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A Simple Digital Channel

• First order system driven by a clocked ran-
dom pulse sequence:

dy

dt
= −γy + ξ(t)

ξ(t) =
∑

p

apg(t − pτ)

• {ap} ∈ {0, 1}Z
+

are the input symbols

• g is supported on (0, τ).

• Symbols input at constant rate, τ−1.

• In the examples, g is a raised cosine.

• In the numerical example γτ = log 3
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Sampling the Output

• When processing signals, it is usual to
sample the output.

• A simple picture emerges if we sample
at the symbol input rate. 180 190 200 210 220

0.1

0.2

0.3

0.4

0.5



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 3/20

Sampling the Output

• When processing signals, it is usual to
sample the output.

• A simple picture emerges if we sample
at the symbol input rate.

• Just plotting the samples {yn
def
= y(nτ)}
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Sampling the Output

• When processing signals, it is usual to
sample the output.

• A simple picture emerges if we sample
at the symbol input rate.

• Just plotting the samples {yn
def
= y(nτ)}

• This becomes clearer with more data

• Apparently, we have sampled a Cantor
set.
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Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20

Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set

• Ways to characterise fractals



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20

Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set

• Ways to characterise fractals

• Hyperbolic iterated function systems (IFSs)



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20

Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set

• Ways to characterise fractals

• Hyperbolic iterated function systems (IFSs)

• Semi-infinite strings of symbols seen as a metric space



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20

Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set

• Ways to characterise fractals

• Hyperbolic iterated function systems (IFSs)

• Semi-infinite strings of symbols seen as a metric space

• Topological equivalence with the Cantor set



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20

Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set

• Ways to characterise fractals

• Hyperbolic iterated function systems (IFSs)

• Semi-infinite strings of symbols seen as a metric space

• Topological equivalence with the Cantor set

• Non-hyperbolic IFSs



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20

Overview

There is a close relationship between sequences of symbols
from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship
by considering the following:

• Some properties of the Cantor set

• Ways to characterise fractals

• Hyperbolic iterated function systems (IFSs)

• Semi-infinite strings of symbols seen as a metric space

• Topological equivalence with the Cantor set

• Non-hyperbolic IFSs

• Digital forcing/controlling of an inverted pendulum
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Cantor’s (rather small) set

• Remove from the closed unit interval I0 = [0, 1] its open
middle third (1/3, 2/3) to leave I1 = [0, 1/3] ∪ [2/3, 1]
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Cantor’s (rather small) set

• Remove from the closed unit interval I0 = [0, 1] its open
middle third (1/3, 2/3) to leave I1 = [0, 1/3] ∪ [2/3, 1]

• Repeat the process on [0, 1/3] and [2/3, 1] to get:
I2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]
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• Continue to generate I3, I4 . . . and find the limit C =
⋂

∞

j=0 Ij
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Cantor’s (rather small) set

• Remove from the closed unit interval I0 = [0, 1] its open
middle third (1/3, 2/3) to leave I1 = [0, 1/3] ∪ [2/3, 1]

• Repeat the process on [0, 1/3] and [2/3, 1] to get:
I2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

• Continue to generate I3, I4 . . . and find the limit C =
⋂

∞

j=0 Ij

• C is non-empty: e.g. it contains all points 3−j where j ∈ N

• However, there is a sense in which it is rather small . . .

• Any reasonable definition of length would require

C ⊂ Ij ⇒ l(C) ≤ l(Ij)

• This implies that l(C) ≤ (2/3)j for any j ∈ N
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Representing the middle thirds Cantor set

• Write x ∈ [0, 1] in base 3:

x =
∑

∞

k=1 ak3−k def
= .a1a2a3a4a5 . . .3 where the ak ∈ {0, 1, 2}
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x =
∑

∞

k=1 ak3−k def
= .a1a2a3a4a5 . . .3 where the ak ∈ {0, 1, 2}

• If we choose to write 1/3 = .023 rather than .103, then no
points in I1 = [0, 1/3] ∪ [2/3, 1] have a1 = 1
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• Continuing in this way we can characterise C as the subset of
[0, 1] whose base 3 representation does not have any ak = 1
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Representing the middle thirds Cantor set

• Write x ∈ [0, 1] in base 3:

x =
∑

∞

k=1 ak3−k def
= .a1a2a3a4a5 . . .3 where the ak ∈ {0, 1, 2}

• If we choose to write 1/3 = .023 rather than .103, then no
points in I1 = [0, 1/3] ∪ [2/3, 1] have a1 = 1

• In the same way, no points in I2 have either a1 = 1 or a2 = 1

• Continuing in this way we can characterise C as the subset of
[0, 1] whose base 3 representation does not have any ak = 1

• Clearly C contains many more points than simply integer
multiples of 3−k
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Representing the middle thirds Cantor set

• Write x ∈ [0, 1] in base 3:

x =
∑

∞

k=1 ak3−k def
= .a1a2a3a4a5 . . .3 where the ak ∈ {0, 1, 2}

• If we choose to write 1/3 = .023 rather than .103, then no
points in I1 = [0, 1/3] ∪ [2/3, 1] have a1 = 1

• In the same way, no points in I2 have either a1 = 1 or a2 = 1

• Continuing in this way we can characterise C as the subset of
[0, 1] whose base 3 representation does not have any ak = 1

• Clearly C contains many more points than simply integer
multiples of 3−k

• For example it contains 1/4 = .023
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Cantor’s (rather large) set

• If C contained only the integer multiples of 3−k it would be
countably infinite, but actually it is far larger than that!
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• If C contained only the integer multiples of 3−k it would be
countably infinite, but actually it is far larger than that!

• In fact, it has the same cardinality as the unit interval
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Cantor’s (rather large) set

• If C contained only the integer multiples of 3−k it would be
countably infinite, but actually it is far larger than that!

• In fact, it has the same cardinality as the unit interval

• To prove this, construct the following surjection φ : C → [0, 1]:
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Cantor’s (rather large) set

• If C contained only the integer multiples of 3−k it would be
countably infinite, but actually it is far larger than that!

• In fact, it has the same cardinality as the unit interval

• To prove this, construct the following surjection φ : C → [0, 1]:

• Given any x ∈ C written in base 3, x =
∑

∞

k=1 ak3−k, we write

φ(x) =
∞∑

k=1

(ak/2)2−k
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Cantor’s (rather large) set

• If C contained only the integer multiples of 3−k it would be
countably infinite, but actually it is far larger than that!

• In fact, it has the same cardinality as the unit interval

• To prove this, construct the following surjection φ : C → [0, 1]:

• Given any x ∈ C written in base 3, x =
∑

∞

k=1 ak3−k, we write

φ(x) =
∞∑

k=1

(ak/2)2−k

• For any y ∈ [0, 1] there is clearly at least one x ∈ C such that
y = φ(x), so the cardinality of C is at least that of [0, 1]
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Cantor’s (rather large) set

• If C contained only the integer multiples of 3−k it would be
countably infinite, but actually it is far larger than that!

• In fact, it has the same cardinality as the unit interval

• To prove this, construct the following surjection φ : C → [0, 1]:

• Given any x ∈ C written in base 3, x =
∑

∞

k=1 ak3−k, we write

φ(x) =
∞∑

k=1

(ak/2)2−k

• For any y ∈ [0, 1] there is clearly at least one x ∈ C such that
y = φ(x), so the cardinality of C is at least that of [0, 1]

• But C ⊂ [0, 1], so its cardinality cannot exceed that of [0, 1]
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Cantor’s (perfect) set
• So far we have found only properties that C shares with the
irrational numbers in the unit interval



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 8/20

Cantor’s (perfect) set
• So far we have found only properties that C shares with the
irrational numbers in the unit interval

• But C is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C is a
closed set.
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Cantor’s (perfect) set
• So far we have found only properties that C shares with the
irrational numbers in the unit interval

• But C is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C is a
closed set.

• It is, in fact a perfect set (every point is an accumulation point
and every accumulation point lies within the set)
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Cantor’s (perfect) set
• So far we have found only properties that C shares with the
irrational numbers in the unit interval

• But C is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C is a
closed set.

• It is, in fact a perfect set (every point is an accumulation point
and every accumulation point lies within the set)

• The second part of this definition follows because C is
closed. To prove the first part we have to show that for any
x ∈ C and for every ǫ > 0 there is at least one other point of C
which lies within the ǫ-neighbourhood of x.
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Cantor’s (perfect) set
• So far we have found only properties that C shares with the
irrational numbers in the unit interval

• But C is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C is a
closed set.

• It is, in fact a perfect set (every point is an accumulation point
and every accumulation point lies within the set)

• The second part of this definition follows because C is
closed. To prove the first part we have to show that for any
x ∈ C and for every ǫ > 0 there is at least one other point of C
which lies within the ǫ-neighbourhood of x.

• Choose an arbitrary x = .a1a2a3a4 . . .3 ∈ C, and for any ǫ > 0
choose k so that 3−k < ǫ/2.
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Cantor’s (perfect) set
• So far we have found only properties that C shares with the
irrational numbers in the unit interval

• But C is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C is a
closed set.

• It is, in fact a perfect set (every point is an accumulation point
and every accumulation point lies within the set)

• The second part of this definition follows because C is
closed. To prove the first part we have to show that for any
x ∈ C and for every ǫ > 0 there is at least one other point of C
which lies within the ǫ-neighbourhood of x.

• Choose an arbitrary x = .a1a2a3a4 . . .3 ∈ C, and for any ǫ > 0
choose k so that 3−k < ǫ/2.

• A switch 2 ↔ 0 in the kth digit of x gives y = x ± 2 · 3−k. By
construction, y ∈ C and is in the ǫ-neighbourhood of x.
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Cantor’s (nowhere dense) set
• If we take the closure of the rational numbers in the unit
interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.
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Cantor’s (nowhere dense) set
• If we take the closure of the rational numbers in the unit
interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

• Because C is perfect it must equal its closure, therefore if it is
dense in any open sub-interval of [0, 1] it must contain the
sub-interval



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 9/20

Cantor’s (nowhere dense) set
• If we take the closure of the rational numbers in the unit
interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

• Because C is perfect it must equal its closure, therefore if it is
dense in any open sub-interval of [0, 1] it must contain the
sub-interval

• But C contains no intervals. Between any two points in C
there must be a point that requires a 1 somewhere in its base 3
representation.
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Cantor’s (nowhere dense) set
• If we take the closure of the rational numbers in the unit
interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

• Because C is perfect it must equal its closure, therefore if it is
dense in any open sub-interval of [0, 1] it must contain the
sub-interval

• But C contains no intervals. Between any two points in C
there must be a point that requires a 1 somewhere in its base 3
representation.

• Thus C is nowhere dense in [0, 1].
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Summary

• In the sense of measure, the Cantor set is very small since it
has zero length.

• Its cardinality is, however, that of the unit interval.

• It is an example of a perfect set—a topological property

• And yet, topologically, it is sparse in the sense that it is a
nowhere dense subset of the unit interval.

• Let’s consider now what makes the Cantor set a basic
example in fractal geometry.
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Self-similarity of C

• Consider the partition of C into the following two subsets:
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Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}
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Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and
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Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and

C2 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 2}

• And the effect of the following transformations on C:



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 11/20

Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and

C2 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 2}

• And the effect of the following transformations on C:

S0(x) = x/3



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 11/20

Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and

C2 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 2}

• And the effect of the following transformations on C:

S0(x) = x/3

S2(x) = x/3 + 2/3
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Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and

C2 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 2}

• And the effect of the following transformations on C:

S0(x) = x/3

S2(x) = x/3 + 2/3

• Clearly C0 = S0(C) and C2 = S2(C), so that:
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Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and

C2 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 2}

• And the effect of the following transformations on C:

S0(x) = x/3

S2(x) = x/3 + 2/3

• Clearly C0 = S0(C) and C2 = S2(C), so that:

C = S0(C) ∪ S1(C)
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Self-similarity of C

• Consider the partition of C into the following two subsets:

C0 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 0}

and

C2 = {x = .a1a2a3a4 . . .3 ∈ C|a1 = 2}

• And the effect of the following transformations on C:

S0(x) = x/3

S2(x) = x/3 + 2/3

• Clearly C0 = S0(C) and C2 = S2(C), so that:

C = S0(C) ∪ S1(C)

• This property is known as self-similarity
→ C is the union of two similar copies of itself.
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Self-similarity

• More generally, for subsets of R
n

• A similarity is a transformation S : R
n →

R
n with the following property:
‖S(x) − S(y)‖ = c‖x − y‖ x, y ∈ R

n

for some fixed positive c
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Self-similarity

• More generally, for subsets of R
n

• A similarity is a transformation S : R
n →

R
n with the following property:
‖S(x) − S(y)‖ = c‖x − y‖ x, y ∈ R

n

for some fixed positive c

• That is, similarities transform sets into ge-
ometrically similar sets

• Now consider a collection of similarities:
{Si|i = 1, . . . , N} where each has 0 < ci < 1

• A set K ⊂ R
n which satisfies:
K =

⋃N
i=1 Si(K)

is said to be self-similar.
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Self-similarity

• More generally, for subsets of R
n

• A similarity is a transformation S : R
n →

R
n with the following property:
‖S(x) − S(y)‖ = c‖x − y‖ x, y ∈ R

n

for some fixed positive c

• That is, similarities transform sets into ge-
ometrically similar sets

• Now consider a collection of similarities:
{Si|i = 1, . . . , N} where each has 0 < ci < 1

• A set K ⊂ R
n which satisfies:
K =

⋃N
i=1 Si(K)

is said to be self-similar.

• Many examples—like the middle thirds
Cantor set—are fractal sets, having struc-
ture on arbitrary small scales
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Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U
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Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U

• For K ⊂ R
n and s > 0, define for any δ > 0

Hs
δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}
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Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U

• For K ⊂ R
n and s > 0, define for any δ > 0

Hs
δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}

• Take the limit:
Hs(K) = limδ→0 H

s
δ(K)

• Limit exists, but is often either 0 or ∞. Hs(K) is the
s-dimensional Hausdorff measure of K.
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• Write K ⊂ R
n. A δ-cover of K is a countable set of sets
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⋃
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• For K ⊂ R
n and s > 0, define for any δ > 0
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δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}

• Take the limit:
Hs(K) = limδ→0 H

s
δ(K)

• Limit exists, but is often either 0 or ∞. Hs(K) is the
s-dimensional Hausdorff measure of K.

• For nice subsets K ⊂ R
n, Hs(K) is proportional to the

s-dimensional volume of K
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Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U

• For K ⊂ R
n and s > 0, define for any δ > 0

Hs
δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}

• Take the limit:
Hs(K) = limδ→0 H

s
δ(K)

• Limit exists, but is often either 0 or ∞. Hs(K) is the
s-dimensional Hausdorff measure of K.

• For nice subsets K ⊂ R
n, Hs(K) is proportional to the

s-dimensional volume of K

• Imagine K is a 2-dimensional unit disc in R
n
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Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U

• For K ⊂ R
n and s > 0, define for any δ > 0

Hs
δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}

• Take the limit:
Hs(K) = limδ→0 H

s
δ(K)

• Limit exists, but is often either 0 or ∞. Hs(K) is the
s-dimensional Hausdorff measure of K.

• For nice subsets K ⊂ R
n, Hs(K) is proportional to the

s-dimensional volume of K

• Imagine K is a 2-dimensional unit disc in R
n

■ H1(K) = ∞
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Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U

• For K ⊂ R
n and s > 0, define for any δ > 0

Hs
δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}

• Take the limit:
Hs(K) = limδ→0 H

s
δ(K)

• Limit exists, but is often either 0 or ∞. Hs(K) is the
s-dimensional Hausdorff measure of K.

• For nice subsets K ⊂ R
n, Hs(K) is proportional to the

s-dimensional volume of K

• Imagine K is a 2-dimensional unit disc in R
n

■ H1(K) = ∞

■ H2(K) is finite



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 13/20

Hausdorff measure

• Write K ⊂ R
n. A δ-cover of K is a countable set of sets

{Ui | 0 < |Ui| ≤ δ} such that K ⊂
⋃

i Ui. Here |U | is the
diameter of U

• For K ⊂ R
n and s > 0, define for any δ > 0

Hs
δ(K) = inf{

∑
i |Ui|

s|{Ui}is a δ-cover of K}

• Take the limit:
Hs(K) = limδ→0 H

s
δ(K)

• Limit exists, but is often either 0 or ∞. Hs(K) is the
s-dimensional Hausdorff measure of K.

• For nice subsets K ⊂ R
n, Hs(K) is proportional to the

s-dimensional volume of K

• Imagine K is a 2-dimensional unit disc in R
n

■ H1(K) = ∞

■ H2(K) is finite
■ H3(K) = 0
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Hausdorff dimension

• If {Ui} is a δ-cover of K, then if t > s, (|Ui|/δ)
t ≤ (|Ui|/δ)

s so
that ∑

i |Ui|
t ≤ δt−s

∑
i |Ui|

s

and hence Ht
δ(K) ≤ δt−sHs

δ(K)
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Hausdorff dimension

• If {Ui} is a δ-cover of K, then if t > s, (|Ui|/δ)
t ≤ (|Ui|/δ)

s so
that ∑

i |Ui|
t ≤ δt−s

∑
i |Ui|

s

and hence Ht
δ(K) ≤ δt−sHs

δ(K)

• Letting δ → 0, if Hs(K) < ∞ then Ht(K) = 0 for t > s.

• Thus, there is a special value of s at which Hs(K) jumps from
∞ to 0. This is the Hausdorff dimension, written dimH(K)
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Hausdorff dimension

• If {Ui} is a δ-cover of K, then if t > s, (|Ui|/δ)
t ≤ (|Ui|/δ)

s so
that ∑

i |Ui|
t ≤ δt−s

∑
i |Ui|

s

and hence Ht
δ(K) ≤ δt−sHs

δ(K)

• Letting δ → 0, if Hs(K) < ∞ then Ht(K) = 0 for t > s.

• Thus, there is a special value of s at which Hs(K) jumps from
∞ to 0. This is the Hausdorff dimension, written dimH(K)

• The value of Hs(K) when s = dimH(K) may be 0 or ∞ or
something in between.
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Properties of the Hausdorff dimension

Open sets: K ⊂ R
n is open then dimH(K) = n
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Properties of the Hausdorff dimension

Open sets: K ⊂ R
n is open then dimH(K) = n

Smooth sets: If K ⊂ R
n is a smooth m-dimensional submanifold

then dimH(K) = m
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Properties of the Hausdorff dimension

Open sets: K ⊂ R
n is open then dimH(K) = n

Smooth sets: If K ⊂ R
n is a smooth m-dimensional submanifold

then dimH(K) = m

Monotonicity: If F ⊂ K then dimH(F ) ≤ dimH(K)
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Properties of the Hausdorff dimension

Open sets: K ⊂ R
n is open then dimH(K) = n

Smooth sets: If K ⊂ R
n is a smooth m-dimensional submanifold

then dimH(K) = m

Monotonicity: If F ⊂ K then dimH(F ) ≤ dimH(K)

Countable stability: If K1, K2, . . . is a countable sequence of
sets, then dimH(

⋃
∞

i=1 Ki) = sup{dimH(Ki)}
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Open sets: K ⊂ R
n is open then dimH(K) = n

Smooth sets: If K ⊂ R
n is a smooth m-dimensional submanifold

then dimH(K) = m

Monotonicity: If F ⊂ K then dimH(F ) ≤ dimH(K)

Countable stability: If K1, K2, . . . is a countable sequence of
sets, then dimH(

⋃
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i=1 Ki) = sup{dimH(Ki)}

Countable sets: If K is countable then dimH(K) = 0
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Properties of the Hausdorff dimension

Open sets: K ⊂ R
n is open then dimH(K) = n

Smooth sets: If K ⊂ R
n is a smooth m-dimensional submanifold

then dimH(K) = m

Monotonicity: If F ⊂ K then dimH(F ) ≤ dimH(K)

Countable stability: If K1, K2, . . . is a countable sequence of
sets, then dimH(

⋃
∞

i=1 Ki) = sup{dimH(Ki)}

Countable sets: If K is countable then dimH(K) = 0

Transformations: If f : K → R
n is Lipschitz then

dimH(f(K)) ≤ dimH(K)
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Properties of the Hausdorff dimension

Open sets: K ⊂ R
n is open then dimH(K) = n

Smooth sets: If K ⊂ R
n is a smooth m-dimensional submanifold

then dimH(K) = m

Monotonicity: If F ⊂ K then dimH(F ) ≤ dimH(K)

Countable stability: If K1, K2, . . . is a countable sequence of
sets, then dimH(

⋃
∞

i=1 Ki) = sup{dimH(Ki)}

Countable sets: If K is countable then dimH(K) = 0

Transformations: If f : K → R
n is Lipschitz then

dimH(f(K)) ≤ dimH(K)

Invariance: If f : K → R
n is bi-Lipschitz then

dimH(f(K)) = dimH(K)
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• The box-counting dimension is easier to calculate than the
Hausdorff dimension, but it has some drawbacks.

• For K a non-empty bounded subset of R
n, Nδ(K) is the

smallest number of sets of diameter at most δ which cover K.

• The upper and lower box-counting dimensions of K are:

dimB(K) = lim
δ→0

sup
log Nδ(K)

− log δ

dimB(K) = lim
δ→0

inf
log Nδ(K)

− log δ
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Box-counting dimension

• The box-counting dimension is easier to calculate than the
Hausdorff dimension, but it has some drawbacks.

• For K a non-empty bounded subset of R
n, Nδ(K) is the

smallest number of sets of diameter at most δ which cover K.

• The upper and lower box-counting dimensions of K are:

dimB(K) = lim
δ→0

sup
log Nδ(K)

− log δ

dimB(K) = lim
δ→0

inf
log Nδ(K)

− log δ

• If these are equal, the box-counting dimension of K is:

dimB(K) = lim
δ→0

log Nδ(K)

− log δ
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n is a smooth m-dimensional submanifold
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Finite stability: dimB—but not dimB—is finitely stable

dimB(F ∪ K) = max{dimB(F ), dimB(K)}
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Finite stability: dimB—but not dimB—is finitely stable
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Countable sets: If K is countable then it is possible that
dimB(K) 6= 0 because both the upper and lower
box-counting dimensions are unchanged by taking the
closure of the set.
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Dimension of self-similar sets

• Recall that a similarity is a transformation S : R
n → R

n with
the property:

‖S(x) − S(y)‖ = c‖x − y‖ x, y ∈ R
n

for some fixed positive c
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Dimension of self-similar sets

• Recall that a similarity is a transformation S : R
n → R

n with
the property:

‖S(x) − S(y)‖ = c‖x − y‖ x, y ∈ R
n

for some fixed positive c

• And a set K ⊂ R
n with the structure:

K =
⋃N

i=1 Si(K)

is said to be self-similar.

• If the components Si(K) do not overlap too much, then:

• dimH(K) = dimB(K) = s where
∑N

i=1 cs
i = 1

• The small overlap idea is captured by the open set condition.
There should exist a bounded, non-empty, open set V such
that ⋃N

i=1 Si(V ) ⊂ V

with the union disjoint.
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The dimension of C

• We showed that C = S0(C) ∪ S1(C) with
S0(x) = x/3 and S2(x) = x/3 + 2/3
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The dimension of C

• We showed that C = S0(C) ∪ S1(C) with
S0(x) = x/3 and S2(x) = x/3 + 2/3

Let V = (0, 1) then
S0(V ) ∩ S1(V ) = ∅

and
S0(V ) ∪ S1(V ) ⊂ V

So the open set condition is satisfied.
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)s = 1



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 19/20

The dimension of C

• We showed that C = S0(C) ∪ S1(C) with
S0(x) = x/3 and S2(x) = x/3 + 2/3

Let V = (0, 1) then
S0(V ) ∩ S1(V ) = ∅

and
S0(V ) ∪ S1(V ) ⊂ V

So the open set condition is satisfied.

• Now we must solve ∑2

i=1(
1
3
)s = 1

• Which gives: dimH(C) = dimB(C) = log 2

log 3



● A Simple Digital Channel

● Sampling the Output

● Overview

● Cantor’s (rather small) set
● Representing the middle

thirds Cantor set

● Cantor’s (rather large) set

● Cantor’s (perfect) set

● Cantor’s (nowhere dense) set

● Summary

● Self-similarity of C

● Self-similarity

● Hausdorff measure

● Hausdorff dimension
● Properties of the Hausdorff

dimension

● Box-counting dimension

● Properties of the

box-counting dimension

● Dimension of self-similar sets

● The dimension of C

● Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 19/20

The dimension of C

• We showed that C = S0(C) ∪ S1(C) with
S0(x) = x/3 and S2(x) = x/3 + 2/3

Let V = (0, 1) then
S0(V ) ∩ S1(V ) = ∅

and
S0(V ) ∪ S1(V ) ⊂ V

So the open set condition is satisfied.

• Now we must solve ∑2

i=1(
1
3
)s = 1

• Which gives: dimH(C) = dimB(C) = log 2

log 3

• This illustrates a general result that a set with Hausdorff
dimension less than unity is totally disconnected.
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Conclusion

We have probably overdosed on the middle thirds Cantor set.

but in doing so we have completed the first two parts of the
plan:

• Some properties of the Cantor set

• Ways to characterise fractals

◦ Hyperbolic iterated function systems (IFSs)

◦ Semi-infinite strings of symbols seen as a metric space

◦ Topological equivalence with the Cantor set

◦ Non-hyperbolic IFSs

◦ Digital forcing/controlling of an inverted pendulum
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