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A short introduction of myself

* Educated in Univ. Tokyo---

Hiroshi Fujita---Tosio Kato . |
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Three sources of PDE peoples

Gigas, Takada,

= KOsaku Yosida |

Tsutsui, Abe

Tosio Kato === H.O. Kishimoto,

Masaya Yamaguti geed Matano, Miyaji
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Navier-Stokes

u. +(UueV)u=vAu Vp

divu=0

The parish where Stokes
was born. His father was the
parish minister.
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3D Navier-Stokes: A bad problem
Turbulence is a bad Problem!? How about the NS itself?
Try simpler models:
% Burgers (‘15 Bateman, ‘39 Burgers)
& Proudman--Johnson eq. c¢e2)

@ Fujita’seq. U = AU+ U" ()
& De Gregorio (90

& Strain-vorticity dynamics (unbounded sol.)
& Quasli-geostrophic eq.

& Many others.




Navier-Stokes is nonlinear & nonlocal

* Navier-Stokes eqns. are integro-differential
eqns. rather than differential egns.

®, + (U V) —(®+V)U=1A®

u=(cur)*®, Biot—Savart

u(t, x) ——m m(t,g)dg

nonlocal < Vp < Helmoltz decom.

Therefore models must be nonlinear & nonlocal.



model (D
The Proudman-Johnson equation. ‘62

e Derived from 2D Navier-Stokes

U= (U(t, X)i_yux(t1 X))

(unbounded solution of NS)

+uu,,, —uu, =vu

U

XX XXXX

(0<t, 0<x<]
periodicBC & u,, (0, x) = —¢(X)



Global existence or finite time blow-up?
Uy T UU —U UL = W

) = _uxx Order -2
_ | d?
W, -I-UC()X—UX(()—VC()XX, U = w.

®(0,X) = ¢(X)

®, +(UsV)o—(m.V)u=1Am

u=(curl)*®, Biot—Savart

Order -1



In 1989, a paper appeared in J. Fluid Mech.

* Finite time blow up was predicted by
numerical computation.



Global existence was proved by X. Chen

Theorem. Assume that v > 0.

For any initial data o(t =0) in L?(-1,1), a
solution exists uniquely for all T and
tendstozeroas t —0,

if homogeneous Dirichlet, Neumann, or the periodic

boundary condition.

Xinfu Chen and O., Proc. Japan Acad., 2000.

Blow-up if non-homogeneous Dirichlet BC.??7?
Grundy & McLaughlin (1997).



Be careful for numerical solution

 Somebody may say: '
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PJ_Dirichlet.avi

A remark on numerical

tS
* |n the case of v=0, numerical experiments are

experimen
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Prime suspect of the blow-up
is the stretching term.

® +UV)o—(®.V)Uu=1Am

convection stretching diffusion

Conjecture: blow-up is caused by
the stretching term.
The convection term is the by-stander.



Effect of convection term

—1
_ _ | d?
W, -I—UC()X —UXC()—VC()XX, U —( dxz) 0,
convection stretching difusion

. u u - VU The convection term is
txx XXX xxxx  NOT important in blow-up.

1
~~u,’ =W, +constant

tx 2
1 2
U==u, U, =W, +U2-b(t)
2

u

u

Close to the Fujita eqgn.



U =U_+U?’ —%_‘:U (t,x)°dx, (0<t,—1<x<1)

[[U(t.x)dx=0, periodic BC w

U, =U,+PU 2 P:Ll? > L°/R Fujita+Projection
a)txx T UC()X o UXCO — Va)xx’ @m Global existence

Dy —-U,w=vw, 4= Blowup

A proper convection term prevents
solutions from blowing-up.

(O. & J. Zhu, Taiwanese J. Math., 2000)
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Budd, Dold & Stuart ('93), Zhu &O. ('00)

1
2 2
.3 u =w, +u —_[Ou(t,x) dx.

lim,_ . u(t, X,) = +oo,
lim,_;u(t,y)=—0 (y=X)

ut,y) _,
u(t, X,)

IIrnt—>T
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Blow-up with or
without the projection

-~ 1000.0

/ x=1
x=0 x=1 ut — uxx + Pu2

' 2
Up = Uy T U
Everywhere blow-up is likely

Proof?
18



model @ Generalized
Proudman-Johnson equation

* A model: )\ 1
o, +Uo, —au,o=va,, u:(—d )a)

(0, X) = @(X)

O a=-(m-3)/(m-1), axisymmetric exact solutions of the Navier-
Stokes egns in R™,
® a=1 (m=2) Proudman-Johnson eqgn
©® a=-2, v=0. Hunter-Saxton equation ("91)
O a=-3 the Burgers equation (‘46)
q2

B u, +uu, =, = U, +uu, +3uu, =w

XXXX



Prime suspect of the blow-up
s the stretching term.

®, +UV)o—(®.V)Uu=1Am

convection stretching diffusion

a

XX

+Uw, —au, w =vw,,

Conjecture: blow-up for large |a|
global existence for small [a] .



Xinfu Chen’s proof of global existence

 X.Chen and O., Proc. Japan Acad., vol. 78
(2002),

e periodic boundary condition.

« THEOREM. If 0<v& -3 =a =1,
the solutions exist globally in time for all

initial data.

21



If a<-3,or 1<a, then...

* Global existence for small initial data. Blow-up for
large initial data --- numerical evidence but no proof.

max|®| .11 a-105 s Max|o|
A

A g a=1.0
15000 - B i
150 -
10000
100 - { -
| T
5000 | a=0.98
} t 50

0 5 10 15 20 | ‘ ‘ >

v=0.001

a =1 is a threshold. .



Numerical experiments

@, = 30SIn(27X)
a=10

@, = SIN(27X)
a=10
w/max ||


ProudmanJohnson1.wmv
ProudmanJohnson3.wmv

If 1<a, we expect blow-up occurs
even for smooth initial data.

x=0

x=1
x=0 R i |
A A
[ \-,.\ . / - \‘\\\ = a - 1.5
i t=0. 52558
il
10 : 01
\
-20 .
“ 10+
|
-30 —
== —————— ;
£=0. 5455 .
a=-2.5 |
i | -10- |
_20_




* Nakagawa’s method(1976)
adaptive At

* W.Ren & X.-P. Wang’s ’
iterative grid redistribution
method(2000)
adaptive AX

1 At,

25



Initial data

300 sin(27x)

200 sin(27z) + 400 cos(2:
300 sin(27z) — 200 cos(4
250 sin(47z) + 100 cos(2mx

300 sin(27z) — 200 cus(?
200 sin(27x) 2
+50 sin( 4-?r.r)

26
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.r) + 100 sin(47x)

)

cos(4mx)



Morm

Max norm of U & U,

le+02 1e+04 1e+06

1e+00

norm of u

norm of f

| [ |
2e-04 4e-04 Ge-04

t
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Blow-up time versus a
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Current Status

O. J. Math. Fluid Mech. 2009

29



orveo 2R
for v=0

a=-1

O. J. Math. Fluid Mech. 2009

Blow-up for -oo <a<-1. (Remember that the

solutions can exist globally in this region if v > 0. Viscosity
helps global existence.)

Global existence if -1 = a<1 & if smooth
initial data.

Self-similar, non-smooth blow-up solutions
exist for -1 < a < 0.

So far, | have no conclusion in the case of 1 < a.

30



Weak sol. of the generalized P)

Cho & Wunsch, (2010), a =-(n+2)/(n+1)



model 3
Constantin-Lax-Majda

@, —ou, =0

u, = Hw

A necessary and

sufficient condition >
is known

(Constantin, Lax,

=5
& Majda 1985). =

@, (X) = COS X




De Gregorio ‘90

w, +Uw, —wu, =0
u =Hw
Global existence???

Does the convection term delete the blow-up?

a)t -+ au a)x — a)ux — O O, Sakajo & Wunsch

‘08
u =Hw, aeR

-o<a =0. Blow-up
Castro & Cordoba '09



Constantin-Lax-Majda & De Gregorio &
Proudman-Johnson can be unified.

2 1
Wiy +UQ)X —auxa):VC()XX, :(—37 a
(0, X) = p(x)
g2 £12
)N +U60X —auxa)zva)xx, = _d7 aQ
(0, x) = ¢(X)

3: 1 & a= oo ‘ Blow-up Constantin-Lax-Majda " 85
I=1&a=1 ‘ ??? De Gregorio’s 90
321 & -o<a<0 ‘ Blow-up Castro & Cordoba ‘09




Unified equation & b-equation

2 d2 |*!
+Uw, +bu w=vw,, U=\M"——| w

@ dx2

XX

(0, X) = ¢(X)

Holm & Hone 2005
Escher & Seiler 2010



The generalized P-J with v=0.

u,, +uu,  —auu, =0

XX

(0<t, 0<x<]

e 3D axisymmetric Euler for a = 0.

periodicBC * Hunter-Saxton model for
nematic liquid crystal for a = -2.

U yy (O, X) = —¢(X) * Burgers fora = -3.



Starting point: local existence

theorem
* With a help of Kato & Lai’s theorem (J. Func. Anal. '84),

w=-U,, o +Uo,—au,o=0

XX 1

» Locally well-posed if @(0,¢)e*(01)/R,

* Global existence if »(0,0) ?(0])/R,



Different methods were needed
for global existence/blow-up in

-o<a<-2, -2=a<-1, -1 =a<0, 0=ax<l

* The case of -co<a < -2 is _n 5
settled in Zhu & O., ¢(t) — .[0 U, (t’ X) dx

Taiwanese J. Math.

12000} 3—;¢(t) > by (t)’



-2 = a<-1. Follows the recipe of
Hunter & Saxton ( '91)

* Use the Lagrangian coordinates

X =u(t, X(t,¢)), X(0,8)=¢ (0=g<]

* Define V(t,f)zxg(t,f).
th:(\/t)z_l(t)\/’ (1) = I v de

e \/ tends to -oo.

 Global weak solution in the case of a= -2
(Bressan & Constantin ‘05).



Blow-up occurs both in -co<a <-2

andin -2 = a<-1, but

* Asymptotic behavior is quite different.

|l ()

blow up. (-0o<a<-2)

L2

u, (t)

(-2 =a<-1)

2 is bounded. Hux(t)

blows up.
L* P



-1 = a<0. Follows the recipe of
Chen & O. Proc. Japan Acad., (2002)

e Define CD(S) :l S ‘—1/a
* |nvariance

i dx = [ @ d
ajocb(uxx(t,x)) x_jo (U, )[-uu,, +au,u,, Jdx

= [ [®(u,,) +au, @'(u,,)]u,dx = 0.

* Boundedness of Ll‘uxx(t,X)‘_lladX, j:\uxx(t,x)\dx



-1 < a<0. Continued.

lu, ()] <c

u,, +ud,,, —auu ., =vu gives us

XXXX

d 1 2 . 1 2
ajouxx(t,x) dx—(2a+1)J‘OuXuXX dx

d 1 2 1 2
ajoum(t,x) dx < c(2a-+1) | u,(t,x)*dx



0 <ac<l.

Follows the recipe of

Chen &O. Proc. Japan Acad., (2002)

e Define

D(s) =+

(
N

1/(1-a) (S < O)
0 (0<s)

) d @ N AT
Then ajo D(U,, )dx = a_[o u, d'(u,, )dx <0

_E‘Um(t’ x)‘dx is bounded.



Non-smooth, self-similar blow-up
solutions when -1 < a < +w0

. u(t, X) = 'IE(—Xt)

F"+FF"—aFF" =0.

= Nontrivial solution exists for all -1 <a<+w.



v=1.0

1. m = 1000
N (0,%) = 100(3% - 1)

Another

00000

3D Navier-Stokes
exactsol. =

= x=1

f.+(f-=-St)f —(f —(Sf))f, =
St (t,x) = f (t,—x)

XXXX

 Nagayama and O.,’02 numerical experiment.
* Proof ?7?



2D Example (with K. Ohkitani)

J. Phys. Soc. Japan, vol. 74 (2005), 2737--2742

* 2D Euler
@, +UeVaw=0
w = curlu
X =(0,~0)=-AU

Y, +(UeV)x—(xeV)u=0




The convection term is now deleted.

U=(=4) "x X, —(xeV)u=0

u=P(-A) "



L2-norm of y
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Conclusions

Similarity solutions of the Navier-Stokes eqns
can blow up in finite time: necessity of the
energy inequality.

A proper convection term prevent the solution
from blowing-up. Or, at least, rapid growth is
slowed down by a convection term.

There are some cases where proof is needed.

Blow-up behavior is very different from a
nonlinear heat egn: the yoke of non-locality.

Thank you very much.



