Some path-transformations related to Brownian motion, random matrices and representation theory

Neil O'Connell, University College Cork

Based on joint work with Ph. Biane and Ph. Bougerol.

UK-Japan Winter School, January 2005

Pitman's Theorem (1975)

Let ($B_{t}, t \geq 0$) be a standard real Brownian motion, and define

$$
R_{t}=B_{t}-2 \inf _{s \leq t} B_{s} .
$$

Then ($R_{t}, t \geq 0$) is a three-dimensional Bessel process: it has the same law as the norm of a three-dimensional Brownian motion.

For continuous $\eta:[0, \infty) \rightarrow \mathbb{R}$ with $\eta(0)=0$, define $\mathcal{P} \eta$ by

$$
\mathcal{P} \eta(t)=\eta(t)-2 \inf _{s \leq t} \eta(s) .
$$

The main (and surprising) content of Pitman's theorem is that the operator \mathcal{P} behaves very nicely with respect to Wiener measure:

It preserves the Markov property.

Connection with Random Matrices

Consider the Hermitian matrix-valued Brownian motion

$$
M_{t}=\left(\begin{array}{cc}
X_{t} & U_{t}-i V_{t} \\
U_{t}+i V_{t} & -X_{t}
\end{array}\right),
$$

where X, U and V are independent real Brownian motions. The eigenvalues of M_{t} are $\pm R_{t}$ where

$$
R_{t}=\sqrt{X_{t}^{2}+U_{t}^{2}+V_{t}^{2}}
$$

is a three-dimensional Bessel process.

Generalisations

O'C-Yor (ECP 2002) and Bougerol-Jeulin (PTRF 2002):
Give formulae which transform d-dimensional Brownian motion into the eigenvalue process of a Hermitian Brownian motion.

Biane, Bougerol and O^{\prime} C (DMJ, to appear):
Extend these constructions and show that they are equivalent.

Brownian motion (conditioned to stay) in a cone

Let C be a convex cone in \mathbb{R}^{n}. Let $p_{t}^{0}(x, y)$ be the heat kernel on C with Dirichlet boundary conditions, that is, the transition density for Brownian motion killed at the boundary of the cone.

There exists a unique (up to a constant factor) positive p^{0} harmonic function h on C. Brownian motion in the cone C is defined to be the corresponding Doob h-transform, with infinitessimal generator

$$
\frac{1}{2} \Delta+\nabla(\log h) \cdot \nabla
$$

and transition density

$$
q_{t}(x, y)=\frac{h(y)}{h(x)} p_{t}^{0}(x, y)
$$

Example 1: The three-dimensional Bessel Process

If $n=1$ and $C=\mathbb{R}_{+}$then

$$
p^{0}(x, y)=p_{t}(x, y)-p_{t}(x,-y) \quad h(x)=x
$$

Brownian motion in \mathbb{R}_{+}is the three-dimensional Bessel Process, with infinitessimal generator

$$
\frac{1}{2} \frac{d}{d x^{2}}+\frac{1}{x} \frac{d}{d x}
$$

Example 2: The general setting

Let W be a finite Coxeter group acting on \mathbb{R}^{n} with fundamental chamber C (a cone in \mathbb{R}^{n}). Then

$$
p_{t}^{0}(x, y)=\sum_{w \in W} \varepsilon(w) p_{t}(x, w y) \quad h(x)=\prod_{\alpha \in \Phi^{+}}(\alpha, x)
$$

If $W=S_{n+1}$ the Brownian motion in C is distributed as the eigenvalue process of a Brownian motion in $s u_{n+1}(\mathbb{C})$.

We will give a formula which transforms Brownian motion in \mathbb{R}^{n} into Brownian motion in the fundamental chamber C.

Hyperplane reflections and the braid relations

Let V be a finite-dimensional Euclidean space. For $\alpha \in V$ with $(\alpha, \alpha)=1$, let s_{α} denote the reflection through α^{\perp}, that is,

$$
s_{\alpha} \lambda=\lambda-2(\alpha, \lambda) \alpha .
$$

Note that $s_{\alpha}^{2}=1$. For $\beta \in V$ with $(\alpha, \beta)=-\cos (\pi / n)$,

$$
\left(s_{\alpha} s_{\beta}\right)^{n}=1
$$

Equivalently,

$$
s_{\alpha} s_{\beta} s_{\alpha} \cdots=s_{\beta} s_{\alpha} s_{\beta} \cdots
$$

where each side has n terms.

Finite Coxeter groups

$W=$ finite group of isometries in V
$S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$ generating set of 'simple' reflections
If $\pi / n_{\alpha \beta}$ is the angle between hyperplanes α^{\perp} and β^{\perp} then

$$
s_{\alpha}^{2}=1 \quad\left(s_{\alpha} s_{\beta}\right)^{n_{\alpha \beta}}=1 \quad \alpha, \beta \in \Delta
$$

are the defining relations for W. The fundamental chamber

$$
C=\{\lambda \in V: \quad(\alpha, \lambda)>0, \forall \alpha \in \Delta\}
$$

is a fundamental domain for the action of W on V.

Example

$$
\begin{aligned}
& \alpha=\left(e_{1}-e_{2}\right) / \sqrt{2} \\
& \beta=\left(e_{2}-e_{3}\right) / \sqrt{2}
\end{aligned} \quad W=\left\langle s_{\alpha}, s_{\beta}\right\rangle \simeq S_{3}=\langle(12),(23)\rangle
$$

Generalised Pitman Transformations

Let V be a Euclidean space and $\alpha \in V$ with $(\alpha, \alpha)=1$. For continuous $\eta:[0, \infty) \rightarrow V$ with $\eta(0)=0$, define

$$
\mathcal{P}_{\alpha} \eta(t)=\eta(t)-2 \inf _{s \leq t}(\alpha, \eta(s)) .
$$

Theorem. For $\beta \in V$ with $(\alpha, \beta)=-\cos (\pi / n)$,

$$
\mathcal{P}_{\alpha} \mathcal{P}_{\beta} \mathcal{P}_{\alpha} \cdots=\mathcal{P}_{\beta} \mathcal{P}_{\alpha} \mathcal{P}_{\beta} \cdots
$$

where each side has n terms.

Corollary. Let W be a finite Coxeter group with generating simple reflections $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$. For each $w \in W$, we can define

$$
\mathcal{P}_{w}=\mathcal{P}_{\alpha_{1}} \cdots \mathcal{P}_{\alpha_{k}}
$$

where $w=s_{\alpha_{1}} \cdots s_{\alpha_{k}}$ is any reduced (minimal length) decomposition of w.

The longest element

Let W be a finite Coxeter group with generating simple reflections $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$. The length of an element $w \in W$ is the minimal number of terms required to write w as a product of simple reflections. There is a unique element $w_{0} \in W$ of maximal length.

For example, the longest element in S_{3} is

$$
(13)=(12)(23)(12)=(23)(12)(23) .
$$

Theorem. Let (W, S) be a finite Coxeter system acting on V with fundamental chamber C. If $X=\left(X_{t}, t \geq 0\right)$ a Brownian motion in V then $\mathcal{P}_{w_{0}} X$ is a Brownian motion in C.

A remarkable property

The conditional law of X_{t} given the path ($\left.\mathcal{P}_{w_{0}} X(s), 0 \leq s \leq t\right)$ only depends on the endpoint $\mathcal{P}_{w_{0}} X(t)$.

In the case where W is a Weyl group this is precisely the so-called Duistermaat-Heckman measure associated to $\mathcal{P}_{w_{0}} X(t)$, and its Fourier transform is given by the Harish-Chandra formula.

