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Classical Setting for Bifurcation Theory
Krasnoselskii (1955), English translation 1964
All spaces X, Y, Z etc. are real Banach spaces. and ) is a
distinguished parameter.

Let F: R x X — X be a C*¥ mapping, k > 2, of the form
F(\z)=x— ALz — R(\,x)

where L is a compact linear operator R is compact (maps
bounded sets into relatively compact sets) with
IR 2)|[/l2]] — 0 as ||z]| — 0.

F(X,0) =0 for all A
{(X\,0) : A € R} is called the line of trivial solutions

Definition: Ag is a bifurcation point if a sequence {(\g,zy)} of
non-trivial solutions exists with

F(Xg, o) =0, A — X, x5 —0, x5 #0
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Since A\, — Ao, L is compact, |R(Ag,zx)||/||zk| — 0 and

T )\kL<‘xk )_R()\k,.%k):()
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and since L is compact, it follows that a subsequence of m
converges strongly to v where ||v]| = 1 is a characteristic vector
of v with characteristic value \g

All bifurcation points are characteristic values of L
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What does this tell us?

Characteristic Values of a Compact Operator

» cither A is a characteristic value of L or I — AL is a
homeomorphism on X

» characteristic values of L are isolated in R

» the generalised kernel NV'(A\g) = (U, ey ker(AM — L)™ is finite
dimensional - its dimension equals the codimension of the
generalised range R(\o) = (),,ey range(A — L)" is called
the the multiplicity of Ao

» a characteristic value is called simple if N'(\g) is
one-dimensional

Question: Which characteristic values are bifurcation points.
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Every simple characteristic value of L is a bifurcation point.
If A\ is simple with characteristic vector £ # O there exists a
C*=1function (A, k) : (—€,€) = R x X such that
F(A(s),k(s)) =0 for all s € (—¢,e€),
(A(0),£(0)) = (X0,0), £'(0) =&
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Let Ao be any characteristic value of L The equation to be
solved is F(\,x) = 0 where

> F(\o,0) =0
> I — XL =0,F[(\,0)] : X — X,
» ker(I — X\oL) # {0} and g € N is the codimension of
range (I — \oL).
Then there exist: open sets U and V with
(M,0) €U CR x X, (A\g,0) € V CR x ker(L),
mappings w € C*(V, X) and h € C*(V,R?) with w(Ag,0) = 0
and

F\z)=0, (\z)eU<s
w(A, &) =z where (A, §) € V and h(X, &) = 0.
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When ) is simple
The infinite-dimensional problem
F(\z)=0
has been reduced to an equivalent finite-dimensional problem
h(X,€) =0, (A§) €V CRxker(L)
When )\ is simple, h : R> — R and the occurrence of

bifurcation for h(A,&) = 0 is almost trivial from the implicit
function theorem applied to

(N E) =0, £€#0, AeR
(but note the consequential loss of one derivative):
there exists a C*¥~!-function (A, %) : (—¢,€) = R x X with
F(A(s),k(s)) =0 for all s € (—e¢,€),
(A(0),£(0)) = (X,0), K'(0) = &,

Note: the kernel being one-dimensional is not enough
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Topological Bifurcation Theorem
Proof by degree theory; Krasnoselskii (1955), English translation 1964
Characteristic values with odd multiplicity are bifurcation points

» Caveat: Nothing about a curve of solutions bifurcating

» Characteristic values of even multiplicity may not be
bifurcation points, even when operators are polynomials.
Here is an example:

Az — z — i|z|?2 = 0 has no non-trivial solutions

(A, 2) e R x C?

Yet X = C is a real Banach space and 1 is a characteristic
value of L = I of multiplicity 2

» There are C'*° examples where non-simple characteristic
values are bifurcation points but no continuum bifurcates

» When X is a Hilbert space and F(\, z) = V,®(\, z),
L is self-adjoint and all characteristic values are bifurcation
points
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Rabinowitz’s Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general
case

Let T ={(\z): F(A\,z) =0, x # 0}
Let Ao be a characteristic value of L of odd multiplicity.

Then there exists a continuum Cg in 7~ with (A\g, 0) € Co and at
least one of the following holds.

» (g is unbounded;

» (\*,0) € Cp for some characteristic value \* # g with odd
multiplicity
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Can more be said about the global continuum Cy?
For example when F is smooth and ) is simple?

Questions:

Is it path-connected?

Is it in any sense smooth when F' is smooth?

Answer to both: No

Example: Rx X =R xR

Let E be any closed subset of {(\,z) : |z| > 1}

Let x. be the e-mollification of the characteristic function of an
€ neighbourhood of F.

Let h(A,x) = > 27"(1 — x1/n (N 7))
Then 0 < h <1 is a C* function whose zero set is F.

Now let F(A\,z) = h(A\,x)(z — ALz) for any compact linear L



From MathSciNet:

MRO0375019 (51 #11215) Dancer, E. N. Global structure of
the solutions of non-linear real analytic eigenvalue
problems. Proc. London Math. Soc. (3) 27 (1973), 747765.

Let E and G be real Banach spaces. Suppose that F: E xR — G is a
real analytic and Fredholm mapping. The author considers the
equation F(z,\) = 0 and, proving some results on
finite-dimensional real analytic germs, he obtains results on
the local and global structure of solutions, i.e., results on the
properties of the set D = {(z,A) : E X (—o00,00) : F(z,\) =0} (e.g.,
D is locally compact, o-compact, locally path-connected and closed).
Under the assumption that F' is real analytic, the set D has a number
of rather nice properties (it is impossible to present briefly
here these properties); this result complements earlier results.
[see, e.g., P. H. Rabinowitz, J. Functional Analysis 7 (1971), 487513]
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Local Real-Analytic Bifurcation

F is real-analytic — in other words it is C'"*° from R x X into X
and equals the sum of its Taylor series

Let
S={(\,z): F(\x) = 0}: all solutions

T ={(\z) €S:xz#0}: all non-trivial solutions
N ={(\z) €S :ker (0, F[(\ z)]) = {0}}: all non-singular solutions

The bifurcating branch {(A(s),x(s)) : s € (—e,€)} in the local
theory has A and « real-analytic.

Suppose A’ Z 0 on (—¢,€) and
Then, by analyticity of A’ and «’, chose € > 0 such that

AN'(s) #0 for s € (0,¢), K'(s)#0 for s € (—¢,e€),
RT = {(A(s),k(s)) : s € (0,6)} C T NN.
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Unique Global Extension of R*

There exists a continuous curve R which extends R* as follows.
(a) ® = {(A(s),k(s)) : s € [0,00)}

where (A, k) : [0,00) = R x X is continuous

(b) RT C R C S and in a right neighbourhood of s = 0, R and
R coincide.

(¢) {s>0: (A(s),K(s)) ¢ M} has no accumulation points.

(d) At each point, R has a local analytic re-parameterization:

» For s* € (0,00) 3 p*: (—1,1) — R which is continuous,
injective, p*(0) = s*, and
t— o*(t) == (A(p*(t)), k(p*(t))) is analytic on (—1,1)
» A is injective on a right neighbourhood of 0
» For s* > 0 A is injective on [s*, s* 4 €*] and
[s* —€*, s8], ¢ >0



Unique Global Continuation — Continued



Unique Global Continuation — Continued

(e) One of the following occurs:



Unique Global Continuation — Continued

(e) One of the following occurs:

(1) [[(Als), w(s))]| = o0 as s — o0;



Unique Global Continuation — Continued

(e) One of the following occurs:

(1) [[(Als), w(s))]| = o0 as s — o0;
(ii) 9 is a closed loop, R = {(A(s),k(s)) : 0 < s < T} and
(A(T),k(T)) = (X0, 0) for some T > 0 .



Unique Global Continuation — Continued

(e) One of the following occurs:

(1) [(A(s),5(s))]] = 00 as s = oo;
(ii) 9 is a closed loop, R = {(A(s),k(s)) : 0 < s < T} and
(A(T),k(T)) = (X0, 0) for some T > 0 .

Let T > 0 is the smallest such 7" and that
ANs+T),k(s+T)) = (A(s),r(s)) for all s > 0.



Unique Global Continuation — Continued

(e) One of the following occurs:

(1) [(A(s),5(s))]] = 00 as s = oo;
(ii) 9 is a closed loop, R = {(A(s),k(s)) : 0 < s < T} and
(A(T),k(T)) = (X0, 0) for some T > 0 .
Let 7" > 0 is the smallest such 7" and that
ANs+T),k(s+T)) = (A(s),r(s)) for all s > 0.

(f) If (A(s1),k(s1)) = (A(s2),k(s2)) €M, s1 # s9, then (e)(ii)
occurs and |s; — so| is an integer multiple of 7.

In particular, (A, k) : [0,00) — S is locally injective.
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Cautionary Remarks

» R may not be maximal: Other curves or manifolds in &
may intersect ‘R.

v

R may self-intersect in the sense that while s — (A(s), k(s))
is locally injective, it need not be globally injective.

» R may not be smooth where o*'(0) = 0 even though R has
a local analytic parameterization at every point.

{(#%,t3) : t € (—1,1)} has a cusp at t = 0, even though its
parametrization is real-analytic.

v

(e)(i) is stronger than saying PR is unbounded in R x X.
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Sketch of Proof

» A distinguished arc is a maximal connected subset of 1.
» A route of length N € NU{oo} isaset {A4,:0<n< N}
of distinguished arcs and a set
{(An,zn) : 0 <n < N} CR x X such that:
» (Ao, 20) = (Ao, 0) is the bifurcation point;
» RT C Ao;
» For N>land 0<n< N —1,

Ant1, Tns1) € (0An NOAni1) \ {( A, 20)}

and there exists an injective R-analytic map
p: (71, 1) — .An U .An+1 U {()\n+1,xn+1)} with
p(0) = (Ant1, Tny1). Hence A, 41 is uniquely determined by
A,, and vice versa.
» The mapping n — A, is injective.

{Ao}, {(Mo,0)} is a route of length 1 with (Xg,0) € d.Ag
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Maximal Routes

By Zorn’s Lemma there exists a maximal route of length
N € NU {oo} which we denote by

{An, Anyxn)}:0<n< N}, A= UA,.

The problem is to show that

if A is unbounded it has a parametrization which tends to
infinity as s — oo

and
if A is bounded then N must be finite and (A, z,,) = (Ao, Zo)

To show this we use the local properties of equations with
analytic operators in an essential way

Once we understand that structure, the global unique
continuation result is more-or-less obvious
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The equation: F'(\, x) = 0 where F' is R-analytic

Let
S={(\,z): F(\x) = 0}: all solutions

T ={(\z) €S :x#0} all non-trivial solutions

N ={(\z) €S :ker (8, F[(\ z)]) = {0}}: all non-singular solutions

Points of 91 lie on one-dimensional branches parametrised by
the distinguished parameter A
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Analyticity: Tools of the Trade
F is the field R or C and X, Y are Banach spaces over F.

Let F: U — Y is C* where U is open in X.
Definition (F -analyticity is a local property.)

F:U —Y is F- analytic at zg € U if at each point of a ball B
about xg in X, it is the sum of its Taylor series:

- L
Z — (x — xo)k, reB
k!
k=0
F is analytic on U if it is analytic at each point of U.

Theorem. F'is analytic on U if and only if for each xg € U
there exist constants r, C;, R > 0, depending on xg, such that

HdkF[x]H < % for all x € U with ||x — x| < 7.
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Difference between R- and C-Analyticity

The map x + iy — x — iy is linear from the real linear space C
to itself. Therefore it is R-analytic.

It is not linear on the complex linear space C. In fact it is not
even differentiable and is therefore not C analytic.

f(x,y) = (zy, ry) is R-analytic from R? into itself.
However it is zero on both axes. Hence non-trivial R-analytic
functions can have cluster points of zeros.

However it cannot have open sets of zeros if it is not identically
ZEro:

Theorem Suppose that that U C X is an open connected set
and that F : U =Y is F-analytic. Suppose also that FF =0 on a
non-empty open set W C U. Then F is identically zero on U.
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More on R- and C-Analyticity

Suppose that U C F™ is open and connected

gk : U — F is F-analytic, 1 < k < m.
E={zcU:gi(zr)=0€F, 1<k<m} an analytic variety
If E# U, then U \ E is dense in U.

IfF =C, then U\ E is also connected.

(Riemann Extension Theorem) If f is C-analytic on U \ E and
sup{|f(z)| : z € U\ E} < 0o, there exists a C-analytic function
fonUwith f=fonU\ E.
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Analytic Implicit Function Theorem
X, Y, Z Banach spaces, (xg,y0) € U (open) C X x Y,
F :U — Z analytic and 0, F[(zo,y0)] € L(X, Z) bijective.

Then yo € V(open) C Y, (z0,y0) € W(open) C U and an
F-analytic mapping ¢ : V' — X such that ¢(yog) = z¢ and

F~ (z) W = {(6(y),y) :y € V}.

Simple Analytic Local Bifurcation

The R-analytic implicit function theorem leads to an R-analytic
version of Lyapunov-Schmidt Reduction and hence to
R-analyticity of the branch which bifurcates locally from a
simple characteristic value:

If F:Rx X — X is R-analytic and )\ is a simple characteristic

value of L with characteristic vector £y # 0. Then there exists

an R-analytic function (A, k) : (—e,€) — R x X such that
F(A(s),k(s)) =0 for all s € (—¢,e¢),

(A(O)7 ’%(0)) - ()‘07 0)7 ’%/(0) =&o
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Notation

_ n _
af =o'k pl=pilps!---pu!,
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x9o €U (open) CF" and f: U — F an F-analytic function.
10Pf

Then f(x Z fpa? where f, = 0l 02 p(mo) and
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Notation

oP = ot pl=p1lpa!---pal,
n n
orf aflpl
of* =2l ’p‘_;pﬂ’ Jap . 0xT Oa - Ol

xo € U(open) C F™ and f : U — F an F-analytic function.

1
Then f(x Z fpa? where f, = lg i(mo) and
peNy
Z 7P| f,] < oo for some 7 > 0

peNg
A function so defined is analytic at zg in F".

If U(open) C C" and f : U — C is C-analytic and f(z) € R for
all x € UNR"™ we say that f is real-on-real.

This means that when xg € U NR" the coefficients f, are real.
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Banach Algebras for F-analytic Functions at 0 € F”
Many different norms can be defined on functions f : F* — F
which have f(0) = 0 and are F-analytic at 0
For example: ¢ € N and r > 0,

0€B!:= (BMH(IE‘))T%1 x By.(F) C F"(open)

Let Cf denote the space of F-valued F-analytic functions u on
B} with u(0) = 0 of the form

u(z) = Z up P

PENG, p#0
D luglr @R = g < oo
peNg, p#0
(C, |l - llrq) is a Banach algebra since it is complete and closed

under multiplication with ||uv]|,q < ||ullrql|v]rq

For given ¢, any function which is analytic at 0 is on one of
these classes for some choice of r sufficiently small.
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f(0) =0 and, for (0,---,0,2,) € U,

f@0,---,0,2,) = zlv(zy,) where v(0) # 0 and g > 1.

Let g : U — F be any F-analytic function with g(0) = 0.
Then for some r > 0,

g(xla"' ,QTn) — h(.’El,"' s Iy )f T, +th‘ L1y ,iEn,l)QTfL

for all (z1,--- ,x,) € Uy = BE, where h is analytic on Uy and
hi is analytic on V = (quH(IF))n_l.

The functions hy and h are uniquely determined by f and g.
If F" = C"™ and f and g are real-on-real, then hi and h are
real-on-real.
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Key Step in Proof of Division theorem

Note that if the result is true for a given f and any g, then
formally the coefficients of the functions h and hjy can be
obtained by comparing coefficients.

It suffices therefore to show that, for » > 0 sufficiently small, a
bijection I' : Cff — C{ is defined by

Tu(z) = f(x)Lu(x) + Au(z), z € BY,
where for v € Cy and x € By,
Au(z) = Z up 2P, Lu(x) = Z wp - gl b

pENG, peNG,
Pn<q Pn>q

Now it is not difficult to see that
(T = Dullrq =< r*qHanq(C(f)qu + 791 - vHr,q) —0asr—0.

Hence T is a bijection on Cy and for g € C{ there is a unique
u € Cf with T'u = g. The uniqueness of h and hy, follow from
the definition of L and A.



Weierstrass Preparation Theorem



Weierstrass Preparation Theorem

Suppose f is F-analytic and not identically zero in a ball about
0 € F" and f(0) = 0.



Weierstrass Preparation Theorem

Suppose f is F-analytic and not identically zero in a ball about
0 € F" and f(0) = 0.

Then there exists a choice of coordinates, F-analytic functions
ar and h, and r > 0 such that on a ball about 0



Weierstrass Preparation Theorem

Suppose f is F-analytic and not identically zero in a ball about
0 € F" and f(0) = 0.

Then there exists a choice of coordinates, F-analytic functions
ar and h, and r > 0 such that on a ball about 0

h(xl"" ,SCn)f(SlTl,--' a:Cn) :$%+Zak($1"" ’xnfl)xﬁ’



Weierstrass Preparation Theorem

Suppose f is F-analytic and not identically zero in a ball about
0 € F" and f(0) = 0.

Then there exists a choice of coordinates, F-analytic functions
ar and h, and r > 0 such that on a ball about 0

h(xl"" ,SCn)f(SlTl,--' a:Cn) :$%+Zak($1"" ’xnfl)xﬁ’

h(0) # 0 and ar(0) =0



Weierstrass Preparation Theorem

Suppose f is F-analytic and not identically zero in a ball about
0 € F" and f(0) = 0.

Then there exists a choice of coordinates, F-analytic functions
ar and h, and r > 0 such that on a ball about 0

h(xl"" ,SCn)f(SlTl,--' a:Cn) :$%+Zak($1"" ’xnfl)xﬁ’

h(0) # 0 and ar(0) =0

ar and h are uniquely determined by f.



Weierstrass Preparation Theorem

Suppose f is F-analytic and not identically zero in a ball about
0 € F" and f(0) = 0.

Then there exists a choice of coordinates, F-analytic functions
ar and h, and r > 0 such that on a ball about 0

h(xl"" ,SCn)f(SlTl,--' a:Cn) :$%+Zak($1"" ’xnfl)xﬁ’

h(0) # 0 and a;(0) =0
ar and h are uniquely determined by f.

If F=C" and f is real-on-real, then h and ay are real-on-real.
Proof. Let g(z) = xf, and then let ay = —hy.
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Multiple Roots and the Discriminant

A polynomial

p—1
A=20+> AZF, Zec,
k=0
can have multiple roots.
However there exists a polynomial function D(Ag, -, Ap—1),

the discriminant, such that A has simple roots when
D(Ag,--- ,Ap_1) #0.

Let £ = (21, ,2m) € C™ If Ay = ax(&) where the ay are
C-analytic the discriminant

D(f) = D(al(g)v e 7ap—1(5))

is a C-analytic function of £ and the A has simple roots when

D(¢) # 0.
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Polynomial Simplification when F = C

Suppose D(ag, -+ ,ap—1) =0 on V (open)
Then there exists another polynomial E(Z;¢&) (the
simplification of A with

> degree £ = q < p,

> e =1,

» E(Z;¢) has the same roots as A(Z;€)

» D(eg, -+ ,em—1,1) Z0on V

» For (21, -+ ,2p) in an open dense connected subset W of
V, E(Z;z1,- - , zy) has no multiple roots.

» If A is real-on-real, then so is E.
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Weierstrass Polynomials
F:C, ’H’LEN(),TTLGN

Let V' be a neighbourhood of 0 € C™.
A polynomial of the form, (£ € V, Z € C,

p—1
A(Z;zlv"' 7zm):Zp+Zak(§)Zk7 p€N7 (T)
k=0

where ag(0) =--- = ap—1(0) =0, D(ag,--- ,ap—1,1) Z0on V is
called a Weierstrass polynomial.

D(ag,--- ,ap—1,1) # 0 on a connected, open, dense subset of V.
Note: If A is a Weierstrass polynomial except that D =0
» its simplification F is a Weierstrass polynomial,

» the roots of ¥ and A coincide

» the non-principal coefficients of E are zero at 0.
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Looking Forward

We will end up having reduced our problem to a
finite-dimensional one for families of Weierstrass polynomials
{Am41,-- ,Apfon VCC™ Forke {m+1,--- ,n} let

hk(zla"' ,Zn):Ak(Zk;Zl,"' 7zm)7 m€{17 7n_1}

The solution set will equivalent to a set of the very special form

Vke{m+1,--- ,m}, hg(z1,---,2,)=0CC"
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Germs and Varieties
Sets S and T are equivalent at a € F*if ONS=0NT for
some open O 3 a.

The equivalence class 7,(5) is the germ of S at a

The set of germs is closed under finite unions, intersections and
complements

If ) £ U C F™ is open and G is a finite set of F-analytic
functions

var (U,G) ={x € U : g(x) = 0 for all g € G}

is the F-analytic variety generated by G on U.
The F-analytic germs at a, vq(var (U, G), are denoted by V,(F")

If a, B € V4(F™), then both aN B and aU B are in V,(F™), but
in general o\ 5 ¢ V,(F").

If U € C" and the elements of G are real-on-real, var (U, G) is
real-on-real
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Varieties and Manifolds

If @ € M, an analytic manifold, then ~,(M) € V,(F").

A point of « is called /-regular if « is an /-dimensional manifold
in a neighbourhood of the point. The dimension of « is the
largest ¢ for which a has ¢-regular points

If @ € M and var (U, G) is an F-analytic variety, there is an
open neighbourhood W of @ in M such that W \ var (U, G) is
either empty or dense in W.

If M C U is a connected analytic manifold and M N var (U, G)
has non-empty interior relative to M, then M C var (U, G).

a € V,(F™) is irreducible if

a=a3Uag, ai, as € V,(F") implies that o = a1 or a = aa.

If M is an analytic manifold and a € M, then v,(M) € V,(F™)
is irreducible.
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For Weierstrass polynomials {4,,4+1,---,A4,} on V. C C™

H = {hmt1, -+ ,hn} where hi(z1, -+ ,2n) = Ap(2k5 21, 5 2m)

A Weierstrass analytic variety is a set of the form
var (V X (C"*m,H) cCcm

Its discriminant D(H) : V' — C is the product of the
discriminants of the Ags

Its branches are the connected components of
var (V x C*™™, H) \ (var (V,D(H)) x C"™™).
Fach branch is a connected C-analytic manifold of dimension m

which projects onto the connected set V' \ var (V,{D(H)}).

Globally, zp+1,- - , 2, are not analytic functions on
V \ var (V,{D(H)}) if the latter set is multiply connected
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Example
Three Weierstrass polynomials
Z? — z; AR z4— 23
define an analytic variety in C* as follows:
22 — 2 = 0; zg—zf:O, 2 =2 =0
This may give a sense of the following result

Think about its structure in this simple case

When m =1 a variety is the union of its branches:

a=" U Bu{o

afyo(B)#{0}
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One-dimensional Branches m =1

Theorem. Suppose B is a branch of the Weierstrass analytic

variety E = var (V x C" ' H) and D(H) is non-zero on

V\ {0}.

Then there exist K € N, 0 > 0 and a C-analytic function
Y:{zeC:|z|f <6} - C!

such that the mapping z — (2% ,4(2)) is injective, ¥(0) = 0 and

{0}UB=Bn(V xC" ) = {(zK,4(2)) : |2|K < a}.
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each Ay is a Weierstrass polynomial. If the discriminant D(H)
is not zero at z; = 0, then A(Z;21) = Z — ag(z1).
Then the result holds with
K =1and ¥(z1) = (a2(z1),a3(z1), - ;an(21)), 21 € V.
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Let H = {hg, -+ ,h,} where hi(z1,--- ,2n) = Ar(zk; 21), and
each Ay is a Weierstrass polynomial. If the discriminant D(H)
is not zero at z; = 0, then A(Z;21) = Z — ag(z1).
Then the result holds with

K =1and ¥(z1) = (a2(z1),a3(z1), - ;an(21)), 21 € V.

When D(H) is zero at 0, each of the polynomials Ag(Z;z2;1) has
only simple roots for z; € V'\ {0}.

Let V denote the half-plane in C defined by
V={2€C:z=p+if, —oo<p<logé, 6 R},
ﬁk('z’ Zk) = Ak(Zk;SZ), S ‘7’ 2, € C.
Let R R R R R R
H=1{hg,--- ,h,} and E = var (V x C""!, H).
B is a branch of F if and only if B is a branch of F , where
B={(c¢: (¢ €eB}, ceC .



Since D(H) is nowhere zero on V' \ {0}, D(H) is nowhere zero
on V and every point of E is 1-regular and

({2} xC" ) NE = {(2,&(2) : 1 < ¢ < p},

where p = [[;_, Pk



Since D(H) is nowhere zero on V' \ {0}, D(H) is nowhere zero
on V and every point of E is 1-regular and

({2} xC" ) NE = {(2,&(2) : 1 < ¢ < p},

where p = [[;_, Pk
By the Analytic Implicit Function Theorem, each &, is defined
locally on V as a C-analytic function with values in C"~!



Since D(H) is nowhere zero on V' \ {0}, D(H) is nowhere zero
on V and every point of E is 1-regular and

({2} xC" ) NE = {(2,&(2) : 1 < ¢ < p},

where p = [[;_, Pk
By the Analytlc Implicit Function Theorem, each &, is defined
locally on V as a C-analytic function with values in C"~!

Since Vis s simply connected, they define analytic functions on
V. Thus E is the union of the disjoint graphs of the functions
§:V—=C1<q<p.



Since D(H) is nowhere zero on V' \ {0}, D(H) is nowhere zero
on V and every point of E is 1-regular and

({2} xC" ) NE = {(2,&(2) : 1 < ¢ < p},

where p = [[;_, Pk
By the Analytlc Implicit Function Theorem, each &, is defined
locally on V as a C-analytic function with values in C"~!

Since Vis s simply connected, they define analytic functions on
V. Thus E is the union of the disjoint graphs of the functions
§:V—=C1<q<p.

Recall that, for z € 17, each component of §,(z) € C" 1 is a
simple root of a polynomial Ax(Z;e?), 2 < k < n.
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s o {6 () 1<q<p)

is a 2mi-periodic set-valued map on V.

Moreover if, for some z € V and some m € Z,

gql(/z\) = 5(12(2‘1“ 27Tmz), q1, 92 € {]_’ .. p}’

then R
£ (2) = &g (2 + 2mmi) for all z € V,

by the Analytic Implicit Function Theorem and analytic
continuation.

Hence, for ¢ € {1,--- ,p}, the mapping
2> (€%,&(2) € E, z € v,

is periodic with period 27K i and is injective on the set
Vo={z=p+i10cV:0<0<21K,}, Ko {1, ---,p}.
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This is a branch of the variety F where m = 1:

B ={(e*&(2) : 2 € Vy}

is an injective parameterization of B. Since z — &;(K,z) has
period (not necessarily minimal) 27i, we can define an analytic
function 1 : {z: 0 < |2| < §/Ka} — C by

IZ(Z) = gq(Kq log Z)

This gives a new injective parameterization of B, namely
B ={(z%9,4(2)) : 0 < |2] < §"/Ka},

where 9 is analytic and lim,, _o4(z) = 0.

The Riemann Extension Theorem means that {E has an analytic
extension ¢ defined on the ball {z; € C: || < 6"/Ka} with
1(0) = 0. Let K = K, to complete the proof.
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General Structure Theorem for C-Analytic Germs
n =2, a€Vo(C")\ {0}, {0} C a# (C")
Then there exist sets By, --- , By, such that

(a)
(b)

OéZ’)’o(BlLJ---UBNU{O}).

Each Bj, 1 < j < N, after a linear change of coordinates, is
a branch of a Weierstrass analytic variety (depending on j).
dim(c o = maxlSjSN{dim(c Bj}

If L CC" (L) #0, is a connected C-analytic manifold of
dimension [ € {1,--- ,n} the points of which are [-regular
points of a representative of «, then there exists
j€{1,---,N} such that (L) C v(B;) and dim¢ B; = I.
If «v is real-on-real, then B; with B; NR™ # () is real-on-real.
anNy(R™) = (El U---UBgU {0}) where the Ej denotes
those branches which intersect R™ non-trivially.

dimR(a N Rn) = Max|<j<K dimR(Ej N Rn).

If a € Vy(C") is irreducible then a = yo(B) for some B. If
« is real-on-real and o N yy(R™) # {0}, then B is a branch
of a real-on-real variety.
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Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an R-analytic function h
on a (q + 1)-dimensional real vector space V into RY, its
R-analytic variety which contains and a 1-dimensional manifold
M, namely a R-analytic distinguished arc:

A=var (V. {h}) ={(\,§) € V:h(\E) =0},
M ={(X¢&) eV :(Ay(A¢E)) €Nt
Let {M; : j € J} denote those non-empty connected
components of M with v, o)(M;) # 0.

The g components of h(), &) are real functions defined locally in
a neighbourhood of (A, 0) € V by a Taylor series.
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Complexifying
Replacing (21, -+ ,2441) € RITL with (21, , 2441) € CIT!
leads to a real-on-real C-analytic extension h¢ of h in a complex
neighbourhood V¢ of (A4, 0) and a corresponding C-analytic
variety. Let

A° = var (VE, {h¢}) = {(\€) € V: h¢(\, €) = 0},
M= {(\§) € VO ker(9eh®[(N, €)]) = {0}},

and let {M Fijed ¢} be the non-empty connected components
of M€ with (. o)(RTH! 1 ME) # 0.

For each j € J there exists j € J¢ such that M; C ]\4Jc

The structure theorem when applied to A€ gives, for each
J € J¢, the existence of a real-on-real branch B; with

’y()\*70)(Mj¢) C V(A*,O)(Fj), dimBj =1 and Bj C A€

with Bj \ {(A,0)} C M7. There are finitely many branches and
hence finitely many M H and M;.
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Real Branches

Each one-dimensional branches B; has a C-analytic
parameterization in a neighbourhood of (A, 0).

In the setting of R™, we obtain that M, locally near (\,,0), is
the union of a finite number of curves which pass through (A, 0)
in V, intersect one another only at (A.,0) and are given by an
injective parameterization

R" N B = { (=%, p(rexp(kmi/K))) : —6YK < < sV},

Thus, in our previous notation each M;, j € J, is paired, in a
unique way with another Mj, j € J, so that their union with
the point (A4, 0) forms one of these curves in V.

Thus curves in 91 cannot terminate when real-analytic
operators are involved.

This leads directly to the advertised properties of maximal
routes
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Recall once more how the proof goes

» A distinguished arc is a maximal connected subset of 1.

» A route of length N € NU{oo} isaset {A4,:0<n< N}
of distinguished arcs and a set
{(An,zn) :0<n < N} CR x X such that:
» (Ao, 20) = (Ao, 0) is the bifurcation point;
» RT C Ao;
» For N>land 0<n< N —1,

Ant1, Tns1) € (0An NOAni1) \ {( A, 20)}

and there exists an injective R-analytic map
p: (71, ].) — .An U .An+1 U {(>\n+1,xn+1)} with
p(0) = (Ant1, Tny1). Hence A, 41 is uniquely determined by
A,, and vice versa.
» The mapping n — A, is injective.

{Ao}, {(Mo,0)} is a route of length 1 with (X, 0) € Ay
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Maximal Routes

By Zorn’s Lemma there exists a maximal route of length
N € NU {oo} which we denote by

{An, Anyxn)}:0<n< N}, A= UA,.

The problem is to show that

if A is unbounded it has a parametrization which tends to
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Maximal Routes

By Zorn’s Lemma there exists a maximal route of length
N € NU {oo} which we denote by

{An, Anyxn)}:0<n< N}, A= UA,.

The problem is to show that

if A is unbounded it has a parametrization which tends to
infinity as s — oo

and
if A is bounded then N must be finite and (A, z,,) = (Ao, Zo)

We have seen that a distinguished arc cannot terminate at a
singular point:
on the contrary it is paired canonically with another uniquely

determined distinguished arc

The global result follows easily from this and the local
compactness of solution sets.



