Some path-transformations related to Brownian motion, random matrices and representation theory

Neil O'Connell, University College Cork

Based on joint work with Ph. Biane and Ph. Bougerol.

UK-Japan Winter School, January 2005

1

Pitman's Theorem (1975)

Let $(B_t, t \ge 0)$ be a standard real Brownian motion, and define

$$R_t = B_t - 2\inf_{s \le t} B_s.$$

Then $(R_t, t \ge 0)$ is a three-dimensional Bessel process: it has the same law as the norm of a three-dimensional Brownian motion.

For continuous $\eta : [0,\infty) \to \mathbb{R}$ with $\eta(0) = 0$, define $\mathcal{P}\eta$ by

$$\mathcal{P}\eta(t) = \eta(t) - 2\inf_{s \le t} \eta(s).$$

The main (and surprising) content of Pitman's theorem is that the operator \mathcal{P} behaves very nicely with respect to Wiener measure:

It preserves the Markov property.

Connection with Random Matrices

Consider the Hermitian matrix-valued Brownian motion

$$M_t = \left(\begin{array}{cc} X_t & U_t - iV_t \\ U_t + iV_t & -X_t \end{array}\right),$$

where X, U and V are independent real Brownian motions. The eigenvalues of M_t are $\pm R_t$ where

$$R_t = \sqrt{X_t^2 + U_t^2 + V_t^2}$$

is a three-dimensional Bessel process.

Generalisations

O'C-Yor (ECP 2002) and Bougerol-Jeulin (PTRF 2002): Give formulae which transform d-dimensional Brownian motion into the eigenvalue process of a Hermitian Brownian motion.

Biane, Bougerol and O'C (DMJ, to appear): Extend these constructions and show that they are equivalent.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in \mathbb{R}^n . Let $p_t^0(x, y)$ be the heat kernel on C with Dirichlet boundary conditions, that is, the transition density for Brownian motion killed at the boundary of the cone.

There exists a unique (up to a constant factor) positive p^{0} -harmonic function h on C. Brownian motion in the cone C is defined to be the corresponding Doob h-transform, with infinitessimal generator

$$\frac{1}{2}\Delta + \nabla(\log h) \cdot \nabla$$

and transition density

$$q_t(x,y) = \frac{h(y)}{h(x)} p_t^0(x,y).$$

Example 1: The three-dimensional Bessel Process

If n = 1 and $C = \mathbb{R}_+$ then

$$p^{0}(x,y) = p_{t}(x,y) - p_{t}(x,-y)$$
 $h(x) = x.$

Brownian motion in \mathbb{R}_+ is the three-dimensional Bessel Process, with infinitessimal generator

$$\frac{1}{2}\frac{d}{dx^2} + \frac{1}{x}\frac{d}{dx}$$

Example 2: The general setting

Let W be a finite Coxeter group acting on \mathbb{R}^n with fundamental chamber C (a cone in \mathbb{R}^n). Then

$$p_t^0(x,y) = \sum_{w \in W} \varepsilon(w) p_t(x,wy) \qquad h(x) = \prod_{\alpha \in \Phi^+} (\alpha, x).$$

If $W = S_{n+1}$ the Brownian motion in C is distributed as the eigenvalue process of a Brownian motion in $su_{n+1}(\mathbb{C})$.

We will give a formula which transforms Brownian motion in \mathbb{R}^n into Brownian motion in the fundamental chamber C.

Hyperplane reflections and the braid relations

Let V be a finite-dimensional Euclidean space. For $\alpha \in V$ with $(\alpha, \alpha) = 1$, let s_{α} denote the reflection through α^{\perp} , that is,

$$s_{\alpha}\lambda = \lambda - 2(\alpha, \lambda)\alpha.$$

Note that $s_{\alpha}^2 = 1$. For $\beta \in V$ with $(\alpha, \beta) = -\cos(\pi/n)$,

$$(s_{\alpha}s_{\beta})^n = 1.$$

Equivalently,

$$s_{\alpha}s_{\beta}s_{\alpha}\cdots=s_{\beta}s_{\alpha}s_{\beta}\cdots$$

where each side has n terms.

Finite Coxeter groups

W = finite group of isometries in V $S = \{s_{\alpha}, \alpha \in \Delta\}$ generating set of 'simple' reflections

If $\pi/n_{\alpha\beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$s_{\alpha}^2 = 1$$
 $(s_{\alpha}s_{\beta})^{n_{\alpha\beta}} = 1$ $\alpha, \beta \in \Delta$

are the defining relations for W. The fundamental chamber

$$C = \{\lambda \in V : (\alpha, \lambda) > 0, \forall \alpha \in \Delta\}$$

is a fundamental domain for the action of W on V.

Example

$$\alpha = (e_1 - e_2)/\sqrt{2} \qquad W = \langle s_\alpha, s_\beta \rangle \simeq S_3 = \langle (12), (23) \rangle$$

$$\beta = (e_2 - e_3)/\sqrt{2}$$

Generalised Pitman Transformations

Let V be a Euclidean space and $\alpha \in V$ with $(\alpha, \alpha) = 1$. For continuous $\eta : [0, \infty) \to V$ with $\eta(0) = 0$, define

$$\mathcal{P}_{\alpha}\eta(t) = \eta(t) - 2\inf_{s \leq t}(\alpha, \eta(s)).$$

Theorem. For $\beta \in V$ with $(\alpha, \beta) = -\cos(\pi/n)$,

$$\mathcal{P}_{\alpha}\mathcal{P}_{\beta}\mathcal{P}_{\alpha}\cdots=\mathcal{P}_{\beta}\mathcal{P}_{\alpha}\mathcal{P}_{\beta}\cdots$$

where each side has n terms.

Corollary. Let W be a finite Coxeter group with generating simple reflections $S = \{s_{\alpha}, \alpha \in \Delta\}$. For each $w \in W$, we can define

$$\mathcal{P}_w = \mathcal{P}_{\alpha_1} \cdots \mathcal{P}_{\alpha_k}$$

where $w = s_{\alpha_1} \cdots s_{\alpha_k}$ is any reduced (minimal length) decomposition of w.

The longest element

Let W be a finite Coxeter group with generating simple reflections $S = \{s_{\alpha}, \alpha \in \Delta\}$. The length of an element $w \in W$ is the minimal number of terms required to write w as a product of simple reflections. There is a unique element $w_0 \in W$ of maximal length.

For example, the longest element in S_3 is

(13) = (12)(23)(12) = (23)(12)(23).

Theorem. Let (W, S) be a finite Coxeter system acting on V with fundamental chamber C. If $X = (X_t, t \ge 0)$ a Brownian motion in V then $\mathcal{P}_{w_0}X$ is a Brownian motion in C.

A remarkable property

The conditional law of X_t given the path $(\mathcal{P}_{w_0}X(s), 0 \leq s \leq t)$ only depends on the endpoint $\mathcal{P}_{w_0}X(t)$.

In the case where W is a Weyl group this is precisely the so-called Duistermaat-Heckman measure associated to $\mathcal{P}_{w_0}X(t)$, and its Fourier transform is given by the Harish-Chandra formula.