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Bernoulli Free-Boundary Problem

Free surface:
S := {(u(s), v(s))| s ∈ R},

where
(u, v) is injective and absolutely continuous,

u′(s)2 + v ′(s)2 > 0 for almost all s,

s 7→ (u(s)− s, v(s)) is 2π–periodic.

Let Ω denote the open region of R2 below S.



The boundary value problem:

Find S for which there exists ψ ∈ C(Ω)
⋂

C2(Ω) such that

∆ψ = 0 in Ω,

ψ is 2π–periodic in X ,

∇ψ is bounded in Ω and ∇ψ(X ,Y )→ (0,1) uniformly in X
as Y → −∞,

ψ ≡ 0 on S,

|∇ψ(X ,Y )|2 + λ(Y ) = 0 almost everywhere on S (the
Bernoulli boundary condition).



If ψ ≡ 0 on S, then the Bernoulli condition

|∇ψ(X ,Y )|2 + λ(Y ) = 0 on S

is equivalent to the Neumann condition

∂ψ

∂ν
(X ,Y ) = h(Y ) on S,

where λ = −h2 and ν is the outward unit normal to S.



The coefficient:
λ : R→ R is continuous on R and real-analytic on the open set
of full measure {y ∈ R : λ(y) 6= 0}.



Stokes Waves

The case λ(Y ) ≡ 2µY − 1, µ = const > 0 corresponds to
Stokes waves.

A Stokes wave is a steady periodic wave, propagating under
gravity with constant speed on the surface of an infinitely deep
irrotational flow. The Bernoulli boundary condition is the
constant pressure condition for Stokes waves resulting from
Bernoulli’s theorem in inviscid hydrodynamics.

µ−1/2 is the Froude number, a dimensionless combination of
speed, wavelength and gravitational acceleration.



Stokes (1847): nonlinear waves with small amplitudes.



Stokes Conjectures (1880)

First conjecture: There exists a large amplitude wave with a
stagnation point and a corner containing an angle of 120◦ at its
highest point. (Stokes wave of extreme form)

Second conjecture: The Stokes wave of extreme form is convex
between successive crests.
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Stokes first conjecture

C.J. Amick, L.E. Fraenkel, J.F. Toland (1982) and independently
P.I. Plotnikov (1982) proved Stokes first conjecture.

L.E. Fraenkel (2007): a new constructive proof of the existence
of the Stokes wave of extreme form. Further improvements –
L.E. Fraenkel and P.J. Harwin (2010), L.E. Fraenkel (2010).
L.E. Fraenkel (2007): "Throughout the paper, results depend on
the numerical evaluation and numerical integration of functions
defined by explicit formulae. (These calculations were all done
with a Texas Instruments TI-92 calculator.) Therefore, purists
may believe that the theorems in the paper have not been
proved. I have much sympathy with this point of view, but it
seems unlikely that, without numerical evaluation of known
functions, a construction as direct as that in this paper could be
obtained."
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Stokes second conjecture

The Stokes wave of extreme form is convex outside the
π/2–neighbourhood of the crest (follows from the existence
proof).

C.J. Amick and L.E. Fraenkel (1987) and J.B. McLeod (1987)
Asymptotic behaviour near the crest of the Stokes wave of
extreme form, in particular, convexity in a small neighbourhood
of the crest.

P.I. Plotnikov and J.F. Toland (2004) proved Stokes second
conjecture.



Stokes second conjecture

The Stokes wave of extreme form is convex outside the
π/2–neighbourhood of the crest (follows from the existence
proof).

C.J. Amick and L.E. Fraenkel (1987) and J.B. McLeod (1987)
Asymptotic behaviour near the crest of the Stokes wave of
extreme form, in particular, convexity in a small neighbourhood
of the crest.

P.I. Plotnikov and J.F. Toland (2004) proved Stokes second
conjecture.



Stokes second conjecture

The Stokes wave of extreme form is convex outside the
π/2–neighbourhood of the crest (follows from the existence
proof).

C.J. Amick and L.E. Fraenkel (1987) and J.B. McLeod (1987)
Asymptotic behaviour near the crest of the Stokes wave of
extreme form, in particular, convexity in a small neighbourhood
of the crest.

P.I. Plotnikov and J.F. Toland (2004) proved Stokes second
conjecture.



Nekrasov’s equation

θ(s) =
1

6π

Z π

−π

 
log
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2 (s − t)
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˛
!

sin θ(t)
β +

R t
0 sin θ(τ) dτ

dt ,

s ∈ [−π, π],

where β is a constant.



Related 1-d Equations

M.S. Longuet-Higgins, 1978, 1985
K.I. Babenko, 1987
P.I. Plotnikov, 1992
A.I. Dyachenko, E.A. Kuznetsov, M.D. Spector, and V.E.
Zakharov, 1996
B. Buffoni, E.N. Dancer, and J.F. Toland, 2000
Bernoulli free-boundary problem case (general λ):

λ(w)
(
1 + Cw ′

)
+ C

(
λ(w)w ′

)
+ 1 = 0 (1)

where Cu denotes the periodic Hilbert transform of a
2π-periodic function u : R→ R:

Cu(x) =
1

2π

∫ π

−π
u(y) cot

x − y
2

dy .
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Equation (1) has variational structure: it is the Euler-Lagrange
equation of the functional

J (w) =

∫ π

−π
{w + Λ(w)(1 + Cw ′)}ds,

where Λ′(w) = λ(w).

(Stokes waves: λ(w) = 2µw − 1, Λ(w) = µw2 − w .)

Hence a canonical Morse index can be assigned to solutions
and one can use the Calculus of Variations. It is also important
that (1) involves real-analytic operators.

B. Buffoni, E.N. Dancer, and J.F. Toland (2000): theory of
sub-harmonic (period-multiplying) bifurcations of Stokes waves
which, in particular, disproves a conjecture made by Levi-Civita
(1925) who had speculated that there might exist an upper
bound on the minimal wavelength of a Stokes wave
propagating with a given speed.
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Function spaces:

Lp
2π, p ≥ 1 – the Banach space of locally pth-power

summable 2π–periodic functions,

W 1,p
2π – the Banach space of absolutely continuous,

2π–periodic functions w with weak first derivatives
w ′ ∈ Lp

2π,

H1,1
R – the real Hardy space of absolutely continuous

2π–periodic functions with derivative in the Hardy space
H1

R := {u ∈ L1
2π : Cu ∈ L1

2π}.

(Note that W 1,p
2π ⊂ H

1,1
R for p > 1)



Properties of C:

C : Lp
2π → Lp

2π is bounded if 1 < p <∞ (M. Riesz theorem),

C1 ≡ 0, C expn ≡ −i sign(n) expn, ∀n ∈ Z\{0}, where
expn(t) ≡ eint ,

C ⇐⇒ a zero order ΨDO on the unit circle with the symbol
−i sign(ξ),

the operator w 7→ Cw ′ ⇐⇒ a first order ΨDO on the unit
circle with the symbol |ξ|, i.e. the operator

√
−∆.

the operator w 7→ Cw ′ ⇐⇒ Dirichlet-to-Neumann operator
for the unit disk.



Theorem. (ES & J.F. Toland, 2008)
(a) Let u, v , ψ be a solution of the Bernoulli free-boundary
problem. If ϕ is a harmonic conjugate to −ψ, then ϕ+ iψ is a
conformal mapping of Ω onto the lower half-plane.
Let Z be the inverse conformal mapping of the lower half-plane
onto Ω and w(t) := Im Z (−t), t ∈ R. Then w ∈ H1,1

R is a
solution of (1).

(b) Let w ∈ H1,1
R be a solution of (1) such that λ(w) ≤ 0 and

R 3 t 7→ (−(t + Cw(t)),w(t)) is injective .

Let (u(t), v(t)) = (−(t + Cw(t)),w(t)),
S := {(−(t + Cw(t)),w(t)) : t ∈ R}, and ψ be the imaginary
part of a conformal mapping of the region Ω below S, onto the
lower half-plane. Then u, v , ψ is a solution of the Bernoulli
free-boundary problem.
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Theorem. (ES & J.F. Toland, 2008)

Let w ∈ H1,1
R be a solution of (1). Then log |λ(w)| ∈ L1

2π,
λ(w) < 0 on a set of positive measure, and w is real-analytic
on the open set of full measure where λ(w) 6= 0.



Theorem. (ES & J.F. Toland, 2008)
Suppose that, for some k > 0,

|λ(y)| ≤ const
(

dist(y , zero set of λ)
)k
.

Let p(k) = k+2
k and r(k) = k+2

k+1 , and let w ∈ H1,1
R be a

solution of (1).

(a) The following are equivalent:

w ∈W 1,p(k)
2π ,

w is real-analytic on R,
λ(w) < 0 on R.

(The Stokes waves case: p(1) = 3.)

(b) If w ∈W 1,r(k)
2π , then λ(w) ≤ 0.

(The Stokes waves case: r(1) = 3/2.)
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J.F. Toland, 2000; P.I. Plotnikov & J.F. Toland, 2003:

Let k ≥ 1. There exists µ̂ = µ̂(k) > 0 and a solution

ŵ ∈ ∩p<p(k)W
1,p
2π

of (1) with λ(ŵ) := −(1− 2µ̂ŵ)k < 0 almost everywhere, but
which is not Lipschitz continuous at a discrete set of points
t ∈ R where 1− 2µ̂ŵ(t) = 0.

In the case k = 1, λ(Y ) ≡ 2µ̂Y − 1 the above solution gives the
profile of the Stokes wave of extreme form.



The main open question:

Let w ∈ H1,1
R be a solution of (1).

Can 1− 2µw change sign?

If yes, do such solutions have any physical meaning? (Note
that they do not satisfy the Bernoulli condition.)



Heuristic argument

Suppose 2µw − 1 changes sign at t0 and we have the following
in a neighbourhood of t0:

2µw(t)− 1 =

{
c1|t − t0|γ1 + w1(t), t < t0,
c2|t − t0|γ2 + w2(t), t > t0,

where 0 < γj < 1, cj ∈ R, wj are “good” functions and
wj(t0) = 0, j = 1,2. Let min{γ1, γ2} < 1/2. (This restriction is
fulfilled in the case w ′ 6∈ L3/2

2π which we need to deal with.)

Then one can prove that γ1 = γ2 = 1/3, c1 = −c2.
In particular, w 6∈W1,3/2

2π , but w ∈W1,p, ∀p < 3/2 in a
neighbourhood of t0.
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Theorem. (ES & J.F. Toland, 2008)

Suppose that λ′(x) > 0 at the points x where λ(x) 6= 0, and that
log |λ| is concave. (This is fulfilled for the Stokes waves.)

Let w ∈ H1,1
R be a solution of (1) such that λ(w) ≤ 0 and

the set of zeros of λ(w) is at most countable.

Then 1 + Cw ′ > 0 almost everywhere. Hence
R 3 t 7→ (−(t + Cw(t)),w(t)) is injective (is in fact the graph of
a function).
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Minkowski dimension of

N := {t ∈ R : λ(w(t)) = 0}

(and hence for its Hausdorff dimension).

If w ∈W 1,p
2π , 1 < p < p(k), then 1− p/p(k) is a better upper

bound for the lower Minkowski dimension of N .

(Stokes waves: 1− 1/p(k) = 2/3,

1− p/p(k) = 1− p/3.

)
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E. Varvaruca and G.S. Weiss (2010): a Stokes wave can have
at most finitely many points with 1− 2µY = 0 per period.



Morse index

Let w0 be a critical point of the functional

J (w) =

∫ π

−π

(
w(t) + Λ(w(t))(1 + Cw ′(t))

)
dt , w ∈W 1,2

2π ,

where Λ is a primitive of λ.

Consider the quadratic form of the second Fréchet derivative
J ′′(w0) (the Hessian):

Qw0 [u] :=

∫ π

−π

(
2λ(w0(t))u(t)Cu′(t)+λ′(w0(t))(1+Cw ′0(t))u2(t)

)
dt .

The Morse indexM(w0) of w0 is the number N−(Qw0) which is
defined below.

Let H be a Hilbert space and let q be a Hermitian form with a
domain Dom (q) ⊆ H. Set

N−(q) := sup {dimL | q[u] < 0, u ∈ L \ {0}} ,
where L denotes a linear subspace of Dom (q).
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Morse index

Qualitative results

P.I. Plotnikov (for solitary waves, 1991)
B. Buffoni, E.N. Dancer and J.F. Toland (for Stokes waves,
2000)
ES & J.F. Toland (for more general Bernoulli free-boundary
problems, 2008)

If the Morse indices of the elements of a set of non-singular
Stokes waves are bounded, then none of them is close to a
singular one.



Morse index

A quantitative result

Assume that for some k > 0,

if λ(y0) = 0, then |λ(y)| ≤ const |y − y0|k , ∀y ∈ R,
ln |λ| is concave, and λ′ ≥ 0 where λ 6= 0.

Let p(k) = k+2
k .

Every critical point w0 ∈W 1,p(k)
2π of J is a real analytic function

and
min
t∈R

λ(w0(t)) > 0.

Let

ν(w0) := max
t∈R

|λ′(w0(t))|
λ(w0(t))

,

ν0(w0) := max
t∈R

1
λ(w0(t))

=
1

mint∈R λ(w0(t))
.
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Morse index

Suppose there exist constants m1,m2 > 0 such that

m1

λ(y)1/k ≤
|λ′(y)|
λ(y)

≤ m2

λ(y)1/k for all y ∈ R with λ(y) 6= 0.

Theorem. (ES, 2012)
There exist constants M1,M2 > 0 which depend only on k and
are such that

M1
m1

m2
ln

k
k+2 (1 + ν(w0)) ≤M(w0) ≤ 1 + M2 ν(w0) ln(2 + ν0(w0))

holds for every critical point w0 ∈W 1,p(%)
2π of J .

In the case of Stokes waves, the estimate takes the form

M1 ln1/3(1 + ν(w0)) ≤M(w0) ≤ 1 + M2 ν(w0) ln(2 + ν0(w0)).
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qV [u] :=

∫ π

−π

(
(Cu′(t))u(t)−V (t)u2(t)

)
dt , u ∈W 1,2

2π , (V ≥ 0).

Theorem. (ES, 2012)
There exist constants C1,C2 > 0 such that

C1‖V‖L1
2π
≤ N−(qV ) ≤ C2‖V‖B + 1, ∀V ∈ L1

2π, V ≥ 0.

Here
B(s) := (1 + |s|) ln(1 + |s|)− |s|, s ∈ R

and

‖f‖Ψ := inf
{
κ > 0 :

∫ π

−π
Ψ

(
f (t)
κ

)
dt ≤ 1

}
.
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