋ(t). Then

ẋ1(t) = x2(t),

ẋ2(t) = −[u(t) + g].
(6.128)If tF is the time taken to land

I[u, x1, x2] = tF =

∫ tF
0

dt. (6.129)This gives f(u(t), x1(t), x2(t); t) = 1 and, from (6.92),
H(u(t), x1(t), x2(t), p1(t), p2(t)) = p1(t)x2(t)− p2(t)[u(t) + g]− 1.(6.130)Then, from (6.97)
ṗ1(t) = 0,

ṗ2(t) = −p1(t)
(6.131)giving (6.118)

p1(t) = A,

p2(t) = B−At
(6.132)and

∂H

∂u
= −p2(t) = −B+At. (6.133)Now −p2(t) is the switching function. H is a monotonic strictly increasing orstrictly decreasing function of u(t) for all t except at t = B/A if this lies in theinterval of time of the journey. Since the vehicle begins the landing process withan upward velocity its engine thrust must be initially downwards. (Otherwisethe initial total downward thrust would be m(g−uB) which is negative.) Thereis one switch to an upward engine thrust to give a soft landing. For the �rstpart of the journey

ẍ(t) = −(uB + g),

ẋ(t) = vI − t(uB + g),

x(t) = xI + vIt− 1
2
t2(uB + g).

(6.134)



6.4. PONTRIAGIN'S PRINCIPLE 133For the second part of the journey
ẍ(t) = (uB − g),

ẋ(t) = (uB − g)(t− tF),
x(t) = 1

2
(uB − g)(t− tF)2. (6.135)Since both ẋ(t) and x(t) are continuous over the whole journey the switch occursat

t = tS = tF(uB − g) + vI
2uB , (6.136)with

tF =
1

uB + g

{

vI +√2uB[v2I + 2xI(uB + g)]

uB − g

}

. (6.137)These results give us the strategy for completing the journey in the minimumtime. The plot of velocity against distance is given by:
> v1:=(uB,xI,vI,g,t)->vI-t*(uB+g);

v1 := (uB , xI , vI , g, t) → vI − t (uB + g)

> x1:=(uB,xI,vI,g,t)->xI+vI*t-t^2*(uB+g)/2;
x1 := (uB , xI , vI , g, t) → xI + vI t− 1

2
t2 (uB + g)

> tF:=(uB,xI,vI,g)->(vI+sqrt(2*uB*(vI^2+2*xI*(uB+g))/(uB-g)))/(uB+g);
tF := (uB , xI , vI , g) →

vI +

√

2
uB (vI 2 + 2 xI (uB + g))

uB − g

uB + g

> v2:=(uB,xI,vI,g,t)->(uB-g)*(t-tF(uB,xI,vI,g));
v2 := (uB , xI , vI , g, t) → (uB − g) (t− tF(uB , xI , vI , g))

> x2:=(uB,xI,vI,g,t)->(uB-g)*(t-tF(uB,xI,vI,g))^2/2;
x2 := (uB , xI , vI , g, t) → 1

2
(uB − g) (t− tF(uB , xI , vI , g))2

> tS:=(uB,xI,vI,g)->(tF(uB,xI,vI,g)*(uB-g)+vI)/(2*uB);
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tS := (uB , xI , vI , g) → 1

2

tF(uB , xI , vI , g) (uB − g) + vI

uB

> plot(
> {[x1(2,10,5,1,t),v1(2,10,5,1,t),t=0..tS(2,10,5,1)],
> [x2(2,10,5,1,t),v2(2,10,5,1,t),t=tS(2,10,5,1)..tF(2,10,5,1)]
> });
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The lower branch of the plot is the switching curve.Example 6.4.3 The �ywheel problem. The equation of motion of a �y-wheel with friction is
θ̈(t) + 2θ̇(t) = u(t),where the input variable u is restricted by |u(t)| ≤ 2. It is required to bring the�ywheel from θ(0) = 0, θ̇(0) = 0 to θ = π with θ̇ = 0 in minimum time. Usethe Hamilton-Pontriagin method with x1 = θ and x2 = θ̇ to show that duringthe motion either u(t) = 2 or u(t) = −2, and that the variables p1(t) and p2(t)conjugate to x1(t) and x2(t) are given by
p1(t) = C, p2(t) =

1
2
C+ B exp(2t),where C and B are constants. Deduce that there is exactly one switch between

u(t) = 2 and u(t) = −2.



6.4. PONTRIAGIN'S PRINCIPLE 135Given that the total time for the motion of the �ywheel is tf and that theswitch occurs when t = tS, show that
tS = 1

2
(π + tf) with tf = arccosh[exp(π)].The two constraints are

ẋ1(t) = x2(t),

ẋ2(t) = u(t)− 2 x2(t)Since we are looking for an extremum of time f(u(t), x1(t), x2(t); t) = 1 andthe Hamiltonian is
H(u(t), x1(t), x2(t), p1(t), p2(t)) = p1(t)x2(t) + p2(t)[u(t)− 2 x2(t)]− 1.Then the Hamiltonian-Pontriagin equations are
ṗ1(t) = 0, ṗ2(t) = 2 p2(t)− p1(t),with
∂H

∂u
= p2(t).Thus

p1(t) = Cand
d

dt
[p2(t) exp(−2t)] = −C exp(−2t),giving

p2(t) =
1
2
C+ B exp(2t).This is the switching function. Since it is a monotonically increasing functionit has at most one zero in the range 0 ≤ t ≤ tF, so there will be at most oneswitch between u(t) = 2 and u(t) = −2. So there must be exactly one switch inorder for the wheel to begin from rest and return to rest.For the �rst part of the motion

θ̈(t) + 2θ̇(t) = 2.The auxiliary equation is λ2 + 2λ = 0, giving the complementary function
θc(t) = A+ B exp(−2t) and a particular solution is θp(t) = t. Thus the generalsolution is

θ(t) = t+A+ B exp(−2t).Since θ(0) = θ̇(0) = 0, A+ B = 0 and 1− 2B = 0. Thus
θ(t) = t− 1

2
[1− exp(−2t)].



136 CHAPTER 6. OPTIMAL CONTROLFor the second part of the motion
θ̈(t) + 2θ̇(t) = −2.This simply changes the sign of the particular solution. So
θ(t) = −t+A+ B exp(−2t).Since θ(tF) = π and θ̇(tF) = 0, −tF + A + B exp(−2tF) = π and −1 −

2B exp(−2tF) = 0. Thus
θ(t) = tF − t+ π + 1

2
[1− exp{2(tF − t)}].At the switching time t = tS both θ(t) and θ̇(t) are continuous.

tS − 1
2
[1− exp(−2tS)] = tF − tS + π + 1

2
[1− exp[2(tF − tS)],

1− exp(−2tS) = −1 + exp[2(tF − tS)].Adding the �rst equation to one half the second gives
tS = 1

2
[π + tF]and substituting back into the second gives

1− exp(−π − tF) = −1 + exp(tF − π).This simpli�es to exp(π) = cosh(tF), and thus
tF = arccosh[exp(π)].Problems 61) Find the extremum of

I[x] =
∫ 1

0

{

1
2
[ẋ(τ)]2 + x(τ)ẋ(τ)

}

dτwith x(0) = 0 and x(1) = 5, subject to the constraint
J [x] =

∫ 1

0

x(τ)dτ = 2.2) Find the extremum of
I[x] =

∫ 2

0

{

[ẋ(τ)]2 + x(τ)
}

dτwith x(0) = 1 and x(2) = 48, subject to the constraint
J [x] =

∫ 2

0

x(τ)τdτ = 43.



6.4. PONTRIAGIN'S PRINCIPLE 1373) The equation of a control system is
ẋ(t) = u(t).Find the input u(t) which minimizes
I[u, x] =

∫ tF
0

{

[x(t)]2 + [u(t)]2
}

dt,given that x(0) = x(tF) = α. Find the minimum value of I[x].4) The equation of a control system is
ẍ(t) = u(t).Find the input u(t) which minimizes
I[u] =

∫ 1

0

[u(t)]2dt,given that x(0) = x(1) = 0 and ẋ(0) = ẋ(1) = 1.5) A system is governed by the equation
ẋ(t) = u(t)− x(t).With x(0) = x(tF) = x0, where tF > 0, �nd the input u(t) which minimizes
I[u] = 1

2

∫ tF
0

[u(t)]2dt.Find the minimized value of I[u] and show that it is less than the valueof I obtained by putting x(t) = x0 over the whole range of t. Given thatthe condition x(tF) = x0 is dropped and x(tF) is unrestricted show that theminimum value of I is zero.6) A system is governed by the equation
ẋ(t) = u(t)− 1.With x(0) = 0 �nd the input u(t) which minimizes
I[u] = 1

2

∫ tF
0

{[u(t)]2 + [x(t)]2}dt.when(a) x(tF) = 1.



138 CHAPTER 6. OPTIMAL CONTROL(b) x(tF) is unrestricted.Show that for case (a)
u(t) = 1 +

cosh(t)

sinh(tF) , x(t) =
sinh(t)

sinh(tF) ,and for case (b)
u(t) = 1− cosh(t)

cosh(tF) , x(t) = − sinh(t)

cosh(tF) .Without evaluating the minimized I show from these results that it is smallerin case (b) than in case (a). Think about why this is what you should expect.7) The equation of motion of a �ywheel with friction is
θ̈(t) + µθ̇(t) = u(t),where µ is a positive constant and the input variable u is restricted by |u(t)| ≤

uB. It is required to bring the �ywheel from θ(0) = θI, θ̇(0) = 0 to θ = θF with
θ̇ = 0 in minimum time. Use the Hamilton-Pontriagin method with x1 = θand x2 = θ̇ to show that during the motion either u = uB or u = −uB, andthat the variables p1(t) and p2(t) conjugate to x1(t) an x2(t) are given by

p1(t) = C, p2(t) = µ−1C+ B exp(µt),where C and B are constants. Deduce that there is at most one switchbetween uB and −uB.Show from the transversality condition that there is no switch if θ̇ is unre-stricted at t = tF and that in this case tF is give by the implicit equation
µ2(θF − θI) = uB[µ tF − 1 + exp(−µ tF)].8) A rocket is ascending vertically above the earth. Its equations of motion are
ẍ(t) =

Cu(t)

m(t)
− g, ṁ(t) = −u(t).The propellant mass �ow can be controlled subject to 0 ≤ u(t) ≤ uU. Themass, height and velocity at time t = 0 are all known and it is required tomaximize the height subsequently reached (when the time is taken to be tF).Show that the optimum control has the form

u∗(t) =

{

uU, S(t) < 0,
0, S(t) > 0,



6.4. PONTRIAGIN'S PRINCIPLE 139where the switching function S(t) satis�es the equation Ṡ(t) = D/m(t), forsome positive constant D. Given that the switch occurs at tS, show that
S(t) =



















− D

uU ln

{

m(t)

m(tS)} , 0 ≤ t ≤ tS,
−D(tS − t)

m(tS) , tS ≤ t ≤ tF.9) A vehicle moves along a straight road, its distance from the starting pointat time t being denoted by x(t). The motion of the vehicle is governed by
ẍ(t) = u(t)− k, k > 0,where u(t), the thrust per unit mass, is the control variable. At time t = 0,

x = ẋ = 0 and the vehicle is required to reach x = L > 0, with ẋ = 0,in minimum time, subject to the condition that |u(t)| < uB, where uB > k.Using the state-space variables x1 = x and x2 = ẋ, construct the Hamiltonianfor the Hamiltonian-Pontryagin method and show that during the motioneither u(t) = uB or u(t) = −uB.Show that u(t) cannot switch values more than once and that a switch occurswhen
x =

L(uB + k)

2uB .Find the time taken for the journey.
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Chapter 7Complex Variable Methods7.1 IntroductionAt some stage in many problems in linear control theory we need to analyze arelationship of the form
ȳ(s) = G(s)ū(s), (7.1)where ū(s) and ȳ(s) are respectively the Laplace transforms of the input u(t)and output y(t). The transfer function G(s) is a rational function of s. That is
G(s) =

ψ(s)

φ(s)
, (7.2)where ψ(s) and φ(s) are polynomials in s. Our interest has been, not only inobtaining y(t) for a given form for u(t) for which we have usually used partialfraction methods, but in determining the stability of the system, for which wehave the Routh-Hurwitz criterion described in Sect. 5.2.1. In this chapter weshall describe other methods which rely on using the properties of (7.1) in thecomplex s-plane.7.2 Results in Complex Variable Theory7.2.1 Cauchy's Residue TheoremWe consider a meromorphic function F (s) of the complex variable s. Supposethat s0 is a pole of order m of F (s). Then

F (s) = f(s) +
m
∑

j=1

βj
(s− s0)j

, (7.3)where f(z) is analytic in a neighbourhood of s0 and β1, . . . , βm are constants.Then β1 is called the residue of F (s) at s0 and is denoted by Res(F ; s0).141



142 CHAPTER 7. COMPLEX VARIABLE METHODSExample 7.2.1 Suppose
F (s) =

exp(s t)

(s− 5)3
. (7.4)This has a third-order pole at s = 5. Expand exp(s t) about s = 5

exp(s t) = exp(5 t) + t(s− 5) exp(5 t) + 1
2!
t2(s− 5)2 exp(5 t)

+ 1
3!
t3(s− 5)3 exp(5 t) + O[(s− 5)4]. (7.5)So dividing by (s− 5)3 we see that

Res(F ; 5) = 1
2!
t2 exp(5 t). (7.6)A result which is very useful in this context is:1Theorem 7.2.1 If F (s) has a pole of order m at s0

Res(F ; s0) =
1

(j − 1)!
lim
s→s0

dj−1

dsj−1

[

(s− s0)
jF (s)

]

, (7.7)for any j ≥ m.With j = 3 you will see that this gives you a quick way to obtain (7.6).2 Aclosed contour is a closed curve in the complex plane with a direction. Givenany closed contour γ and some point s0 not lying on γ the winding number orindex of γ with respect to s0, denoted by Ind(γ; s0) is the number of times thecontour passes around s0 in the anticlockwise direction minus the number itpasses around s0 in the clockwise direction.Theorem 7.2.2 Let γ be a closed contour and s0 a point not lying on γ then
Ind(γ; s0) =

1

2iπ

∫

γ

ds

s− s0
. (7.8)We can now state the Cauchy residue theorem.Theorem 7.2.3 Let F (s) be a meromorphic function with poles s1, s2, . . . , snand let γ be a contour not passing through any of these points. Then

1

2πi

∫

γ

F (s)ds =

n
∑

j=1

Res(f ; sj)Ind(γ; sj). (7.9)1Proofs for this theorem and the Cauchy residue theorem are given in any book on ComplexVariable Theory and in particular in the notes for course CM322C.2It is also easy to check that it give the correct result with j = 4



7.2. RESULTS IN COMPLEX VARIABLE THEORY 1437.2.2 The Argument PrincipleA useful consequence of the residue theorem is the argument principle.3Theorem 7.2.4 Let F (s) be a meromorphic function and let γ be a simpleclosed curve transcribed in the anticlockwise direction4 not passing through anyof the poles or zeros of F (s). Then
1

2iπ

∫

γ

F ′(s)

F (s)
ds = {Number of zeros in γ}− {Number of poles in γ}, (7.10)where in each case multiplicity is included in the counting.This result can be re-expressed in a slightly di�erent way by writing

F ′(s)

F (s)
ds =

dF (s)

F (s)
= d {ln[F (s)]} . (7.11)Now let

F (s) = |F (s)| exp(iΘ). (7.12)So, since ln |F (s)| is single-valued,
1

2iπ

∫

γ

F ′(s)

F (s)
ds =

1

2iπ

∫

γ

d {ln[F (s)]}

=
1

2iπ

∫

γ

d {ln |F (s)|} + 1

2π

∫

γ

dΘ

=
1

2π

∫

γ

dΘ. (7.13)This �nal term measures the change in argument (hence the name `argumentprinciple' ) of F (s) along γ in units of 2π. Suppose now we consider the mapping
s =⇒ F (s). (7.14)As s describes the curve γ, F (s) will describe some other closed curve ΓF andthe last term in (7.13) is just the number of times that ΓF passes around theorigin, or simply the winding number Ind(ΓF; 0). Thus
Ind(ΓF; 0) = {Number of zeros in γ}− {Number of poles in γ}. (7.15)3Again proved in the notes for CM322C.4For a simple closed curve described in the anticlockwise direction the winding number ofevery point in the complex plane is either zero (corresponding to outside) or one (correspondingto inside).



144 CHAPTER 7. COMPLEX VARIABLE METHODS7.3 The Inverse Laplace TransformAccording to (2.23) the Laplace transform in (7.1) can be inverted by
y(t) =

1

2πi

∫ α+i∞

α−i∞
G(s)ū(s) exp(st)ds, (7.16)where α > η and the integral is along the vertical line <{s} = α in the complex

s�plane. According to Sect. 2.3 the parameter η is such that the integral de�ningthe Laplace transform converges when <{s} > η. This might seem to be aproblem for solving the integral (7.16). However, we do have some information.We know that G(s) is a meromorphic function, that is its only singularities arepoles. Suppose that these are located at the points s1, s2, . . . , sr in the complex
s�plane. The pole sj will contribute a factor exp(sjt) to the Laplace transform.Thus for convergence we must have <{s} > <{sj} and so α > η > <{sj}. Thisapplies to all the poles ofG(s). If we also assume that ū(s) is also a meromorphicfunction these must also be included and we �nal have the conclusion that thevertical line of integration in (7.16) must be to the right of all the poles of
G(s)ū(s).The problem now is to evaluate the integral (7.16). We have assumed the
ū(s) is meromorphic, so the integrand is meromophic with poles denoted by
s1, s2, . . . , sn.5 Now de�ne

yR(t) =
1

2πi

∫

γR G(s)ū(s) exp(st)ds, (7.17)where γR is
•
s1

•
s2

•s3

α

R

−R5These are all the poles of G(s) and all the poles of ū(s) unless one of these functions hasa zero which annihilates a pole of the other.



7.3. THE INVERSE LAPLACE TRANSFORM 145We take R to be su�ciently large so that all the poles of the integrand arewithin the contour. Then since the winding number of γR with respect to eachof the poles is one
yR(t) =

1

2πi

∫

γR G(s)ū(s) exp(st)ds
=

n
∑

j=1

Res(G(s)ū(s) exp(st); sj). (7.18)The �nal part of this argument, on which we shall not spend any time, is to showthat, subject to certain boundedness conditions on the integrand, in the limit
R → ∞ the contributions to the contour integral from the horizontal sectionsand from the semicircle become negligible. Thus
y(t) =

1

2πi

∫ α+i∞

α−i∞
G(s)ū(s) exp(st)ds =

n
∑

j=1

Res(G(s)ū(s) exp(st); sj). (7.19)Example 7.3.1 Consider the �nal part of Example 3.4.2 where
y(t) =

u0
2πi

∫ α+i∞

α−i∞

{

1

s
− s+ aω2

0
(

s+ 1
2
aω2

0

)2

+ ω2

}

exp(st)dt (7.20)and ω2 = ω2
0 − 1

4
a2ω4

0 .The �rst term has a simple pole at the origin and the second has two simplepoles at
s = −1

2
aω2

0 ± iω. (7.21)According to sign of a we now need to choose α so that the line of integrationis to the right of these poles. Then the contribution to the pole at the origin,which can be treated separately is just u0. The contributions from the otherpoles are
−u0











(s+ 1
2
aω2

0 ∓ iω)
(s+ aω2

0) exp(st)
(

s+ 1
2
aω2

0

)2

+ ω2











s=−1
2
aω2

0±iω

= −u0
{

(s+ aω2
0) exp(st)

s+ 1
2
aω2

0 ± iω

}

s=−1
2
aω2

0±iω

= −1
2u0

[(

1∓ iaω2
0

2ω

)

exp
(

±iωt− 1
2
aω2

0t
)

]

. (7.22)Adding these contributions together gives (3.47).



146 CHAPTER 7. COMPLEX VARIABLE METHODS7.4 The Stability of a System with Unit Feedback7.4.1 The Frequency Response FunctionIn Example 7.3.1 we considered a system with u(t) = u0, a constant input turnedon at t = 0. The e�ect on the output was a constant contribution given by thepole at the origin. If, for the general case (7.1), we choose u(t) = exp(iωt), then
ū(s) = (s− iω)−1 and

y(t) =
1

2πi

∫ α+i∞

α−i∞

G(s)

s− iω
exp(st)ds. (7.23)Unless G(s) itself has a pole at s = iω, which would produce a resonance e�ect,the contribution to y(t) from this pole is G(iω) exp(iωt). The amplitude factor

G(iω) is called the frequency response function.7.4.2 The Nyquist CriterionNow suppose that G(s) is the open-loop transfer function and we introduce aunit feedback to give
ȳ(s) = GCL(s)ū(s), (7.24)where
GCL(s) = G(s)

1 +G(s)
. (7.25)We consider the mapping

s =⇒ G(s). (7.26)The imaginary axis in the s plane is s = iω, −∞ ≤ ω ≤ +∞. This will bemapped into a curve ΓG in the Z = X + iY plane given by
X(ω) + iY (ω) = G(iω), −∞ ≤ ω ≤ +∞. (7.27)Assuming that ψ(s) and φ(s) in (7.2) are both polynomials with real coe�cientswith ψ(s) a lower degree that φ(s) then ΓG is a closed curve6 in the Z�planewith G(i∞) = G(−i∞) = 0 and symmetry about the X�axis. This curve iscalled the Nyquist locus7 of G(s). We now prove the following theorem:Theorem 7.4.1 If the number of poles of G(s) with <{s} > 0 is equal to

Ind(ΓG;−1), the index of the Nyquist locus of G(s) with respect to Z = −1,then the closed-loop transfer function GCL(s) is asymptotically stable.6Although, in Example 7.4.2, we see a case where this `closed' curve has a discontinuousjump from +i∞ to −i∞ as ω passes zero.7Or sometimes `plot' or `diagram'.



7.4. THE STABILITY OF A SYSTEM WITH UNIT FEEDBACK 147Proof: Let
F (s) = 1 +G(s) =

1

1−GCL(s) . (7.28)The poles of GCL(s) will be the zeros of F (s).Let γR be the the closed contour (traversed in the clockwise direction) con-sisting of the imaginary axis in the s-plane from s = −iR to s = iR, togetherwith a semicircle, centre the origin, of radius R to the right of the imaginaryaxis. We assume for simplicity that G(s) has no poles on the imaginary axis.8Then for su�ciently large R all the poles and zeros of G(s) and F (s) with
<{s} > 0 will be enclosed within γR. This closed curve in the s�plane is calledthe Nyquist contour. Now plot F (iω) = U(ω)+ iV (ω) in the W = U +iV plane.The contour ΓF, produced by this is, apart from an in�nitesimal arc near theorigin the image of γR in the s�plane. (With very large R the arc of radius R iscontracted into a very small arc around the origin in the Z�plane.) Thus, from(7.15),9
Ind(ΓF; 0) = {Number of poles of F (s) with <{s} > 0}

− {Number of zeros of F (s) with <{s} > 0}. (7.29)When F (iω) = 0, G(iω) = −1; so
Ind(ΓF; 0) = Ind(ΓG;−1). (7.30)Since it is also the case that the poles of F (s) and G(s) coincide, if
Ind(ΓG;−1) = {Number of poles of G(s) with <{s} > 0} (7.31)then {Number of zeros of F (s) with <{s} > 0} = 0 (7.32)and thus{Number of poles of GCL(s) with <{s} > 0} = 0, (7.33)which means that GCL(s) is asymptotically stable.An immediate consequence of this is the Nyquist criterion10 that: If G(s) is itselfasymptotically stable, and thus has no poles with <{s} > 0, then the closed-looptransfer function is asymptotically stable if ΓG does not encircle the point -1.Example 7.4.1 Let
G(s) =

K

s−Q
, K > 0. (7.34)8If it does the contour can be diverted around them.9The change of sign, as compared to (7.15), is because the Nyquist contour is transcribedin the clockwise direction.10In some texts the more general result Thm. 7.4.1 is called the Nyquist criterion.



148 CHAPTER 7. COMPLEX VARIABLE METHODSwith the closed-loop transfer function
GCL(s) = G(s)

1 +G(s)
=

K

s−Q+ K
. (7.35)With X(ω) + iY (ω) = G(iω)

X(ω) = − KQ

Q2 + ω2
, Y (ω) = − Kω

Q2 + ω2
. (7.36)This gives

[X + (K/2Q)]2 + Y 2 = (K/2Q)2. (7.37)Thus ΓG is a circle centre X = −(K/2Q), Y = 0 and radius |K/2Q|. Now G(s)has a pole at s = Q. So, for Q > 0, the open-loop transfer function is unstableand we need to use Thm. 7.4.1 rather than the special case which is the Nyquistcriterion. For the closed-loop transfer function to be stable ΓG must pass around
−1 once, which will be the case when K > Q. The reasoning for Q < 0 followsin the same way with the open-loop transfer function now stable, leading toan application of the Nyquist criterion. In all cases the results agree with thestraightforward deductions made by our usual methods.Example 7.4.2 In Problem Sheet 7, Example 2, we consider the system withopen-loop transfer function

G(s) =
K(α+ βs)

s(1 + 2s)2
. (7.38)and unit feedback. We used the Routh-Hurwitz method to show that the closed-loop transfer function was asymptotically stable if β < α and 0 < K < (α−β)−1,or α < β and K > 0. We now investigate this result using MAPLE and theNyquist method.In this case G(s) has no poles so GCL(s) will be asymptotically stable if theNyquist plot does not pass around Z = −1. We �rst use MAPLE to �nd thereal and imaginary parts of G(iω).

> G:=(s,K,a,b)->K*(a+b*s)/(s*(1+2*s)^2):
> X:=(w,K,a,b)->simplify(evalc(Re(G(I*w,K,a,b)))):
> X(w,K,a,b);

−K (−b+ 4 bw2 + 4 a)

1 + 8w2 + 16w4

> Y:=(w,K,a,b)->simplify(evalc(Im(G(I*w,K,a,b)))):
> Y(w,K,a,b);
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K (−a+ 4 aw2 − 4 bw2)

w (1 + 8w2 + 16w4)We see that Y (−ω) = −Y (ω). The Nyquist plot is symmetric about the X�axiswith both ends of the curve at the origin (X(±∞) = Y (±∞) = 0). Unless
α = 0, Y (ω) → ∓0 × (Kα), as ω → ±0, giving an in�nite discontinuity inthe plot as ω passes through zero. If α = 0 then Y (ω) → 0 as, ω → 0, with
X(ω) → Kβ.In the case α 6= 0 the plot cuts the X�axis when Y (ω) = 0 giving

ω = ±
√

α

4(α− β)
. (7.39)If α > 0 and α > β or α < 0 and β > α the two branches of the plot crossat this value of ω. We calculate the point on the X�axis where this occurs for

β = α/2 > 0. In this case (7.39) gives ω = 1/
√
2.

> X1:=(w,K,a)->simplify(X(w,K,a,a/2)):
> X1(w,K,a);

−1

2

K a (7 + 4w2)

1 + 8w2 + 16w4

> Y1:=(w,K,a)->simplify(Y(w,K,a,a/2)):
> Y1(w,K,a);

K a (−1 + 2w2)

w (1 + 8w2 + 16w4)

> simplify(X1(1/sqrt(2),K,a));
−1

2
K aSo, for β = α/2 > 0, the closed-loop transfer function is stable if − 1

2Kα > −1.That is if K < 2/α, which is the result obtained by the Routh-Hurwitz method.We compute the Nyquist plot for an unstable case when K = 1, α = 6, β = 3.
> with(plots):
> plot([X(w,1,6,3),Y(w,1,6,3),
> w=-infinity..infinity],X=-6..2,Y=-2..2,numpoints=1000);
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–2

–1

0

1

2

Y

–6 –5 –4 –3 –2 –1 1 2
X

When α = 0, the system will be stable if the point where the plot cuts the
X�axis is to the right of the origin. That is Kβ > 0. We plot the case K = 1

2 ,
β = 1.
> plot([X(w,0.5,0,1),Y(w,0.5,0,1),
> w=-infinity..infinity],X=-0.2..0.6,Y=-0.6..0.6,numpoints=1000);
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X



7.4. THE STABILITY OF A SYSTEM WITH UNIT FEEDBACK 151Problems 71) For the system with block diagram:
ū(s)

+
−

G(s)
ȳ(s)

G(s) =
K

(1 + s)3
.Determine the closed loop transfer function GCL(s) and use the Routh-Hurwitz stability criteria to show that the system is stable for −1 < K < 8.Find the functions X(ω) and Y (ω) so that G(iω) = X(ω) + iY (ω). De�nethe Nyquist plot and state the Nyquist criterion which relates the form ofthis curve to the stability of GCL(s). Show that, for the given example, theresult obtained from the Nyquist criterion con�rms the result obtained bythe Routh-Hurwitz procedure.
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Chapter 8Non-Linear Systems8.1 IntroductionIn Sects. 1.5 and 1.6 we discussed systems of di�erential equations most of whichwere non-linear. As we have seen, it is no restriction to concentrate on a �rst-order system since higher-order equations governing a system can be expressedas a system of �rst-order equations by introducing additional variables. Forsimplicity we shall again consider single input/single output systems and weshall also suppose the system is autonomous. A realization will then be of theform
ẋ(t) = X(u(t),x(t)), (8.1)
y(t) = Y (x(t)). (8.2)where x(t) is the n-dimensional state-space vector, just as in the linear version(4.44)�(4.45) of these equations.8.2 Laplace Transforms and Transfer FunctionsBecause the Laplace transform is a linear transform its use in non-linear prob-lems is very limited. To illustrate this point consider the system with equations
ȳ(s) =

w̄(s)

Qs2
,

w̄(s) = F{v̄(s)},

v̄(s) = ū(s)− q̄(s),

q̄(s) = (1 +H s)ȳ(s).

(8.3)and block diagram 153
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ū(s)

+
−

q̄(s)

v̄(s)
F

w̄(s) 1
Qs2

ȳ(s)

ȳ(s)

ȳ(s)

1 + H s

where F is some non-linear operator. Assuming all the variables and necessaryderivatives are zero for t < 0 we eliminate all the intermediate variables to give
Q ÿ(t) = L−1

{

F
{

L{u(t)−H ẏ(t)− y(t)}
}}

. (8.4)For a linear system the operator F would simply apply a multiplicative rationalfunction of s to the Laplace transform of u(t)−H ẏ(t)− y(t) and the �nal e�ectof the sequence of operators L−1
{

F
{

L{·}
}} would be to produce some linearcombination of u(t) and y(t) and their derivatives. For a non-linear system wede�ne the non-linear function

f(·) = 1

Q
L−1

{

F
{

L{·}
}}

. (8.5)Now introduce the two state-space variables
x1(t) = y(t) +H ẏ(t),

x2(t) = −ẏ(t)
(8.6)and we have the realization

ẋ1(t) = H f(u(t)− x1(t))− x2(t),

ẋ2(t) = −f(u(t)− x1(t)),

y(t) = x1(t) +Hx2(t),

(8.7)which is of the form (8.1)�(8.2) with n = 2.8.3 Constant Control-Variable SystemsIn the cases where the realization is one-dimensional there is not much scopeor advantage for y(t) to be anything other than x(t), so we assume that (8.2) issimply y(t) = x(t) and (8.1) is
ẋ(t) = X(u(t), x(t)). (8.8)



8.3. CONSTANT CONTROL-VARIABLE SYSTEMS 155In Sect. 1.6.1 we considered a number of examples where, although we didn'tspeak of it in these terms, we had a constant input u(t) = u0, for which weusually used the variable a. We examined the equilibrium points of the system todetermine their stability and showed that this can alter as u0 changes. This leadsto bifurcations at particular values of u0, where the stability of an equilibriumpoint changes and/or new equilibrium points appear. The simplest case weconsidered was Example 1.6.1, which in our present notation is
ẋ(t) = u0 − x2(t). (8.9)We saw that, for u0 > 0, there were two equilibrium points x =

√
u0 being stableand x = −√

u0 being unstable. These merged at a turning-point bifurcationwhen u0 = 0 and there were no equilibrium points for u0 < 0. The modi�cationof (8.9) with u0 replaced by a variable u(t) leads in even the simplest cases,
u(t) = u0t say, to very complicated problems. So we shall concentrate onsystems with constant control. Examples 1.6.1�1.6.3 can all now be interpretedas examples of this situation where we examined the structure of the equilibriumpoints for di�erent ranges of value of the control. In most cases a detailedsolution of the problem, to give an explicit form of x(u0, t), would have beendi�cult. The only case for which we gave a full solution was (8.9) with u0 = 0. InExamples 1.6.6 and 1.6.7 we consider two-dimensional systems and linearizedabout equilibrium points to determine their stability from the eigenvalues ofthe stability matrix according to Thm. 1.6.1. In Example 1.6.7 we also found alimit cycle or periodic orbit, which is another possible equilibrium solution to asystem of non-linear equations. We now concentrate on an investigation of theequilibrium solutions of the system

ẋ(t) = X(u0,x(t)). (8.10)Such an equilibrium solution x = x̃(u0, t) will be a solution of
X(u0,x(t)) = 0. (8.11)8.3.1 The Stability of TrajectoriesIn this section we consider the general stability properties of a solution x(t)of (8.10). With x(tI) = xI specifying the solution at time tI, x(t) de�nes atrajectory1 in the space Γn of the n variables x1, x2, . . . , xn.The map φt: Γn → Γn for all t ≥ 0 is de�ned by
φt[x(tI)] = x(tI + t) (8.12)and the set of maps {φt : t ≥ 0} is called a �ow. Since
φt1 [φt2 [x(tI)]] = x(tI + t1 + t2) t1, t2 ≥ 0 (8.13)the �ow satis�es the conditions
φt1φt2 = φt1+t2 = φt2φt1 . (8.14)1Also called the path or orbit.



156 CHAPTER 8. NON-LINEAR SYSTEMSIt thus has all the properties of an Abelian (commutative) group apart from thepossible non-existence of an inverse; it is therefore an Abelian semigroup.The important question concerning a solution x(t) of (8.10) is whether it isstable. There are many di�erent de�nitions of stability in the literature. As wedid for equilibrium points in Sect. 1.6 we shall use the one due to Lyapunov:The solution x(t) to (8.10), with x(tI) = xI, is said to be uniformly stableor stable in the sense of Lyapunov if there exists, for every ε > 0, a δ(ε) > 0,such that any other solution x̃(t), for which x̃(tI) = x̃I and
|xI − x̃I| < δ(ε), (8.15)satis�es
|x(t)− x̃(t)| < ε, (8.16)for all t ≥ tI. If no such δ(ε) exists then x(t) is said to be unstable in thesense of Lyapunov. If x(t) is uniformly stable and
lim
t→∞

|x(t)− x̃(t)| = 0. (8.17)it is said to be asymptotically stable in the sense of Lyapunov.Lyapunov stability could be characterized by saying that, for stability, the twosolutions are forced to lie in a `tube' of thickness ε, for t > tI, by the initialcondition (8.15). The following de�nitions are also useful:The solution x(t) to (8.10), with x(tI) = xI, is a periodic solution ofperiod T if, x(t + T ) = x(t), for all t > tI, and there does not exist a T ′ < Twith x(t+ T ′) = x(t), for all t > tI.A cluster (or limit) point x∞ of the solution x(t) to (8.10), with x(tI) =
xI, is such that, for all τ > 0 and ε > 0, there exists a t1(ε) > τ with

|x∞ − x(t1)| < ε. (8.18)The set of cluster points is called the ω-limit set of the trajectory.Given that the solution x(t) to (8.10) is de�ned for all (positive and negative)
t and x(0) = xI the reverse trajectory xR(t) is de�ned by xR(t) = x(−t).The set of cluster points of the reverse trajectory is called the α-limit set ofthe trajectory x(t).It is clear that the existence of a cluster point x∞ implies the existence of asequence t1 < t2 < · · · < tm → ∞ such that, for the speci�ed trajectory,

x(tm) → x∞, as m→ ∞. (8.19)



8.3. CONSTANT CONTROL-VARIABLE SYSTEMS 157Let A be the ω-limit set of a particular solution x(t) to (8.10). If thereexists a region D(A), in Γn, which contains A and for which the trajectorieswith x(0) = xI, for all xI in D(A), have A as their ω-limit set, then A is calledan attractor with basin (or domain) D(A). An α-limit with the sameproperty for reverse trajectories is called a repellor.8.3.2 The Lyapunov Direct MethodAn interesting method for establishing the stability of an equilibrium point isgiven by Lyapunov's �rst theorem for stability:Theorem 8.3.1 Let x∗(u0) be an equilibrium point of (8.10). Suppose thatthere exists a continuous di�erentiable function L(x) such that
L(x∗) = 0 (8.20)and for some µ > 0

L(x) > 0, when 0 < |x∗ − x| < µ. (8.21)Then x∗ is(i) stable if
X(u0,x).∇L(x) ≤ 0, when |x∗ − x| < µ, (8.22)(ii) asymptotically stable if
X(u0,x).∇L(x) < 0, when |x∗ − x| < µ, (8.23)(iii) unstable if
X(u0,x).∇L(x) > 0, when |x∗ − x| < µ. (8.24)Proof: From (8.10) along a trajectory

dL(x)

dt
= ∇L(x).ẋ(t) = X(u0,x).∇L(x). (8.25)From (8.20) and (8.21), x∗ is a local minimum of L(x). So we can �nd an R > 0,with µ ≥ R, such that, for all R > |x∗−x1| > |x∗−x2|, L(x1) > L(x2). Then if(8.22) applies, it follows from (8.25) that a trajectory cannot move further from

x∗ and, given any ε > 0, (1.114) can be satis�ed by choosing δ(ε) in (1.113)to be the smaller of ε and R. If the strict inequality (8.23) applies it followsfrom (8.25) that the trajectory must converge to x∗. The condition for x∗ tobe unstable is established in a similar way.A function L(x) which satis�es (8.22) is called a Lyapunov function and whichsatis�es (8.23) a strict Lyapunov function. The method of establishing stability



158 CHAPTER 8. NON-LINEAR SYSTEMSof an equilibrium point by �nding a Lyapunov function is called the Lyapunovdirect method. If
X(u0,x) = −∇U(u0,x), (8.26)(cf. (1.108)) and U(u0,x) has a local minimum at x∗, for some �xed u∗0. Thenthe choice
L(x) = U(u∗0,x)− U(u∗0,x

∗), (8.27)satis�es (8.20) and (8.21), with
X(u∗0,x).∇L(x) = −|∇U(u∗0,x)|2 < 0. (8.28)So a local minimum of U(u0,x) is, as we might expect, an asymptotically stableequilibrium point. To establish that a local maximum is an unstable equilibriumpoint simply make the choice
L(x) = U(u∗0,x

∗)− U(u∗0,x). (8.29)Example 8.3.1 Show that (0, 0) is a stable equilibrium point of
ẋ(t) = −2x(t)− y2(t), ẏ(t) = −x2(t)− y(t). (8.30)Try
L(x, y) = αx2 + βy2. (8.31)For α and β positive (8.20) and (8.21) are satis�ed and

X(x, y).∇L(x, y) = −{2αx(2x+ y2) + 2βy(y + x2)}

= −2x2(2α+ βy)− 2y2(β + 2αx). (8.32)So in the neighbourhood |x| < β/α, |y| < 2α/β of the origin (8.22) is satis�edand the equilibrium point is stable.The problem in this method is to �nd a suitable Lyapunov function. This ingeneral can be quite di�cult. There are, however, two cases where the choice isstraightforward:A conservative system given by
ẍ(t) = −∇V (u0,x), (8.33)(cf. (1.102) and (1.104)), which in terms of the 2n variables x1, . . . , xn, v1, . . . , vncan be expressed in the form
ẋ(t) = v, v̇(t) = −∇V. (8.34)



8.3. CONSTANT CONTROL-VARIABLE SYSTEMS 159An equilibrium point with u0 = u∗0 is given by v = 0 and a value x = x∗ whichsatis�es ∇V = 0. Now try
L(x,v) =

1
2
v.v + V (u∗0,x)− V (u∗0,x

∗). (8.35)With
∇L(x) =

(

∇V
v

) (8.36)
X(u∗0,x).∇L(x) = 0. (8.37)Since, from (8.35) L(x∗, 0) = 0 it follows from (8.37) that the equilibrium pointis stable (but not asymptotically stable) if (8.21) holds. From (8.35) this willcertainly be the case if x∗ is a local minimum of V (u∗0,x). It can be shownthat such a minimum of the potential is a centre, which is stable in the sense ofLyapunov.A Hamiltonian system given by (1.100), in terms of the 2n variables

x1, . . . , xm, p1, . . . , pm. If the system is autonomous and we have an equilibriumpoint (x∗,p∗) then, with
L(x,p) = H(x,p)−H(x∗,p∗) (8.38)we have, from (1.101)
dL

dt
=

dH

dt
= X(x,p).∇L(x,p) = 0. (8.39)The equilibrium point is stable if it is a local minimum of the Hamiltonian. Anexample where this is true is the equilibrium point at the origin for the simpleharmonic oscillator with Hamiltonian

H(x, p) =
1
2mp2 +

1
2ω

2x2. (8.40)Even when the equilibrium point is not a local minimum of the Hamiltonian,its form can often be a guide to �nding an appropriate Lyapunov function.Example 8.3.2 Consider the stability of the equilibrium point at the origin forthe system with Hamiltonian
H(u0, x1, x2, p1, p2) =

1
2{x

2
1 + x22 + p21 + p22}+ u0{p1x2 − p2x1}. (8.41)From (1.100) the equations of motion for this system are

ẋ1(t) =
∂H

∂p1
= p1 + u0x2, ṗ1(t) = − ∂H

∂x1
= −x1 + u0p2,

ẋ2(t) =
∂H

∂p2
= p2 − u0x1, ṗ2(t) = − ∂H

∂x2
= −x2 − u0p1.

(8.42)



160 CHAPTER 8. NON-LINEAR SYSTEMSThe origin is clearly an equilibrium point. However, in the plane x2 = p1 = 0,
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= 1− u0
2. (8.43)So the origin is a saddle point in this plane when |u0| > 1. However, the function

L(x1, x2, p1, p2) = H(0, x1, x2, p1, p2) (8.44)has a minimum at the origin with
X(u0, x1, x2, p1, p2).∇L(x1, x2, p1, p2) = 0. (8.45)So we have found a Lyapunov function which establishes the stability of theequilibrium point.8.4 The Stability of Periodic SolutionsIn Example 1.6.7 we investigated the Hopf bifurcation at which a stable limitcycle emerged from a stable equilibrium point. It is clear that a limit cycle isa type of periodic orbit but we have yet to give a more formal de�nition. Thiscan be done using the de�nitions of stability of trajectories given in Sect. 8.3.1.The periodic solution x(t) to (8.10) is a stable limit cycle if it is asymp-totically stable and an unstable limit cycle if it is unstable.We now consider the case of periodic solutions for a two-dimensional system
ẋ1(t) = X1(u0, x1, x2), ẋ2(t) = X2(u0, x1, x2). (8.46)which we suppose to have a unique solution at all points in {x1, x2} which are notequilibrium points [X1(u0, x1, x2) = X2(x1, x2) = 0]. We state two importantresults for such systems. The second of these, which is the Poincaré-Bendixsontheorem will be shown to be a consequence of the �rst result, which is statedwithout proof.Theorem 8.4.1 If a trajectory of (8.46) has a bounded ω-set, then that set iseither an equilibrium point or a periodic trajectory.Theorem 8.4.2 Let C be a closed, bounded (i.e. compact) subset of the x1�x2plane. If there exists a solution γ = (x1(t), x2(t)) of (8.46), which is containedin C for all t ≥ 0, then it tends either to an equilibrium point or to a periodicsolution as t→ ∞.



8.4. THE STABILITY OF PERIODIC SOLUTIONS 161Proof: Consider the in�nite sequence (x1(t0 + nε), x2(t0 + nε)) of points of
γ, with t0 > 0, ε > 0, n = 0, 1, 2, . . .. All these points lie in the compact set
C so it follows from the Bolzano-Weierstrass theorem that the sequence has atleast one limit point. This point must belong to the ω-limit set of γ, which isthus non-empty. From Thm. 8.4.1 this ω-limit set is an equilibrium point or aperiodic solution to which γ tends.It follows from the Poincaré-Bendixson theorem that the existence of a trajec-tory γ of the type described in the theorem guarantees the existence of eithera periodic trajectory or an equilibrium point in C. It is clear that a periodicsolution which is the ω-set of γ cannot be an unstable limit cycle, but it alsoneed not be a stable limit cycle.Example 8.4.1

ẋ1(t) = x1 − x2 − x1(x
2
1 + 2x22),

ẋ2(t) = x1 + x2 − x2(x
2
1 + x22).

(8.47)In polar coordinates (8.47) take the form
ṙ(t) = r − r3

{

1 +
1
4 sin2(2θ)

}

, (8.48)
θ̇(t) = 1 + r2 sin2(θ) cos(θ). (8.49)From (8.48)
r − 5

4r
3 ≤ dr

dt
≤ r − r3, for all θ, (8.50)and thus

ṙ(t) < 0, for all θ, if r > r1 = 1,
ṙ(t) > 0, for all θ, if r < r2 = 2/

√
5 = 0.8944. (8.51)So any trajectory with (x1(0), x2(0)) in the annulus C = {(x1, x2) : r2 ≤

√

x21 + x22 ≤ r1} remains in this region for all t > 0. The minimum valueof 1 + r2 sin2(θ) cos(θ) as θ varies at constant r is 1− 2r2/(3
√
3) and thus

θ̇(t) > 1− 2r22
3
√
3
= 1− 8

15
√
3
' 0.69208. (8.52)So θ̇(t) is never zero and there are no equilibrium points in C. Thus, from thePoincaré-Bendixson theorem there is at least one periodic orbit.Problems 81) Systems are given by



162 CHAPTER 8. NON-LINEAR SYSTEMS(i) ẋ(t) = −x− 2y2, ẏ(t) = xy − y3,(ii) ẋ(t) = y − x3, ẏ(t) = −x3.Using a trial form of L(x, y) = xn + αym for the Lyapunov function showthat, in each case the equilibrium point x = y = 0 is asymptotically stable.2) A system is given by
ẋ(t) = x2y − xy2 + x3, ẏ(t) = y3 − x3Show that x = y = 0 is the only equilibrium point and, using a trial form of

L(x, y) = x2+αxy+βy2 for the Lyapunov function, show that it is unstable.3) Consider the system
ẋ(t) = F (x, y), ẏ(t) = G(x, y).Let C be a closed bounded subset of the {x, y} plane. Show that if thereexists a solution γ = (x(t), y(t)) to these equations which is contained in Cfor all t ≤ 0 then C contains either an equilibrium point or a periodic solutionof the system. For the particular case
F (x, y) = −x− y + x(x2 + 2y2), G(x, y) = x− y + y(x2 + 2y2)show that the origin is the only equilibrium point and determine its type.Express the equations in polar form and, by considering the directions inwhich trajectories cross suitable closed curves, show that the system has atleast one periodic solution. As an optional extra solve the equations anddetermine the equation of the periodic solution. Try plotting it in MAPLE .



Chapter 9Solutions9.1 Problems 11) (a) This equation is separable and can be rearranged to give
∫

dx

2x
=

∫

dt

t
+ constant.This gives

1
2
ln |x| = ln |t|+ constant,and hence

x = At2,for any constant A.(b) This equation is homogeneous so write y = x/t with
dx

dt
= y + t

dy

dt
.This is now separable and can be rearranged to give

∫

cos(y)

sin(y)
dy = −

∫

dt

t
+ constant.Integrating

ln | sin(y)| = − ln |t|+ constant.Solving for y and substituting x = yt gives
x = t arcsin(A/t),for any constant A. 163



164 CHAPTER 9. SOLUTIONS(c) Again let x = yt to give
2y

{

y + t
dy

dt

}

= y2 + 1This can be rearranged to give
∫

2ydy

1− y2
=

∫

dt

t
+ constant.Integrating

ln |1− y2| = − ln |t|+ constant.Thus
y = ±

√

1− A

t
,giving

x = ±
√

t2 − tA.(d) Rearrange the equation in the form
dx

dt
− x

(

1 + t

t

)

=
exp(t)

t
.The integrating factor is

exp

{

−
∫

(1 + 1/t)dt

}

=
exp(−t)

t
.So

d

dt

{

x exp(−t)
t

}

=
1

t2
,giving

x = (At− 1) exp(t).(e) Rearrange the equation in the form
dx

dt
+

xt

t2 − 1
= − t

t2 − 1
.The integrating factor is

exp

{∫

tdt

t2 − 1

}

= exp
{

1
2 ln |t2 − 1|

}

=
√

|t2 − 1|.Take �rst the case |t| > 1. Then
d

dt

{

x
√

t2 − 1
}

= − t√
t2 − 1

,giving
x
√

t2 − 1 = A−
√

t2 − 1



9.1. PROBLEMS 1 165and thus
x =

A√
t2 − 1

− 1.If you now repeat the calculation for |t| < 1 you will get the solution
x =

A√
1− t2

− 1.So the solution for all t 6= ±1 is
x =

A
√

|t2 − 1|
− 1.In fact with some care you could retain the modulus signs throughoutand do both cases together.2) (a) The auxiliary equation for

d2x

dt2
− 5

dx

dt
+ 6x = 2 exp(t) + 6t− 5is

λ2 − 5λ+ 6 = 0with roots λ = 2, 3. So the complementary function is
xc(t) = A exp(2t) + B exp(3t).To �nd a particular integral we construct a trial function T(t) from f(t) =

2 exp(t) + 6t− 5. Since λ = 1 is not a root of the auxiliary equation thetrial function for the exponential term 2 exp(t) is C exp(t). Since λ = 0is not a root of the auxiliary equation the trial function for 6t is Et+Gand the constant just adds a constant. So the total trial function is
T(t) = C exp(t) + Et+G.Now substitute into the equation
{C exp(t)} − 5{C exp(t) + E}+ 6{C exp(t) + Et+G} = 2 exp(t) + 6t− 5.Equating coe�cients on the left and right
2C = 2, 6E = 6, G = 0.So the particular integral is
xp(t) = exp(t) + tand the general solution is
x(t) = A exp(2t) + B exp(3t) + exp(t) + t.



166 CHAPTER 9. SOLUTIONS(b) The auxiliary equation for
d2x

dt2
+ x = 2 sin(t)is

λ2 + 1 = 0with roots λ = ±i. So the complementary function is
xc(t) = A cos(t) + B sin(t).Now λ2 + 1 is a factor of the auxiliary equation of multiplicity one; (infact it is the whole function). So the trial function is
T(t) = t[C cos(t) + E sin(t)].Substituting into the equation
−t[C cos(t) + E sin(t)]− 2[C sin(t)− E cos(t)] + t[C cos(t) + E sin(t)] = 2 sin(t).Equating coe�cients C = −1 and E = 0. So the general solution is
x(t) = −t cos(t) +A cos(t) + B sin(t).(c) For
d3x

dt3
+ 2

d2x

dt2
+ 6

dx

dt
= 1 + 2 exp(−t),the auxiliary equation is

λ3 + 2λ2 + 6λ = 0.This equation has the real root λ = 0 and the complex pair
λ = −1± i

√
5.So the complementary function is

xc(t) = A+ exp(−t)[B cos(
√
5t) + C sin(

√
5t)].Since λ = −1 is not a root of the auxiliary equation, the trial functionfor 2 exp(−t) is E exp(−t). However, λ = 0 is a root of multiplicity one,so the trial function for 1 is Gt. So

T(t) = Gt+ E exp(−t).Substituting in the equation
−E exp(−t) + 2E exp(−t)− 6E exp(−t) + 6G = 1 + 2 exp(−t).So G = 1/6 and E = −2/5 and the general solution is
x(t) =

1

6
t− 2

5
exp(−t) +A+ exp(−t)[B cos(

√
5t) + C sin(

√
5t)].



9.1. PROBLEMS 1 1673) The auxiliary equation of
d2x

dt2
− 3

dx

dt
+ 4x = 0is

λ2 − 3λ+ 4 = 0with roots λ = 3
2 ± i

√
7
2 . So

xc(t) = exp

(

3

2
t

)

[

A cos

(√
7

2
t

)

+ B sin

(√
7

2
t

)]

.This is the complementary function for
d2x

dt2
− 3

dx

dt
+ 4x = t2 exp(t).Since λ = 1 is not a root of the auxiliary equation the trial function is

T(t) = exp(t)[Ct2 +Gt+H].Now
dT(t)

dt
= exp(t)[Ct2 + (2C+G)t+ (G+H)],

d2T(t)

dt2
= exp(t)[Ct2 + (4C+G)t+ (2C+ 2G+H)].and substituting into the equation and equating coe�cients 2C = 1, −2C+

2G = 0, 2C−G+ 2H = 0 giving the general solution
x(t) =

1

4
exp(t)[2t2 + 2t− 1] + exp

(

3

2
t

)

[

A cos

(√
7

2
t

)

+ B sin

(√
7

2
t

)

.

]Now applying the conditions x = 0 and dx/dt = 1 at t = 0

0 = − 1
4 +A,

1 = 1
4 + 3

2A+
√
7
2 B.This gives A = 1

4 , B = 3
√
7/28 and

x(t) =
1

4
exp(t)[2t2 + 2t− 1] +

1

4
exp

(

3

2
t

)

[

cos

(√
7

2
t

)

+
3√
7
sin

(√
7

2
t

)

.

]



168 CHAPTER 9. SOLUTIONS4) (i) The equilibrium points are given by x = 0 and x = x∗ = (a − c)/ab.Linearizing about x = 0

d4x
dt

= (a− c)4x,with solution
4c = C exp[(a− c)t].So this solution is stable if a < c and unstable if a > c. Linearize about

x = x∗

d4x
dt

= (c− a)4x,with solution
4c = C exp[(c− a)t].So this solution is stable if a > c and unstable if a < c. There are �vedi�erent cases:When c = 0, x∗ = 1/b and the lines of equilibrium points are parallel tothe a-axis. There is no bifurcation but the stability changes at a = 0.(Fig. 9.1.)When b > 0 and c > 0, there is a transcritical bifurcation at x = 0,

a = c on one branch of x = x∗(a). The second branch is unstable.(Fig. 9.2.) The case b < 0, c > 0 is the mirror image of this in thevertical axis.When b < 0 and c < 0, there is a transcritical bifurcation at x = 0,
a = c on one branch of x = x∗(a). The second branch is stable. (Fig.9.3.) The case b > 0, c < 0 is the mirror image of this in the verticalaxis. The equation is separable so

∫

dx

x(a− c− abx)
= t+ constant.Using partial fractions it is easy to do the integration and the �nalsolution is

x(t) =
C(a− c) exp[(a− c)t]

1 + abC exp[(a− c)t]
,for some constant C. If a < c, x → 0 as t → ∞ and, if a > c,

x→ (a− c)/ab as t→ ∞.(ii) The equilibrium solutions are x = 0 and
x = x∗ =











a/b, if c = 0,
b±

√
b2 − 4ac

2c
, if c 6= 0,
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a

x

x = 1/b

0c = 0

Figure 9.1: Bifurcation diagram for question 4(i) with c = 0.
a

x

x = 1/b

0

b

c > 0, b > 0

Figure 9.2: Bifurcation diagram for question 4(i) with c > 0, b > 0.Linearizing about x = 0

d4x
dt

= a4x.So this equilibrium point is stable if a < 0 and unstable if a > 0.Linearizing about x = x∗

d4x
dt

= x∗(2x∗c− b)4x.So x∗ is stable if x∗(2x∗c − b) < 0 and unstable if x∗(2x∗c − b) > 0.When c = 0 these conditions reduce to a > 0 and a < 0 respectively.When c = 0 and b > 0, there is a transcritical bifurcation at the origin.(Fig. 9.4.) For c = 0 and b < 0 the bifurcation diagram is obtainedfrom this by re�ection in the vertical axis.
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a

x

x = 1/b

0
b

c < 0, b < 0

Figure 9.3: Bifurcation diagram for question 4(i) with c < 0, b < 0.
a

x0
b

c = 0, b > 0

Figure 9.4: Bifurcation diagram for question 4(ii) with c = 0, b > 0.When c > 0 and b > 0, there is a transcritical bifurcation at the originand a turning-point bifurcation at x = b/2c, a = b2/4c. (Fig. 9.5.) Thecase c > 0, b < 0 is obtained from this by re�ection in the vertical axis.
a

xb/2c

b2/4c

0
c > 0, b > 0

b

b

Figure 9.5: Bifurcation diagram for question 4(ii) with c > 0, b > 0.
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a

xb/2c

b2/4c

0c < 0, b < 0
b

bFigure 9.6: Bifurcation diagram for question 4(ii) with c < 0, b < 0.When c < 0 and b < 0, there are again a transcritical and a turning-point bifurcation at the same locations. (Fig. 9.6.) The case c < 0 and
b > 0 is obtained from this by re�ection in the vertical axis.Each of these c 6= 0 systems of bifurcations goes into a pitchfork bi-furcation when b → 0. Denoting the two branches of x∗ by x(±), theequation can separated into

∫

dx

x[x − x(+)][x− x(−)]
= constant + atDecomposing into partial fractions and integrating gives

xα[x− x(+)]γ
(+)

[x− x(−)]γ
(−)

= C exp(at).where α = x(+)x(−), γ(±) = x(±)[x(±) − x(∓)]. The limiting behaviouras t → ∞ can be obtained by considering the various signs of theparameters.5) In both parts of this problem the only equilibrium point is x = y = 0 and ina neighbourhood of the origin
d4x

dt
= Ax, (?) where x =

(

x
y

)and(i)
A =

(

1 3
3 1

)

.This matrix has eigenvalues λ = −2, 4. The equilibrium point is unsta-ble because it has a positive (real) eigenvalue, but since it also has onenegative (real) eigenvalue it is a saddle-point.



172 CHAPTER 9. SOLUTIONS(ii)
A =

(

3 2
1 2

)

.This matrix has eigenvalues λ = 1, 4. The equilibrium point is unstablebecause it has two positive (real) eigenvalues. In this case since botheigenvalues are positive it is called an unstable node.6) The right-hand sides of these two equations are both zero when x = y = 0.Now the Taylor expansions of sin(x) and cos(x) give
sin(4x) = 4x+O(4x3), cos(4x) = 1 + O(4x2).So when linearized to the same form as (?) we have
A =

(

1 1
0 −2

)

.This matrix has eigenvalues λ = −2, 1. The equilibrium point is a saddle-point.7) All the equilibrium points are given by the simultaneous solutions of
x2 = y, 8x = y2.This gives x4 = 8x, which has the solutions
x = 0, implying y = 0, (1)

x = 2, implying y = 4. (2)For (1)
A =

(

0 1
8 0

)

.This matrix has eigenvalues λ = ±
√
8 giving a saddle-point.For (2)

A =

(

−4 1
8 −8

)

.This matrix has eigenvalues λ = −6 ± 2
√
3. Both these eigenvalues arenegative so the equilibrium point is a stable node.



9.2. PROBLEMS 2 1739.2 Problems 21) (i) From lines 7 and 11 of the table
L{t sin(ωt)} = − d

ds

(

ω

s2 + ω2

)

=
2ωs

(ω2 + s2)2
,(ii) From lines 6, 7 and 11 of the table

L{sin(ωt)− ωt cos(ωt)} =
ω

s2 + ω2
+ ω

d

ds

(

s

s2 + ω2

)

=
2ω3

(ω2 + s2)2
.Taking the Laplace transform of the di�erential equation gives

x̄(s)[s2 + ω2] =
ω

ω2 + s2
,givinḡ

x(s) =
ω

(ω2 + s2)2
.So

x(t) =
1

2ω2
[sin(ωt)− ωt cos(ωt)].2) Taking the Laplace transform of the di�erential equation gives

x̄(s) =
1

s(1 + s3)
=

1

s(s+ 1)(s2 − s+ 1)
=

1

s(s+ 1)[(s− 1
2 )

2 + 3
4 ]
.Resolving into partial fractions

1

s(s+ 1)[(s− 1
2 )

2 + 3
4 ]

=
1

s
− 1

3(s+ 1)
− 2s− 1

3(s2 − s+ 1)and
L−1

{

1

s

}

= 1,

L−1

{

1

3(s+ 1)

}

=
1
3 exp(−t),

L−1

{

2s− 1

3(s2 − s+ 1)

}

= L−1















2
(

s− 1
2

)

3

[

(

s− 1
2

)2

+ 3
4

]















=
2
3 exp

(

1
2
t
)

cos
(√

3
2
t
)

.
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x(t) = 1− 1

3
exp(−t)− 2

3
exp

(

1
2
t
)

cos
(√

3
2
t
)

.3) Using
L−1

{

1

(s− 1)2

}

= t exp(t)and the convolution integral formula
y(t) = −

∫ t

0

u(t− u) exp(t− u)du.Now just use integration by parts and you will �nd that
y(t) = −{2 + t+ exp(t)[t− 2]}.4) From the second line of the table and the value of Γ(12 ) given below equation(2.15)
L{t− 1

2 } =
Γ
(

1
2

)

s
1
2

=

√
π

s
1
2

.For part two of this question there are (at least) two methods:Method 1:
L
{

Erf(t
1
2 )
}

=
2√
π

∫ ∞

0

dt exp(−st)
∫ t

1
2

0

du exp(−u2)Let v = u2.
=

1√
π

∫ ∞

0

dt exp(−st)
∫ t

0

dv v−
1
2 exp(−v)Now go through the procedure for changingthe order of integration as in pages 44 and 45 of the notes.

= lim
λ→∞

1√
π

∫ λ

0

dt exp(−st)
∫ t

0

dv v−
1
2 exp(−v)

= lim
λ→∞

1√
π

∫ λ

0

dvv−
1
2 exp(−v)

∫ λ

v

dt exp(−st)Now let t = w + v.
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= lim

λ→∞

1√
π

∫ λ

0

dvv−
1
2 exp(−v)

∫ λ−v

0

dw exp[−s(w + v)]Now take the λ limit.The integral factors into two parts.
=

1√
π

[∫ ∞

0

dvv−
1
2 exp[−v(s+ 1)]

] [∫ ∞

0

dw exp(−sw)
]The second integral contributes 1/sand the �rst is the `shifted' Laplace transform of t− 1
2 .

=
1

s(s+ 1)
1
2

.Method 2:Using the same change of variable v = u2

L
{

Erf(t
1
2 )
}

=
1√
π
L
{∫ t

0

1√
v
exp(−v)dv

}

.Using the shift theorem
L
{

1√
t
exp(−t)

}

=

√

π

1 + sand the result follows from the formula for the Laplace transform of a con-volution with y(t− u) = 1.5) (i)
Z−1

{

z

(z − 1)(z − 2)

}

= Z−1

{

z

[

1

z − 2
− 1

z − 1

]}

= Z−1

{

z

z − 2

}

−Z−1

{

z

z − 1

}

= 2k − 1.(ii)
Z−1

{

z

(z2 + a2

}

= Z−1

{

z

2ia

[

1

z − ia
− 1

z + ia

]}
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=

1

2ia

[

Z−1

{

z

z − ia

}

−Z−1

{

z

z + ia

}]

=
1

2ia
[(ia)k − (−ia)k]

= ak−1 1

2i

[

exp

(

ikπ

2

)

− exp

(

− ikπ

2

)]

= ak−1 sin

(

kπ

2

)(iii) z3 + 2z2 + 1

z3
= 1 + 2z−1 + z−3.So x(0) = 1, x(1) = 2, x(2) = 0, x(3) = 1 and x(k) = 0 for k > 3.6) (i) Taking the Z transform

8z2x̃(z)− 8z2 − 12z − 6zx̃(z) + 6z + x̃(z) =
9z

z − 1
.So

x̃(z) =
z

8(z − 1
2 )(z − 1

4 )

[

9

z − 1
+ 8z + 6

]

=
2z

z − 1
4

− 4z

z − 1
2

+
3z

z − 1
.Giving

x(k) = 2
(

1
4

)k − 4
(

1
2

)k
+ 3.(ii) Taking the Z transform

z2x̃(z)− z2 − z
√
2 + 2x̃(z) = 0.So

x̃(z) =
z(z +

√
2)

z2 + 2

=
z(1 + i)

2(z +
√
2i)

+
z(1− i)

2(z −
√
2i)Giving

x(k) = 2
k
2

[

cos

(

kπ

2

)

+ sin

(

kπ

2

)]

.



9.3. PROBLEMS 3 1777) Taking the Z transform
zx̃(z)− x0z = 1.5x̃(z)− ỹ(z),

zỹ(z)− y0z = 0.21x̃(z) + 0.5ỹ(z).Eliminating ỹ(z)
x̃(z) =

zx0(z − 0.5)− y0z

(z − 1.5)(z − 0.5) + 0.21

= z

[

x0(z − 0.5)− y0
z2 − 2z + 0.96

]

=
z(1.75x0 − 2.5y0)

z − 1.2
− z(0.75x0 − 2.5y0)

z − 0.8
.Giving

x(k) = (1.75x0 − 2.5y0)(1.2)
k − (0.75x0 − 2.5y0)(0.8)

k.In the limit of large k
x(k + 1)

x(k)
= 1.2,which is a 20% increase or decrease according to the sign of (1.75x0−2.5y0).9.3 Problems 31) Since there is a unit feedback the block diagram represents the situation

ȳ(s) = G(s)[ū(s)− ȳ(s)],where
G(s) =

K

s(s+Q)
.Thus

ȳ(s) =
G(s)ū(s)

G(s) + 1
=

Kū(s)

s(s+Q) + K
.If u(t) = u0, ū(s) = u0/s and

ȳ(s) =
Ku0

s(s− s(+))(s− s(−))
,
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s(±) = 1

2

[

−Q±
√

Q2 − 4K
]

.(i) when K− 1
4Q

2 = ω2 > 0,
s(±) = −1

2Q± iωand
ȳ(s) =

Ku0

s
[

(

s+ 1
2Q
)2

+ ω2
]

=
A

s
+

B
(

s+ 1
2Q
)

+ C
(

s+ 1
2Q
)2

+ ω2
.Then recombining the partial fractions A = u0, B = −u0 and C =

− 1
2Qu0, giving

y(t) = u0

[

1− exp
(

−1
2
Qt
)

{

cos(ωt) +
Q

2ω
sin(ωt)

}]

,(ii) when 1
4Q

2 − K = ζ2 > 0,
s(±) = −1

2Q± ζand
ȳ(s) =

Ku0

s
[(

s+ 1
2Q
)

+ ζ
] [(

s+ 1
2Q
)

− ζ
]

=
A

s
+

B
(

s+ 1
2Q
)

+ ζ
+

C
(

s+ 1
2Q
)

− ζ
.Then recombining the partial fractions A = u0, B = u0(

1
2Q − ζ)/(2ζ)and C = −u0(12Q+ ζ)/(2ζ), giving

y(t) = u0

[

1− 1

2ζ
exp

(

−1
2
Qt
)

{[

1
2Q+ ζ

]

exp(ζt) −
[

1
2Q− ζ

]

exp(−ζt)
}

]

.2) Put the intermediate variables on the diagram as follows:
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ū(s)

+
−

+
− ȳ(s)1

s+Q
1
s

H1

H2

ȳ(s)ȳ1(s)v̄2(s)v̄1(s)

f̄1(s)

f̄2(s)

Then
v̄1(s) = ū(s)− f̄1(s),

v̄2(s) = v̄1(s)− f̄2(s),

ȳ1(s) =
1

s+Q
v̄2,

f̄2(s) = H2ȳ1(s),

ȳ(s) =
1

s
ȳ1(s),

f̄1(s) = H1ȳ(s).Thus
ū(s) = v̄1(s) + f̄1(s)

= f̄2 + v̄2(s) + f̄1(s)

= H2ȳ1(s) + (s+Q)ȳ1(s) +H1ȳ(s)

= sH2ȳ(s) + s(s+Q)ȳ(s) +H1ȳ(s).Giving the required result.3) (i) Taking the Z transform of y(k)− 2y(k − 1) = u(k − 1) gives
ỹ(z)− 2z−1ỹ(z) = z−1ũ(z).Thus
ỹ(z) =

ũ(z)

z − 2
.



180 CHAPTER 9. SOLUTIONSIf u(k) = 1, for all k, ũ(z) = z/(z − 1) So
ỹ(z) =

z

(z − 2)(z − 1)

=
z

z − 2
− z

z − 1So
y(k) = 2k − 1.(ii) Taking the Z transform of y(k) + 5y(k − 1) + 6y(k − 2) = u(k − 1) +

u(k − 2),
ỹ(z) + 5z−1ỹ(z) + 6z−2ỹ(z) = z−1ũ(z) + z−2ũ(z),giving̃
y(z) =

ũ(z)(z + 1)

z2 + 5z + 6
.With the same ũ(z) as in (i)

ỹ(z) =
z(z + 1)

(z − 1)(z2 + 5z + 6)

= z

[

A

z − 1
+

B

z + 3
+

C

z + 2

]

.Recombining the partial fractions and equating gives A = 1
6 , B = − 1

2and C = 1
3 . So inverting the Z transform

y(k) =
1
6 − 1

2(−3)k +
1
3(−2)k.9.4 Problems 41) If the polynomial

exp(zt) = B(t) + C(t)zis satis�ed by each of the the eigenvalues of A it is also satis�ed by A itself.Thus
exp(λt) = B(t) + C(t)λ,

exp(µt) = B(t) + C(t)µ.So
C(t) =

exp(λt) − exp(µt)

λ− µ
, B(t) =

λ exp(µt)− µ exp(λt)

λ− µ
,
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exp(At) =

[λ exp(µt)− µ exp(λt)]I + [exp(λt)− exp(µt)]A

λ− µ
.When λ is a double root it also satis�es the derivative of the equation

t exp(λt) = C(t).Thus
C(t) = t exp(λt), B(t) = exp(λt)[1 − λt],giving
exp(At) = exp(λt)[1 − λt]I + t exp(λt)A.2) The eigenvalues of the matrix
A =









0 1 0

0 0 1

2 1 −2







are 1,−1,−2. So if
exp(zt) = B(t) + C(t)z +D(t)z2is satis�ed by each of the the eigenvalues of A it is also satis�ed by A itself.Thus

exp(t) = B(t) + C(t) +D(t),

exp(−t) = B(t)− C(t) +D(t),

exp(−2t) = B(t)− 2C(t) + 4D(t),giving
B(t) =

1
3
[exp(t) + 3 exp(−t)− exp(−2t)],

C(t) =
1
2 [exp(t)− exp(−t)],

D(t) =
1
6
[exp(t)− 3 exp(−t) + 2 exp(−2t)].
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exp(At) = B(t)I + C(t)A +D(t)A2into
y(t) =

∫ t

0

cT exp[A(t− τ)]bu(τ)dτ,[see (4.134)]. Now with u(t) = Kt and the given forms for b and cT
cT exp[A(t− τ)]bu(τ) = Kτ [2C(t− τ) − 3D(t− τ)]

=
1
2Kτ [exp(t− τ) + exp(τ − t)− 2 exp(2τ − 2t)].Substituting into the integral

y(t) = −1
4K[3 + 2t− 2 exp(t)− 2 exp(−t) + exp(−2t)].3) (sI −A) =







s+
3

4

1

4
1

2
s+

1

2






.

(sI −A)−1 =







2
2 s+ 1

4 s2 + 5 s+ 1
− 1

4 s2 + 5 s+ 1

−2
1

4 s2 + 5 s+ 1

4 s+ 3

4 s2 + 5 s+ 1






.

G(s) = cT(sI −A)−1b =
6

s+ 1
.

U =

(

1 −1

1 −1

)

, V =

(

4 2

−4 −2

)

.(Since both these matrices are singular the realization is neither controllablenor observable. In fact we knew that it couldn't be both since, from the formof G(s), nmin = 1.)4) U =

(

1 −4

3 −10

)

, Det{U} = 2, U−1 =
1
2

(

−10 4

−3 1

)

.So the system is controllable.
T =

(

−3
2

1
2

5
2

−1
2

)

, T−1 =

(

1 1

5 3

)
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TAT−1 =

(

0 1

−6 −5

)

.5) (i) Decomposing into partial fractions gives
ȳ(s) =

ū(s)

1 + s
− ū(s)

(1 + s)2
+

ū(s)

(1 + s)3
.Then let̄

x1(s) =
ū(s)

1 + s
,

x̄2(s) =
x̄1(s)

1 + s
=

ū(s)

(1 + s)2
,

x̄3(s) =
x̄2(s)

1 + s
=

ū(s)

(1 + s)3
.Then

ȳ(s) = x̄1(s)− x̄2(s) + x̄3(s),

y(t) = x1(t)− x2(t) + x3(t),

cT =
(

1 −1 1
)

.

sx̄1(s) = −x̄1(s) + ū(s),

sx̄2(s) = −x̄2(s) + x̄1(s),

sx̄3(s) = −x̄3(s) + x̄2(s),

ẋ1(t) = −x1(t) + u(t),

ẋ2(t) = −x2(t) + x1(t),

ẋ3(t) = −x3(t) + x2(t),So
A =









−1 0 0

1 −1 0

0 1 −1









, b =









1

0

0









.(ii) Decomposing into partial fractions gives
ȳ(s) = − ū(s)

1 + s
+

2ū(s)

(1 + s)2
+

ū(s)

(3 + s)
.
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x1(s) =

ū(s)

1 + s
,

x̄2(s) =
x̄1(s)

1 + s
=

ū(s)

(1 + s)2
,

x̄3(s) =
ū(s)

3 + s
.Then

ȳ(s) = −x̄1(s) + 2x̄2(s) + x̄3(s),

y(t) = −x1(t) + 2x2(t) + x3(t),

cT =
(

−1 2 1
)

.

sx̄1(s) = −x̄1(s) + ū(s),

sx̄2(s) = −x̄2(s) + x̄1(s),

sx̄3(s) = −3x̄3(s) + ū(s),

ẋ1(t) = −x1(t) + u(t),

ẋ2(t) = −x2(t) + x1(t),

ẋ3(t) = −3x3(t) + u(t),So
A =









−1 0 0

1 −1 0

0 0 −3









, b =









1

0

1









.9.5 Problems 51) In matrix forms the equations become
ẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),where
A =

(

−2 4

4 −4

)

, b =

(

0

1

)

, cT =
(

1 0
)

.The characteristic equation of A is
∆(λ) = λ2 + 6λ− 8.



9.5. PROBLEMS 5 185The roots are λ(±) = −3±
√
17. Since λ(+) > 0 the system is unstable. Now

(sI −A)−1 =
1

s2 + 6s− 8

(

s+ 4 4

4 s+ 2

)

;giving
G(s) = cT(sI −A)−1b =

4

s2 + 6s− 8
.Change the input to u(t)− γx1(t).

ẋ(t) = Ax(t) + b
[

u(t)− γ
(

1 0
)

x(t)
]

,

=
[

A− γb
(

1 0
)]

x(t) + bu(t),

= A′x(t) + bu(t),where
A′ =

(

−2 4

4− γ −4

)

.

(sI −A′)−1 =
1

s2 + 6s− 8 + 4γ

(

s+ 4 4

4− γ s+ 2

)

;giving
G′(s) = cT(sI −A′)−1b =

4

s2 + 6s− 8 + 4γ
=

G(s)

1 +G(s)4H(s)
.Thus 4H(s) = γ. For the system to be asymptotically stable the real partsof the roots of

φ(s) = s2 + 6s− 8 + 4γmust be negative. The roots are s(±) = −3 ±√
17− 4γ. The larger root isreal and negative if 2 < γ ≤ 17/4 and both roots are complex with a negativereal part if γ > 17/4. So the system is asymptotically stable if γ > 2. When

γ = 5, u(t) = u0 and x1(0) = x2(0) = 0

ȳ(s) =
4u0

s(s2 + 6s+ 12)
=
u0
3s

− u0[(s+ 3) + 3]

3[(s+ 3)2 + 3]giving
y(t) = 1

3
u0

{

1− exp(−3t)
[

cos(
√
3t) +

√
3 sin(

√
3t
]}

.
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GCL(s) = GOL(s)

1 +GOL(s) =
ψ(s)

φ(s)
,where

ψ(s) = K(α+ βs),

φ(s) = K(α+ βs) + s(1 + 2s)2 = 4s3 + 4s2 + (1 + Kβ)s+ Kα.(If you really prefer the leading coe�cient in φ(s) to be one, divide theseexpressions by four.) Now
Φ3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 4 0

Kα (1 + Kβ) 4

0 0 Kα

∣

∣

∣

∣

∣

∣

∣

∣

∣

.For asymptotic stability we must have Kα > 0 and since α > 0 this implies
K > 0. The only remaining condition is Φ(1)

3 > 0, which is
1− K(α− β) = (α− β)[(α − β)−1 − K] > 0.So if α > β the system is stable if (α − β)−1 > K. If α < β the system isstable for all positive K. When α = 1, β = 2, K = −6

ȳ(s) =
−6ū(s)

(2s− 3)(s+ 2)
=

6ū(s)

7(s+ 2)
− 12ū(s)

7(2s− 3)
.Then de�ne

x̄1(s) =
ū(s)

(s+ 2)
, x̄2(s) =

ū(s)

2s− 3
,givinḡ

y(s) =
6
7 x̄1(s)−

12
7 x̄2(s).Inverting the Laplace transforms

ẋ1(t) = −2x1(t) + u(t), ẋ2(t) =
3
2x2(t) +

1
2u(t),

y(t) =
6
7
x1(t)− 12

7
x2(t).Thus the matrix form has

A =





−2 0

0
3
2



 , b =





1

1
2



 , cT =
(

6
7 −12

7

)

.



9.6. PROBLEMS 6 1873) With H(s) = γ

GCL(s) = GOL(s)
1 + γGOL(s) =

ψ(s)

φ(s)
,where

ψ(s) = 1,

φ(s) = s3 + s2 + s+ (γ + 1)and
Φ3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

(1 + γ) 1 1

0 0 (1 + γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.From the Routh-Hurwitz criterion the two conditions for asymptotic stabilityare 1 + γ > 0 and 1 > 1 + γ. The latter cannot be satis�ed with γ > 0. Ifoutput feedback is included
φ(s) = s3 + s2(1 + α) + s(1 + β) + 1 + γ

= (s+ 1)(s+ 2)(s+ 3)

= s3 + 6s2 + 11s+ 6.Thus α = 5, β = 10, γ = 5.
ȳ(s) =

u0
s(s+ 1)(s+ 2)(s+ 3)

=
u0
6s

− u0
2(s+ 1)

+
u0

2(s+ 2)
− u0

6(s+ 3)
.Inverting the Laplace transform

y(t) = 1
6
u0 {1− 3 exp(−t) + 3 exp(−2t))− exp(−3t)} .9.6 Problems 61) I[x] + pJ [x] =

∫ 1

0

{

1
2
[ẋ(τ)]2 + x(τ)ẋ(τ) + px(τ)

}

dτThe Euler-Lagrange equation is
d[ẋ(τ) + x(τ)]

dτ
− ẋ(τ) − p = 0,giving̈

x(τ) = p.



188 CHAPTER 9. SOLUTIONSThus
x(τ) = 1

2
pτ2 +Aτ + B.From the initial and �nal conditions B = 0, A = 5 − 1

2
p. Substituting intothe constraint

∫ 1

0

{

1
2
pτ2 + [5− 1

2
p]τ
}

dτ = 2which gives p = 6 and hence
x(τ) = 3τ2 + 2τ.2) I[x] + pJ [x] =

∫ 2

0

{

[ẋ(τ)]2 + x(τ)[1 + pτ ]
}

dτ.The Euler-Lagrange equation gives
ẍ(τ) = 1

2
[1 + pτ ].Thus

x(τ) = 1
12
pτ3 + 1

4
τ2 +Aτ + B.From the initial and �nal conditions A = 23− 1

3
p, B = 1. Substituting intothe constraint and performing the integral gives p = 60 and thus

x(τ) = 5τ3 + 1
4
τ2 + 3τ + 1.3) Ip[u, x] =

∫ tF
0

{

[x(t)]2 + [u(t)]2 + p(t)[ẋ(t)− u(t)]
}

dt.The Euler-Lagrange equations give
ṗ(t)− 2x(t) = 0,

2u(t)− p(t) = 0,giving
u̇(t) = x(t).At this point you could use Laplace transforms to solve this equation withthat given in the question. It is probably easier just to note that they give

ẍ(t) = x(t), which has the general solution
x(t) = A exp(t) + B exp(−t).



9.6. PROBLEMS 6 189From the initial and �nal conditions
A =

α[1 − exp(−tF)]
exp(tF)− exp(−tF) , B =

α[exp(tF)− 1]

exp(tF)− exp(−tF) .Thus
u(t) = A exp(t)− B exp(−t)

=
α{[1− exp(−tF)] exp(t)− [exp(tF)− 1] exp(−t)}

exp(tF)− exp(−tF) .

[x(t)]2 + [u(t)]2 = 2A2 exp(2t) + 2B2 exp(−2t).So
I[x∗] = A2[exp(2tF)− 1]− B2[exp(−2tF)− 1]

= 2α2 exp(tF)− 1

exp(tF) + 1
.4) Let x1(t) = x(t) and x2(t) = ẋ(t). Then

ẋ1(t) = x2(t),

ẋ2(t) = u(t).We have two constraints so
Ip[u, x1, x2] =

∫ 1

0

{

[u(t)]2 + p1(t)[ẋ1(t)− x2(t)] + p2(t)[ẋ2(t)− u(t)]
}

dtand the Euler-Lagrange equations are
ṗ1(t) = 0,

ṗ2(t) + p1(t) = 0,

2u(t)− p2(t) = 0.This gives p1(t) = A, p2(t) = B−At and thus
u(t) = 1

2
(B−At),

ẋ(t) = 1
2
Bt− 1

4
At2 + C,

x(t) = 1
4
Bt2 − 1

12
At3 + Ct+D.Applying the initial a �nal conditions gives A = −24, B = −12, C = 1 and

D = 0. Thus
u(t) = 12t− 6.



190 CHAPTER 9. SOLUTIONS5) Ip[u(t), x(t)] =
∫ tF
0

{

1
2
[u(t)]2 + p(t)[ẋ(t) + x(t)− u(t)]

}

dt.The Euler-Lagrange equations are
ṗ(t)− p(t) = 0,

u(t)− p(t) = 0Eliminating p(t) gives
u̇(t) = u(t),which has the general solution
u∗(t) = 2C exp(t).Substituting into
ẋ(t) = u(t)− x(t),gives
ẋ(t) + x(t) = 2C exp(t).This becomes
d

dt
[x(t) exp(t)] = 2C exp(2t)with the solution

x∗(t) = C exp(t) +D exp(−t).From the conditions at the boundaries
C =

x0[1− exp(−tF)]
exp(tF)− exp(−tF) , D =

x0[exp(tF)− 1]

exp(tF)− exp(−tF) .Now
I[u∗] = 2C2

∫ tF
0

exp(2t)dt = C2[exp(2tF)− 1]

= x20
exp(tF)− 1

exp(tF) + 1

= x20 tanh
(

1
2
tF) .



9.6. PROBLEMS 6 191If x(t) = x0 for the whole time then u(t) = x0 for the whole time and
I[u] = 1

2
x20tF.Now consider

g(tF) = 2
x2
0
{I[u]− I[u∗]} = tF − 2 tanh

(

1
2
tF) .Since g(0) = 0 and g′(tF) = 1− sech2

(

1
2
tF) > 0, for tF > 0,

I[u] ≥ I[u∗] for tF ≥ 0.If x(tF) is unrestricted the same Euler-Lagrange equations apply but thecondition at t = tF is replaced by the transversality condition p(tF) = u(tF) =
0. From the general solution for u(t) this implies that u(t) = 0 for all t andhence that I[u] = 0.6) Ip[u(t), x(t)] =

∫ tF
0

{

1
2 [u(t)]

2 +
1
2[x(t)]

2 + p(t)[ẋ(t) + 1− u(t)]
}

dt.The Euler-Lagrange equations are
ṗ(t)− x(t) = 0,

u(t)− p(t) = 0Eliminating p(t) gives
u̇(t) = x(t).Using
ẋ(t) = u(t)− 1gives
ẍ(t) = x(t),which has the solution
x(t) = A sinh(t) + B cosh(t).With x(0) = 0 and x(tF) = 1, B = 0 and A = 1/ sinh(tF) which gives thesolution quoted in the problem for (a). u(t) is given from u(t) = 1 + ẋ(t).



192 CHAPTER 9. SOLUTIONSIn case (b) we still have B = 0 but the transversality condition gives p(tF) =
u(tF) = 0 which gives A = −1/ cosh(tF). Since cosh(y) is an increasingfunction greater the sinh(y) for y > 0

[

1− cosh(t)

cosh(tF)]2 <

[

1 +
cosh(t)

sinh(tF)]2
[

sinh(t)

cosh(tF)]2 <

[

sinh(t)

sinh(tF)]2 .So I is less in case (b) than case (a). This is to be expected since for (b) theminimization is over a range of values for x(tF) and not just x(tF) = 0.7) The two constraints are
ẋ1(t) = x2(t),

ẋ2(t) = u(t)− µx2(t)Since we are looking for an extremum of time f(u(t), x1(t), x2(t); t) = 1 andthe Hamiltonian is
H(u(t), x1(t), x2(t), p1(t), p2(t)) = p1(t)x2(t) + p2(t)[u(t) − µx2(t)]− 1.Then the Hamiltonian-Pontriagin equations are
ṗ1(t) = 0, ṗ2(t) = µ p2(t)− p1(t),with
∂H

∂u
= p2(t).Thus

p1(t) = Cand
d

dt
[p2(t) exp(−µt)] = −C exp(−µt),giving

p2(t) = µ−1C+ B exp(µt).This is the switching function. Since it is a monotonically increasing functionit has at most one zero in the range 0 ≤ t ≤ tF, so there will be at most one



9.6. PROBLEMS 6 193switch between uB and −uB. In fact there must be one switch in order forthe wheel to begin from rest and return to rest.If x2 = θ̇ is not restricted at t = tF then the transversality condition p2(tF) =
0 applies. Thus the switching function is

p2(t) = B[exp(µt)− exp(µtF)].The zero is now at the end of the range so no switching occurs. So u(t) = uBfor the whole motion. So θ satis�es
θ̈(t) + µθ̇(t) = uB,which has the solution
θ = A+ B exp(−µt) + tuB/µ.This must satisfy the conditions
θI = A+ B,

0 = −µB+ uB/µ,
θF = A+ B exp(−µtF) + tFuB/µ.Eliminating A and B gives the required condition.8) With x1(t) = x(t) and x2(t) = ẋ(t) the three constraints are
ẋ1(t) = x2(t),

ẋ2(t) =
Cu(t)

m(t)
− g,

ṁ(t) = −u(t)If tF is the time to reach top of the �ight then the height reached is
I[x2] =

∫ tF
0

ẋ1(t)dt =

∫ tF
0

x2(t)dtand it is required to maximize this. The Hamiltonian is
H(u(t), x1(t), x2(t)m(t), p1(t), p2(t), p3(t) = p1(t)x2(t) + p2(t)

[

Cu(t)

m(t)
− g

]

−p3(t)u(t)− x2(t).



194 CHAPTER 9. SOLUTIONSThe Hamiltonian-Pontriagin equations are
ṗ1(t) = 0,

ṗ2(t) = 1− p1(t),

ṗ3(t) =
p2(t)Cu(t)

[m(t)]2
,and the switching function is

S(t) =
∂H

∂u
=
p2(t)C

m(t)
− p3(t).Since we are looking for a maximum rather than a minimum the inequality(6.113) in the notes is reversed and we require

S(t)δu > 0.Assuming for the moment that S(t) as a function of u(t) does not have a zeroin the allowed range of u(t) and that this is a situation of bang-bang controlwe must have
u∗(t) =

{

uU, S(t) < 0,
0, S(t) > 0,Now

p1(t) = A, p2(t) = (1 −A)t+ B,for some constants A and B and
Ṡ(t) = D/m(t), where D = C(1 −A).Thus S(t) is a monotonic function of t with at most one switch. Since therocket must be initially propelled upwards we must have S(0) < 0 and ifa switch is to occur D > 0. If a switch occurs then prior to its occurring

ṁ(t) = −uU
Ṡ(t) = − ṁ(t)D

uUm(t)
.Integrating and using the condition S(tS) = 0 gives

S(t) = − D

uU ln

{

m(t)

m(tS)} , 0 ≤ t ≤ tS.After the switch ṁ(t) = 0 and
S(t) = −D(tS − t)

m(tS) , tS ≤ t ≤ tF.



9.6. PROBLEMS 6 1959) Let x1(t) = x(t) and x2(t) = ẋ(t). Then
ẋ1(t) = x2(t),

ẋ2(t) = u(t)− k.If tF is the time of the drive
I[u, x1, x2] = tF =

∫ tF
0

dt.This gives f(u(t), x1(t), x2(t); t) = 1 and the Hamiltonian is
H(u(t), x1(t), x2(t), p1(t), p2(t)) = p1(t)x2(t) + p2(t)[u(t)− k]− 1.Then the Hamiltonian-Pontriagin equations are
ṗ1(t) = 0,

ṗ2(t) = −p1(t)giving
p1(t) = A,

p2(t) = B−Atand
∂H

∂u
= p2(t) = B−At.Thus H is a monotonic strictly increasing or strictly decreasing function of

u(t) for all t except at t = B/A if this lies in the interval of time of thejourney. There can be at most one switch. Since the vehicle starts from restat t = 0 and comes to rest at t = tF it must be the case that ẍ(0) = u(0) > 0and ẍ(tF) = u(tF) < 0. So in the early part of the journey u(t) = uB and inthe later part of the journey u(t) = −uB. The switch over occurs when p2(t)changes sign. So p2(t) is the switching function S(t). For the �rst part ofthe journey
ẍ(t) = uB − k,

ẋ(t) = (uB − k)t,

x(t) = 1
2
(uB − k)t2.For the second part of the journey

ẍ(t) = −(uB + k),

ẋ(t) = (uB + k)(tF − t),

x(t) = L− 1
2
(uB + k)(tF − t)2.



196 CHAPTER 9. SOLUTIONSSince both ẋ(t) and x(t) are continuous over the whole journey the switchoccurs at
t = tS = (uB + k)tF

2uB ,with
tF = 2

√

uBL
u2B − k2

.The distance travelled when switching occurs is
x =

L(uB + k)

2uB .9.7 Problems 71) The closed-loop transfer function is
GCL(s) = G(s)

1 +G(s)
=

K

(1 + s)3 + K
=

K

φ(s)
,where

φ(s) = s3 + 3s2 + 3s+ (1 + K).From, the Routh-Hurwitz criterion, for stability we must have
(1 + K) > 0 and

Φ
(1)
3 =

∣

∣

∣

∣

∣

3 1

(1 + K) 3

∣

∣

∣

∣

∣

> 0.(The remaining condition is a2 > 0, which is true.) Thus, for stability
−1 < K < 8.Now

G(iω) =
K

(1 + iω)3
=

K(1− iω)3

(1 + ω2)3
.So

X(ω) =
K(1− 3ω2)

(1 + ω2)3
, Y (ω) =

Kω(ω2 − 3)

(1 + ω2)3
.



9.7. PROBLEMS 7 197The Nyquist locus ΓG is the curve in the Z = X + iY plane given by
X(ω) + iY (ω) = G(iω), −∞ ≤ ω ≤ +∞.The Nyquist criterion states that: If G(s) is itself asymptotically stable, andthus has no poles with <{s} > 0, then the closed-loop transfer function isasymptotically stable if ΓG does not encircle the point -1.As is normally the case the ends of the curve, where ω = ±∞ are at the originand Y (−ω) = −Y (ω). The curve cuts the X�axis at ω = 0, when X = K andat ω = ±

√
3. These two parameter values coincide with X = −K/8. When

K < 0 the single crossing point is at negative values ofX . So Ind(ΓG;−1) = 1leading to instability if K < −1 and Ind(ΓG;−1) = 0 leading to stability if
K > −1. If K > 0 the double crossing point is at negative values of X . So
Ind(ΓG;−1) = 2 leading to instability if K > 8 and Ind(ΓG;−1) = 0 leadingto stability if K < 8. The following MAPLE program calculates X(ω) and
Y (ω) and display stable and unstable cases for both signs of K.
> G:=(s,K)->K/((1+s)^3):
> X:=(w,K)->simplify(evalc(Re(G(I*w,K)))):
> X(w,K);

− K (−1 + 3w2)

1 + 3w2 + 3w4 + w6

> Y:=(w,K)->simplify(evalc(Im(G(I*w,K)))):
> Y(w,K);

K w (−3 + w2)

1 + 3w2 + 3w4 + w6

> with(plots):
> plot([X(w,-2),Y(w,-2),
> w=-infinity..infinity],X=-3..2,Y=-2..2,numpoints=1000);
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–2

–1

0

1

2

Y

–3 –2 –1 1 2X

> plot([X(w,-0.5),Y(w,-0.5),
> w=-infinity..infinity],X=-0.75..0.5,Y=-0.8..0.8,numpoints=1000);

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Y

–0.6 –0.4 –0.2 0.2 0.4
X

> plot([X(w,1),Y(w,1),
> w=-infinity..infinity],X=-0.6..1.2,Y=-1..1,numpoints=1000);
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–1

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

1

Y

–0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2
X

> plot([X(w,9),Y(w,9),
> w=-infinity..infinity],X=-6..10,Y=-7..7,numpoints=1000);

–6

–4

–2

0

2

4

6

Y

–6 –4 –2 2 4 6 8 10X

9.8 Problems 81) ∇L = (nxn−1, αmym−1).
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F .∇L = −nxn−1(x+ 2y2) + αmym−1(xy − y3)

= −nxn − 2nxn−1y2 + αmxym − αmym+2.If n = m = 2 and α = 2 then
F .∇L = −2x2 − 4y4 < 0and L(0, 0) = 0, with L(x, y) having a minimum at (0, 0). So thesystem is asymptotically stable.(ii)
F .∇L = nxn−1(y − x3)− αmym−1x3

= nxn−1y − nxn+2 − αmym−1x3.If n = 4, m = 2 and α = 2 then
F .∇L = −4x6 < 0and L(0, 0) = 0, with L(x, y) having a minimum at (0, 0). So thesystem is asymptotically stable.2) From the second equation y3 = x3 so the equilibrium point is on x = y.From the �rst equation 0 = x2y − xy2 + x3 = x3. So the only equilibriumpoint is x = y.

∇L = (2x+ αy, 2βy + αx).So
F .∇L = (2x+ αy)(−xy2 + x2y + x3) + (2βy + αx)(y3 − xz3)

= x4(2− α) + 2y4β + x2y2(α− 2) + x3y(2 + α− 2β).If α = β = 2 then
F .∇L = 4y4 > 0.Also x2 + 2xy + 2y2 = 0 has no real roots. So L(x, y) has a zero minimumat (0, 0) and the system is therefore unstable.3) Consider the reverse trajectory obtained by replacing t by −t. The trajec-tory γ = (x(−t), y(−t)) satis�es the conditions of the Poincaré�Bendixsontheorem for (−t) ≥ 0. So the reverse trajectory tends to a periodic solutionor equilibrium point in C. Such a period solution or equilibrium point is



9.8. PROBLEMS 8 201also a periodic solution or equilibrium point of the forward trajectory. Theequilibrium points of the equation are given by
0 = −x− y + x(x2 + 2y2), (1)

0 = x− y + y(x2 + 2y2). (2)Multiplying (1) by y and (2) by x and subtracting gives x2 + y2 = 0. Theonly solution to this (and thus the only equilibrium point) is x = y = 0.Linearizing about (0, 0) gives the stability matrix
J∗ =

( −1 1

1 −1

)

.The eigenvalues of this matrix are −1 ± i, so the origin is a stable focus.From the given equations
r
dr

dt
= x

dx

dt
+ y

dy

dt

= −x2 − y2 + (x2 + y2)(x2 + 2y2)

= −r2 + r4[1 + sin2(θ)].So
ṙ(t) = −r + r3[1 + sin2(θ)].Transforming the �rst equation into polar form
dx

dt
=

dr

dt
cos(θ) − r sin(θ)

dθ

dt

= −r cos(θ)− r sin(θ) + r3 cos(θ)[1 + sin2(θ)].Substituting for ṙ(t) gives
θ̇(t) = 1and this
θ(t) = θ0 + t.The angular velocity of the system is constant. With r = 1 + δ and δ > 0

ṙ(t) = (1 + δ)(2δ + δ2) + (1 + δ)3 sin2(θ) > 0.



202 CHAPTER 9. SOLUTIONSRearranging the formula for ṙ(t) gives
ṙ(t) = r(2r2 − 1) + r3[sin2(θ) − 1].With r = 1/

√
2− δ, and δ > 0,

ṙ(t) = −
(

1√
2
− δ

)(

4δ√
2
− 2δ2

)

+

(

1√
2
− δ

)2

[sin2(θ)− 1],which is negative for su�ciently small δ. So the region
1√
2
− δ ≤ r ≤ 1 + δsatis�es the conditions of the �rst part of the problem and thus containsa periodic solution. (It can't contain an equilibrium point, since the onlyequilibrium point (0, 0) is outside the region.)From the expression for ṙ(t)

1

r3
dr

dt
+

1

r2
= 1 + sin2(t+ θ0).The integrating factor is exp(−2t) and we obtain

1

r2
= 2A exp(2t) +

1
4{5 + 2 sin2(t+ θ0) + 2 sin(t+ θ0) cos(t+ θ0)}.

A is evaluated by setting r = t0 at t = 0. So A is �nite and as t→ ∞, r → 0.As r → −∞ the trajectory approaches the curve
r(θ) = 2{6 + 2 sin(2θ)− cos(2θ)}−1/2.We can use MAPLE not only to obtain the curve r(θ) but the whole of thesolution, parametrized by t. With r = r0 = 5 and θ = θ0 = 0 at t = 0 wehave we have

> A:=(r0,theta0)->
> 1/(2*r0^2)-(1/8)*(5+2*(sin(theta0))^2+2*sin(theta0)*cos(theta0)):
> W:=(t,r0,theta0)->
> 2*A(r0,theta0)*exp(2*t)
> +(1/4)*(5+2*(sin(t+theta0))^2+2*sin(t+theta0)*cos(t+theta0)):
> r:=(t,r0,theta0)->1/sqrt(abs(W(t,r0,theta0))):
> theta:=(t,theta0)->t+theta0:
> with(plots):
> plot([r(t,5,0),theta(t,0),t=25..-25],coords=polar);
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