Asymptotic behavior of a diffusion process

with a one-sided Brownian potential

Yuki Suzuki*

This talk is based on a joint work with K. Kawazu (Yamaguchi Univer-
sity).

We consider a diffusion process with a one-sided Brownian potential start-
ing from the origin and study the asymptotic behavior of the process as time
goes to infinity. We begin with describing our model. Denote by W the
space of continuous functions w defined in R and vanishing identically on
[0,00). Let P be the Wiener measure on W, namely, let P be the probability
measure on W such that {w(—=x),z > 0, P} is a Brownian motion with time
parameter x. 2 denotes the space of real-valued continuous functions defined
on [0,00). For w € Q we write X (t) = X (t,w) = w(t) = the value of w at t.
For w € W and zy € R, let P2° be the probability measure on €2 such that
{X(t),t >0, Pt} is a diffusion process with generator
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starting from x,. We define the probability measure P*° on W x ) by
P (dwdw) = P(dw)Py°(dw).

We regard {X(t),t > 0,P™} as a process defined on the probability space
(W x €, P*0) and call it a diffusion process with a one-sided Brownian poten-
tial. This model was introduced by Kawazu, Suzuki and Tanaka([2]). Our
aim is to clarify the asymptotic behavior of {X(¢),t > 0,P°} as t — oo.
When w(z) does not vanish identically for > 0, or more precisely speak-
ing, when {w(z),z > 0, P} and {w(—x),z > 0, P} are independent Brownian
motions, the corresponding diffusion process {X(¢),t > 0, P*} was intro-
duced by Brox ([1]) and Schumacher ([3]) as a diffusion analogue of Sinai’s
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random walk ([4]). In [1] and [3], it was proved that {(log¢)™2X(¢),t > 0,P°}
has a nondegenerate limit distribution.

Let us introduce the result in [2]. Let M be the space of probability
laws on  and p be the Prokhorov metric on M. Let {X(¢),t > 0,P"} be a
diffusion process with a one-sided Brownian potential. Put

Xy(t)=A"Y2X (), t>0,

for a constant A\ > 0, and denote by Py(w)(€ M) the probability law of the
process {X(t),t > 0, PY}. We also denote by Py(€ M) the probability law
of the process vanishing identically, and by Pg(€ M) the probability law of
the reflecting Brownian motion on [0, c0) starting from 0.

Theorem 1 ([2]) For any € such that 0 < e < p(Py, Pgr)/2

lim P{p(PA(w), Py) < e} =

Y

N | =

lim P{p(P(w). Pr) < £} =

In particular, the following hold.
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Our present results (Theorems 2 and 3 stated below) imply Theorem 1.
To state the theorems, we introduce some notation. We put, for A > 0 and
w € €,

a)(t) = ax(t,w) = /0 1(0,00)(Xa(5))ds, t >0,

and define
ay'(t) =inf{s > 0:ay(s) >t}, t>0,
the right-continuous inverse function of a,(t). We also put

Gi(t) = Xa(ay'(t), t>0.

Then {G,(t),t > 0, P°} is a reflecting Brownian motion on [0, c0) starting
from 0.



For w € W and a € R, we put
o(a) =o(a,w) =sup{zr < 0: w(z) =a},
and introduce two subsets A and B of W by
A={weW:0(1/2) > 0(—1/2)},
B={weW:o(1/2) <o(-1/2)},

each of which has a half P-measure. For w € W and A > 0, define wy, € W
by
wy(z) = A\ 'w(\r), xR

Then we have
{wy, P} = {w, P},

where = means the equality in distribution. We also introduce subsets Ay
and By of W by

Ay={weW:w, e A},
By, ={w e W:w, e B},

each of which has a half P-measure by the above property.
In the following theorems, P{---|-} denotes the conditional probability.

We put A)\ = Alog)\ and B)\ = Blog)\-

Theorem 2 For any T > 0 and ¢ > 0,

lim P{Pg{ sup | Xa(t) — Ga(t)] < g} >1-¢ ) ZA} ~ 1.

A—00 0<t<T

For w € W, we put

g:g(w):sup{x<0:w(x)— min w(y)zl},

o(1/2), if’LUEzé_l,_
M:M(w):{ ((w), ifweB,
V =V (w) = min w(z).

x>M

We also define b = b(w) in (M,0) by w(b) = V. Note that b is determined
uniquely by w (P-a.s.).



Theorem 3 For any e > 0,

lim P {P£ {|(logt) > X (t) — b(wiege)| <} > 1 —¢ | Et} = 1.

t—o0

Concerning the occupation time on (0,00) of our process, we have the
following.

Theorem 4 For any e > 0,

t ~
lim P{Pg{l/ 10,00 (X (5))ds > 1 —5} >1—¢ ) At} =1,
0

t—o00 t

lim P {Pfj {% /Ot 1(0.00) (X (5))ds < 5} S1-¢ ) Et} ~1.

t—o00

Corollary 5 The probability distribution of t™" [} 1(o.00)(X (s))ds under P°
converges to (1/2)dp + (1/2)01 as t — oo.

To state the result on the maximum process of X (), we put

Hlw) = g, o)

Note that H(w) =1/2ifw e Aand 0 < H(w) < 1/2if w € B.

Theorem 6 For any e > 0,

lim P° o8 2 X

S T — H(wlogt> > € =0.

Our present results together with those of the previous paper ([2]) imme-
diately imply the following theorem.

Theorem 7 Let X, be any one of the left column in the following. In each
case the distribution of X, under P° tends to a limit distribution ast — oo,
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which 1s described as follows.

X limit distribution support
t=12X (t) 0 [0, 00)
(logt)2X (1) i (—00,0) U {oo}
~1/2
t7/% max X(s) [t [0, 00)
log max X(s) 0 l]
logt H "2
_9 . .
(logt) Orgth(s) oy (—00,0)

1 /2 _» 1
_ L1 )2 ey 1
pr(dx) 2\/;6 dx + 2(50(dx).
1
pn(dx) = P{(b € dx)nN B} + §5oo(dx).

1 1
pm(dx) = §PR {Orgfgxl X(s) € dx} + §5O(d$)-
p (dz) = P{H € dz}.
py(dx) = P{M € dx}.
Moreover, the Laplace transforms of the distributions of b, H and M ap-
pearing in the definition of uy, pv and py are as follows. For & > 0,

E[egb7 B] — Sinh(\/%/@

V26 cosh \/2¢”
Elet? A] = %egﬂ,

1/2
Bl Bl = / et dz,
0
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sinh(1/2€/2)
(sinh /2&)(cosh /2€)

Here E[-, A] denotes the expectation with respect to P on the set A.

E[efM) B]
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