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— =~y + &)

§(t) = Z apg(t — pr)

e {a,} € {0,1}2" are the input symbols
e g is supported on (0, 7).

e Symbols input at constant rate, 7 1.
¢ In the examples, g Is a raised cosine.
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e Just plotting the samples {y,, = y(nr)}

e This becomes clearer with more data

e Apparently, we have sampled a Cantor
set.

RSN oo 200 SSBY  PMASS 1ML & 008t SN.06sE MM S0 B0 6 A
e
STt f S ABALLES s TE o st SBILMINS S DA AT S ATI TN oo

TR RATan s R ANt ATE R KTk Shatss k5 rod & B Sk TR
N N o A DO RS BRI TR o oo e B o i WA o

M M e PR e ) e A =
So-C L A S o e e

0.1
T e S A A e S AT XA o treie o=
m“-" ' h ~e
1000 2000 3000 4000 5000

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 3/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set
o C ! h d 1

[ omereneinersens =t | @ Some properties of the Cantor set
e Self-similarity of C'
o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set
[ omereneinersens =t | @ Some properties of the Cantor set
o Self-similarity of C' .
+ Selsimiarty e Ways to characterise fractals
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set
[ omereneinersens =t | @ Some properties of the Cantor set
e Self-similarity of C'

« Seltsimilry e \Ways to characterise fractals

e Hausdorff measure
s | @ Hyperbolic iterated function systems (IFSs)
dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set
[ omereneinersens =t | @ Some properties of the Cantor set
e Self-similarity of C'

« Seltsimilry e \Ways to characterise fractals

e Hausdorff measure
AN e Hyperbolic iterated function systems (IFSs)
dimension

2 Boxcouning dimersion e Semi-infinite strings of symbols seen as a metric space
box-counting dimension
e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set
[ omereneinersens =t | @ Some properties of the Cantor set
e Self-similarity of C'

« Seltsimilry e \Ways to characterise fractals

e Hausdorff measure
AN e Hyperbolic iterated function systems (IFSs)
dimension

2 Boxcouning dimersion e Semi-infinite strings of symbols seen as a metric space
“omemsnooaiamia s | ® TOpological equivalence with the Cantor set

e The dimension of C
e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set
[ omereneinersens =t | @ Some properties of the Cantor set
e Self-similarity of C'

« Seltsimilry e \Ways to characterise fractals

e Hausdorff measure
AN e Hyperbolic iterated function systems (IFSs)
dimension

* Boxccouning dimension e Semi-infinite strings of symbols seen as a metric space

e Properties of the
box-counting dimension

e Dimension of self-similar sets L T0p0|0g|C8| e(]UIVa|ence Wlth the CantOr Set

e The dimension of C

e Conclusion ® Non-hyperbO“C IFSS

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Overview

There Is a close relationship between sequences of symbols
« A Simple Digial Channel from an alphabet and fractals such as the Cantor set.

e Sampling the Output

e Overview

e Cantor's (rather small) set

« Representing the middle Over the next couple of days, we shall explore this relationship

thirds Cantor set

« Cantor’ (rater large) se by considering the following:

e Cantor’s (perfect) set

omors amnerecensa st | @ Some properties of the Cantor set
e Self-similarity of C'

« Seltsimilry e \Ways to characterise fractals

e Hausdorff measure
AN e Hyperbolic iterated function systems (IFSs)
dimension

* Boxccouning dimension e Semi-infinite strings of symbols seen as a metric space

e Properties of the
box-counting dimension

e Dimension of self-similar sets L T0p0|0g|C8| e(]UIVa|ence Wlth the CantOr Set

e The dimension of C

» Conclusion e Non-hyperbolic IFSs
e Digital forcing/controlling of an inverted pendulum

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 4/20



Cantor’s (rather small) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Remove from the closed unit interval I, = [0,

middle third (1/3,2/3) to leave I; = [0,1/3] U

2/3,1]

1] its open

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 5/20



Cantor’s (rather small) set

e Remove from the closed unit interval I, = [0, 1] its open
middle third (1/3,2/3) to leave I = [0,1/3] U [2/3,1]

e A Simple Digital Channel
e Sampling the Output

« Overview e Repeat the process on |0,1/3] and [2/3, 1] to get:
oRepresetingthemidIe IZ — [O, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, ]_]

thirds Cantor set

e Cantor’s (rather large) set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 5/20



Cantor’s (rather small) set

e Remove from the closed unit interval I, = [0, 1] its open
middle third (1/3,2/3) to leave I = [0,1/3] U [2/3,1]

e A Simple Digital Channel
e Sampling the Output

« Overview e Repeat the process on |0,1/3] and [2/3, 1] to get:
oRepresetingthemidIe IZ — [O, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, ]_]

thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set . . . . %
« canors nownere cense) st |- @ Continue to generate I3, 1, ... and find the limit C' = ﬂj_o I
e Summary -

e Self-similarity of C'
o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 5/20



Cantor’s (rather small) set

e Remove from the closed unit interval I, = [0, 1] its open
middle third (1/3,2/3) to leave I = [0,1/3] U [2/3,1]

e A Simple Digital Channel
e Sampling the Output

« Overview e Repeat the process on |0,1/3] and [2/3, 1] to get:
oRepresetingthemidIe IQ — [O, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, ]_]

thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set . . . . %
« camors rawnere cense) st |- @ CoNtinue to generate Is, I, ... and find the limit C' = ﬂj_o I;
e Summary -

e Self-similarity of C'
o Self-similarity

» Hausdorfl measure e C'is non-empty: e.g. it contains all points 377 where j € N

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 5/20



Cantor’s (rather small) set

e Remove from the closed unit interval I, = [0, 1] its open
middle third (1/3,2/3) to leave I = [0,1/3] U [2/3,1]

e A Simple Digital Channel
e Sampling the Output

« Overview e Repeat the process on |0,1/3] and [2/3, 1] to get:
oRepresetingthemidIe IQ — [O, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, ]_]

thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set . . . . %
« camors rawnere cense) st |- @ CoNtinue to generate Is, I, ... and find the limit C' = ﬂj_o I;
e Summary -

e Self-similarity of C'
o Self-similarity

» Hausdorfl measure e C'is non-empty: e.g. it contains all points 377 where j € N

e Hausdorff dimension
e Properties of the Hausdorff

dimension
e Box-counting dimension

« Properties of the e However, there is a sense in which it is rather small . ..

box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 5/20



Cantor’s (rather small) set

e Remove from the closed unit interval I, = [0, 1] its open
middle third (1/3,2/3) to leave I = [0,1/3] U [2/3,1]

e A Simple Digital Channel
e Sampling the Output

« Overview e Repeat the process on |0,1/3] and [2/3, 1] to get:
oRepresetingthemidIe IQ — [O, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, ]_]

thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set . . . . %
« camors rawnere cense) st |- @ CoNtinue to generate Is, I, ... and find the limit C' = ﬂj_o I;
e Summary -

e Self-similarity of C'
o Self-similarity

» Hausdorfl measure e C'is non-empty: e.g. it contains all points 377 where j € N

e Hausdorff dimension
e Properties of the Hausdorff

dimension
e Box-counting dimension

« Properties of the e However, there is a sense in which it is rather small . ..

box-counting dimension
e Dimension of self-similar sets
e The dimension of C

« onciusion e Any reasonable definition of length would require

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 5/20



Cantor’s (rather small) set

e Remove from the closed unit interval I, = [0, 1] its open
middle third (1/3,2/3) to leave I = [0,1/3] U [2/3,1]

e A Simple Digital Channel
e Sampling the Output

« Overview e Repeat the process on |0,1/3] and [2/3, 1] to get:
oRepresetingthemidIe IQ — [O, 1/9] U [2/9, 1/3] U [2/3, 7/9] U [8/9, ]_]

thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set . . . . %
« camors rawnere cense) st |- @ CoNtinue to generate Is, I, ... and find the limit C' = ﬂj_o I;
e Summary -

e Self-similarity of C'
o Self-similarity

» Hausdorfl measure e C'is non-empty: e.g. it contains all points 377 where j € N

e Hausdorff dimension
e Properties of the Hausdorff

dimension
e Box-counting dimension

« Properties of the e However, there is a sense in which it is rather small . ..

box-counting dimension
e Dimension of self-similar sets
e The dimension of C

« onciusion e Any reasonable definition of length would require

e This implies that [(C') < (2/3)7 forany j € N

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 5/20



Representing the middle thirds Cantor set

e Write x € [0,1] in base 3:
r=> a3 % £ .aiasazaqas . . .3 Where the a;, € {0,1,2}

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set
e Cantor's (nowhere dense) set

e Summary

e Self-similarity of C'
o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 6/20



Representing the middle thirds Cantor set

e Write x € [0,1] in base 3:
r=> a3 % £ .aiasazaqas . . .3 Where the a;, € {0,1,2}

e A Simple Digital Channel
e Sampling the Output
e Overview

e If we choose to write 1/3 = .023 rather than .103, then no
pointsin I; =[0,1/3]U[2/3,1] have a; =1

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set
e Cantor's (nowhere dense) set

e Summary

e Self-similarity of C'
o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 6/20



Representing the middle thirds Cantor set

e Write x € [0,1] in base 3:
r=> a3 % £ .aiasazaqas . . .3 Where the a;, € {0,1,2}

e A Simple Digital Channel
e Sampling the Output
e Overview

e If we choose to write 1/3 = .023 rather than .103, then no
pointsin I; =[0,1/3]U[2/3,1] have a; =1

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set . . .
csummary ¢ In the same way, no points in I, have eithera; =10ras =1
e Self-similarity of

° Self-similariti

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 6/20



Representing the middle thirds Cantor set

e Write x € [0,1] in base 3:
r=> a3 % £ .aiasazaqas . . .3 Where the a;, € {0,1,2}

e A Simple Digital Channel
e Sampling the Output
e Overview

e If we choose to write 1/3 = .023 rather than .103, then no
pointsin I; =[0,1/3]U[2/3,1] have a; =1

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set . . .
csummary ¢ In the same way, no points in I, have eithera; =10ras =1
e Self-similarity of

° Self-similariti

e Hausdorff measure

hasormamenson | @ CoNtinuing in this way we can characterise C' as the subset of
dimension [0, 1] whose base 3 representation does not have any a; = 1

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 6/20



Representing the middle thirds Cantor set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set
e Cantor's (nowhere dense) set

e Summary

e Self-similarity of C'
o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write x € [0,1] in base 3:
r=> a3 % £ .aiasazaqas . . .3 Where the a;, € {0,1,2}

e If we choose to write 1/3 = .023 rather than .103, then no
pointsin I; =[0,1/3]U[2/3,1] have a; =1

¢ In the same way, no points in I, have eithera; =10ras =1

e Continuing in this way we can characterise C' as the subset of
[0, 1] whose base 3 representation does not have any a; = 1

e Clearly C contains many more points than simply integer
multiples of 3%

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 6/20



Representing the middle thirds Cantor set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set
e Cantor's (nowhere dense) set

e Summary

e Self-similarity of C'
o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write x € [0,1] in base 3:
r=> a3 % £ .aiasazaqas . . .3 Where the a;, € {0,1,2}

e If we choose to write 1/3 = .023 rather than .103, then no
pointsin I; =[0,1/3]U[2/3,1] have a; =1

¢ In the same way, no points in I, have eithera; =10ras =1

e Continuing in this way we can characterise C' as the subset of
[0, 1] whose base 3 representation does not have any a; = 1

e Clearly C contains many more points than simply integer
multiples of 3%

e For example it contains 1/4 = .023

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 6/20



Cantor’s (rather large) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If C contained only the integer multiples of 3= it would be
countably infinite, but actually it is far larger than that!

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 7/20



Cantor’s (rather large) set

e If C contained only the integer multiples of 3= it would be
countably infinite, but actually it is far larger than that!

e A Simple Digital Channel
e Sampling the Output

o e In fact, it has the same cardinality as the unit interval

e Cantor's (rather small) set

e Representing the middle
thirds Cantor set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 7/20



Cantor’s (rather large) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If C contained only the integer multiples of 3= it would be
countably infinite, but actually it is far larger than that!

e In fact, it has the same cardinality as the unit interval

e To prove this, construct the following surjection ¢ : C' — [0, 1]:

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 7/20



Cantor’s (rather large) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If C contained only the integer multiples of 3= it would be
countably infinite, but actually it is far larger than that!

e In fact, it has the same cardinality as the unit interval

e To prove this, construct the following surjection ¢ : C' — [0, 1]:

e Given any z € C written in base 3, z = Y~ | ax37%, we write

Z CLk;/Q
k=1

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 7/20



Cantor’s (rather large) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If C contained only the integer multiples of 3= it would be
countably infinite, but actually it is far larger than that!

e In fact, it has the same cardinality as the unit interval

e To prove this, construct the following surjection ¢ : C' — [0, 1]:
e Given any z € C written in base 3, z = Y~ | ax37%, we write

Z CLk;/Q
k=1

e For any y € |0, 1] there is clearly at least one x € C such that
y = ¢(x), so the cardinality of C'is at least that of [0, 1]

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 7/20



Cantor’s (rather large) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If C contained only the integer multiples of 3= it would be
countably infinite, but actually it is far larger than that!

e In fact, it has the same cardinality as the unit interval

e To prove this, construct the following surjection ¢ : C' — [0, 1]:
e Given any z € C written in base 3, z = Y~ | ax37%, we write

Z CLk;/Q
k=1

e For any y € |0, 1] there is clearly at least one x € C such that
y = ¢(x), so the cardinality of C'is at least that of [0, 1]

e But C' C |0, 1], so its cardinality cannot exceed that of |0, 1]

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 7/20



Cantor’s (perfect) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e So far we have found only properties that C' shares with the

iIrrational numbers in the unit interval

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 8/20



Cantor’s (perfect) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e So far we have found only properties that C' shares with the

iIrrational numbers in the unit interval

e But C' is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C'is a

closed set.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 8/20



Cantor’s (perfect) set

e So far we have found only properties that C' shares with the
Irrational numbers in the unit interval

* A Simple Digal Channe e But C' is the compliment of an open set (the union of the

e Sampling the Output

o removed open intervals) and so, unlike the irrationals, C'is a
e Representing the middle Closed Set

thirds Cantor set
e Cantor’s (rather large) set

e It is, In fact a perfect set (every point is an accumulation point
o Summary and every accumulation point lies within the set)

e Self-similarity of C'
o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 8/20



Cantor’s (perfect) set

e So far we have found only properties that C' shares with the
Irrational numbers in the unit interval

* A Simple Digal Channe e But C' is the compliment of an open set (the union of the

e Sampling the Output

o removed open intervals) and so, unlike the irrationals, C'is a
e Representing the middle Closed Set

thirds Cantor set
e Cantor’s (rather large) set

e It is, In fact a perfect set (every point is an accumulation point
o Summary and every accumulation point lies within the set)

e Self-similarity of C'
o Self-similarit . . ey .
+ Hauscort messure e The second part of this definition follows because C'is

e Hausdorff dimension

- rroperies of e vaussort |- ClOS@d. TO prove the first part we have to show that for any

dimension . .

« Boxcounting cimension x € C and for every € > 0 there is at least one other point of C
e Properties of the . . . . .

bo-counting cimension which lies within the e-neighbourhood of z.

e Dimension of self-similar sets
e The dimension of C'
e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 8/20



Cantor’s (perfect) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e So far we have found only properties that C' shares with the
Irrational numbers in the unit interval

e But C' is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C'is a
closed set.

e It is, In fact a perfect set (every point is an accumulation point
and every accumulation point lies within the set)

e The second part of this definition follows because C'is
closed. To prove the first part we have to show that for any

x € C' and for every ¢ > 0 there is at least one other point of C
which lies within the e-neighbourhood of z.

e Choose an arbitrary x = .ajaqsasay . ..3 € C, and forany e > 0
choose k so that 37% < ¢/2.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 8/20



Cantor’s (perfect) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e So far we have found only properties that C' shares with the
Irrational numbers in the unit interval

e But C' is the compliment of an open set (the union of the
removed open intervals) and so, unlike the irrationals, C'is a
closed set.

e It is, In fact a perfect set (every point is an accumulation point
and every accumulation point lies within the set)

e The second part of this definition follows because C'is
closed. To prove the first part we have to show that for any

x € C' and for every ¢ > 0 there is at least one other point of C
which lies within the e-neighbourhood of z.

e Choose an arbitrary x = .ajaqsasay . ..3 € C, and forany e > 0
choose k so that 37% < ¢/2.

e A switch 2 « 0 in the kth digit of z gives y = x £ 2 - 37%. By
construction, y € C' and is in the e-neighbourhood of z.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 8/20



Cantor’s (nowhere dense) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If we take the closure of the rational numbers in the unit
Interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 9/20



Cantor’s (nowhere dense) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If we take the closure of the rational numbers in the unit
Interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

e Because (' is perfect it must equal its closure, therefore if it is
dense in any open sub-interval of |0, 1] it must contain the
sub-interval

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 9/20



Cantor’s (nowhere dense) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If we take the closure of the rational numbers in the unit
Interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

e Because (' is perfect it must equal its closure, therefore if it is
dense in any open sub-interval of |0, 1] it must contain the
sub-interval

e But (' contains no intervals. Between any two points in C'
there must be a point that requires a 1 somewhere in its base 3
representation.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 9/20



Cantor’s (nowhere dense) set

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e If we take the closure of the rational numbers in the unit
Interval (the intersection of all closed sets which contain the
set) we get the whole unit interval. Equivalently, any irrational
number can be approximated by a sequence of rational
numbers.

e Because (' is perfect it must equal its closure, therefore if it is
dense in any open sub-interval of |0, 1] it must contain the
sub-interval

e But (' contains no intervals. Between any two points in C'
there must be a point that requires a 1 somewhere in its base 3
representation.

e Thus C'is nowhere dense in [0, 1].

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 9/20



Summary

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e In the sense of measure, the Cantor set is very small since it
has zero length.

e |Its cardinality is, however, that of the unit interval.
e It is an example of a perfect set—a topological property

e And yet, topologically, it is sparse in the sense that itis a
nowhere dense subset of the unit interval.

e Let’'s consider now what makes the Cantor set a basic
example in fractal geometry.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 10/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

CO = {CE — .1102030Q4 . . .3 € C\al = O}

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

and

CO = {ZE — .1102030Q4 . . .3 € C\al = O}

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

Co = {ZE — .1102030Q4 . . .3 € C\al = O}
and

Cy = {ZE = .a10a90a304 .. .3 € C’\al = 2}

e And the effect of the following transformations on C:

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

Co = {ZE — .1102030Q4 . . .3 € C\al = O}
and

Cy = {ZE = .a10a90a304 .. .3 € C’\al = 2}

e And the effect of the following transformations on C:

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

Co = {ZE — .1102030Q4 . . .3 € C\al = O}
and

Cy = {ZE = .a10a90a304 .. .3 € C’\al = 2}
e And the effect of the following transformations on C:

So(x)=x/3+2/3

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

Co = {ZE — .1102030Q4 . . .3 € C\al = O}
and

CQ = {ZE = .a10a90a304 .. .3 € C’\al — 2}
e And the effect of the following transformations on C:

So(x)=x/3+2/3

e Clearly Cy = Sy(C) and Cs = S5 (C'), so that:

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

CQZ{CE

.a1a20a304 . . .3 € C\al = O}
and
CQ — {CE

.a1a20a304 . . .3 € C’\al —= 2}
e And the effect of the following transformations on C:

So(x)=x/3+2/3

e Clearly Cy = Sy(C) and Cs = S5 (C'), so that:
C' = 5y(C)U S1(C)

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity of C

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Consider the partition of C' into the following two subsets:

Co = {ZE — .1102030Q4 . . .3 € C\al = O}
and

Co = {z = .a1aza3a4 .. .3 € Cla; = 2}
e And the effect of the following transformations on C'
So(x) =x/3
So(x) =x/3+2/3
e Clearly Cy = Sy(C) and Cs = S5 (C'), so that:
C' = 50(C) U 5:1(C)

e This property is known as self-similarity
— (' Is the union of two similar copies of itself.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 11/20



Self-similarity

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e More generally, for subsets of R”

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 12/20



Self-similarity

e More generally, for subsets of R”

+ A Simole Digial Channel e A similarity is a transformation S : R" —
e Sampling the Output R’I’L Wlth the fO”OWlng property

e Overview

e Cantor's (rather small) set HS(:E) _ S(y)H — CHZE _ yH x) y E Rn

e Representing the middle
thirds Cantor set 1 11

e Cantor’s (rather large) set for Some flxed pOSItlve C
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 12/20



Self-similarity

e More generally, for subsets of R”

e A similarity is a transformation S : R" —

e A Simple Digital Channel

° Samp.lingtheOutput R’I’L Wlth the fO”OWlng property

e Overview

L remeson vo e, I5(z) =Sl = cllz =yl =,y ecR"
tohi?:n;ar’r']st(():a:;r large) set for Some flxed pOSItlve &

e Cantor’s (perfect) set

- canors mownere censey st | @ T hat IS, similarities transform sets into ge-

e Summary

« Selfsimiaity of C ometrically similar sets
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 12/20



Self-similarity

e More generally, for subsets of R”

+ A Simole Digial Channel e A similarity is a transformation S : R" —
e Sampling the Output R’I’L Wlth the fO”OWlng property

e Overview

e Cantor's (rather small) set HS(J;) _ S(y)H — CHZE _ yH .”E, y E R’n

e Representing the middle

thirds Cantor set . .-y
e Cantor’s (rather large) set for SO m e flxed pOS Itlve C
e Cantor’s (perfect) set

- canors mownere censey st | @ T hat IS, similarities transform sets into ge-

e Summary

« Selfsimiaity of C ometrically similar sets
* Hausdorff measure e Now consider a collection of similarities:

e Hausdorff dimension

e Properties of the Hausdorff {SZ‘Z — ]_’ ceey N} Where eaCh haS O < C’L < ]_

dimension

e Box-counting dimension
e Properties of the
box-counting dimension

e Dimension of self-similar sets ([ ) A Set K C R’I’L Wthh Sat|Sf|eS

e The dimension of C

N
e Conclusion K p— U’L:1 S’L(K)
IS said to be self-similar.

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 12/20



Self-similarity

e More generally, for subsets of R”

e A similarity is a transformation S : R" —

e A Simple Digital Channel

° Samp.lingtheOutput R’I’L Wlth the fO”OWlng property

e Overview

L remeson vo e, I5(z) =Sl = cllz =yl =,y ecR"
tohi?:n;ar’r']st(():a:;r large) set for Some flxed pOSItlve &

e Cantor’s (perfect) set

- canors mownere censey st | @ T hat IS, similarities transform sets into ge-

e Summary

« Selfsimiaity of C ometrically similar sets
[+ Settsimiay | . . N,
* Hausdorff measure e Now consider a collection of similarities:

e Hausdorff dimension

e Properties of the Hausdorff {SZ‘Z — ]_’ ceey N} Where eaCh haS O < C’L < ]_

dimension

e Box-counting dimension
e Properties of the
box-counting dimension

e Dimension of self-similar sets ([ ) A Set K C R’I’L Wthh Sat|Sf|eS

e The dimension of C

« Conclsin K=Y, Si(K)
IS said to be self-similar.
e Many examples—Ilike the middle thirds

Cantor set—are fractal sets, having struc-
ture on arbitrary small scales

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 12/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the

diameter of U

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the

diameter of U

e For K C R™ and s > 0, define for any 6 > 0

H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the
diameter of U

e For K C R™ and s > 0, define for any 6 > 0
H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

e Take the limit:

HP(K) = lims_o H3(K)
e Limit exists, but is often either 0 or co. H*(K) is the
s-dimensional Hausdorff measure of K.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the
diameter of U

e For K C R™ and s > 0, define for any 6 > 0
H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

e Take the limit:

HP(K) = lims_o H3(K)
e Limit exists, but is often either 0 or co. H*(K) is the
s-dimensional Hausdorff measure of K.

e For nice subsets K C R", H*(K) is proportional to the
s-dimensional volume of K

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the
diameter of U

e For K C R™ and s > 0, define for any 6 > 0
H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

e Take the limit:

HP(K) = lims_o H3(K)
e Limit exists, but is often either 0 or co. H*(K) is the
s-dimensional Hausdorff measure of K.

e For nice subsets K C R", H*(K) is proportional to the
s-dimensional volume of K

e Imagine K is a 2-dimensional unit disc in R"

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the
diameter of U

e For K C R™ and s > 0, define for any 6 > 0
H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

e Take the limit:

HP(K) = lims_o H3(K)
e Limit exists, but is often either 0 or co. H*(K) is the
s-dimensional Hausdorff measure of K.

e For nice subsets K C R", H*(K) is proportional to the
s-dimensional volume of K

e Imagine K is a 2-dimensional unit disc in R"
» HY(K) = o0

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the
diameter of U

e For K C R™ and s > 0, define for any 6 > 0
H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

e Take the limit:

HP(K) = lims_o H3(K)
e Limit exists, but is often either 0 or co. H*(K) is the
s-dimensional Hausdorff measure of K.

e For nice subsets K C R", H*(K) is proportional to the
s-dimensional volume of K

e Imagine K is a 2-dimensional unit disc in R"
» HY(K) =
» H2(K) is finite

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff measure

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e Write K C R™. A é-cover of K is a countable set of sets
{U; | 0 < |U;| <46} suchthat K C |, U;. Here |U] is the
diameter of U

e For K C R™ and s > 0, define for any 6 > 0
H3(K) =inf{) . |U;|°|{U; }is a j-cover of K }

e Take the limit:

HP(K) = lims_o H3(K)
e Limit exists, but is often either 0 or co. H*(K) is the
s-dimensional Hausdorff measure of K.

e For nice subsets K C R", H*(K) is proportional to the
s-dimensional volume of K

e Imagine K is a 2-dimensional unit disc in R"
» HYK) =

» H2(K) is finite

s H3(K) =0

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 13/20



Hausdorff dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension

e Properties of the Hausdorff
dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

o If {U;} is a d-cover of K, thenift > s, (|U;]/0)" < (|U;|/6)® so

that
> |UF <672 Y U

and hence H:(K) < 6" H3(K)

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 14/20



Hausdorff dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension

e Properties of the Hausdorff
dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

o If {U;} is a d-cover of K, thenift > s, (|U;]/0)" < (|U;|/6)® so
that

> U]t <0777 32, UG
and hence H:(K) < 6" H3(K)

e Letting 6 — 0, if H*(K) < oo then H*(K) =0 fort > s.

e Thus, there is a special value of s at which H*(K) jumps from
oo to 0. This is the Hausdorff dimension, written dim g (K)

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 14/20



Hausdorff dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension

e Properties of the Hausdorff
dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

o If {U;} is a d-cover of K, thenift > s, (|U;]/0)" < (|U;|/6)® so
that

> U]t <0777 32, UG
and hence H:(K) < 6" H3(K)

e Letting 6 — 0, if H*(K) < oo then H*(K) =0 fort > s.

e Thus, there is a special value of s at which H*(K') jumps from
oo to 0. This is the Hausdorff dimension, written dim g (K)

e The value of H*(K) when s = dim gy (K) may be 0 or co or
something in between.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 14/20



Properties of the Hausdorff dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Open sets: K C R" is open then dimy (K) =n

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 15/20



Properties of the Hausdorff dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Open sets: K C R" is open then dimy (K) =n

Smooth sets: If X C R™ Is a smooth m-dimensional submanifold

then dimy (K) =m

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 15/20



Properties of the Hausdorff dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Open sets: K C R" is open then dimy (K) =n

Smooth sets: If X C R™ Is a smooth m-dimensional submanifold

then dimy (K) =m
Monotonicity: If ' C K then dimy (F') < dimg(K)

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 15/20



Properties of the Hausdorff dimension

Open sets: K C R" is open then dimy (K) =n
® A Simple Digial Channel Smooth sets: If K C R" is a smooth m-dimensional submanifold

e Sampling the Output

e Overview then dlmH (K) = m

e Cantor's (rather small) set
e Representing the middle

thirds Cantor set MonotoniCity: If F C K then dlmH<F> S dlmH<K)

e Cantor’s (rather large) set

- Camors (perect) oe Countable stability: If K, K5, ... IS a countable sequence of

e Cantor's (nowhere dense) set
e Summary 1 oo ) — : .
e Self-similarity of C' Sets’ then dlmH (U'L: 1 K'L ) T Sup{dlmH (K'L ) }
o Self-similarity
e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 15/20



Properties of the Hausdorff dimension

Open sets: K C R" is open then dimy (K) =n
® A Simple Digial Channel Smooth sets: If K C R" is a smooth m-dimensional submanifold

e Sampling the Output

e Overview then dlmH (K) = m

e Cantor's (rather small) set
e Representing the middle

thirds Cantor set MonotoniCity: If F C K then dlmH<F> S dlmH<K)

e Cantor’s (rather large) set

- Camors (perect) oe Countable stability: If K, K5, ... IS a countable sequence of

e Cantor's (nowhere dense) set
: zzmgririrarity of C Sets’ then dlmH (U'Z(,)i 1 K'Z' ) — Sup{dlmH (K'L ) }
o Self-similarity

« Hausdortf measure Countable sets: If K is countable then dimy (K) =0

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 15/20



Properties of the Hausdorff dimension

Open sets: K C R" is open then dimy (K) =n
® A Simple Digial Channel Smooth sets: If K C R" is a smooth m-dimensional submanifold

e Sampling the Output

e Overview then dlmH (K) = m

e Cantor's (rather small) set
e Representing the middle

thirds Cantor se Monotonicity: If ' C K then dimy (F') < dimg(K)
e Cantor’s (rather large) set
e e« | Countable stability: If K, K5, ... is a countable sequence of

+ Summary sets, then dimp (|J;2, K;) = sup{dimp (K;)}

e Self-similarity of C'
o Self-similarit . .
+ Heusdort messur Countable sets: If K is countable then dimy (K) =0

e Hausdorff dimension
e Properties of the Hausdorff

Transformations: If f : K — R™ Is Lipschitz then

e Box-counting dimension
e Properties of the . .

box-counting dimension dlmH (f (K) ) S dlmH (K)
e Dimension of self-similar sets

e The dimension of C
e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 15/20



Properties of the Hausdorff dimension

Open sets: K C R" is open then dimy (K) =n
® A Simple Digial Channel Smooth sets: If K C R" is a smooth m-dimensional submanifold

e Sampling the Output

e Overview then dlmH (K) = m

e Cantor's (rather small) set
e Representing the middle

thirds Cantor se Monotonicity: If ' C K then dimy (F') < dimg(K)
e Cantor’s (rather large) set
e e« | Countable stability: If K, K5, ... is a countable sequence of

+ Summary sets, then dimp (|J;2, K;) = sup{dimp (K;)}

e Self-similarity of C'
o Self-similarit . .
+ Heusdort messur Countable sets: If K is countable then dimy (K) =0

e Hausdorff dimension
e Properties of the Hausdorff

Transformations: If f : K — R™ Is Lipschitz then

e Box-counting dimension
e Properties of the

box-counting dimension dlmH (f (K) ) S dlmH (K)

e Dimension of self-similar sets
e The dimension of C
e Conclusion

Invariance: If f: K — R™ Is bi-Lipschitz then
dimg (f(K)) = dimy (K)

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 15/20



Box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e The box-counting dimension is easier to calculate than the

Hausdorff dimension, but it has some drawbacks.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 16/20



Box-counting dimension

e The box-counting dimension is easier to calculate than the
Hausdorff dimension, but it has some drawbacks.

e A Simple Digital Channel
e Sampling the Output

« Overview e For K a non-empty bounded subset of R, Ns(K) is the

- Reprosenting e me smallest number of sets of diameter at most § which cover K.

thirds Cantor set

e Cantor’s (rather large) set

e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 16/20



Box-counting dimension

e The box-counting dimension is easier to calculate than the
Hausdorff dimension, but it has some drawbacks.

e A Simple Digital Channel
e Sampling the Output

« Overvew e For K a non-empty bounded subset of R, Ns(K) is the

e Cantor's (rather small) set

« Representing the middle smallest number of sets of diameter at most 4 which cover K.

thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set . . .
- cantors ownere aensey st | @ T e upper and lower box-counting dimensions of K are:
e Summary

e Self-similarity of C'

o Self-similarity

- . log N5 (K)
s ot dimp (K) = lim sup —=— =5

e Properties of the Hausdorff
dimension

log N5 (K

e Properties of the . . o 6

boz-csuntting dfirt:ension dlmB(K> — glm lnf 1 (5 )
—0 — 108

e Dimension of self-similar sets

e The dimension of C
e Conclusion

Dave Broomhead, January 10, 2009 UK-Japan Winter School 2009 - p. 16/20



Box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Properties of the
box-counting dimension

e Dimension of self-similar sets
e The dimension of C'

e Conclusion

e The box-counting dimension is easier to calculate than the
Hausdorff dimension, but it has some drawbacks.

e For K a non-empty bounded subset of R, Ns(K) is the
smallest number of sets of diameter at most § which cover K.

e The upper and lower box-counting dimensions of K are:

log Ns(K)
—logd

dimp(K) = giir(l) sup

log Ns(K)

dimp(K) = lim inf “Togd

6—0

e If these are equal, the box-counting dimension of K is:

log Ns(K)

dimp(K) = lim “Togd

6—0

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 16/20



Properties of the box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the

e Dimension of self-similar sets

o The dimension of C
e Conclusion

Smooth sets: If K C R™ Is a smooth m-dimensional submanifold

then dimp(K) =m

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 17/20



Properties of the box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the

e Dimension of self-similar sets

o The dimension of C
e Conclusion

Smooth sets: If K € R™ Is a smooth m-dimensional submanifold
then dimp(K) =m

Monotonicity: Both dimg(F') and dimpg(F') are monotonic.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 17/20



Properties of the box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the

e Dimension of self-similar sets

o The dimension of C
e Conclusion

Smooth sets: If K € R™ Is a smooth m-dimensional submanifold
then dimp(K) = m

Monotonicity: Both dimg(F') and dimpg(F') are monotonic.

Finite stability: dimg—Dbut not dim z—Iis finitely stable

dimp(F U K) = max{dimpg(F),dimpg(K)}

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 17/20



Properties of the box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the

e Dimension of self-similar sets

o The dimension of C
e Conclusion

Smooth sets: If K € R™ Is a smooth m-dimensional submanifold
then dimp(K) = m

Monotonicity: Both dimg(F') and dimpg(F') are monotonic.

Finite stability: dimg—Dbut not dim z—Iis finitely stable

dimp(F U K) = max{dimpg(F),dimpg(K)}
Countable sets: If K IS countable then it is possible that
dimp(K) # 0 because both the upper and lower

box-counting dimensions are unchanged by taking the
closure of the set.

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 17/20



Properties of the box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the

e Dimension of self-similar sets

o The dimension of C
e Conclusion

Smooth sets: If K € R™ Is a smooth m-dimensional submanifold
then dimp(K) = m

Monotonicity: Both dimg(F') and dimpg(F') are monotonic.
Finite stability: dimg—Dbut not dim z—Iis finitely stable
dimp(F U K) = max{dimpg(F),dimpg(K)}
Countable sets: If K IS countable then it is possible that
dimp(K) # 0 because both the upper and lower

box-counting dimensions are unchanged by taking the
closure of the set.

Transformations: If f : K — R"™ is Lipschitz then

dimp(f(K)) < dimpg(K)

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 17/20



Properties of the box-counting dimension

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension

e Properties of the

e Dimension of self-similar sets

o The dimension of C
e Conclusion

Smooth sets: If K € R™ Is a smooth m-dimensional submanifold
then dimp(K) = m

Monotonicity: Both dimg(F') and dimpg(F') are monotonic.
Finite stability: dimg—Dbut not dim z—Iis finitely stable
dimp(F U K) = max{dimpg(F),dimpg(K)}
Countable sets: If K IS countable then it is possible that
dimp(K) # 0 because both the upper and lower

box-counting dimensions are unchanged by taking the
closure of the set.

Transformations: If f : K — R"™ is Lipschitz then

dimp(f(K)) < dimpg(K)

Invariance: If f : K — R"™ is bi-Lipschitz then

Dave Broomhead, January 10, 2009

UK-Japan Winter School 2009 - p. 17/20



Dimension of self-similar sets

e A Simple Digital Channel
e Sampling the Output

e Overview

e Cantor's (rather small) set
e Representing the middle
thirds Cantor set

e Cantor’s (rather large) set
e Cantor’s (perfect) set

e Cantor's (nowhere dense) set
e Summary

e Self-similarity of C'

o Self-similarity

e Hausdorff measure

e Hausdorff dimension
e Properties of the Hausdorff

dimension

e Box-counting dimension
e Properties of the
box-counting dimension

e The dimension of C'

e Conclusion

e Recall that a similarity is a transformation .S : R — R™ with

the property:

[5(z) = SW)ll = cllz —yll
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e And a set K C R" with the structure:
K = UL, Si(K)
IS said to be self-similar.
e If the components S;(K) do not overlap too much, then:
e dimy(K) = dimp(K) = s where
fo\il ¢, =1
e The small overlap idea is captured by the open set condition.

There should exist a bounded, non-empty, open set VV such
that

Uini Si(V) c v
with the union disjoint.
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e Now we must solve

Y3 =1

e Which gives: dimy (C) = dimg(C) = iﬁii

e This illustrates a general result that a set with Hausdorff

dimension less than unity is totally disconnected.
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e Conclusion

We have probably overdosed on the middle thirds Cantor set.

but in doing so we have completed the first two parts of the
plan:

e Some properties of the Cantor set

e Ways to characterise fractals

o Hyperbolic iterated function systems (IFSs)

o Semi-infinite strings of symbols seen as a metric space
o Topological equivalence with the Cantor set

o Non-hyperbolic IFSs

o Digital forcing/controlling of an inverted pendulum
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