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Classical Special Functions

e Airy, Bessel, Whittaker, Kummer, hypergeometric functions

e Special solutions in terms of rational and elementary functions (for certain values of
the parameters)

e Solutions satisfy linear ordinary differential equations and linear difference equa-
tions

e Solutions related by linear recurrence relations

Painlevé Transcendents — Nonlinear Special Functions

e Special solutions such as rational solutions, algebraic solutions and special function
solutions (for certain values of the parameters)

e Solutions satisfy nonlinear ordinary differential equations and nonlinear difference
equations

e Solutions related by nonlinear recurrence relations
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Definition

An ODE has the Painlevé property if its solutions have no movable branch points.

¢ Single-valued

|

w(z) = pole
2 — 2
1 . :
w(z) = exp ( ) essential singularity
2 — 2

e Multi-valued
w(z) =z — 2 algebraic branch point
w(z) =1In(z — zp) logarithmic branch point
w(z) = tan|ln(z — zp)] essential singularity

Reference

e Cosgrove, “Painlevé classification problems featuring essential singularities"”, Stud.
Appl. Math., 98 (1997) 355-433. [See also Cosgrove, Stud. Appl. Math., 104 (2000)
1-65; 104 (2000) 171-228; 116 (2006) 321-413.]

UK-Japan Winter School, London, 7 January 2013 4



Second Order Equations
Painlevé, Gambier, R Fuchs e al. [1893-1906] studied

d2w dw
— _ —F|— 1
dw

where F' is rational in — and w, and analytic in z.
2z

e Fifty canonical types whose solutions have no movable critical points.

e Forty-four of these are integrable in terms of previously known functions, such as
elliptic functions and linear equations, or were reducible to one of six new nonlinear
ordinary differential equations, namely the Painlevé equations.

e The fifty canonical types are generalizable by the Mobius transformation
a(z)w + b(z)
W — —

e The most interesting of the fifty canonical equations are those which require the
introduction of new transcendental functions for their solution. These are the six
Painlevé equations.
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Painlevé Equations

dw
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Pw 1 (dw)® 3 5 B
—— == = dzw® + 2(2° — -
2 2w(dz> +owt+dzw” + (2 oz)erw
d?w 1Jr 1 dw’ 1dw+(w—1)2 +6
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w?  (w—1)2  (w—2)?

where «, 3, v and ¢ are arbitrary constants.
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Higher Degree and Higher Order Equations

daw.
%I%ﬁ?w-.,wn,zx j=12,
d™w d"w dw
:F P -
dz" (dznl’ ’d27w72>

e At present there are no comprehensive results for third and higher order equations.

e Partial classifications for the third order equation (Chazy [1911], Garnier [1907,
1912], Bureau [1964, 1972], Lukashevich [1982], Martynov [1982], Cosgrove

[1997, 2000, 2001])
dBw 7 d>w dw
— = —, —, W, 2
dz3 z
To date, no new transcendental third-order equations have been discovered.

e No comprehensive results either for the second order, second degree equation

2w\ 2 dw d2w dw
bl R A b o=
(dz2> (dz’w’z) d22+ (dz’w’z>

Cosgrove and Scoufis [1993] have done the special case when F' = 0.
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Painlevé o-Equations

(diz)Q +4 (j—i)g — 22’3—2 — 20 =10 Sy
() ) (20t
(Zdigf + |4 (3—2) —1 (zj—z — a) + Y90 i—z L (95 + 92%) St
(%)2—4(,2(31(:—(1)24—432 <j—z+2ﬁ> (iz+2?9 ) Stv

ST ) - ;

Jj=1

o\ |, (Ao d_a+
Zz2 dz Ve 0)
do !

d%o do do ?
sl o) o (2 )

zZ =1

where «, ¥y, V1, V9, V3, ¥4 and ¥, are arbitrary constants.
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History of the Painlevé Equations
e Derived by Painlevé, Gambier and colleagues in the late 19th/early 20th centuries.

e Studied in Minsk, Belarus by Erugin, Lukashevich, Gromak er al. since 1950’s;
much of their work is published in the journal Diff. Egns., translation of Diff. Urav..

e Barouch, McCoy, Tracy & Wu [1973, 1976] showed that the correlation function
of the two-dimensional Ising model is expressible in terms of solutions of Pyy.

e Ablowitz & Segur [1977] demonstrated a close connection between completely in-
tegrable PDEs solvable by inverse scattering, the so-called soliton equations, such
as the Korteweg-de Vries equation and the nonlinear Schrodinger equation, and
the Painlevé equations.

e Flaschka & Newell [1980] introduced the isomonodromy deformation method
(inverse scattering for ODEs), which expresses the Painlevé equation as the compat-
ibility condition of two linear systems of equations and are studied using Riemann-
Hilbert methods. Subsequent developments by Deift, Fokas, Its, Zhou, ...

e Algebraic and geometric studies of the Painlevé equations by Okamoto in 1980’s.
Subsequent developments by Noumi, Umemura, Yamada, ...

e The Painlevé equations are a chapter in the “Digital Library of Mathematical
Functions", which is a rewrite/update of Abramowitz & Stegun’s “Handbook of
Mathematical Functions" — see http://dlmf.nist.gov.
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Some Properties of the Painlevé Equations

e P;i—Py have Backlund transformations which relate solutions of a given Painlevé
equation to solutions of the same Painlevé equation, though with different values of
the parameters with associated Affine Weyl groups that act on the parameter space.

e P;1—Py have rational, algebraic and special function solutions expressed in terms
of the classical special functions [Py;: Airy Ai(z), Bi(z); Py Bessel J,(z), Y, (2),
J,(2), K,(2); Pry: parabolic cylinder D,(z); Py: confluent hypergeometric
1 Fi(a;c; z) [equivalently Kummer M (a,b,z), U(a,b,z) or Whittaker M, ,(2),
W,..(2)]; Pyr: hypergeometric 5 (a, b; ¢; z)], for certain values of the parameters.

e These rational, algebraic and special function solutions of P;—Py;, called classical
solutions, can usually be written in determinantal form, frequently as wronskians.
Often these can be written as Hankel determinants or Toeplitz determinants.

e P;—Py; can be written as a (non-autonomous) Hamiltonian system and the Hamilto-
nians satisfy a second-order, second-degree differential equations (S;—Svy).

e P—Py1 possess Lax pairs (isomonodromy problems).
e PPy and S1—Svyj form a coalescence cascade
Py — Py — Py Svi — Sy — Sy

| | | |

Pmm — Pp — P1 Sim — S — S1
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Properties of the fourth Painlevé equation

d?w 1 (dw\® 3 5 15
dw 1 [fdw o Aonp? 4+ (52 Iad
1 2w<dz> + ot +dzw” + (2 a)w+w

e Hamiltonian formulation
e Bicklund and Schlesinger transformations

e (lassical solutions
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Hamiltonian Representation of Py,
Py can be written as the Hamiltonian system

dg  OHyy 9
= =A4qp — ¢~ — 2zq — 20
1z ap qp — g <q 0
d 0
P HIV:—2p2+2pq+22p—1900
dz dq

where Hiv(q, p, 2; Yo, U) is the Hamiltonian defined by
Hiv(q,p, 200, Vo0) = 20p° = (¢ + 22q + 200)p + Vocg

Eliminating p then w = ¢ satisfies

d’¢ 1 [dg ’ 3 3 2 5 2092
= 37 +4 2 Dy — 20 — 1)g — =22
2 2q(dz> +5¢° +42q" +2(z" + Jy )q p

which is Pry with o = 1 — g + 20 and 3 = —292, whilst eliminating ¢ then p satisfies
d*p 1 [dg : 92
- 6p° — 8zp* + 2(2* — 209 + Vo + L)p — ==
2 m)(dz> + 6p” — 82p” +2(2 0+ Voo + 1)p %

and letting p = —1w gives Pry with o = 20y — ¥ — 1 and 8 = —20%.
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Theorem (Okamoto [1986])

The function
0 (2,00, 900) = Hiv = 2qp° — (¢ + 22q + 290)p + Vg

where q and p satisfy the Hamiltonian system

d d
—q:4qp—q2—2zq—2190, —p:—2p2+2pq+2zp—19oo
dz dz

satisfies the second-order, second-degree equation

20\ * do 2 do [(do do
— | -4 z— — 4— [ — + 20 — + 20 | =
() (5 o) +AZ (From) (Froe) -0

Conversely, if o(z; 0y, V) is a solution of Syy, then

B o’ —2z0' + 20 o 4+ 220" — 20

are solutions of the Hamiltonian system Hyy.
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Backlund Transformations

Definition

e A Bécklund transformation maps solutions of a given Painlevé equation to solu-
tions of the same Painlevé equation, though with different values of the parameters.
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Biacklund Transformations of Py,
Theorem

Let w = w(z; o, B) and w =

T =w(za ,ﬁT—L), j = 1,2, 3,4 be solutions of Pry with

af =12 —2a £ 3/-28), = —11+a+iy/-20)
ay = —3(2 4 2a £ 3/ —20), = —t1—a+iy/-28)
o =35 — S F 3/-28, = —5(1 —a+3/-20)
@f:_%_%@q:% _267 %( 1—Oé:|:§ —26)2
Then
T w%:w’—wZ—sz:F\/—Qﬁ
2w
L L w' + w* + 22w F /20
7'2 . w2 —_— —
2w
. . 2(1—aFiv-20)w
w' £+ /=20 + 2zw + w?
2(1+ o+ 35v-20)w
1= wi = w + ( 2 ﬁ)

w F /=20 — 22w — w?

which are valid when the denominators are non-zero, and where the upper signs or the
lower signs are taken throughout each transformation.
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Schlesinger Transformations of Py,
(Fokas, Mugan & Ablowitz [1988])

o) 15} Ko Koo
R a+1  —10@2-y=20)° k-1 R+l
Ro oa—1 —% (2+ —2@)2 ko + 1 Koo — 1
Rs  a+1  —20@2+v=20)°  ko+1 kel
Ri a—1 —L12-yv=28)° k-1 he-—1

_ (w4 V=2P)" + (4o + 4 — 2/=20) w? — w(w + 22)?

Rit o wn 2w (w? + 2zw — w' — /=2) ’
-~ _(w’—\/—72@2+(404—4—2\/—725)w2—w2(w+22)2
. B 2w (w? + 2zw + w' — /—20) ’
_ _(w’—\/—726)2—(4a+4+2\/—725)w2—w2(w+2z)2
T 2w (w? + 2zw — w' + /—20) ’
R w :(w’+\/—726)2+(4&—4+2\/—725)w2—w2(w+22)2

2w (w2 + 2zw + w' + /—20) ’
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Fokas, Mugan & Ablowitz [1988] defined the composite transformations

« I5; K Koo
Ry = R Rs o+ 2 15 K0 Koo + 2
Ri = RoRs a “L4+v=28)" ko +2 Koo
i = RiRy o %( —\/—2 ) Ko — 2 Koo
R = RoR4 o — 2 15 Ko Koo — 2

(w’—w2—22w)2+26
2w {w — w? —2zw+ 2 (a+ 1)}’
.y B (20 — 2 F V/=28) wM*(w, W', z; v, B)
61 W W w4 £ 2y/=28) — M*(w,w’, 2) (W — 22w — w? F \/—2)
(24 200 £ /=26) w N 2+ /20
w' — 22w —w? F/—28 M*w,w, za,F)
(w' + w?+ 2z’w)2 + 20
2w {w + w? + 2zw — 2 (a — 1)}’

(2+2a £ v/-20) w w’$\/—72ﬁ

M*(w, w', z; = tw+z+
W,z a,0) =qu+z w' — 2zw — qu:\/j 2w
Remark: Murata [1985] derived the transformations K5 and Rr.

R5Z Wy =

_|_

R7Z Wy = —

where
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Classical Solutions of the Fourth Painlevé Equation
and the Fourth Painlevé o-Equation

Pw 1 (dw)® 3 , 3
- == - Aow? + 9(2% — s
1 2w(dz) + ot dzw” + (2 oz)uH—w

20\ * do 2 do [(do do
— ) 4| z— — d— | — + 2 — o | =
<d22> (zdz a) P (dz+ 190) (dz+219 ) 0
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Classical Solutions of Py,

2
(3271;] = i (i—ls) + gw?’ +dzw® +2(2* — a)w + g Pry
Theorem
® Py has rational solutions if and only if
(a, B) = (m, —2(2n — m + 1)2) or (a,3) = (m, —2(2n — m + %)2)
with m,n € Z. Further these rational solutions are unique.

® Py has special function solutions in terms of parabolic cylinder functions through
the Riccati equation

dw

= e(w? + 2zw) — 2(1 + €a), e =+l
z
if and only if

B=-22n+1+¢ea)’ or B = —2n*
with n € Z which has solution

w(z) = —5;—Z Iny,(z;€)

where p,(z; €) satisfies the Weber-Hermite equation
d*p, depy

T2 2525 + 2evp, =0
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Rational and Special Function Solutions of Sty

.
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Prv — Generalized Hermite Polynomials
Theorem (Kajiwara & Ohta [1998], Noumi & Yamada [1998])
Define the generalized Hermite polynomial H,, ,,(z), which has degree mn, by
Hyn(2) = amn W (Hp(2), Hn1(2), - o Hpea(2)), - myn >1

where W(p1, 0o, ..., ) is the Wronskian, H,(z) is the n™ Hermite polynomial and
Q. IS a constant. Then

(s B) = I 2t
dz Hpn(z2)

) I o
Wl (2) = w(z; o), 40 = d moan(2)

= —1
m,n> dZ 1l Hm’n—l_l(Z)

(iii _ (i) g(iii)y _9 1 m,n+1
W (2) = w(z; o, Byn) z + I oo

are respectively solutions of Py for

(@B Wy = 2m+n+1,—2n?

m,ns Mm.n

(W) BW Y — (—my —2n — 1, —2m?)

m,ns Mmn

(o) Uy — (i —2(m+n+1)%)

mns Mm.n
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Roots of the Generalized Hermite Polynomials H, ,,(2)

10

~10

5 0 5

Hy20(2)

(PAC [2003])

10

-10 -5 0 5

Hj119(2)

Y

m X n “rectangles”
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Properties of the Generalized Hermite Polynomials 1, ,,(z)
® [, ,(z) can be expressed as the multiple integral
m/2 H Ll n
Hoole) = St [ o[ 11 ) ECRE ) (G
=1 g=i+1
Xexp xl—:pg . — T )dx1d$2 dxy,

which arises in random matrix theory (Brézin & Hikami [2000], Forrester & Witte
[2001], Kanzieper [2002]).

e H,, ,(z) satisfies the fourth order bilinear equation
H,,, H!" —4H! H" +3(H! )" +42H, H., , —SmnH>,
—4(22+ 2n — 2m) {HmnH;gn _ (H;W)Q} — 0
and homogeneous difference equations (PAC [2005]).

® [, ,(z) has a real zero unless n is a positive, even integer. Hence the only bounded

rational solutions of Pry are wy 5n(2), with n € ZT, which have 2m + 1 real zeros
and asymptotics, as z — o0

1] _ d 1 Hy1.00(2) N 2n (2m —2n+ 1)n O 1
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Plots of Bounded Rational Solutions of Py,
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Py — Generalized Okamoto Polynomials
Theorem (Kajiwara & Ohta [1998], Noumi & Yamada [1998], PAC [2006])
Let pp.(z) = 3F/2e=km2 [, (%\/gl,Z) with Hy,(C) the k™ Hermite polynomial, then
define the generalized Okamoto polynomial Q. ,(z) by

Qm,n(z) — W(Spla P4y ooy P3m+3n—5: P25 @5y - -+ ¢3n—4)
with m,n > 1, where W(p1, ©s, ..., p,) is the Wronskian. Then

d Qerl,n(Z)
dz i Qmn(2)
)

oW (2) = w(z; &“(i)’ N(i)’ ) =—2z+

m.n m,n’ =m,n dz ! Qm,n—i—l(Z)
» o d z
Wion(2) = w(z; 000, Brly) = _%Z i dz = gmgléz;

m ,n

are respectively solutions of Py for

@V AUy = (2m+n,—2(n — 1)?)

m,mns Mm,n 3

(&Sj}m @g};)n) = (—m —2n, —2(m — %)2)
(@I By = (n —m, —2(m +n + 1)?)
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Roots of the Generalized Okamoto Polynomials Q;, n(2), m,n > 0

(PAC [2003])

QlO,lO(Z)

Q11,9(2’)

m X n “rectangles” and “equilateral triangles" with sides m — 1 and n — 1
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Rational and Rational-Oscillatory Solutions of the NLS Equation

Theorem (PAC [2006])
The de-focusing NLS equation

iy = Upy — 2Jul*u (1)
has decaying rational solutions of the form
mi/4 H mi/4
Un<ﬂf, t) _ ne n+1,n—1<z>’ = L e (2)
and non-decaying rational-oscillatory solutions of the forms
—mi/4 Q C a2 mi/4
- ¢ niln_1(2) ( ir ) Te
Up(x, 1) = : exp| —— ], z = 3
ST Q) P\ NG &)

where n > 1.

e The rational solutions (2) generalize the results of Hirota & Nakamura [1985] (see
also Boiti & Pempinelli [1981]; Hone [1996]).

e The rational-oscillatory solutions (3) are new solutions of the NLS equation (1).

e There are other rational-oscillatory solutions of the NLS equation (1), e.g. the Ma-

Peregrine solution
4(1 + 4it) -
t)=<1— !
wz, 1) { 1—4x2+16t2}e
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Parabolic Cylinder Function Solutions of Py,

d?w 1 (dw\® 3 3 15
- - = - Azp? 4+ 9(22 — al
P Qw(dz) + o+ dzw” + (2 a)w+w
Theorem

Suppose T,,(z; ) is given by

Tun(z€) =W (%(Z; &), (), ..., 0l V(2 8)) ;o on=>1
where 7,0(z;€) = 1 and ¥, (z; ) satisfies

d*1h, dy,
d;é — 25,2% + 2ev, =0, et =1

Then parabolic cylinder function solutions of Py are given by

d v,n ;
w[yllb(z) = —2z + SN In TTVZ(lS;), (oz[yl?l,“ @1;1) = (e(2n —v), —2(v + 1)2)

d . Tyn(z;€)
2] _ 1 vn+1\~;
Winl?) "z min(zie) (

04[3711, ﬁﬂ) = ( —en+v),2v—m+ 1)2)

d . Ti1a(z;e)
3] _ vHlnie Bl BBl = _ 92
wu,n(’z> 5dz In 7_”771(2,; €> g (&V,nv 6%71) (E(QV n -+ 1>7 2n )
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d?1, d
dj;é — 2¢ z% + 2evp, = 0, e =1 (%)

e If v ¢ N then (x) has the solutions
by(z6) = {C’lDy(\/ﬁ z) + CQDV<—\/§Z>} exp (%zQ) : if e=1
e {01D—u—1(\/§ z) + C2D—u—1<—\/§2’>} CeXp (—%»22) ; it e=-1

with C; and (5 arbitrary constants and where D, (() is the parabolic cylinder func-
tion which satisfies

d’D,
d¢’

= (¢ —v—-3D,
with boundary condition
D)~ CTexp (<3¢2), as ¢ +oo
e If v = ( then (x) has the solutions

Ch + Cyerfi(z), if e=1
Yol(z;€) = :
Cy + Cyerfe(z), if e=-—1

with C} and C} arbitrary constants, where erfc(z) is the complementary error func-
tion and erfi(z ) the imaginary error function, which are deﬁned by

erfe(z / exp(—t?) dt, erfi(z / exp(t?) d
\/7 \/7
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d?1, d
d,z;é — 2¢ Z%—l—%jva—o e =1 (%)

e If v = n, for n > 1, then (x) has the solutions

¢n<z; 5) = 9

\

d

C1H,(2) + Cyexp(z {erﬁ Jexp(—27)}, if e=1

Ch(—1)"H,(iz) + CY exp(—z @ {erfe(z) exp(27) } if e=-1

with C and (), arbitrary constants, where H,,(z) is the Hermite polynomial, erfc(z)
the complementary error function and erfi(z) the imaginary error function.

o If v = —n, for n > 1, then (x) has the solutions
(
dr— 1
Ci(—1)""tH,_1(iz) exp(z?) + Cs - {erfe(z)exp(z?)}, if e=1
¢—n<255> = drn— 1 dz""
CiH,_1(2) exp(—2%) + 02 — {erfi(z) exp(—27) }, if e=-1
\

with (' and () arbitrary constants, where Hn(z) is the Hermite polynomial, erfc(z)
the complementary error function and erfi(z) the imaginary error function.
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Special Cases

Dy (\/§ 2) = exp(—3z°)
D, (\/§ z2) = (%)”/2 exp(—327) Hy(2), n=12,...
D_,4 (\/§ z) = %\/ﬁ exp(32°) erfc(2)
—1)"/m d"”
D_, 4 (\[2 ) = 72! 2(2L+\1</; exp(—%zQ)@ {exp(2®)erfe(z)}, n=12,...
Integral Representation
_ 1,2 00
D,(z) = eXpFi_;)Z ) /O 7 lexp (= —z2t)dt, v <0

Property

e The parabolic cylinder function D, (z) has no real zeros if v < 0, so

Vul2) = {C1D L (V22) + CoD o (—V22) f exp (122)

has no real zeros if v > 0 and C;C, > 0.

UK-Japan Winter School, London, 7 January 2013
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Plots of Parabolic Cylinder Function Solutions of Py,

1
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Plots of Error Function Solutions of Py,
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Plots of Bound State Solutions of Py,

2

w(z;5,0)
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Classical Solutions of Sty

d%o : do 2 do [do do
— | =4 z— — 4— [ — + 20 — 4+ 20, | =0
() ~1 (o o) +E (From) (F+20x)

Theorem
e Rational solutions of Sy are given by
d
Omn(2) = d—ln Hyn(2), (Y9, V) = (M, —n)
2z
- d
Omn(2) = %23 — %(m —n)z+—InQnn(z), (Vo,Vx)= (m — %, —n + %)

dz
where H,, (%) is the generalized Hermite polynomial and Q). (%) the generalized

Okamoto polynomial.

e Suppose 1,,(2;¢€) is given by

Tun(2;6) =W (%(Z; e), W (ze), ..., V(2 8)) , n>1

where T,0(z;¢) = 1 and ¢, (z; €) satisfies

d*1, dib,

d;é — 257;% + 2ev), = 0, et =1
then parabolic cylinder function solutions of Syy are given by

d

Oyn(2) = o In7,,(z¢), (Yo, V) = (e(v —n + 1), —en)
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Plots of Bounded Rational Solutions of Sty

Omn(2) = —1In Hy, n(2), Hyn(2) = W(Hm, H,i1, ..., Hm+n_1)

O'ng(Z), ] = 1,2,3,4 O'ngj(Z), ] = 1,2,3,4 03’2]'(2), ] = 1,2,3,4

0'472]'(2), ]: 1727374 0_5,23'(25)7 ]: 1727374 010,2j<z)7 ]: 1727374
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Plots of Bounded Special Function Solutions of Sty

d
O'I/,n(z> = —2nz + d_ hl)/v(?py7 w/ o ,pr&_l))

¢V(z):{ 22 + CoD exp (32%)

1‘5 %
T T T T T
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01/2,3(2) 03/2,3(2’) 05/2,3<Z>
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Plots of Error Function Solutions of Sty

T = In W (¢, ¢ry, - - - ,w,,(,,?_l)), Yy = eXp(—ZQ)i—m {C) + Cyerfe(2)} exp(2?)

0'473(2)
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Application of Py to Orthogonal Polynomials

Semi-classical Laguerre Weight
w(z;t) = 2t exp(—2® + tx), r e R, A > —1

e P A Clarkson, “The relationship between semi-classical Laguerre polynomials and
the fourth Painlevé equation", preprint (2013)
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Some History

e The relationship between semi-classical orthogonal polynomials and integrable equa-
tions dates back to the work of Shohat [1939] and later Freud [1976].

e Fokas, Its & Kitaev [1991, 1992] identified these equations as discrete Painlevé
equations.

e Magnus [1995] considered the Freud weight
w(x;t) = exp (—l:c — tw ) z,t €R,

and showed that the coefficients in the three-term recurrence relation can be ex-
pressed in terms of solutions of

Wy (Wp—1 + Wy, + Wya) + 2tw, =n
which is discrete Py (dPj), and

d?w,, 1 [(dw, 2+3 Ly +2< + n)w, n?
— w? + dzw? z —
dz? dz 2 " 2w,
which is Ppy with o = —%n and B = —%nz.

e Filipuk, van Assche & Zhang [2012] comment:

“We note that for classical orthogonal polynomials (Hermite, Laguerre, Jacobi)
one knows these recurrence coefficients explicitly in contrast to non-classical
weights".
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Monic Orthogonal Polynomials

Let P,(x), n = 0,1,2,..., be the monic orthogonal polynomials of degree n in ,
with respect to the positive weight w(x) on the interval |a, b| (which may be infinite),
such that

b
/ Py(z)Py(z)w(x)de = hydmp, hy >0, m,n=20,1,2,...

Monic orthogonal polynomials satisfy the three-term recurrence relation
iEPn<QZ> — Pn+1<x) + Oénpn@j) + 6npn—1<x>
where the coefficients are given by

~ ~

An—H An An—HAn—l
an: — , /8”:
An—l—l An A%
with
po  H1 .- Hn—1 Ho M1 o-.- Hn—2  fn
A — | M H2e [ A o— | H1 H2o-e fn-l fntd
Hp—1 HMn - H2n-2 Hn—-1 Hn -+ H2n—3 H2n—1

and (i, the moments of the weight w(x) given by

b
,ukz/ka(x)dx, k=0,1,2,...
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Pearson Equation

Consider the Pearson equation satisfied by the weight w(x)

d
T o(@w(z)] = 7(z)w(z)

e Classical orthogonal polynomials: o(z) is a monic polynomial with deg(o) < 2
and 7(z) a polynomials with deg(7) = 1

w(z) Jolx)| 7(z)

Hermite exp(—z?) 1 —2x

Associated Laguerre | 2’ exp(—2z) | z |1+ A—1

e Semi-classical orthogonal polynomials: o(z) and 7(x) are polynomials with either
deg(c) > 2 or deg(7) > 1

w(z) o() 7(2)

semi-classical Laguerre | 2% exp(—z?+tz) | z | 1+ \+tx — 222

Freud exp(—izt —tz?) | 1 —2tx — 27
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Suppose the weight has the form w(z;t) = wy(z)exp(tz), where wy(x) is a classical
weight with finite moments, 1.e.

/ rFwo(z) exp(tz) dz < oo, k=0,1,2,...

0.0)

Then the kth moment is given by

pi(t) = /_OO z"wo(z) exp(tz) do = & (/OO wolx) exp(tz) dg;) )

- dt" \J_o dt”

and so A, (t) and A,,(t) can be expressed as Wronskians

Mogti Mlgt; e Mn—(l(f) ] ]
1(t o(L) .o pnll Ho "
An(t>_ ME ,us ME W(,Uo; a0 7w>
pin-1(t) pn(t) ... p2n-a(t)
e

X 11 oL) o pn—1(t)  ppia(t ,uo " g

o s(t) pnlt) - i slt) pma (8

dMo dnlﬂo)

At) d

_ 4
7 A dt“W<“O’

dt 777 gyl
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Semi-classical Laguerre weight
Consider monic orthogonal polynomials with respect to the semi-classical Laguerre
weight

w(x;t) = 2" exp(—2® + tx), r € R, A>—1 (1)
which satisfy the three-term recurrence relation

rP,(x;t) = Poa(x;t) + an(t) Pu(z; t) + 8,(t) Po_1(x; 1) (2)
Theorem (Filipuk, van Assche & Zhang [2012])

The coefficient a,(t) in the recurrence relation (2) associated with the semi-classical
Laguerre weight (1) is given by

a,(t) = 2wy (2) + 3, =1t
where wy,(z) satisfies
Pw, 1 (dw,\® 4 , , N2
2 Zan(dz) + sw;, + 42w, + 2(z —Qn—l—)\)wn—w—n (3)
which is Pry with parameters
(ar, B) = (Qn + 14+ A, —2)\2) (4)

e Filipuk, van Assche & Zhang [2012] do not specify the specific solution of (3).
e The parameters (4) satisfy the condition for Pyy to have solutions expressible in terms
of parabolic cylinder functions.
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Lemma (PAC [2013])
For the semi-classical Laguerre weight w(x;t) = x”exp(—a® + tz), the moment
to(t; X) is given by

(T(A+1) exp(%ﬂ) 1 |
polt N) = O@Hw Dot (-3v2t),  if A¢N
\% {exp( t2) [1+erf(%t)}}7 lf A=né€cN

with D, (() the parabolic cylmder function and erf(z) the error function.
Proof. The parabolic cylinder function D, (() has the integral representation

e 1,2 o0
D,(¢) = - ﬁé_;ﬁ | /O 57 exp(—4s” — Cs) ds

If A € N, then

> C(A+1)exp (2t
to(t; \) = /0 2 exp(—2% 4 tx) dr = SESSYE (") D_y_ (—%ﬂt)

If \=n €N, then

T(—=1)"

D_1() = 4[5 - exp(—4¢ i {eplie?) e (32¢) },

with erfc(z) the complementary error function Since erfc(—z) = 1 + erf(2), then

to(t:m) = 1f {exp( tz) [1 +erf(%t)”
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Theorem (PAC [2013])
Suppose that A, (t) is the Hankel determinant given by

dMo d" g
A (t | o
(t) = ]A;(“O at <ﬂﬁ—1)

Ay(t) = 1, where

p
L(A+ 1) exp(st?) | .
()\+1)/2 D—)\—l (_5\/§t> ) l]C A g N

1f {exp( t2) [1+erf(%t)}}, if A=néeN

with D,(() the pambohc cylmder function and erf(z) the error function. Then the
coefficients o, (t) and 3,(t) in the three-term recurrence relation

eP,(x;t) = Pyi(z;t) + a,(t) Pz t) + Bu(t) Py (2 1)

associated with the semi-classical Laguerre weight

po(t; A) = 4

w(z;t) = 2’ exp(—a® + tx), reRT, A>—1

are given by

(1) d’
b zm»—a;mA<> n >0
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Theorem (PAC [2013])
Suppose that \,,(t) is the Hankel determinant given by

d/io A" g
A, (t | . | > 1
0= (o )

Ag(t) = 1, where

p
A+ 1) exp(%tQ) X _
(>\+1)/2 D—)\—l (__\/§t> , (f >\ g N

1\F {exp(tQ) [1+erf( )}}, if A\=necN

with D, (C) the parabollc cyhnder function and erf(z) the error function. Then S, (t) =
d
—In A, () satisfies

dt
25, ds, > 48, (.dS, ds,
— - " 2 —n—A| =0
(dt2> (dt >+dt(dt )(dt " )
which is equivalent to Sty, the Py o-equation, through the transformation

Sn(t) = 30(2), z =2t

Hence the recurrence coefficients o, (t) and (3,(t) are given by

d . Ap(t) d* dsS,

an<t> - dt In An<t> = Sn+1<t> — Sn<t>7 671( ) — d—lHA ( ) dt

to(t; A) = <
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Lemma
o Ast — 00, io(t), A,(t) and S, (t) have the respective asymptotic expansions

alt) ~ V7 G e (1) {14252 0 (9|
An(t) = ot exp (jnt) {1 -0 (N)}
d nt  nA  2nA(n — A

Sult) = ZInAn(t) = o+ —+——73——+0 (t7°)

e Ast — o0, the recurrence coefficients o, (t) and [3,(t) have the asymptotic expan-
sions

an(t) = Spp1(t) — S,(t) = % - ? +0O (1) = lim a,(t) = 3t
- dS, n nA . . I
ﬁn(t)_ dt _§_t—2+0(t ) = tlggloﬁn@)_?l

Remark The three-term recurrence relation

2Qu(x;t) = Quia(w;t) + 5tQu(; 1) + 5nQy 1 (7;1)

with ¢)_; = 0 and )y = 1, generates the monic polynomials

Qul@:t) = (3)"Halz — 3t)
with H,(y) the Hermite polynomial.
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Special function solutions of Painlevé equations

Numbe.r of Special Number of Associated Number of
(essential) . orthogonal
function parameters . . parameters
parameters polynomial
P; 0 —
Airy
P ! Ai(2), Bi(2) ! -
Bessel
P ER AORAEN 7O R -
p 5 Parabolic cylinder | Hermite 0
Y D, (z) H,(z)
Kummer .
A ted
M(a,b, z),U(a,b, z) A
Py 3 i 2 Laguerre 1
Whittaker Lgf) (2)
My u(2), Wieu(2)
hypergeometric Jacobi
P Fi(a,bic: ) R O
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Further Examples

e Semi-classical weight with recurrence coefficients expressible in terms of solutions

of Styi, the Pypp o-equation

w(x;t)

po(t) = /w(l’;t) dx

v’ texp(—x —t/z) | x € RF

272K, (24/1)

with K, (z) the modified Bessel function (Chen & Its [2010]).

e Semi-classical weights with recurrence coefficients expressible in terms of solutions

of Sy, the Py o-equation

w(x;t)

po(t) = | wla;t)de

xoz—1<1 o x)ﬁ—le—tx
$a_1<1 _ x)ﬁ—le—x/t

7 + 1) le

z € [0,1]
z € [0,1]
r € R

[a)l(B)

F(oHrﬁ)e M (o, a0+ (3, 1)

F(ﬁ)e—tU<ﬁa I — a, t)
['(a) t“ U (a, o + B, 1)

with U(a,b,t) and M (a,b, z) the Kummer functions (Basor, Chen & Ehrhardt
[2010]; Chen & Dai [2010]; Forrester & Witte [2007]).
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Application of Py to Vortex Dynamics

e The equations of motion for n point vortices with circulations I’; at positions z;, in a
background flow w(z) are

n

dz; 1 P Ty w*(z;)
J J :
= — E + = =1,2,....n
dt  2mi — zj— 2 21 J

e P A Clarkson, “Vortices and polynomials", Stud. Appl. Math., 123 (2009) 37-62
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Vortex Dynamics

The equations of motion for n point vortices with circulations 1’; at positions z;, are

dz* 1 " [}
] .
= g =1.2.....n
dt 271 zj—zk’ J T ’

If a vortex configuration rotates as a rigid body with angular velocity 2 then

1z 1027 =1,2
E——l Zj7 J=1,42,..., M
and so .
=N L = 1,2 (1)
i = ) J=Lz...,N
T a A
where A = 27{). Suppose that z; is real, so z; = 27 = x;, and all the I’; are equal, so
[ =Tforj=12,...,n, then set A\ = 1 (by rescaling z;, if necessary) and so we
obtain i
roo 1
= =1,2,... 2
gj] Z T — $k7 J y < y T ( )
k=1 "/

which are known as Stieltjes relations (Stieltjes [1885]).

Question: What are the solutions x{, xs, ..., x, of equation (2)?
Answer: They are the roots of the n" Hermite polynomial H,,(x).
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Quadrupole Background Flow
Lemma (Kadtke & Campbell [1987])

The equations of motion for m + n point vortices with circulations 1’; at positions
z; in a background flow w(z) are

dz? o w*(z;
J k 4 (])

d—t:2—7ri Zj — 2k 211

: 17=12,....m+n

S

2
When d—; =0, w(z) = Cp*z*, with * a (complex) constant, I, =1 fork =1,2,...,m
and 1y, = —T'fork=m+ 1. m+2,...,m + n, then the polynomials

m n

Pz)=]]z-2). Q) =]]-zm)

j=1 j=1

satisfy
2P dPdQ 20 dP 40
-2 pC Lo (S0 — PEEY) = 2u(m —n)P
dz2Q Ldz T de T (sz dz) plm = n)PQ
Remark: If Q = 1 and © = —1 then P satisfies
&P 2 r +2mP =0
dz? dz

which is the equation for the m™ Hermite polynomial H,,(z).
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d*P

dz?

dPdQ
_ 9l T%  pI ¥
¢ dz dz T

d*Q)
dz2

d@
dz

d
+ 2uz2 (£Q — P—) = 2u(m — n)PQ

Kadtke & Campbell [1987] obtained some polynomial solutions of this equation when
m = n, though they claimed that there were no solutions when m = n = 6. However,
using MAPLE, it can be shown that there are solutions when m = n = 6.

Solutions for 1 = —1 and m =n
P(z) Q(z)
m=n=2|2>+1 22— 1
m=n=4|2*+62>+3 2492221
2492221 A 92221
A —9222 -1 24— 622+ 3

3

S
I

204+ 152% + 452° + 15
2049244922 -3
204324 —922 -3
20— 324 — 92243
20— 024492243
2043244022 -9

204924 4022 -3
204324 —922 -3
20— 324 —92243
20— 024492243
20 — 1524 + 4522 — 15
20— 324492249
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Question What is the form of polynomial solutions of the bilinear equation

d’P dP dQ Q dQ
) D 2 P = 2 —n)P
=% Pn et dz2+“'z( @- d) uw(m —n)PQ
Theorem (Crum [1955]; also Oblomkov [1999], Veselov [2001])
The Schrodinger equation
d*y
—S u = Ay (+)
with potential
d2
uw=z>— Q@IHW (Hkl,HkQ,...,Hkg)
where Hy(z) is the k™ Hermite polynomial, W(¢p1, ¢s, . .., d¢) is the Wronskian and
ki, ko, ..., ks are a sequence of distinct positive integers, has the solutions
W I(Hy,, Hy.,,...,H, 6 H
b(z) = ( ks 25k ke k€+1) exp (_%ZZ)
W (Hy,, Hy,, ..., Hy,)
W (Hy,, Hy.,,...,H
¢<Z> _ ( ks £k k’é—l) exp (%ZZ)

W (Hy,, Hy,, ..., Hy,)

with k, 1 another different positive integer for the eigenvalues \ = 1 + 2(ky1 — () and
A =20 —ky_1) — 1, respectively.
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d? P

Remark: Substituting v = 2° — 2— -In@ and ¢ = — exp(—32”) into (x) yields

dz Q
d*pP dPdQ dQ d@
—Q —2——+ P—— — 22 P— —1)PQ =0
dz? dz dz dz? ( ©- ) A=LPQ
Theorem
The bilinear equation
d2p dPdQ d*Q d@)
—Q —-2———+ P——— 22 P +2(m —n)PQ =
dz? dz dz dz? ( ©- dz) (m=n)PQ=0

with m,n € Z", has polynomial solutions in the form
P(z) =W (Hy,(2), Hyy(2), - - -, Hy,(2), Hy,,,(2))
Q(Z) — W (H]ﬂ(Z), H/@(Z), Ceey H]W(Z))

where H}(z) is the k™ Hermite polynomial, W(¢1, ¢o, ..., ¢,) is the Wronskian and

ki, ko, ..., ke, koy1 are a sequence of distinct positive integers. The degrees of the poly-
nomials P(z) and Q)(z), respectively m and n, are given by

(*)

(+1

m = Zk H(0+1), n—Zk ((f—1)
= m—n:kgH—E
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However there are additional solutions of the equation

2P dPdQ  d20 P 40
—Q —2———FF"+P—5 -2z —Q — P— 2(m —n)PQ =0 1
dz? dz dz - iz (dz « dz) +2(m = n)PQ (L)

in terms of the generalized Hermite polynomials H,, ,(z) and the generalized
Okamoto polynomials Q,,, ,,(2).

Example 1 A set of solutions of (1) is given by
P(z) = Hy po(2) =W (Hyy, Hiya,s -0 Higppig—1)
Q<Z> — Hk’l‘l—l,k’Q(z) — W (H]ﬂ—l—l? Hk1+27 RN Hkﬁ—kg)

where the Wronskians defining P(z) and ()(z) have the same number of Hermite poly-
nomials.

Example 2 Another set of solutions of (1) is given by

P(z) = Qi 1y(2) = W(H1, Hy, . .., H3p 431, -5, Ho, Hs, . .., Hzpyg)
Q<Z> — le,kg—i—l(Z) — W<H17 H47 SR H3k1—|—3]€2—27 H27 H57 SR H3]€2—1)

where the Wronskian defining P(z) has two fewer Hermite polynomials than that defin-

ing Q(2).
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Symmetric Form of Py,

d
§+¢0(¢1 — pa) + 29 = 0

d

d%‘ + @12 — o) + 2 =0
<

ds

2 _ 2ty = 0
P + 2o — 1) + 20

where 1, ;11 and po are constants, with constraints
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Symmetric Form of Pyv;
(Bureau [1980], Veselov & Shabat [1993], Adler [1994], Noumi & Yamada [1998])

Consider the symmetric Py system
depy

— — 210 = 0
ddz + o1 — ©2) + 20
¥1
E + @1(902 - 900) +2p1 =0 (1)
d
f +@alpo — 1) + 202 =0
where 11, 111 and po are constants, with constraints
po + 1+ pe =1, o+ p1+ w2 = —22 (2)
Eliminating ¢, and 9, then ¢ = ¢, satisfies Py
d%p 1 [(dp ’ 5 3 2142
= 2 dzp? + 2[2% + — —
i (dz> + 59" + 429" + 2027 + (1 — p2)lp p

The system (1) 1s associated with the affine Weyl group Ag) and has the simple rational

solutions

(1) <Q00,§01;S02) — <_22707§)>7 ) (II’LO)/’L17l’L2) — (17070>
(11) (@079017902> — <_§Z7 3%, _§Z>7 (:u()alulvlu2> — (%7%7%)
Rational solutions arising from (1) are expressed in terms of generalized Hermite poly-

nomials H,, ,,(2) and from (ii) in terms of generalized Okamoto polynomials (), ,,(2).
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Theorem (Noumi & Yamada [1998])
Rational solutions of the symmetric Py system

d
dio + @olepr — p2) + 249 = 0
d
dil +p1(02 — o) + 21 =0
d
—diQ + 2o — 1) + 212 =0

either have the form
— 1 ) 1 ) _2 l )

for parameters

(Moa M1, :u2> — <n7 —m —"n,m+ 1)
or

d m n d m,n
<90079017902> — <_%Z+ 1HQ = 2Z n Q ’

dz " Qua

for parameters
1

(MO)Mlan) — (n— §7—m_n+%7m+%)
with H,, (%) the generalized Hermite polynomials and Q,, ,,(z) generalized Okamoto

polynomials.
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Symmetric Pyy Hierarchy
(Noumi & Yamada [1998])
(1)

The symmetric hierarchy of Py associated with the affine Weyl group of type A, is

n

d; .
0 Y (P — @) + 2 =0, j=0,1....2n (1)
r=1
with constraints , ,
Y wi=—22 > = (2)
7=0 =0

where 11; are complex constants. The system (1) has the simple rational solutions

wo=¢1=...=pp=—2/2k+1), Yypi1=...=wsy =0 k=0,1,....,n
with

po=p1=...=por=1/2k+1), pogr1=...=p2, =0, k=0,1,....n
Special cases are

1) @o=-22, pr=...= =0, po=1, pm=...=pyp=_0
i) po=p1=...=¢y==22/2n+1), p=pm=...=pn=1/02n+1)

Rational solutions arising from (1) are expressed in terms of symmetric Hermite poly-
nomials and from (i1) in terms of symmetric Okamoto polynomials.
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(1)

Roots of symmetric Hermite polynomials associated with A,
(PAC & Filipuk [2008])
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Roots of symmetric Okamoto polynomials associated with A
(PAC & Filipuk [2008])
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Numerics and Asymptotics for the Fourth Painlevé Equation

d?w 1 [dw)® 3 3 15}
bl st 4 22 L
2 2w<dz> +ow zw® + 2(27 a)w+w

e In the special case when o = 2 + 1 and 3 = 0, we make the transformation

w(z) = 2v2u(z), r=12z

This yields
d*u B ]
2 3’ + 2zu’ + (327 — v — u

which 1s a nonlinear harmonic oscillator.
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The parabolic cylinder function D, (x) satisfies

d*D, 4 1
A2 (72" —v —=3)D,
D,(z) ~ 2" exp (—127) , as x — +00

Whenv =n € N,

D, (z) = He,(z) exp (—1z”)
which are bound state solutions that decay exponentially as * — +oo, where He, ()
is the Hermite polynomial defined by

Fe () = (~1)" exp(3) - {exp(—4a?))

0.8
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Asymptotics of Py — Nonlinear Harmonic Oscillator

Consider the special case of Pry where w(z) = 2v/2u?(z) and z = /2 2, with o = 2v+1
and G =0, 1.e.

d*u 1

@—BU +2zu’ + (32° — v — Du (1)

and the boundary condition
u(z) — 0, as T — 400 (2)

This equation has solutions have exponential decay as x — 400 and so are nonlinear
analogues of bound state solutions for the linear harmonic oscillator.

Let ux(x) denote the unique solution of (1) which is asymptotic to kD, (x), i.e.

dQuk
@—3uk+2xuk+( * —v— Ly

with boundary condition
up(x) ~ kD,(x), as x — +00
where D, (x) is the parabolic cylinder function which satisfies

d*D, 4 , 1

PR = (2" —v —3)D,

with boundary condition

D,(z) ~ 2" exp (—127) , as x — +00
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Theorem (Bassom, PAC, Hicks & McLeod [1992])
Let uy(x) be the unique solution of

d?u
@; = 3up, + 2zup + (32° — v — Dy, up(x) ~ kD,(x), as x — +o0
® The solution uy(x) exists for all real x provided that 0 < k < k,, where

ki = 1
Co2V2r (v + 1)

In this case, if v = n € N, then as vt — —o0
kexp(—12?) H,(3v2 )
2/24/1 — 227 n! k2

whilst if v & N, then for some d and 0y € R, as x — —o0

2 4d2
up(z) = (=) (=lz 1/2+dx1/2sin( - In |z —9)+C’) x| 32
(2) = (=) (—g2) " + dfe S~ el =) + O (Jel ")

up () ~

olfk ==k, thenasr — —o0

up. () ~ (—32)""

o If k > k, then ui(x) has a pole at a finite x(, depending on k, so as x | x

up(x) ~ (z — o)~/
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Theorem (Its & Kapaev [1998], Wong & Zhang [2009])

Let uy(x) be the unique solution of
dQuk 1

d—x2—3uk+2$uk+( x* — v — Ly,

with boundary condition

up(x) ~ kD,(x), as x — +oo
If0 < k < k,, with

k2 = 1
Co2Var (v + 1)

and v ¢ N, then as xt — —o0

up(x) = (— 1)[”1]( 6:1:)1/2 + d|z|Y?sin (—2 — 4—d21n x| — 90) + 0O (|:1:\_3/2)
2v3 V3

where the connection formulae are
d(k;v) = —3vV37 " In(1 — |pf)
Oo(k;v) = 1\f d*In3 + arg {F (—%1\@ d2> } + (3v + 5)m + arg(p)

with
21k73/? exp(—imv)

L(=v)

plk,v) =1+
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d2
_u = 3uy + 2zup + (327 — v — Dy, up(x) ~ kD,(x), as x — 400

3 r3
Lo 2
w(X)
L1 1
2 4 T
F-1
Lo F—2

k = 0.33554691, O 33554692 v

I —

V — — 2,

N

T e B VAR 7 P
=1

k = 0.47442 O 47443

UV =

k= 0.38736, 0.38737 v = % k = 0.244992, O 244993

3
2
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Numerical Solutions of Pyyy (Reeger & Fornberg [2012])

Solution Along the Real Axis

Solid lines: numerical solutions, dashed-dotted lines: —f,z and dashed lines: —2=.
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The first two bound state solutions are

up(z;0) = ST =), ) - [z + 20(@) | Wilo)

V1= kX)(x - V1= 2202 (z) — 40} ()
where ¢(z) = V27 erfe (5 \/ia:*) [note that 1)(c0) = 0 and 1)(—o0) = 2v/27].

0.8
0.6 0.4
0.4+
0.2 024
6 -4 -2 0\ 2 6
0 2 2 6
X

Va Y

ug(x;0) ug(x; 1) u(x;2)
0.2,0.3,0.4,0.44,0.445  0.2,0.3,0.4,0.44,0.445  0.15,0.2,0.25,0.28, 0.3

Forn € Z*, uip(x;n) exists for all x, has n distinct zeros and decays exponentially to
zero as x — Foo with asymptotic behaviour

rkexp(—iﬁ), as x — 00 |
‘n) ~ kexp(—ia? k<
Uk<x7n> { p( 4 ) ’ A4S T — —00 2\/%72,'
V1 — 227 n! k2
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The corresponding solutions of Pry

Pw 1 (dw\’ 3 , 3
— == = dzw® + 2(2° — -
1 Zw(dz) + w4 dew” + (2 oz)’erw

have the form

V€ exp(— 2
w(z;1,0) = W(z€) = \/ﬂgle_péer?c()@]
(U + 22)2
ER =T <+ QJ;\IJZE 2
w(z;5,0) = AV(U2 + 320 + 222 — 1)

(U2 4 220 — 2)[2W3 4 (422 4 3) U2 4 22(222 4+ 3)U — 4]

w(z;1,0) w(z;3,0) w(z;5,0)
¢=0.7,0.8,0.9 §=0.7,0.8,0.9 §=0.7,0.8,0.9
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Some Open Problems

e Study exact (rational, algebraic and special function) solutions of Painlevé equations.
This 1s particularly important with regard to applications of the Painlevé equations,
as 1llustrated by semi-classical orthogonal polynomials and vortex dynamics.

e Is there an analytical explanation and interpretation of the computational results for
the special polynomials associated with rational solutions of the Painlevé equations?
» Is there an interlacing property for the roots in the complex plane?

» Do these special polynomials have applications, e.g. in numerical analysis?

e Study asymptotics and connection formulae for the Painlevé equations using the
isomonodromy method, for example the construction of uniform asymptotics around
a nonlinear Stokes ray.

Objectives

e To provide a complete classification and unified structure of the special properties
which the Painlevé equations (and Painlevé o-equations) possess — the presently
known results are rather fragmentary and non-systematic.

e Develop algorithmic procedures for the classification of equations with the Painlevé
property; this 1s straightforward for linear equations but significantly more difficult
for nonlinear equations.

e Develop software for numerically studying the Painlevé equations which utilizes the
fact that they are integrable equations solvable using isomonodromy methods.

UK-Japan Winter School, London, 7 January 2013 78



References

P A Clarkson, Painlevé equations — nonlinear special functions, in “Orthogonal Poly-
nomials and Special Functions: Computation and Application" [Editors F Marcellan
and W van Assche], Lect. Notes Math., 1883, Springer, Berlin (2006) pp 331411

Francisco Marcelldn
Walter Van Assche (Eds.)

NIST Handbook
of Mathematical
Functions

Orthogonal Polynomials
and Special Functions

Computation and Applications

%
:
¢
g
s

UK-Japan Winter School, London, 7 January 2013 79



Some Books on Painlevé Equations
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