Asymptotic behavior of a diffusion process with a one-sided Brownian potential

Yuki Suzuki*

This talk is based on a joint work with K. Kawazu (Yamaguchi University).

We consider a diffusion process with a one-sided Brownian potential starting from the origin and study the asymptotic behavior of the process as time goes to infinity. We begin with describing our model. Denote by \mathbb{W} the space of continuous functions w defined in \mathbb{R} and vanishing identically on $[0, \infty)$. Let P be the Wiener measure on \mathbb{W} , namely, let P be the probability measure on \mathbb{W} such that $\{w(-x), x \ge 0, P\}$ is a Brownian motion with time parameter x. Ω denotes the space of real-valued continuous functions defined on $[0, \infty)$. For $\omega \in \Omega$ we write $X(t) = X(t, \omega) = \omega(t) =$ the value of ω at t. For $w \in \mathbb{W}$ and $x_0 \in \mathbb{R}$, let $P_w^{x_0}$ be the probability measure on Ω such that $\{X(t), t \ge 0, P_w^{x_0}\}$ is a diffusion process with generator

$$\mathcal{L}_w = \frac{1}{2} e^{w(x)} \frac{d}{dx} \left(e^{-w(x)} \frac{d}{dx} \right)$$

starting from x_0 . We define the probability measure \mathcal{P}^{x_0} on $\mathbb{W} \times \Omega$ by

$$\mathcal{P}^{x_0}(dwd\omega) = P(dw)P^{x_0}_w(d\omega).$$

We regard $\{X(t), t \ge 0, \mathcal{P}^{x_0}\}$ as a process defined on the probability space $(\mathbb{W} \times \Omega, \mathcal{P}^{x_0})$ and call it a diffusion process with a one-sided Brownian potential. This model was introduced by Kawazu, Suzuki and Tanaka([2]). Our aim is to clarify the asymptotic behavior of $\{X(t), t \ge 0, \mathcal{P}^0\}$ as $t \to \infty$.

When w(x) does not vanish identically for $x \ge 0$, or more precisely speaking, when $\{w(x), x \ge 0, P\}$ and $\{w(-x), x \ge 0, P\}$ are independent Brownian motions, the corresponding diffusion process $\{X(t), t \ge 0, \mathcal{P}^{x_0}\}$ was introduced by Brox ([1]) and Schumacher ([3]) as a diffusion analogue of Sinai's

^{*}Y. Suzuki: School of Medicine, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, 223-8521 JAPAN.

random walk ([4]). In [1] and [3], it was proved that $\{(\log t)^{-2}X(t), t \ge 0, \mathcal{P}^0\}$ has a nondegenerate limit distribution.

Let us introduce the result in [2]. Let \mathcal{M} be the space of probability laws on Ω and ρ be the Prokhorov metric on \mathcal{M} . Let $\{X(t), t \geq 0, \mathcal{P}^0\}$ be a diffusion process with a one-sided Brownian potential. Put

$$X_{\lambda}(t) = \lambda^{-1/2} X(\lambda t), \quad t \ge 0,$$

for a constant $\lambda > 0$, and denote by $P_{\lambda}(w) (\in \mathcal{M})$ the probability law of the process $\{X_{\lambda}(t), t \geq 0, P_w^0\}$. We also denote by $P_N(\in \mathcal{M})$ the probability law of the process vanishing identically, and by $P_R(\in \mathcal{M})$ the probability law of the reflecting Brownian motion on $[0, \infty)$ starting from 0.

Theorem 1 ([2]) For any ε such that $0 < \varepsilon < \rho(P_N, P_R)/2$

$$\lim_{\lambda \to \infty} P\{\rho(P_{\lambda}(w), P_N) < \varepsilon\} = \frac{1}{2},$$
$$\lim_{\lambda \to \infty} P\{\rho(P_{\lambda}(w), P_R) < \varepsilon\} = \frac{1}{2}.$$

In particular, the following hold.

$$\lim_{t \to \infty} \mathcal{P}^0 \{ -\varepsilon < t^{-1/2} X(t) \le x \} = \frac{1}{2} + \frac{1}{2} \int_0^x \sqrt{\frac{2}{\pi}} e^{-y^2/2} dy, \quad x > 0, \varepsilon > 0.$$
$$\lim_{t \to \infty} \mathcal{P}^0 \left\{ 0 \le t^{-1/2} \max_{0 \le s \le t} X(s) \le x \right\} = \frac{1}{2} + \frac{1}{2} P_R \left\{ \max_{0 \le s \le 1} X(s) \le x \right\},$$
$$x > 0$$

Our present results (Theorems 2 and 3 stated below) imply Theorem 1. To state the theorems, we introduce some notation. We put, for $\lambda > 0$ and $\omega \in \Omega$,

$$a_{\lambda}(t) = a_{\lambda}(t,\omega) = \int_0^t \mathbf{1}_{(0,\infty)}(X_{\lambda}(s))ds, \quad t \ge 0,$$

and define

$$a_{\lambda}^{-1}(t) = \inf\{s > 0 : a_{\lambda}(s) > t\}, \quad t \ge 0,$$

the right-continuous inverse function of $a_{\lambda}(t)$. We also put

$$G_{\lambda}(t) = X_{\lambda}(a_{\lambda}^{-1}(t)), \quad t \ge 0.$$

Then $\{G_{\lambda}(t), t \geq 0, P_w^0\}$ is a reflecting Brownian motion on $[0, \infty)$ starting from 0.

For $w \in \mathbb{W}$ and $a \in \mathbb{R}$, we put

$$\sigma(a) = \sigma(a, w) = \sup\{x < 0 : w(x) = a\},\$$

and introduce two subsets A and B of \mathbb{W} by

$$A = \{ w \in \mathbb{W} : \sigma(1/2) > \sigma(-1/2) \},\$$

$$B = \{ w \in \mathbb{W} : \sigma(1/2) < \sigma(-1/2) \},\$$

each of which has a half *P*-measure. For $w \in \mathbb{W}$ and $\lambda > 0$, define $w_{\lambda} \in \mathbb{W}$ by

$$w_{\lambda}(x) = \lambda^{-1} w(\lambda^2 x), \quad x \in \mathbb{R}.$$

Then we have

$$\{w_{\lambda}, P\} \stackrel{\mathrm{d}}{=} \{w, P\},\$$

where $\stackrel{d}{=}$ means the equality in distribution. We also introduce subsets A_{λ} and B_{λ} of \mathbb{W} by

$$A_{\lambda} = \{ w \in \mathbb{W} : w_{\lambda} \in A \},\ B_{\lambda} = \{ w \in \mathbb{W} : w_{\lambda} \in B \},\$$

each of which has a half *P*-measure by the above property.

In the following theorems, $P\{\cdots | \cdot\}$ denotes the conditional probability. We put $\widetilde{A}_{\lambda} = A_{\log \lambda}$ and $\widetilde{B}_{\lambda} = B_{\log \lambda}$.

Theorem 2 For any T > 0 and $\varepsilon > 0$,

$$\lim_{\lambda \to \infty} P\left\{ P_w^0 \left\{ \sup_{0 \le t \le T} |X_\lambda(t) - G_\lambda(t)| < \varepsilon \right\} > 1 - \varepsilon \mid \widetilde{A}_\lambda \right\} = 1.$$

For $w \in \mathbb{W}$, we put

$$\begin{split} \zeta &= \zeta(w) = \sup \left\{ x < 0 : w(x) - \min_{x \leq y \leq 0} w(y) = 1 \right\}, \\ M &= M(w) = \left\{ \begin{array}{ll} \sigma(1/2), & \text{if } w \in A, \\ \zeta(w), & \text{if } w \in B, \end{array} \right. \\ V &= V(w) = \min_{x \geq M} w(x). \end{split}$$

We also define b = b(w) in (M, 0) by w(b) = V. Note that b is determined uniquely by w (P-a.s.).

Theorem 3 For any $\varepsilon > 0$,

$$\lim_{t \to \infty} P\left\{ P_w^0\left\{ \left| (\log t)^{-2} X(t) - b(w_{\log t}) \right| < \varepsilon \right\} > 1 - \varepsilon \mid \widetilde{B}_t \right\} = 1.$$

Concerning the occupation time on $(0, \infty)$ of our process, we have the following.

Theorem 4 For any $\varepsilon > 0$,

$$\lim_{t \to \infty} P\left\{ P_w^0\left\{\frac{1}{t} \int_0^t \mathbf{1}_{(0,\infty)}(X(s))ds > 1 - \varepsilon \right\} > 1 - \varepsilon \mid \widetilde{A}_t \right\} = 1,$$

$$\lim_{t\to\infty} P\left\{P^0_w\left\{\frac{1}{t}\int_0^t \mathbf{1}_{(0,\infty)}(X(s))ds < \varepsilon\right\} > 1-\varepsilon \ \Big| \ \widetilde{B}_t\right\} = 1.$$

Corollary 5 The probability distribution of $t^{-1} \int_0^t \mathbf{1}_{(0,\infty)}(X(s)) ds$ under \mathcal{P}^0 converges to $(1/2)\delta_0 + (1/2)\delta_1$ as $t \to \infty$.

To state the result on the maximum process of X(t), we put

$$H(w) = \max_{M \le x \le 0} w(x).$$

Note that H(w) = 1/2 if $w \in A$ and 0 < H(w) < 1/2 if $w \in B$.

Theorem 6 For any $\varepsilon > 0$,

$$\lim_{t \to \infty} \mathcal{P}^0 \left\{ \left| \frac{\log \max_{0 \le s \le t} X(s)}{\log t} - H(w_{\log t}) \right| > \varepsilon \right\} = 0.$$

Our present results together with those of the previous paper ([2]) immediately imply the following theorem.

Theorem 7 Let \widetilde{X}_t be any one of the left column in the following. In each case the distribution of \widetilde{X}_t under \mathcal{P}^0 tends to a limit distribution as $t \to \infty$,

which is described as follows.

\widetilde{X}_t	limit distribution	support
$t^{-1/2}X(t)$	μ_{I}	$[0,\infty)$
$(\log t)^{-2}X(t)$	$\mu_{{ m I\!I}}$	$(-\infty,0) \cup \{\infty\}$
$t^{-1/2} \max_{0 \le s \le t} X(s)$	$\mu_{I\!I\!I}$	$[0,\infty)$
$\frac{\log \max_{0 \le s \le t} X(s)}{\log t}$	$\mu_{ m I\!N}$	$(0, \frac{1}{2}]$
$(\log t)^{-2} \min_{0 \le s \le t} X(s)$	$\mu_{ m V}$	$(-\infty,0)$

$$\begin{split} \mu_{\mathrm{I}}(dx) &= \frac{1}{2} \sqrt{\frac{2}{\pi}} e^{-x^2/2} dx + \frac{1}{2} \delta_0(dx). \\ \mu_{\mathrm{II}}(dx) &= P\{(b \in dx) \cap B\} + \frac{1}{2} \delta_\infty(dx). \\ \mu_{\mathrm{III}}(dx) &= \frac{1}{2} P_R \left\{ \max_{0 \le s \le 1} X(s) \in dx \right\} + \frac{1}{2} \delta_0(dx). \\ \mu_{\mathrm{IV}}(dx) &= P\{H \in dx\}. \\ \mu_{\mathrm{V}}(dx) &= P\{M \in dx\}. \end{split}$$

Moreover, the Laplace transforms of the distributions of b, H and M appearing in the definition of $\mu_{\mathbb{I}}, \mu_{\mathbb{N}}$ and $\mu_{\mathbb{V}}$ are as follows. For $\xi > 0$,

$$E[e^{\xi b}, B] = \frac{\sinh(\sqrt{2\xi}/2)}{\sqrt{2\xi}\cosh\sqrt{2\xi}},$$

$$E[e^{\xi H}, A] = \frac{1}{2}e^{\xi/2},$$

$$E[e^{\xi H}, B] = \int_{0}^{1/2} e^{\xi x} dx,$$

$$E[e^{\xi M}, A] = \frac{\sinh(\sqrt{2\xi}/2)}{\sinh\sqrt{2\xi}},$$

$$E[e^{\xi M}, B] = \frac{\sinh(\sqrt{2\xi/2})}{(\sinh\sqrt{2\xi})(\cosh\sqrt{2\xi})}$$

Here $E[\cdot, A]$ denotes the expectation with respect to P on the set A.

References

- Brox, T.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14, 1206–1218 (1986)
- [2] Kawazu, K., Suzuki, Y., Tanaka, H.: A diffusion process with a onesided Brownian potential. Tokyo J. Math. 24, 211–229 (2001)
- [3] Schumacher, S.: Diffusions with random coefficients. In: Particle Systems, Random Media and Large Deviations (ed. R. Durrett), 351–356, Contemp. Math., 41, American Math. Soc., 1985
- [4] Sinai, Y. G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256–268 (1982)