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1. Introduction
Stokes system:
V. —AV+V(q=0,divv=0 in Qx(0,T)
BC. v=0 on oQ
1.C. V]_,=V, In Q

Here €2 is a uniformly C°-domain in R"(n > 2)
V : unknown velocity field
g : unknown pressure field
V, : a given initial velocity



Problem. Is the solution operator (called
the Stokes semigroup) S(t) :v, — Vv(-,t) is
an analytic semigroup in L"-type spaces?

In other words, is there C >0 s.t.
L] <t te©), fex

dt v 1

where X is an L"-type Banach space.
Analyticity Is a notion of regularizing effect
appeared In parabolic problems In an

abstract level.




Definition of analyticity
Definition 1 (semigroup). Let S = {S(t)};~o be a family
of bounded linear operators in a Banach space X. In
other words, {S(t)};~o € L(X). We say that S is a
semigroup in X if
(i) (semigroup property) S(t)S(t) = S(t+ 1) for
t,T>0

(i) (strong continuity) S(t)f — S(ty)f In X
as t -ty forall t, >0,f€eX

(i) (non degeneracy) S(t)f =0 forall t > 0 implies
f =0.

(iv) (boundedness) [IS(t)|l,, < 7C for t € (0,1) 7



Definition 2 (non Cy analytic semigroup). Let S

0e a semigroup in X. We say that S is analytic
if 7C > 0 such that

d C
ES(’[) T 1€ (0,1).

op
See a book [ABHN] W. Arendt, Ch. Batty, M.
Hieber, F. Neubrander, Vector-valued Laplace

transforms and Cauchy problems, Birkhauser
(2011) 5




Definition 3 (Cy-semigroup). A semigroup S is
called Cy-semigroup if S(t)f — f as t 1 0 for
all f € X.

Remark. The name of analyticity stems from

the fact that S = {S(t)};>o can be extended
as a holomorphic function to a sectorial region

of ti.e. |argt| < 8 with some 8 € (0,7/2).



A simple example

Heat semigroup (Gauss-Welerstrass semigroup)
(HO)f)(x) = ef =G+ f
= [ G- nroay
RTL

G (x) = exp(—|x|*/4t)

(4mt)n/2
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Proposition 1. The family H = {H(t)};>q IS
a non Cy-analytic semigroup in L (R™)

(and also in BC(R™))
but a Cy-analytic semigroup in BUC(R™)

(and also in Cy(R™))

Here
BC(R™) = C(R") n L*(R™)
BUC(R")
= {f € BC(R")|f: uniformly continuous}
Co(R™) = L*-closure of C.°(R")
= {f €C (R”)‘ Aim f(x) = 0} ’




Spaces for divergence free
vector fields

C&(Q) ={f € C2(Q|div f = 0}
= the space of all smooth solenoidal
vector fields with compact support
Co »(2) = L™-closure of C.; ()
={fec@Q)|divf=0inQ,f =0on o}
If ) is bounded. (Maremonti '09)
L;(Q) = L"-closure of (. (), 1 <r <
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More spaces

Helmholtz decomposition (2 bounded C*-domain, ...)

L"(Q) = L(Q)DG" () (1 <1 < o)
G"(Q) ={Vr e LI"'(Q)|r = L],.(Q)}.
Ls(Q) = G (W)*

— {f e L"(Q) fﬂ f-Veodx =0forall ¢ € G’"'(Q)}

e.g. Fujiwara-Morimoto ’79, Galdi’'s book '11

Here1l/r+1/r' =1
L2(Q):={f € '(@)| f,, f - Vodx = 0for all o € W(Q)}.
Cow(@) © BUC,(Q) < LE ()
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Typical main results

Theorem 1. (K. Abe — Y. G., Acta Math, to appear)
Let () be a bounded C°-domain in R*(n > 2).
Then the Stokes semigroup S(t) is a C,-analytic
semigroup in C, _(Q) (=BUC_(Q2)). It can be
regarded as a non C, semigroup in L_(€).

Remark. Whole space case Is reduced to the
neat semigroup. This type of analyticity result
nad been only known for half space where the
solution is written explicitly (Desch-Hieber-
Pruss '01, Solonnikov '03) 14




Analyticity of semigroup ---> regularizing effect
Known result for elliptic operators

(i) 2nd order operator on R (one dim): K. Yosida '66

(ii) 2nd order elliptic operator K. Masuda '71 '72 book in '75
L" theory, cutoff procedure for resolvent

(i) higher order, H. B. Stewart '74, '80
Masuda-Stewart method

(iv) degenerate + mixed B. C. K. Taira, '04
See also: P. Acquistapace, B. Terrani (1987)
A. Lunardi (1995) Book.

More recent. nonsmooth coefficient / nonsmooth domain
Heck-Hieber-Stavarakidis (2010) VMO coeff., higher order
Arendt-Schaetzle (2010) 2" order, Lipschitz domain 15



Stokes problem in L (= L"-closure of C,)

(1) Li . easy since the Stokes operator is nonnegative
self-adljoint.

(i) L°:V.A. Solonnikov '77 Y. G. '81 (bdd domain)

(max regularity / resolvent estimate)
-+ H. Abels-Y. Terasawa '09 (variable coefficient)
bdd, exterior, bent half space.

o~ (LNl r>2
(i L, Space—{Lwa, r<?

W. Farwig, H. Kozono and H. Sohr ’05, '07, 09

General uniformity C*-domain / All except
Solonnikov appeals to the resolvent estimate
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Theorem 2. (K. Abe —Y. G.'12)

Let (2 be an C°-exterior domain in R™. Then the
Stokes semigroup {S(t)};>o is a C,-analytic
semigroup in C, (€2) and extends to a non C,-
analytic semigroup in L_(€2). It can be regarded
as a C,-analytic semigroup in BUC_(Q).

Note that for an unbounded domain C, _(€2) is strictly
smaller than BUC_(Q2) because f € C, (€2) implies
()| >0 as |x| > .

17




2. A priori estimates and blow-up
arguments

A key a priori estimate

N (v, q)(x,t)
=|v(x,t)|+t"%|Vv(x,t) +t‘V2v(x,t)‘

+t|0,v(x,t)|+t|Va(x,t)

Theorem 3 (A priori estimate). Let {2 be a bounded
domain with C°-boundary. There exists T, >0 and C
such that for L" solution (v, ) we have

sup [N(v,q)| () <C||v,]|., v, €CZ ().

O<t<T,
(This estimate implies Theorem 1) 18




ldea of the proof —a blow-up argument
a key observation

(Harmonic) pressure gradient estimate by
velocity gradient

sug d, (X)|Va(x,t)| < C||Vv BN (y
d,, (X) =dist(x,0Q).
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A blow-up argument
(Argument by contradiction)

Suppose that the priori estimate were false
for any choice of T, and C. Then there would
exist a solution (v,,q,) with V, and a
sequence 7, ¥ 0 such that

H N(Vm’ qm)Hoo(Tm) > mHVOmHOO'
Thereis t_ (0,7, ) such that
[Ny, )|, () = M /2, M, = sup [N(v,,,q,)], (t).

O<t<z, 20



We normalize (v, ,q,,) by dividing M _ to observe

sup [N (V,,,d,)| (t)<1

O<t<t,,

ING@,.8,)], (t,)21/2

|Von ., =0
with V_ = |\\;|m ,q, = |\(j|m .
m m

We rescale (V_,(Q.) around apoint X & Q)
satisfying

NV, §.)(x .t )>1/4.

21



Blow-up sequence
u_ () =V (x_ +t "°x,t_t)

P (X, 1) =1,
(u_, p.,) solves the equation in

L (X X )

a rescaled space-time domain
Q_x(0,1]
( Q_Is expanding)

22



Basic strategy

A. Compactness:

Prove that (U_, p,.) (subsequently)
converges to (U, p) strong enough so
that N(u, p)(0,1) >1/4.

B. Unigueness:

The blow-up limit (U, P) solves the Stokes
problem with zero initial data so if the
solution is unique it mustbe u=0,Vp=0
which contradicts N (u, p)(0,1) >1/4.

M.-H. Giga, Y. Giga, J. Saal, Nonlinear PDEs, 2010
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Blow-up argument

E. De Giorgi (1961), regularity of a
minimal surface; popular in nonlinear
problems

B.Gidas — J. Spruck '81, a priori bound
for semilinear elliptic problems

Y. Giga '86, First application to a priori
bound for parabolic problem (Giga —
Kohn ’87)

P. Quittner — Ph. Souplet, '07,
Superlinear parabolic problems 24



Less for Navier-Stokes equations

- Koch — Nadirashvili, Seregin, Sverak '09
(nonexistence of type | axisymmetric
singularity)

* Miura—-Y. G.’11
(nonexistence of type | singularity
having continuous vorticity direction)

In our case the problem iIs linear so we
rescale the physical space and velocity In
an unrelated way.

25



Compactness
What estimate is available for (U, P, )?

supHN(um, P, (t) <1

O<t

N(u.,p )(01)>1/4

[Uon [, = O
The pressure gradients estimate implies

t2d,, (X)|Vp,(xt)]<1.
Set Cm = dm /tmllz’ dm = dQ(Xm)'

26



Case 1. limc_ = (Q_ —R")

M-—0o0

Case 2. limc_<o (Q_ — half space)

M—>0

Case 2 I1s more involved.

Even case 1 it is nontrivial because the
problem cannot be localized completely.

27



EX. Interior regularity of the heat eq
u —Au=0 in B.(x)x(-R?0).

If U is bdd by |u|< M, then
<M, in B,,,(X)x(-R?/4,0).

\uck_

This is no longer true for the Stokes
eguations even If we assume
sup [N (v, g)|_ (t) <oo—(*).

O<t<T

28



EX.

v(x,t) =g(t), p(x,t)=-g'(t)-x
g € C'[0, )

Evidently, (*) is fulfilled.

However V, is not Holder if 9 is
not Holder.

29



Lemma 1 (Control of pressure gradient).
If the harmonic pressure dradient
estimate

Hdﬂvq L” (Q) S CHVV L (6Q)
holds, then
M = M,
such that
M

[d, ()Valie, <—sup [N(v,q)|_(t)

O<t<T

with Q, =Qx(0,T). The constant M is
iInvariant under dilation and translation.




Unigueness

Lemma 2. (Solonnikov '03)
veC2(R"x(0,T))nC(R"x(0,T))
quC(fo(o,T)) solves the Stokes
system in R" with v=0 on {x, =0}.
If sup||N(v,q)| <oo,v]|_,=0

e (weak * in L)
and if supt?|x,|Va|<w , then

O<t<T

v=0,vq=0.

31




Example of nontrivial solutions
Without decay estimate for V( this is not true.
v, —AV' =g'(t) in R"x(0,T)(1<i<n-1)

v' =0 on AR x(0,T)
V' |_,=0,Vv' =V'(x_,t) (independent of x).
Then v=(Vv',---v",0) and p(X,t)=-g(t)-X'

solves the Stokes system in a half space with
zero Initial data and zero boundary data. Here

X'=(X..., X _4,0) 2



3. A priori estimate for harmonic
pressure gradient

Equations for the pressure
Consider
vy —Av +Vqg =01in ()
Take divergence to get
Ag = 0in ()

since divv =0. Take inner product
with ng : (unit exterior normal) and use
v - ng = 0 to get

dq/o0ng = nqg - Av on 0Q) .



Lemma 3. If divv = 0, then
Nng - Av = divygoW (v)
with
W) =—-(Vv -5 ")) ng

In three dimensional case,
Nng - Av = —diVaQ(a) X Tl_Q)

where w = curlv. In any case W is
a tangent vector field.

34




Neumann problem

The pressure solves

(NP) Ag = 0 in
dg/ong = divyoW

Enough to prove that
ldaValle < ClIW]lo

for all tangential vector field I/

35



Strictly admissible domain

Definition 4 (Weak solution of (NP)). (Ken
Abe — Y. G., '12) Let () be a domain in
R" (n > 2) with C' boundary. We call
q € Lj,.(Q) a weak solution of (NP) for
W eL”(0Q) with W-nqg=0 if g with
daVqg € L™ (Q) fulfills

f gApdx = | W -VedH™ 1

Q 0

for all @ € C2(Q) satisfying dgp/0nqg = O
on 0(.



Definition 5 (Strictly admissible domain). Let )
be a uniformly C!' domain. We say that ( is
strictly admissible if there is a constant C such

that
ldqValle < CIIW Il 050

holds for all weak solution of (NP) for tangential
vector fields. Note that strictly admissibility

iImplies admissibility defined below.

37



Admissible domain

Let P:L" (Q) > E;(Q) be the Helmholtz
projection and Q =1 —P. Applying Q to
the Stokes equation to get
Vg =QJ[Av].
Here L' =L" N
L' =L" AL2for r>2.

38



Admissible domain (continued)

Definition 6. (Ken Abe — Y. G., Acta Math to
appear) Let QQ be a uniformly C'-domain. We
say that €2 is admissible if there exists I >N

and a constant C = C_, such that
SUde(X)‘ QLV - 1](x) ‘S CHf L* (6Q)
hold for all matrix value f =(f;)e C'(Q)
satisfy V- f(=) .0.f,)eL(Q),
trf =0 and o, f; =0,
forall i, j,I=1{1,...,n}. )




Remark. (i) This is a property of the
solution of the Neumann problem for the
Laplace operator. In fact, Vq=Q[V - f]
Is formally equivalent to

—Ag=div(V-f) In Q
oglon, =n, - (V- 1) on o0Q.

Under the above condition for f we
see that { is harmonic in () since

div(V-f)=)>0,0,f,=>0,0f =0
)

jjll



() The constant C, depends on ()
but iIndependent of dilation,
translation and rotation.

(in) If ) I1s admissible, we easily
obtain the pressure gradient
estimate by taking f, = ajv‘.

(Iv) It turns out that
oq/on,, =—div,,(n, - (f-'f))

41



Remark. Strictly admissibility implies
admissibility.
Example of strictly admissible domains
(a) half space
(b) C3 bounded domain

(c) C3 exterior domain

Note that layer domain {a < x,, < b} is not
strictly admissible.

Consider g(x1, ..., X,) = X1.
Conjecture: Is () strictly admissible if it is
NOT quasi-cylindrical (limy|_,edq(x) < ©)?



A simple example — half space

Proposition 2. A half space R} is
strictly admissible forn = 2.

Sketch of the proof: The solution u of
(NP) Is of the form

CO

u(x’, x,,) =f P.|div W] ds

Xn
in R} = {(x’,x,,) € R*|x,, > 0}, where
P. is the Poisson semigroup.

43




Poisson semigroup
Pi[f] = [exp(=s (=a)"?)]f

Thus
Q(x’;xn) —
(=(=a)Y2|exp(—(=A)Y2x,) | f) (x).
Cleatrly, 2 ,
Ag = (an | A)q = 0.
Moreover,
0

—u(x’, xn)‘x =0 —

on
8 exp(—(— A’)l/zxn)div Wl —o = div ZI/



Basic estimate and completion of the proof
0

C
%PS (S)S;,S>O,
op

C
V'Pllop(s) < oS > 0.
This Is explicitly proved by estimating the

Poisson kernel. Thus
dq _ C
%, 3} (xn) < ||div Pxn[W]Hoo < E”W”oo;

n
This is what we want to prove. 4

> C C
IV qlloo (xr) < IIWIIooj —ds < —[[W]|e.
%, S X



Nontrivial examples

Proposition 3. A C3 bounded domain is
strictly admissible for n = 2.

Sketch of the proof: We shall prove this
estimate by argument by contradiction and
blow-up argument. Suppose that the estimate

holds there Is a sequence of function such

that
ldaumllo > m|[Wi || oo

By normalization we may assume that
ldoumlle = 1 and ||[Wp,|le < 1/m. 4




Blow-up argument

We trace maximum point of dq|u,,|. Let x,,, be a
maximum point. By taking a subsequence we may
assume that x,,, > X as m — oo.

Caselx € ()
This contradicts uniqueness of (NP) since the
limit of u,,, Is a nontrivial solution of (NP).

Case 2 X € 01}

We blow up so that distance between x,,, and
the boundary equals 1. Then we yield a nontrivial
solution (NP) as a limit of u,, contradicting the
uniqgueness of (NP) in a half space. o



Summary

« The Stokes semigroup  S(t) is analytic in
Co () when uniformly €3 domain is admissible.

* It can be extended to a C, analytic semigroup In
BUC_,(Q) when () is exterior and bounded.

 Blow-up argument Is useful to prove establish
necessary estimate.

Note: Proof by resolvent estimate is now available.
(Ken Abe, Y. G., M. Hieber '12) (Abe’s presentation)

It Is applicable to other boundary conditions like
Navier boundary condition. 48



Open problems

We have discussed regularizing effect by
proving analyticity of the Stokes semigroup S(t).
We do not know well about large time behavior.

Problem. (1) Is S(t) bounded in time?

.e. [IS(D)]lop < C forallt > 0.

(2) Is S(t) a bounded analytic semigroup?
.e. [|dS(t)/dtllo, < Ct~ ' forallt > 0.

[(1), (2) yes for a bounded domain: Abe-Giga,
Acta Math]
[(1) yes for an exterior domain: Maremonti '12]




Open problems
(Solvability of the Navier-Stokes equations)

Problem. (3) Do the Navier-Stokes equations
admit a local smooth solution even if initial data
Uy is in L7 or BUC, for a domain  having a
boundary?

[(3) yes for a half space: Solonnikov '03, Bae-
Jin '12]

[(3) yes for a three dimensional exterior domain
provided that u, is Hoélder and bounded: Galdi-
Maremonti-Zhou 12
[Ken Abe work In progress] 50




