e First Talk

 General Introduction to Complex Systems
Biology

« Coupled Dynamical Systems

« Development--Cell Differentiation

o Self-consistent Bifurcation

« Dominance of Milnor Attractor > (5~7) dim
e Summary

2"d: phenotype evolution as selection of
dynamical systems; robustness, fluctuation,....



Complex Systems Biology

cf. Life as Complicated System: (current trend)
Enumeration of molecules, processes
detailed models describing the life process
Life as Complex System:
Understand Universal features at a System with
mutual dependence between parts and whole
Simplistic Physicists’ Approach

Strategy:

1) Dynamical Systems ++ & Statistical Physics ++

- Catch consistency between micro-macro levels

2) Constructive Approach: (Exp & Theory)

" construct simple system to catch universal features'
as simple as possible



Ecosystem

Phenotypic Plasticity vs Symbiosis
Or Ecological diversification

Multicellualit

Consistency between Evolutionary relationship on

Multicelluar development
and cell reprodcution

Cell

Robustness and Fluctuation

Genotyp+ <:> Phenotype

Consisteny between Cell reproduction
nd molecule replication

Adaptation as
a result of consistency
between cell growth an
gene expression dyn

Mdlecule] [Ge

action network




Globally Coupled Hap
e.g£. logistic map

Xp1=dX,(1-X,)
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)
%, (1) = (1= f(x,()N) + 5 T F(x,()).
(1)

Globally coupled map (no spatial structure) (1989,KK)

logistic map f(x)=1— ax?

Cf Coupled map lattice -> space-time chaos (1984,KK)
X,01(0) = {1 — e} f(x,(i))

+ e[ fx,(i+ 1)+ f(x,(i = 1))].
(2)

Cf. synchronized state is stable if Ao +log{l —¢) <0.

Synchronization of all elements with chaos is possible
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Clustering

Example 1
3-clusters, with each synchronized oscillatios

Differentiation of behavior from identical

2 elements and identical interaction

Cluster of synchrnoized elemens
+ non-synchronized elements

Desycnhronized



11,10

Fig. 1. Schematic figure lor clusterings: (a) Coherent attractor.
(b) Few clusters (k= 3). (¢) Many-cluster attractor with un-
cqual partition. (d) Many-cluster atlractor with & = N.



Onset of chaos



Around 1992, | met Tetsuya Yomo who was working on

cell differentiation of Bacteria in a well stirred condition

Character of bacteria of
Identical genes differentiate

In a crowded condition
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Measurement by fluoresecent
proteins

Cell differentiation
--coupled dynamical systems?



Multicelluarity:Ques tion on
Cell differentiation:

Insight by Conrad Waddington (1957) Waddington’s
P Canalization
Cell types as
Attractors?

How genes guide
this process?

e i

If mutiple attractors, how initial conditions are chosen?
Relevance of cell-cell interaction?

—problem of coupled dynamical systems?



Isologous Diversification:
Internal dynamics and interaction : development  phenotype
Instability

distinct phenotypes

Interaction-induced

Example: chemical reaction network G@@

melahaliies

specialize in the use of some path spenis o e S oo i

Coupled Dynamical Systems

- development

Internal chemical reaction dynamics
and interaction and cell division



k

dx{(0)/dr = ox(e) — x"(e) 2, ox{™(@) (1)

m=1

with Dilution by the increase
of cell volume

ox¥(r) = Z Con(m, Z, j) e x"(r) (xV(t))”

m
Catalytlc reaction dynamics (or gene expression)

— Z Con(/,m', j) e x¥(t) (x¥(¢))*

m’,j’

+aﬂg“m x{ (1))

Diffusion _to/from media; resource included

(4 o)/ X0y (2)

( noise by molceular fluctuation)



synchronous division:
no differentiation

Concentration of Chemical 3

Instability of homogeneous state
through.cell-cell interaction

Concentration of Chemical 2 Concentration of Chemical 2

Assuming oscillatdiy/ dynamics as a single cell

Concentration of Chemical 3

recursive production

Concentration of Chemical 3

1
' Concentration of Chemical 2
M formation of discrete types
=mmaces\WILN different chemical
conmositions:

Concentration of Chemical 1

stabilize each other



(1) Synchronous oscillations of identical units

Up to some threshold number of units, all of them oscillate
synchronously, and their states are identical.}

(2) Differentiation of the phases of oscillations of internal
states. When the number of units exceeds the threshold, they
lose identical and coherent dynamics.  Although the state of
units are different at an instance, averaged behaviors over
periods are essentially the same. Only the phase of oscillations
differs by units.

(3) Differentiation of the amplitudes of internal states. At this
stage, the states are different even after taking the temporal
average over periods. It follows that the behavior of states
(e.g., composition of chemicals, cycles of oscillations, and
soon) are differentiated.

(4) Transfer of the differentiated state to the offspring by
reproduction. This “"memory" is made possible through the
transfer of initial conditions (e.g., of chemicals) during the
reproduction ( e.g., cell division).

(5) Hierarchy of organized groups. This stage is the result of
successive differentiation with time. Thus, the total system
consists of units of diverse behaviors, which forms a
cooperative society.



129With the increase of the number

Concentration of chemical 2

(5]
Tnstability of a %D

homogenecus state
R —
L%ﬂ Stabilize each other

Concent ration of chemica

Concentration of chamical §
Concertration of chemicall

tinct types are formed through instaiflity in ‘developmental

ynamics’ and interaction (both typeS are necessary)

Concentration of chemicall . .
Concentration of chemical 3

As Single cell dynamics --- bifurcation
Interaction term works as bifurcation parameter
Self-consistent choice of bifurcation parameter



Biologically speaking,



Robustness of developmental process

both states of each cell type and number
distribution of each cell type

(1) against molecular fluctuations,

(a few % fluctuations, ( ~ 100-1000 molecules))
(2) against macroscopic damage,

l.e., type A and type B, determined

but If type A Is eliminated, then B de-
differentiates

and initial A-B cell ensemble is recovered
(since A,B is stabilized each other)



Hierarchical differentiation from
‘'stem cell’;by taking initially chaotic
dynamics

(or gene exression dynamics)
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Hierarchical differentiation from ‘stem cell’;
by taking initially chaotic dynamics (higher order catalysis)
Furusawa&KK

0.2

-

0.18

0.1

chemicalid

Q.05




Hierarchical differentiation
from ‘stem cell’;by taking
Initially chaotic dynamics

e
of ¥
A\
JRIKS

probability depends on # distrib. of cell types
with prob. pA forS 2> A
If #(A) decreases then pA Increases: STABILITY




Generated Rule of Differentiation (example)

B Cf hematopoietic system

(1)hierarchical differentiation: stem cell system
(2) Stochastic Branching:
stochastic model proposed in hematopoietic system

(3) probability depends on # distrib. of cell types

with prob. pA forS 2> A

if #(A) \ then pA /

—— global info. iIs embedded into internal cell states

—>STABILITY

(4) Differentiation of cell ensemble (tissue)
——multiple stable distrib. { N/}



Explained:

Robustness in development under large fluctuation
In molecule numbers

Recall: (signal) molecules of few number -- relevant;

Loss of potency from totipotent cell (ES),
to multipotent stem cell, and to determination

Irreversibility in cell differentiation process
characterized by the loss of phenotypic variation




* Loss of pluripotency Is characterized by
Decrease in the degrees of expressed genes
(chemical diversity)
Decrease In cell-cell variation
Decrease in temporal variation in
gene expression ( loss of chaos)

To recover pluripotency
Increase the degrees of freedom
(# of excpressed genes)
prediction confirmed by IPS (Yamanaka)

To confirm the theory

Measure gene expression dynamics
(oscillatory gene expression and

Its change through differentiation)
partially observed by Sui Huang’s group (Nature 2008)




Mechanism: approach to " Milnor attractor”?
(that touches with basin boundary)

As long as the stem cell state Is st
reproduces itself

->With the increase In the cell ndmber, the
attractor touches with its basin - differentiate
to other types

- If the number of differentiated cells increases
then the stabllity of the stgm cell is recovered,
and it reproduces itself

le, It

“Milnor attractor” : attractor by Milnor’s definition( positive
measure of basin) — attractor with asymptoric stability




 Toward ‘mathematical Representation’
Self- cogpsstent bifurcation

= j[ Q’)( é )« Internal

dynamics

e\ew\ew* (@M> ﬁc\JQJ”J/\/
N

doC, (k) . JL<T(9<3(4>%> 1 Zg ({xl(@})
s

7




meam f?elo{ ’
SGede o s
6 2 (2) ¢

;\)‘ X J\J }\/ )
R L{u\\moﬁ s Pavameley
[ {
‘D“ f\gfg o V\:JY f &CH NA
f: \) - Ty /\/
{X&Qv} VA R 1D ODl‘J(]%\/ewjl‘\&O/e

— AL“J‘{Q\(@V\/X— &LﬂVOLC*OV /FW 027[\/\6(”/\'\(-5
7C; b ) + T, = B Paaméi="



Cf)(. tn 3@\/\ero«@ T. Caun be Tim e
&egamdenf J.o(1) ;{i {9@5}

jfd\f SN PevioJ\“c /c L\QOJNQ &fjwaéit&/

Fb\/‘ ’U/\Q W\DVV\QV\,’& W e COV\S?CP@\/‘ ﬂ/\@ casSe

tﬁﬁk waﬁmﬁ 1.

: evev\JYCa/J“( -
L 4 - \ ck&“5€
IR change i o

e WQ(]L(‘ o T.

— Vv

'#Q,\fvm



FOW CQ\\ &Cﬁ€V€W+tJ
{26 0} = YW= @)y = -

rih=Auz)= 3 cbk‘j/fe\/wwjﬁ‘aj?”

R
8
o ()= - )

s N / ~> L. (“ \ijﬁf/“f@aé]t\a;n P&LVM@‘(\€’/ )
clnan ges

ke 4o have move Tho
O &ﬁ\ﬁ& d\D\/

”T/\DQS Y{K %‘g\/\\fcw\z‘o\/\!) - Clagg; \\Caﬁ\é\i/\






> B "Q(i"’
1
H Zj(ﬁ%ﬂ@@}
NA T/ tey > 2 ext
existence /{ jO(f) { I/ A-7
L9 A - ol

Self-consistent determination of distribution of x-* x+* and |



N 7
T .7

Su)(\TLCL f\m}\r\/\

— 4o+ e
N/

%XHS I /
AV
(=) (+) coex)<T

et
cs \(Ljhm\ 5[3 \mﬂro ‘/f’



Bifurcation parameter is given by interaction —self-consistent state

dui(tj . o l “iﬂ“j o ; ) T AT
0 — f{uh *.5.:| — . (f{g n gr‘:‘[tj n u?[f:l E-!EI[J.'.'JI -+ _f-jl.u_ for ¢+ = 1_. ... N, |[1:|
v (t
Hdgj =glul,...,un,v). (2)
du(t) (a=2)
7 = 23(u1,. .. uN, )
N 3 N 3
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T T T T T T T 1
T+ § JI]
nal! Man=
Al | g ===
0.8 R t iy
z nel i
A DB T = X 100 200 300 400 500
= | = "‘l-.-____
3 I T
04 § O S KA M IR IO
+ 1 cluster o e
oo b O 2cluster i )
a1 W b c : : ' : ' ' )
i N L - i : o 0 1000 2000 3000 4000 5000 6000 7000 SO00
1 10 100 1000 10000 M

Figure 9: The ratio of the number cell type
1 Ny to the total cell number N is plotted
araingt N for madel T The initial condi-

Figure 8: The fixed point solutions of model

Il plotted against the total cell number N.
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By considering coupling depending on the
sum of state variables, it wourd be possible to
consider the self-consistent pitchfork
bifurcation say,

dXi/dt= aXi-Xi*3 -( Zj Xj)*2 Xi



\ ) (depend on
. H‘DPUC bjﬁuvca’ﬁﬂm super/sub critical)

/ V\DJ( JalQ\fa"j
/@

(as in the case of pitchfork)

li (bifurcation paramreter)
Cf Oscillation death

(O ———
. A“UL
‘ (SN




D . Nonlocal bifurcation
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 Bifurcation to plural cell types —
possible for nonlocal bifurcation (crisis)

 Successive bifurcation -2 hierarchical differentiation

*For cell differentiation, we also need to consider the
speed for cell division

*** Dynamical systems theory to ‘classify’ possible self-
consistent bifurcation scenario needed?

Which types are most plausible evolutionarily?

One needs ‘plausible measure for ‘model space’ and
dynamics over model space ( = 2" talk)



Universality?
checked a huge number of networks; only some fraction of

them show chaotic dynamics & differentiation

= 0015 (= v T 1
L]
% 0.0
Cells with such networks -
with differentiation © 0.005
higher growth speed as §
an ensemble % .
o 0 0.05 0.1 0.15

growth speed of a single cell (a.u.)

Such networks are selected



A remark on prevalence of Milnor attractor
( I.e., Attractor in the sense of Milnor minus

usual attractor with asymptotic stabllity);

attractor and its basin boundary touches,

l.e., any small perturbation from it can kick the
orbit out of the attractor, while it has a finite
measure of basin ( orbits from many initial
conditions are attracted to it)

Observed; Milnor attractors large portion of basin
for the partially ordered phase in GCM (kk,97,98)



GCM y
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where n 15 the discrete time and i being the ndex for o oK
elements (=12, ..., N= dimension of the system). For |- =2
elements we choose f(x)=1-ax”, since the model has bur™ & A T

Cluster: group of elements such that x(i)=x()); " %NS
Number of elements in each cluster; N1,N2,...,Nk NN

eat some parameter region many attractors with different clusterings
Due to the symmetry there are

COHERENT

M(Nl SN aNk):(N!/Hﬁ;lNi!)HoversetsofNI.:N’.( l/m{")

attractors of the same clusterings --

combinatorially many increase with the order of (N-1)!
or so (KK,PRL89)



The fraction of basin
(i.e. initial values) for
Milnor attractors,
Plotted as a function of
Logistic map parameter

Note! Fraction is almost
1 for some region

Result for N=10,50,100
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Fig. 9. The basin volume rmtic of Milner amiraciors wigh the
change of a. For each a, we lake 1000 inicial conditicrs, 2nd
ieeans the dynamics aver JKHAD steps to gei an attracior. We

check i the orbit recams 10 he original @iracioe, by pertuching
mach atiracior by @ = 107" ower 10K oails. 1F che orbi does

reten o sl for one of the rails the aitraceor s counied &5 &
Ml Foe WV = Ik rmlssrmnmesawred o 1 5 <~ a <« 1.7

with the incremeni (U000, while for larper sazes il i measunod
only Gor 162 < a = |7 with the meremend (.00 .



The Milnor attractors become dominant around N >~(5—8)

.35

0.3 ¢
025 |

Total Basin Fraction of Milnor atiractors

10
N

20 30

L

Dependence
On the
Number of
Elements N

(accumulation
over
1.55<a<1.72)

FIG. 2. The average fraction of the basin ratio of Milnor attrac-
tors. After the basin fraction of Milnor attractor 15 computed as i

Fig. 1, the average of the rafios for parameter values a
=1.550,1.552,1.554, .. ., 1.72 15 taken This average fraction is

(kk. PRE,2002)



e Why?
Conjecture by combinatorial explosion of basin boundaries
Simple separation x(1)>x* or x(i)<x*; one can separate 2 *N
attractors by N planes.

In this case the distance between attractor and the basin
boundary does not change with N

b(ut Tr)le boundary makes combinatorial explosion ---- Order of
N-1)!

On the other hand, consider a boundary given by some
condition for [x(1), ....x(N)]. In the present system with
zlobal (all-to-all) couplings, many of permutahonal change
of x(i) m the condifion give also basin boundanes. Here the
condihon for the basin can also have clustenng
(N71.....Ng). since the attractors are chistered as such
Then there are M({N,,...,N,;) parttions by boundanes
equit=lant hw narmutatione The momhar af rasiane parti-

M(N1, ... Np)=(NUI_ N oot o =i { Lime 1)




 The number of basin boundary planes has
combinatorial explosion, as factorial wins over
exponential (around N =7). Then, the basin

boundary is ‘crowded’ in the phase space. Thus often
attractors touch with basin boundaries

- dominance of Milnor attractors here
(complete symmetry Is unnecessary)

When combinatorial variety wins over exponential
Increase of the phase space, ‘complex dynamics’

(also in neural net model, Ishihara,kk 2006,PRL).
Magic number 7 + — 2 in dynamical systems ?

If elements more than 7 are entangled, clear separation
behavior is difficult

- A solution could be use of modules with each
<7 elements



high—dimensjonal chaos

high—dimensional
—_ E_hE’_DE

X (1)

2 14: # 4 ABSEFEORER

In such case, dynamics called ‘Chaotic Itinerancy’ is
often observed

Cf Itinerant dynamics of cellular state reported recently
By Sui Huang’s group (Nature 2008)



UNDERSTANDING QA)rm Collaborators
COMPLEX SYSTEMS COMPLE ]
Chikara Furusawa

experiment
Kunihiko Kaneko
T Tetsuya Yomo
L'fe' Akiko Kashiwagi
An Introduction
to Complex
Systems
Biology Most papers (biology,
Dynamical systems)
Available at

http://chaos.c.u-tokyo.ac.|p

@ Springer

ERATO Complex Systems Biology Project
(2006,August)



