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Weather forecasting is an important application of 
mathematics 

 

 

Forecasts are typically made solve this using a 
numerical method based on a computational mesh 

Often need to locally refine a mesh to capture small 
scale features 

(i)  For accurate numerical computation eg. Storms 

(ii) For accurate assimilation of observed data 

Talk will describe a method for doing this based upon 
geometrical ideas: optimal transport 



Geometrical strategy 

Have a computational domain 

Physical domain 

Identify a map  

 
 

ΩC (ξ,η,ς)

 

ΩP (x,y,z)

 

F : ΩC (ξ,η,ς) → ΩP (x,y,z)

Map a regular mesh, to a mesh used for computation 



Mesh used to compute a 3D weather front 



Determine F by Equidistribution 

Introduce a positive unit measure  M(x,y,z,t)  in the 
physical domain which controls the mesh density 

A     :  set in computational domain 

F(A) :  image  set 

 

d
A
∫ ξ dη dς = M(x, y,z,t)dx dy

F (A )

∫ dz

Equidistribute image with respect to the 
measure 



 

M(x,y,z,t) ∂(x,y,z)
∂(ξ,η,ς)

=1

Differentiate to give: 

Basic, nonlinear, equidistribution mesh equation 

Choose M large to concentrate points where needed 
without depleting points elsewhere 

Note: All meshes equidistribute some function M 

          [Radon-Nikodym] 



Choice of the monitor function M(X) 

• Physical reasoning  

eg. Vorticity, arc-length, curvature, 

• A-priori mathematical arguments  

eg. Scaling, symmetry, simple error estimates 

• A-posteriori error estimates 

 eg. Residuals, super-convergence 

• Data correlation estimates 



Mesh construction 

Problem: in two/three -dimensions equidistribution 
does NOT uniquely define a mesh! 

All have the same area 

Need additional conditions to define the mesh uniquely 

Also want to avoid mesh tangling and long thin regions 



F 

),( ηξCΩ

 

ΩP (x,y)

Optimally transported meshes 

Argue: A good mesh for solving a pde is often one 
which is as close as possible to a uniform mesh 



Monge-Kantorovich optimal transport problem  

 

I(x,y,z) =
ΩC

∫ (x,y,z) − (ξ,η,ς) 2 dξ dη dς

 

M(x,y,z,t) ∂(x,y,z)
∂(ξ,η,ς)

=1

Minimise 

Subject to  

Also used in image registration,meteorology ….. 

Optimal transport helps to prevent small angles, 
reduce mesh skewness and prevent mesh tangling. 



Key result which makes everything work!!!!! 

Theorem: [Brenier] 

(a)There exists a unique optimally transported mesh 

(b) For such a mesh the map F is the gradient of a 
convex function   

 

P(ξ,η,ς)

P :  Scalar mesh potential 

  Map F is a Legendre Transformation 



Some 2D corollaries of the Polar Factorisation 
Theorem 

 

(x,y) = ∇ξ P = (Pξ ,Pη )

 

xη = yξ

Gradient map 

Irrotational mesh 

Same construction works in all dimensions 



Monge-Ampere equation: fully nonlinear elliptic PDE  

 

∂(x, y)
∂(ξ,η)

= H(P) = det
Pξξ Pξη

Pξη Pηη

 

 
 

 

 
 = Pξξ Pηη − P 2

ξη

1)(),( =∇ PHtPM

It follows immediately in 2D that 

Hence the mesh equidistribution equation becomes 

(MA) 

Properties of the mesh can be deduced from the 
regularity of the solution of the MA equation 



Basic idea: Solve (MA) for P with appropriate 
(Neumann or Periodic) boundary conditions 

Good news: Equation has a unique solution 

Bad news: Equation is very hard to solve 

Good news: We don’t need to solve it exactly, 
and can instead use parabolic relaxation   

Q           P 
Alternatively: Use Newton [Chacon et. al.] 

                       Use a variational approach [van Lent] 



Relaxation in n Dimensions 

 

ε I −α∆ξ( )Qt = M (∇Q)H(Q)( )1/ n

Spatial smoothing 
[Hou] 

(Invert operator 
using a spectral 
method) 

Averaged 
monitor 

Ensures right-
hand-side scales 
like Q in nD to give 
global existence 

Parabolic Monge-Ampere equation 

(PMA) 



Solution Procedure 

 

If M is prescribed then the PMA equation 
can be discretised in the computational 
domain and solved using a forward Euler 
method (this is a fast procedure) 

 
Applications 

• Image processing 

• Meteorological Data assimilation:  

Take M to be the Potential Vorticity of the 3D 
flow  



Because PMA is based on a geometric approach, it 
has a set of useful regularity properties 

1. System invariant under translations, rotations, 
periodicity 



Lemma 1:  CJB, EJW [2012] 

The solutions of the MA equation exactly align with 
global linear features 

Alignment follows from a close coupling between the local structure 
of the solution and the global structure. This is NOT a property of 
other mesh generation methods 



2. Convergence properties of PMA 

Lemma 2: [Budd,Williams 2006]   

(a) If M(x,t) = M(x) then  PMA admits the 
solution 

 

 (b) This solution is locally stable/convergent and 
the mesh evolves to an equidistributed state 

 

  

tPtQ Λ+= )(),( ξξ

 

x(ξ) = ∇ξ Q =∇ξ P

Proof:  Follows from the convexity of P which 
ensures that PMA behaves locally like the heat 
equation  

This result is important when initializing a mesh 
to the initial data for a PDE 

 



Lemma 3: [B,W 2006]   

    If M(x,t) is slowly varying then the grid given 
by PMA is epsilon close to that given by 
solving the Monge Ampere equation. 

 

               

 Lemma 4: [B,W 2006] 

The mapping is 1-1 and convex for all times: 

No mesh tangling or points crossing the 
boundary 



Lemma 5:  [B,W 2005] Multi-scale property 

If the PDE has certain continuous group 
invariants then meshes can be constructed 
with the same invariance. 

This leads to discrete Noether type theorems 

Extremely useful properties when working 
with PDEs which have natural scaling laws  

4. For appropriate choices of M the coupled system 
is scale-invariant 

Lemma 6: [B,W 2009] Self-similarity 

Such constructions can admit discrete self-
similar solutions 



                                Coupling to a PDE 

 

More usually M is a function of the solution of a PDE 

 
• Carefully discretise PDE & PMA in the computational 
domain 

 

 

 

 

 

 

QuickTime™ and a
 decompressor

are needed to see this picture.



Solve the coupled mesh and PDE system  either 
 

Method One 

As one large system  (stiff!)       

Velocity based Lagrangian approach. Works well 
for parabolic blow-up type problems (JFW) 

 

Advantages: 

No need for interpolation 

Mesh and solution become one large dynamical 
system and can be studied as such 

Disadvantage: Equations are very hard to solve 
especially when the PDE is strongly advective 

 



Method 2 

By alternating between PDE and mesh 

 

1.  Time march the PDE 

2.  Construct a new mesh 

3.  Interpolate solution onto the new mesh 

4.  Repeat from 1. 

     

Advantages: 

Very flexible, can build in conservation laws 

Disadvantage: Interpolation is difficult and expensive 



 

ut = uxx + uyy + u3, u → ∞ t → T

2/12/1 )log()()( tTtTtL −−=

 

M(x,y,t) =
1
2

u(x,y)4

u4∫ dx dy
+

1
2

Example 1: Parabolic blow-up 

M is locally scale-invariant, concentrates points in the 
peak and keeps 50% of the points away from the peak 

Length scale: 



 Solve using Method 1 

 

ut = uxx + uyy + u3

Mesh: 

Solution: 

x y 

10 10^5 



Solution in the computational domain 

ξη

10^5 



Example 2:  Tropical storm formation (Eady 
problem) 



QuickTime™ and a
 decompressor

are needed to see this picture.



Solve using Method 2, with pressure correction 

• Update solution every 10 mins 

• Update mesh every hour 

• Advection and pressure correction on adaptive 
mesh 

• Discontinuity singularity after 6.3 days 

 

R=
f 2 + f vx f vz

gθ0
−1θx gθ0θz

 

 
 

 

 
 

M : Maximum eigenvalue of Potential Vorticity R 











Conclusions 

• Optimal transport is a natural way to determine 
meshes in dimensions greater than one 

• It can be implemented using a relaxation 
process by using the PMA algorithm 

• Method works well for a variety of problems, and 
there are rigorous estimates about its behaviour 

• Looking good on meteorological problems 

• Still lots of work to be done eg. Finding efficient 
ways to couple PMA to the underlying PDE 
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