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Abstract. This article contains a survey about the classification problem for real hypersurfaces
with constant principal curvatures in complex space forms. It is based on two lectures given by
the author at the 10th International Workshop on Differential Geometry at Kyungpook National
University in Taegu, Korea, in November 2005.

1. Introduction

A submanifold M of a Riemannian manifold N is called (extrinsically) homogeneous if there
exists a closed subgroup G of the isometry group of N such that M is an orbit of the action of
G on N . A basic problem in submanifold geometry is to classify the homogeneous submanifolds
of a given Riemannian manifold. Since a homogeneous submanifold is an orbit of an isometric
action, the second fundamental forms at the points of M are all conjugate to each other. If,
in particular, M is a homogeneous hypersurface, then its principal curvatures are constant.
A natural problem is to investigate whether in a given Riemannian manifold N the converse
holds. More precisely, assume that a hypersurface M in N has constant principal curvatures.
Is M an open part of a homogeneous hypersurface? Another basic problem is to classify the
hypersurfaces with constant principal curvatures in a given Riemannian manifold.

In real space forms quite a lot is known about these problems, and it is completely solved in
Euclidean space En and real hyperbolic space RHn. A fundamental observation by Élie Cartan
is that a hypersurface in a real space form has constant principal curvatures if and only if it is
isoparametric. The classification of isoparametric hypersurfaces in En and RHn is due to Tullio
Levi Civita (for E3), Benjamino Segre (for En) and Élie Cartan (for RHn). In all these cases
the isoparametric hypersurfaces are open parts of homogeneous hypersurfaces. The situation
in the sphere Sn is more involved. The homogeneous hypersurfaces are all known due to a
classification by Wu-yi Hsiang and Blaine Lawson Jr. Surprisingly, there are inhomogeneous
isoparametric hypersurfaces in Sn. The first such examples were discovered by Hideki Ozeki
and Masaru Takeuchi, further series of such examples were constructed from Clifford modules by
Dirk Ferus, Hermann Karcher and Hans-Friedrich Münzner. The classification of isoparametric
hypersurfaces in Sn is still an open problem. For a survey about this topic, relevant references
and recent developments we refer to [11] and [22].

In this article we review the classification problems for homogeneous real hypersurfaces and
real hypersurfaces with constant principal curvatures in complex space forms, that is, in simply
connected and complete Kähler manifolds with constant holomorphic sectional curvature. Since
the flat complex space Cn is isometric to E2n, we restrict to the nonflat case. The relevant
complex space forms then are the complex projective space CPn and the complex hyperbolic
space CHn. We assume n ≥ 2 and normalize the Fubini Study metric on CPn and CHn such
that the constant holomorphic sectional curvature is equal to +4 and −4, respectively.
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2. Complex projective spaces

The homogeneous real hypersurfaces in CPn were classified by Ryoichi Takagi in 1973:

Theorem 2.1. ([19]) A real hypersurface in CPn, n ≥ 2, is homogeneous if and only if it is
congruent to

(1) a tube around a k-dimensional totally geodesic CP k in CPn for some k ∈ {0, . . . , n−1},
or

(2) a tube around the complex quadric Qn−1 = {[z] ∈ CPn | z2
0 + . . . + z2

n = 0} in CPn, or
(3) a tube around the Segre embedding of CP 1 × CP k into CP 2k+1 for some k ≥ 2, or
(4) a tube around the Plücker embedding into CP 9 of the complex Grassmann manifold

G2(C5) of complex 2-planes in C5, or
(5) a tube around the half spin embedding into CP 15 of the Hermitian symmetric space

SO(10)/U(5).

The proof uses the Hopf fibration S2n+1 → CPn and the classification of homogeneous hyper-
surfaces in spheres due to Hsiang and Lawson. A remarkable consequence of this result is that
any homogeneous real hypersurface in CPn is a Hopf hypersurface. A Hopf hypersurface M in
a Kähler manifold N is a real hypersurface with the property that the rank one distribution
J(νM) on M determined by the normal bundle νM of M and the complex structure J of N
is autoparallel. This is equivalent to the property that J(νM) is invariant under the shape
operator of M . It is not clear why a homogeneous real hypersurface in CPn is necessarily a
Hopf hypersurface. We will see below that this is not true in complex hyperbolic space CHn.
Makoto Kimura characterized in [13] the homogeneous real hypersurfaces in CPn as those real
hypersurfaces with constant principal curvatures which are Hopf hypersurfaces:

Theorem 2.2. [13] Let M be a real hypersurface in CPn with constant principal curvatures.
Then M is a Hopf hypersurface if and only if it is an open part of a homogeneous real hyper-
surface.

All the homogeneous real hypersurfaces in CPn have either two, three or five distinct constant
principal curvatures. It is known that any real hypersurface in CPn with two or three distinct
constant principal curvatures is an open part of a homogeneous hypersurface. More precisely,
we have

Theorem 2.3. ([20]) Let M be a real hypersurface in CPn, n ≥ 2, with two distinct constant
principal curvatures. Then M is an open part of a geodesic hypersphere in CPn.

Note that a geodesic hypersphere in CPn is a tube around a totally geodesic CP 0 (a point)
in CPn. Any geodesic hypersphere has two focal sets, a point and a totally geodesic hyperplane
CPn−1. Thus a geodesic hypersphere can also be viewed as a tube around a totally geodesic
CPn−1. Thomas E. Cecil and Patrick J. Ryan [12] improved the above result for n ≥ 3 by
requiring that M has at most two distinct principal curvatures at each point.

For three distinct constant principal curvatures we have

Theorem 2.4. ([21] for n ≥ 3 and [23] for n = 2) Let M be a real hypersurface in CPn, n ≥ 2,
with three distinct constant principal curvatures. Then M is an open part of

(1) a tube around a k-dimensional totally geodesic CP k in CPn for some 1 ≤ k ≤ n− 2, or
(2) a tube around the complex quadric Qn−1 in CPn.

The focal set of a totally geodesic CP k in CPn is a totally geodesic CPn−k−1, and the focal
set of the complex quadric in CPn is a totally geodesic real projective space RPn ⊂ CPn. Thus
a tube around CP k is a tube around CPn−k−1, and a tube around the complex quadric can be
viewed as a tube around RPn.
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It is a simple consequence of the Codazzi equation that there are no totally umbilical real
hypersurfaces in CPn.

We finish this section with two open problems. Let M be a real hypersurface in CPn with
constant principal curvatures.

1. Is M an open part of a homogeneous real hypersurface? Equivalently, in view of Theorem
2.2, is M a Hopf hypersurface?

2. What is the possible number g of distinct principal curvatures of M?
For a homogeneous real hypersurface in CPn we have g ∈ {2, 3, 5}. Zhen Qi Li [14] proved that
g ∈ {2, 3, 5} for all isoparametric real hypersurfaces in CPn with constant principal curvatures.

3. Complex hyperbolic spaces

The Codazzi equation implies easily that there are no totally umbilical real hypersurfaces in
CHn. Thus a real hypersurface in CHn must have at least two distinct principal curvatures on
an open and dense subset. Sebastián Montiel proved in 1985:

Theorem 3.1. ([17]) Let M be a real hypersurface in CHn, n ≥ 3, with at most two distinct
principal curvatures at each point. Then M is an open part of

(1) a horosphere in CHn, or
(2) a geodesic hypersphere in CHn, or
(3) a tube around a totally geodesic CHn−1 in CHn, or
(4) a tube of radius r = ln(2 +

√
3) around a totally geodesic real hyperbolic space RHn in

CHn.

For n = 2 the problem remains open, even under the additional assumption that M has
exactly two distinct constant principal curvatures.

All the hypersurfaces in the previous theorem are Hopf hypersurfaces. The Hopf hypersurfaces
in CHn with constant principal curvatures have been classified by the author in 1989:

Theorem 3.2. ([2]) Let M be a Hopf hypersurface in CHn, n ≥ 2, with constant principal
curvatures. Then M is an open part of

(1) a horosphere in CHn, or
(2) a tube around a totally geodesic CHk in CHn for some 0 ≤ k ≤ n− 1, or
(3) a tube around a totally geodesic real hyperbolic space RHn in CHn.

The proof uses a complex version of Cartan’s fundamental formula for isoparametric hyper-
surfaces in real space forms (see [10]). To derive this formula the restriction for M to be a Hopf
hypersurface is essential. In the general case the Gauss-Codazzi equations appear to be too
complicated for the deduction of a useful formula.

The question whether there exist non-Hopf hypersurfaces in CHn with constant principal
curvatures now leads us to the classification problem of homogeneous real hypersurfaces in CHn.
All the real hypersurfaces in the previous theorem are homogeneous. In fact, a horosphere can
be realized as an orbit of the action of the nilpotent part in a suitable Iwasawa decomposition
of SU(1, n), the connected component of the isometry group of CHn. A tube around a totally
geodesic CHk is an orbit of the action of S(U(1, k)×U(n− k)) ⊂ SU(1, n), and a tube around
a totally geodesic RHn is an orbit of the action of SO0(1, n) ⊂ SU(1, n).

A natural question is whether any homogeneous real hypersurface in CHn is a Hopf hyper-
surface. It came as a kind of surprise when Michael Lohnherr [15] (see also [16]) discovered a
homogeneous ruled real hypersurface in CHn. The base curve of the ruling is a horocycle in a
totally geodesic real hyperbolic plane RH2 ⊂ CHn. An alternative description of this homo-
geneous ruled real hypersurface was given by the author in [3]. For this consider an Iwasawa
decompositon KAN of SU(1, n) and the corresponding Iwasawa decomposition k + a + n of
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the Lie algebra of SU(1, n). The solvable Lie group AN acts simply transitively on CHn. The
nilpotent Lie algebra n is isomorphic to the (2n− 1)-dimensional Heisenberg algebra. Now de-
compose this algebra orthogonally into n = v + z, where z is the one-dimensional center of n,
and let v0 be a linear hyperplane in v. Then s = a + v0 + z is a codimension one subalgebra of
a + n. The corresponding closed subgroup S of AN acts with cohomogeneity one on CHn. If
o is the point in CHn for which K is the stabilizer of SU(1, n) at o, then the orbit S · o is the
homogeneous ruled real hypersurface constructed by Lohnherr. The other orbits of the action
of S are obviously homogeneous real hypersurfaces of CHn as well, but they are neither Hopf
nor ruled. The geometry of these orbits has been investigated in detail in [3].

The discovery of these homogeneous real hypersurfaces indicated that the classification of
homogeneous real hypersurfaces in CHn might be more complicated than expected. I will now
describe aspects of some joint work with Hiroshi Tamaru which, among other results, leads to
the classification of homogeneous real hypersurfaces in CHn.

A homogeneous hypersurface M of a Riemannian manifold N is obviously an orbit of a
cohomogeneity one action on N . A closed subgroup G of the isometry group of N is said to act
with cohomogeneity one if the orbit space N/G is one-dimensional. If N is complete, the orbit
space N/G equipped with the quotient topology relative to the canonical projection N → N/G is
homeomorphic to the real line R, the circle S1, the closed interval [0, 1], or the half-open interval
[0,∞), each of them equipped with their standard topology. Geometrically this says that the
orbits either form a Riemannian foliation on N (if N/G ∼= R or S1), or there exists exactly one
singular orbit F and the principal orbits are tubes around F (if N/G ∼= [0,∞)), or there exist
exactly two singular orbits F1 and F2, and the principal orbits are tubes around F1 and F2 (if
N/G ∼= [0, 1]). If F , F1 or F2 happen to have codimension one as well, the corresponding tubes
are actually equidistant hypersurfaces.

If N is a Hadamard manifold, then the orbit space N/G of a cohomogeneity one action on
N cannot be homeomorphic to S1 or [0, 1]. From now on we assume that N is an irreducible
Riemannian symmetric space of noncompact type. We denote by M the set of all cohomogeneity
one actions on N up to orbit equivalence. Then M = MF ∪ MS , where MF contains the
actions forming a Riemannian foliation and MS contains the actions with exactly one singular
orbit. Geometrically, this singular orbit is just the focal set of any of the principal orbits. The
homogeneous hypersurfaces arising in a foliation in MF do not have any focal points.

Theorem 3.3. ([7]) Let N be an irreducible Riemannian symmetric space of noncompact type.
Let r be the rank of N and denote by Aut(DD) the automorphism group of the Dynkin diagram
associated to N . Then

MF
∼= (RP r−1 ∪ {1, . . . , r})/Aut(DD).

Note that Aut(DD) is either trivial, or isomorphic to Z2 or the symmetric group S3 of a
set of three elements. If Aut(DD) ∼= Z2, then there exists a duality principle on N , and if
Aut(DD) ∼= S3, then there exists a triality principle on N . The symmetric spaces N for which
Aut(DD) ∼= S3 are SOo(4, 4)/SO(4)SO(4) and SO(8,C)/SO(8).

We have to describe the action of Aut(DD) on RP r−1 ∪ {1, . . . , r}. For this we identify
{1, . . . , r} with the vertices of the Dynkin diagram associated to N , which gives a natural action
of Aut(DD) on {1, . . . , r}. The vertices in the Dynkin diagram correspond to a set of simple roots
which span an r-dimensional real vector space V r. The action of Aut(DD) on the vertices, and
hence on the simple roots, extends to a linear action on V r which induces an action of Aut(DD)
on the real projective space RP r−1 of V r.

In the special case r = 1, that is, N is a hyperbolic space FHn over a normed real division
algebra F ∈ {R,C,H,O}, we see that MF consists of exactly two elements. In other words, on
FHn there exist exactly two congruence classes of homogeneous codimension one foliations. For
the complex hyperbolic space we already know these two classes, and we thus get
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Corollary 3.4. Let M be a homogeneous real hypersurface in CHn, n ≥ 2, without focal points.
Then M is congruent to

(1) a horosphere in CHn, or
(2) a ruled real hypersurface in CHn determined by a horocycle in a totally geodesic RH2 ⊂

CHn, or one of its equidistant hypersurfaces.

We now turn to homogeneous real hypersurfaces in CHn with focal points, or equivalently,
to cohomogeneity one actions on CHn with a singular orbit. We already know from the general
situation that the set of focal points of a homogeneous hypersurface in CHn must form a smooth
submanifold, which arises as the singular orbit of the corresponding cohomogeneity one action.
We distinguish the two cases when this focal manifold F is totally geodesic or non-totally
geodesic.

The totally geodesic submanifolds in CHn are well known, they are just the standard em-
beddings of complex hyperbolic spaces CHk, 0 ≤ k ≤ n − 1, and real hyperbolic spaces RHk,
1 ≤ k ≤ n. We have already seen above that the complex hyperbolic spaces CHk and the real
hyperbolic space RHn arise as a singular orbit of a cohomogeneity one action on CHn. The
real hyperbolic spaces RHk for k < n cannot arise as a singular orbit of a cohomogeneity one
action on CHn. This can be seen in the following way. A totally geodesic RHk uniquely deter-
mines a totally geodesic CHk. Pick a unit normal vector ξ of RHk tangent to CHk, and a unit
normal vector η of RHk perpendicular to CHk. As all isometries of CHn are holomorphic or
anti-holomorphic, all isometries of CHn preserving RHk leave CHk invariant. For this reason
there cannot be an isometry of CHn whose differential maps ξ to η. As a cohomogeneity one
action is transitive on unit normal vectors of a singular orbit, this shows that RHk cannot be a
singular orbit of a cohomogeneity one action on CHn. Altogether this implies

Proposition 3.5. Let M be a homogeneous real hypersurface in CHn, n ≥ 2, with a totally
geodesic focal set. Then M is congruent to

(1) a tube around a totally geodesic CHk in CHn for some k ∈ {0, . . . , n− 1}, or
(2) a tube around a totally geodesic RHn in CHn.

The cohomogeneity one actions with a totally geodesic singular orbit on irreducible Riemann-
ian symmetric spaces of noncompact type have been classified by the author and Hiroshi Tamaru
in [8].

We now come to the more difficult situation of a non-totally geodesic singular orbit. The
first examples of cohomogeneity one actions on CHn with a non-totally geodesic singular orbit
have been constructed by the author and Martina Brück in [4]. We denote by CHn(∞) the
ideal boundary of CHn equipped with the cone topology. A point in CHn(∞) corresponds
to an equivalence class of asymptotic geodesics in CHn. We fix two points o ∈ CHn and
x ∈ CHn(∞). This determines a unique Iwasawa decomposition SU(1, n) = KAN . Here, K
is the stabilizer of SU(1, n) at o, which is isomorphic to S(U(1)U(n)). The solvable Lie group
AN acts simply transitively on CHn, the orbit A · o is the geodesic in CHn through o in the
equivalence class of asymptotic geodesics determined by x, and the orbit N · o is a horosphere
in CHn with center at x. Let k + a + n be the corresponding Iwasawa decomposition of the Lie
algebra su(1, n) of SU(1, n). As above we decompose the nilpotent Lie algebra n into n = v+ z,
where z is the one-dimensional center of n. We identify ToCHn with a + v + z in the usual
manner. Then a + z and v are invariant under the complex structure of ToCHn.

Let vk be a linear subspace of v such that the orthogonal complement vª vk of vk in v is a
real subspace of v of dimension 2 ≤ k ≤ n− 1. Then sk = a + vk + z is a subalgebra of a + n.
Let Sk be the closed subgroup of AN with Lie algebra sk. The orbit Fk = Sk · o of Sk through
o is a (2n − k)-dimensional submanifold of CHn with real normal bundle. Let C(v ª vk) be
the complex span of v ª vk. Then v ª C(v ª vk) is the maximal complex subspace of vk and
a + (vª C(vª vk)) + z is a subalgebra of sk. The action of the corresponding closed subgroup
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of Sk ⊂ AN induces an autoparallel distribution on Fk whose maximal integral manifolds are
totally geodesic CHn−k ⊂ CHn. Thus Fk is a ruled submanifold of CHn. Let No

K(Sk) be the
connected component of the normalizer of Sk in K. One can show that No

K(Sk) is contained
in the stabilizer Kx of K at x. The closed subgroup No

K(Sk)Sk ⊂ KAN acts on CHn with
cohomogeneity one and with singular orbit Fk. As any totally geodesic submanifold of CHn

is either real or complex, it is clear that Fk cannot be totally geodesic. Different choices of
Iwasawa decompositions and subspaces vk lead to congruent actions. Thus for each integer
k ∈ {2, . . . , n − 1} there is exactly one congruence class of such cohomogeneity one actions. In
particular, for each k the ruled submanifolds Fk are all congruent to each other.

We now fix ϕ ∈ R and k ∈ Z with 0 < ϕ < π/2 and 0 < 2k < n. Let vk,ϕ be a linear
subspace of v such that the orthogonal complement v ª vk,ϕ of vk,ϕ in v is a subspace of v of
dimension 2k and with constant Kähler angle ϕ. For each choice of k and ϕ there exists exactly
one such subspace up to unitary transformation of v. Then sk,ϕ = a + vk,ϕ + z is a subalgebra
of a+n. Let Sk,ϕ be the closed subgroup of AN with Lie algebra sk,ϕ. The orbit Fk,ϕ = Sk,ϕ · o
of Sk,ϕ through o is a 2(n−k)-dimensional submanifold of CHn with normal bundle of constant
Kähler angle ϕ. Let C(vª vk,ϕ) be the complex span of vª vk,ϕ. Then vª C(vª vk,ϕ) is the
maximal complex subspace of vk,ϕ and a + (v ª C(v ª vk,ϕ)) + z is a subalgebra of sk,ϕ. The
action of the corresponding closed subgroup of Sk,ϕ ⊂ AN induces an autoparallel distribution
on Fk,ϕ whose maximal integral manifolds are totally geodesic CHn−2k ⊂ CHn. Thus Fk,ϕ is
a ruled submanifold of CHn. Let No

K(Sk,ϕ) be the connected component of the normalizer of
Sk,ϕ in K. One can show that No

K(Sk,ϕ) is contained in the stabilizer Kx of K at x. The closed
subgroup No

K(Sk,ϕ)Sk,ϕ ⊂ KAN acts on CHn with cohomogeneity one and with singular orbit
Fk,ϕ. As any totally geodesic submanifold of CHn is either real or complex, it is clear that Fk,ϕ

cannot be totally geodesic. Different choices of Iwasawa decompositions and subspaces vk,ϕ lead
to congruent actions. Thus for each ϕ ∈ R and k ∈ Z with 0 < ϕ < π/2 and 0 < 2k < n there
is exactly one congruence class of such cohomogeneity one actions. In particular, for each fixed
pair ϕ, k the ruled submanifolds Fk,ϕ are all congruent to each other.

These two types of actions provide many examples of cohomogeneity one actions with a non-
totally geodesic singular orbit on complex hyperbolic spaces CHn for all integers n ≥ 3. The
question whether there are more such actions has been answered by the author and Hiroshi
Tamaru in [9].

Let H be a closed subgroup of SU(1, n) acting on CHn with cohomogeneity one and assume
there exists a non-totally geodesic singular orbit F . A result by Dmitri Alekseevsky and Antonio
Di Scala [1] implies that there exists a unique point x ∈ CHn(∞) which is fixed under the
natural extension of the H-action onto CHn ∪ CHn(∞). Let o ∈ F and consider the Iwasawa
decompositions SU(1, n) = KAN and su(1, n) = k + a + n induced by o and x. As above we
decompose n into n = v + z ∼= Cn−1 +R. It was shown in [9] that there exists a linear subspace
v0 of v such that s = a+v0+z is a subalgebra of a+n, F is the orbit S ·o through o of the action
of the closed subgroup S of AN with Lie algebra s, and the actions of No

K(S)S ⊂ KAN and
H on CHn are orbit equivalent. The strategy for the classification is therefore to find all linear
subspaces v0 of v with codimension greater than one for which there exists a closed subgroup
of Kx

∼= U(n − 1) which acts transitively on the unit sphere in v ª vo. From the resulting
cohomogeneity one actions one then has to remove those with a totally geodesic singular orbit,
and finally investigate the orbit equivalence. This was carried out in [9] using some results from
[4]. The final result is

Proposition 3.6. [9] Let M be a homogeneous real hypersurface in CHn, n ≥ 2, with a non-
totally geodesic focal set. Then M is congruent to

(1) a tube around the ruled submanifold Fk ⊂ CHn for some k ∈ {2, . . . , n− 1}, or
(2) a tube around the ruled submanifold Fk,ϕ ⊂ CHn for some ϕ ∈ R and k ∈ Z with

0 < ϕ < π/2 and 0 < 2k < n.
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An immediate consequence is

Corollary 3.7. Any singular orbit of a cohomogeneity one action on CH2 is totally geodesic.

Altogether this now gives the classification of homogeneous hypersurfaces in complex hyper-
bolic spaces.

Theorem 3.8. [9] Let M be a homogeneous real hypersurface in CHn, n ≥ 2. Then M is
congruent to

(1) a horosphere in CHn, or
(2) a ruled real hypersurface in CHn determined by a horocycle in a totally geodesic RH2 ⊂

CHn, or one of its equidistant hypersurfaces, or
(3) a tube around a totally geodesic CHk in CHn for some k ∈ {0, . . . , n− 1}, or
(4) a tube around a totally geodesic RHn in CHn, or
(5) a tube around the ruled submanifold Fk ⊂ CHn for some k ∈ {2, . . . , n− 1}, or
(6) a tube around the ruled submanifold Fk,ϕ ⊂ CHn for some ϕ ∈ R and k ∈ Z with

0 < ϕ < π/2 and 0 < 2k < n.

The author and Hiroshi Tamaru used this approach in [9] to classify the cohomogeneity one
actions on real hyperbolic spaces and the Cayley hyperbolic plane as well. For the quaternionic
hyperbolic space we could reduce the classification problem to a question from quaternionic
linear algebra about the existence of subspaces of quaternionic vector spaces with constant
quaternionic Kähler angle.

Due to Theorem 3.8 we can now give a negative answer to the question posed after Theorem
3.2, namely there exist non-Hopf hypersurfaces in CHn with constant principal curvatures.
The next obvious question is whether there exists a real hypersurface with constant principal
curvatures in CHn which is not an open part of a homogeneous hypersurface.

Let M be a real hypersurface in CHn with constant principal curvatures, and denote by g
the number of distinct principal curvatures of M . If M is homogeneous, we have g ∈ {2, 3, 4, 5}
(see [6]). From Theorem 3.1 we know that if g ≤ 2 then M is an open part of a homogeneous
real hypersurface in CHn. The author and José Carlos Dı́az-Ramos recently proved

Theorem 3.9. ([5]) Let M be a real hypersurface in CHn, n ≥ 3, with three distinct constant
principal curvatures. Then M is an open part of a homogeneous real hypersurface on CHn, that
is, M is an open part of

(1) a ruled real hypersurface in CHn determined by a horocycle in a totally geodesic RH2 ⊂
CHn, or one of its equidistant hypersurfaces, or

(2) a tube around a totally geodesic CHk in CHn for some k ∈ {1, . . . , n− 2}, or
(3) a tube of radius r 6= ln(2 +

√
3) around a totally geodesic RHn in CHn, or

(4) a tube of radius r = ln(2 +
√

3) around the ruled submanifold Fk ⊂ CHn for some
k ∈ {2, . . . , n− 1}.

Note that Jun-ichi Saito derived in [18] a classification for such hypersurfaces, but the proof
is incorrect and leads to an incomplete classification. We do not know whether the analogous
result to Theorem 3.9 for n = 2 is true or not. Some partial results for this case were obtained by
Zhicai Xu [24]. We finish this section with a few open problems. Let M be a real hypersurface
in CHn with constant principal curvatures.

1. Is M an open part of a homogeneous real hypersurface? (Even an answer for g ∈ {4, 5}
would be of interest.)

2. What is the possible number of distinct principal curvatures of M? (The answer is
g ∈ {2, 3, 4, 5} if the answer to question 1 is positive.)

3. Do Theorems 3.1 and 3.9 hold for n = 2?
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