# Asymptotic behavior of a diffusion process with a one-sided Brownian potential 

Yuki Suzuki*

This talk is based on a joint work with K. Kawazu (Yamaguchi University).

We consider a diffusion process with a one-sided Brownian potential starting from the origin and study the asymptotic behavior of the process as time goes to infinity. We begin with describing our model. Denote by $\mathbb{W}$ the space of continuous functions $w$ defined in $\mathbb{R}$ and vanishing identically on $[0, \infty)$. Let $P$ be the Wiener measure on $\mathbb{W}$, namely, let $P$ be the probability measure on $\mathbb{W}$ such that $\{w(-x), x \geq 0, P\}$ is a Brownian motion with time parameter $x . \Omega$ denotes the space of real-valued continuous functions defined on $[0, \infty)$. For $\omega \in \Omega$ we write $X(t)=X(t, \omega)=\omega(t)=$ the value of $\omega$ at $t$. For $w \in \mathbb{W}$ and $x_{0} \in \mathbb{R}$, let $P_{w}^{x_{0}}$ be the probability measure on $\Omega$ such that $\left\{X(t), t \geq 0, P_{w}^{x_{0}}\right\}$ is a diffusion process with generator

$$
\mathcal{L}_{w}=\frac{1}{2} e^{w(x)} \frac{d}{d x}\left(e^{-w(x)} \frac{d}{d x}\right)
$$

starting from $x_{0}$. We define the probability measure $\mathcal{P}^{x_{0}}$ on $\mathbb{W} \times \Omega$ by

$$
\mathcal{P}^{x_{0}}(d w d \omega)=P(d w) P_{w}^{x_{0}}(d \omega)
$$

We regard $\left\{X(t), t \geq 0, \mathcal{P}^{x_{0}}\right\}$ as a process defined on the probability space $\left(\mathbb{W} \times \Omega, \mathcal{P}^{x_{0}}\right)$ and call it a diffusion process with a one-sided Brownian potential. This model was introduced by Kawazu, Suzuki and Tanaka([2]). Our aim is to clarify the asymptotic behavior of $\left\{X(t), t \geq 0, \mathcal{P}^{0}\right\}$ as $t \rightarrow \infty$.

When $w(x)$ does not vanish identically for $x \geq 0$, or more precisely speaking, when $\{w(x), x \geq 0, P\}$ and $\{w(-x), x \geq 0, P\}$ are independent Brownian motions, the corresponding diffusion process $\left\{X(t), t \geq 0, \mathcal{P}^{x_{0}}\right\}$ was introduced by Brox ([1]) and Schumacher ([3]) as a diffusion analogue of Sinai's

[^0]random walk ([4]). In [1] and [3], it was proved that $\left\{(\log t)^{-2} X(t), t \geq 0, \mathcal{P}^{0}\right\}$ has a nondegenerate limit distribution.

Let us introduce the result in [2]. Let $\mathcal{M}$ be the space of probability laws on $\Omega$ and $\rho$ be the Prokhorov metric on $\mathcal{M}$. Let $\left\{X(t), t \geq 0, \mathcal{P}^{0}\right\}$ be a diffusion process with a one-sided Brownian potential. Put

$$
X_{\lambda}(t)=\lambda^{-1 / 2} X(\lambda t), \quad t \geq 0
$$

for a constant $\lambda>0$, and denote by $P_{\lambda}(w)(\in \mathcal{M})$ the probability law of the process $\left\{X_{\lambda}(t), t \geq 0, P_{w}^{0}\right\}$. We also denote by $P_{N}(\in \mathcal{M})$ the probability law of the process vanishing identically, and by $P_{R}(\in \mathcal{M})$ the probability law of the reflecting Brownian motion on $[0, \infty)$ starting from 0 .

Theorem 1 ([2]) For any $\varepsilon$ such that $0<\varepsilon<\rho\left(P_{N}, P_{R}\right) / 2$

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} P\left\{\rho\left(P_{\lambda}(w), P_{N}\right)<\varepsilon\right\}=\frac{1}{2}, \\
& \lim _{\lambda \rightarrow \infty} P\left\{\rho\left(P_{\lambda}(w), P_{R}\right)<\varepsilon\right\}=\frac{1}{2} .
\end{aligned}
$$

In particular, the following hold.

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \mathcal{P}^{0}\left\{-\varepsilon<t^{-1 / 2} X(t) \leq x\right\}=\frac{1}{2}+\frac{1}{2} \int_{0}^{x} \sqrt{\frac{2}{\pi}} e^{-y^{2} / 2} d y, \quad x>0, \varepsilon>0 \\
& \lim _{t \rightarrow \infty} \mathcal{P}^{0}\left\{0 \leq t^{-1 / 2} \max _{0 \leq s \leq t} X(s) \leq x\right\}=\frac{1}{2}+\frac{1}{2} P_{R}\left\{\max _{0 \leq s \leq 1} X(s) \leq x\right\}
\end{aligned}
$$

$$
x>0 .
$$

Our present results (Theorems 2 and 3 stated below) imply Theorem 1. To state the theorems, we introduce some notation. We put, for $\lambda>0$ and $\omega \in \Omega$,

$$
a_{\lambda}(t)=a_{\lambda}(t, \omega)=\int_{0}^{t} \mathbf{1}_{(0, \infty)}\left(X_{\lambda}(s)\right) d s, \quad t \geq 0
$$

and define

$$
a_{\lambda}^{-1}(t)=\inf \left\{s>0: a_{\lambda}(s)>t\right\}, \quad t \geq 0
$$

the right-continuous inverse function of $a_{\lambda}(t)$. We also put

$$
G_{\lambda}(t)=X_{\lambda}\left(a_{\lambda}^{-1}(t)\right), \quad t \geq 0
$$

Then $\left\{G_{\lambda}(t), t \geq 0, P_{w}^{0}\right\}$ is a reflecting Brownian motion on $[0, \infty)$ starting from 0 .

For $w \in \mathbb{W}$ and $a \in \mathbb{R}$, we put

$$
\sigma(a)=\sigma(a, w)=\sup \{x<0: w(x)=a\},
$$

and introduce two subsets $A$ and $B$ of $\mathbb{W}$ by

$$
\begin{aligned}
& A=\{w \in \mathbb{W}: \sigma(1 / 2)>\sigma(-1 / 2)\}, \\
& B=\{w \in \mathbb{W}: \sigma(1 / 2)<\sigma(-1 / 2)\},
\end{aligned}
$$

each of which has a half $P$-measure. For $w \in \mathbb{W}$ and $\lambda>0$, define $w_{\lambda} \in \mathbb{W}$ by

$$
w_{\lambda}(x)=\lambda^{-1} w\left(\lambda^{2} x\right), \quad x \in \mathbb{R}
$$

Then we have

$$
\left\{w_{\lambda}, P\right\} \stackrel{\mathrm{d}}{=}\{w, P\},
$$

where $\stackrel{\mathrm{d}}{=}$ means the equality in distribution. We also introduce subsets $A_{\lambda}$ and $B_{\lambda}$ of $\mathbb{W}$ by

$$
\begin{aligned}
& A_{\lambda}=\left\{w \in \mathbb{W}: w_{\lambda} \in A\right\}, \\
& B_{\lambda}=\left\{w \in \mathbb{W}: w_{\lambda} \in B\right\},
\end{aligned}
$$

each of which has a half $P$-measure by the above property.
In the following theorems, $P\{\cdots \mid \cdot\}$ denotes the conditional probability. We put $\widetilde{A}_{\lambda}=A_{\log \lambda}$ and $\widetilde{B}_{\lambda}=B_{\log \lambda}$.

Theorem 2 For any $T>0$ and $\varepsilon>0$,

$$
\lim _{\lambda \rightarrow \infty} P\left\{P_{w}^{0}\left\{\sup _{0 \leq t \leq T}\left|X_{\lambda}(t)-G_{\lambda}(t)\right|<\varepsilon\right\}>1-\varepsilon \mid \widetilde{A}_{\lambda}\right\}=1
$$

For $w \in \mathbb{W}$, we put

$$
\begin{aligned}
& \zeta=\zeta(w)=\sup \left\{x<0: w(x)-\min _{x \leq y \leq 0} w(y)=1\right\} \\
& M=M(w)= \begin{cases}\sigma(1 / 2), & \text { if } w \in A \\
\zeta(w), & \text { if } w \in B\end{cases} \\
& V=V(w)=\min _{x \geq M} w(x)
\end{aligned}
$$

We also define $b=b(w)$ in $(M, 0)$ by $w(b)=V$. Note that $b$ is determined uniquely by $w$ ( $P$-a.s.).

Theorem 3 For any $\varepsilon>0$,

$$
\lim _{t \rightarrow \infty} P\left\{P_{w}^{0}\left\{\left|(\log t)^{-2} X(t)-b\left(w_{\log t}\right)\right|<\varepsilon\right\}>1-\varepsilon \mid \widetilde{B}_{t}\right\}=1
$$

Concerning the occupation time on $(0, \infty)$ of our process, we have the following.

Theorem 4 For any $\varepsilon>0$,

$$
\begin{gathered}
\lim _{t \rightarrow \infty} P\left\{\left.P_{w}^{0}\left\{\frac{1}{t} \int_{0}^{t} \mathbf{1}_{(0, \infty)}(X(s)) d s>1-\varepsilon\right\}>1-\varepsilon \right\rvert\, \widetilde{A}_{t}\right\}=1 \\
\lim _{t \rightarrow \infty} P\left\{\left.P_{w}^{0}\left\{\frac{1}{t} \int_{0}^{t} \mathbf{1}_{(0, \infty)}(X(s)) d s<\varepsilon\right\}>1-\varepsilon \right\rvert\, \widetilde{B}_{t}\right\}=1
\end{gathered}
$$

Corollary 5 The probability distribution of $t^{-1} \int_{0}^{t} \mathbf{1}_{(0, \infty)}(X(s)) d s$ under $\mathcal{P}^{0}$ converges to $(1 / 2) \delta_{0}+(1 / 2) \delta_{1}$ as $t \rightarrow \infty$.

To state the result on the maximum process of $X(t)$, we put

$$
H(w)=\max _{M \leq x \leq 0} w(x) .
$$

Note that $H(w)=1 / 2$ if $w \in A$ and $0<H(w)<1 / 2$ if $w \in B$.

Theorem 6 For any $\varepsilon>0$,

$$
\lim _{t \rightarrow \infty} \mathcal{P}^{0}\left\{\left|\frac{\log \max _{0 \leq s \leq t} X(s)}{\log t}-H\left(w_{\log t}\right)\right|>\varepsilon\right\}=0
$$

Our present results together with those of the previous paper ([2]) immediately imply the following theorem.

Theorem 7 Let $\widetilde{X}_{t}$ be any one of the left column in the following. In each case the distribution of $\widetilde{X}_{t}$ under $\mathcal{P}^{0}$ tends to a limit distribution as $t \rightarrow \infty$,
which is described as follows.

| $\widetilde{X}_{t}$ | limit distribution | support |
| :---: | :---: | :---: |
| $t^{-1 / 2} X(t)$ | $\mu_{\mathrm{I}}$ | $[0, \infty)$ |
| $(\log t)^{-2} X(t)$ | $\mu_{\text {II }}$ | $(-\infty, 0) \cup\{\infty\}$ |
| $t^{-1 / 2} \max _{0 \leq s \leq t} X(s)$ | $\mu_{\text {III }}$ | $[0, \infty)$ |
| $\frac{\log \max _{0 \leq s \leq t} X(s)}{\log t}$ | $\mu_{\mathrm{IV}}$ | $\left(0, \frac{1}{2}\right]$ |
| $(\log t)^{-2} \min _{0 \leq s \leq t} X(s)$ | $\mu_{\mathrm{V}}$ | $(-\infty, 0)$ |

$$
\begin{aligned}
& \mu_{\mathrm{I}}(d x)=\frac{1}{2} \sqrt{\frac{2}{\pi}} e^{-x^{2} / 2} d x+\frac{1}{2} \delta_{0}(d x) . \\
& \mu_{\mathrm{I}}(d x)=P\{(b \in d x) \cap B\}+\frac{1}{2} \delta_{\infty}(d x) . \\
& \mu_{\mathrm{II}}(d x)=\frac{1}{2} P_{R}\left\{\max _{0 \leq s \leq 1} X(s) \in d x\right\}+\frac{1}{2} \delta_{0}(d x) . \\
& \mu_{\mathrm{IV}}(d x)=P\{H \in d x\} . \\
& \mu_{\mathrm{V}}(d x)=P\{M \in d x\} .
\end{aligned}
$$

Moreover, the Laplace transforms of the distributions of b, $H$ and $M$ appearing in the definition of $\mu_{\mathrm{I}}, \mu_{\mathrm{I}}$ and $\mu_{\mathrm{V}}$ are as follows. For $\xi>0$,

$$
\begin{aligned}
E\left[e^{\xi b}, B\right] & =\frac{\sinh (\sqrt{2 \xi} / 2)}{\sqrt{2 \xi} \cosh \sqrt{2 \xi}} \\
E\left[e^{\xi H}, A\right] & =\frac{1}{2} e^{\xi / 2} \\
E\left[e^{\xi H}, B\right] & =\int_{0}^{1 / 2} e^{\xi x} d x \\
E\left[e^{\xi M}, A\right] & =\frac{\sinh (\sqrt{2 \xi} / 2)}{\sinh \sqrt{2 \xi}}
\end{aligned}
$$

$$
E\left[e^{\xi M}, B\right]=\frac{\sinh (\sqrt{2 \xi} / 2)}{(\sinh \sqrt{2 \xi})(\cosh \sqrt{2 \xi})}
$$

Here $E[\cdot, A]$ denotes the expectation with respect to $P$ on the set $A$.

## References

[1] Brox, T.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14, 1206-1218 (1986)
[2] Kawazu, K., Suzuki, Y., Tanaka, H.: A diffusion process with a onesided Brownian potential. Tokyo J. Math. 24, 211-229 (2001)
[3] Schumacher, S.: Diffusions with random coefficients. In: Particle Systems, Random Media and Large Deviations (ed. R. Durrett), 351-356, Contemp. Math., 41, American Math. Soc., 1985
[4] Sinai, Y. G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256-268 (1982)


[^0]:    *Y. Suzuki: School of Medicine, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, 223-8521 JAPAN.

