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Almost complex surfaces

The receiving space

Let S3 be the unit 3-sphere regarded as the group of unit
quaternions, so

S3 = {x + yi + zj + wk : x2 + y2 + z2 + w2 = 1}.

We will look at almost complex surfaces (ie 2 real dimensions) in the
product S3 × S3, when this latter is equipped with
(a) a special almost complex structure J,
(b) a special Riemannian metric g (not the product metric).
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The almost complex structure

To define J (and several other structures too), we first define it at
the identity (1, 1), and then use the group structure on S3 × S3 to
move it round the whole space.

We first define J on tangent vectors (α, β) ∈ T(1,1)(S3 × S3) by

J(α, β) =
1√
3

(2β − α,−2α + β).

Then, if (X ,Y ) ∈ T(p,q)(S3 × S3), we translate back to (1, 1), ie

(X ,Y ) 7→ (p−1X , q−1Y ),

then apply J as defined above to give

(X ,Y ) 7→ 1√
3

(2q−1Y − p−1X ,−2p−1X + q−1Y )

and then translate back to (p, q) to give (Butruille),

J(X ,Y ) =
1√
3

(2pq−1Y − X ,−2qp−1X + Y ).
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An easy check shows that

J2 = −Id .

.

The standard product metric <,> on S3 × S3 is not J-invariant.

Define a J-invariant metric g on S3 × S3 in a natural way by taking

g(U,V ) =
1

2
(< U,V > + < JU, JV >), U,V ∈ T(p,q)(S3 × S3).

One can work out the Riemannian connection ∇̃ for g , and it turns
out that (S3 × S3, g , J) is a nearly Kahler manifold in that

J2 = −Id , g(JU, JV ) = g(U,V ), U,V ∈ T(p,q)(S3 × S3),

and (
∇̃UJ

)
U = 0.
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In fact, (S3 × S3, g , J) is a homogeneous nearly-Kaehler manifold,
with nearly-Kahler isometries given by

(p, q) 7→ (apc−1, bqc−1), a, b, c being unit quaternions.

Recently, Butruille has shown that the only homogeneous
6-dimensional, non-Kaehler nearly-Kaehler manifolds are S6, CP3,
S3 × S3 and SU(3)/T 2 (the manifold of flags in C3).

Luc, Franki and I have looked at almost complex surfaces (2 real
dimensions) in the nearly-Kaehler S6, so it was not surprising that
we’d have a go at looking at almost complex surfaces in one or more
of the above. It looked to us that S3 × S3 was the simplest to deal
with (after S6), so that’s the one we went for!
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The almost product structure

One of the important things you want to know is the curvature
tensor R̃ of (S3 × S3, g), and to do this (and for other things too) it
is convenient to define a new tensor P. Proceeding as we did with J,
we first define P at (1, 1) and then use the group structure to move
it round the whole space.

So, take

P(α, β) = (β, α), (α, β) ∈ T(1,1)(S3 × S3),

and then, if (X ,Y ) ∈ T(p,q)S
3 × S3, we define

P(X ,Y ) = (pq−1Y , qp−1X ).

We call P an almost product structure (because it reflects the
product structure but it’s not parallel). Easy checks show that

P2 = Id, PJ = −JP,

g(PU,PV ) = g(U,V ) for U,V tangential to S3 × S3.
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The curvature tensor

It then turns out that

R̃(U,V )W =
5

12

(
g(V ,W )U − g(U,W )V

)
+

1

12

(
g(JV ,W )JU − g(JU,W )JV + 2g(U, JV )JW

)
+

1

3

(
g(PV ,W )PU−g(PU,W )PV +g(JPV ,W )JPU−g(JPU,W )JPV

)
.

A calculation using the expression for R̃ above shows that

Lemma

Let U,V span a J-invariant 2-plane W. If P(W) is perpendicular to W,
then W has sectional curvature K̃ equal to 2/3. On the other hand, if
P(W) =W, then W has K̃ = 0.
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Almost complex surfaces

Definition A smooth immersion φ : M → S3 × S3 of a surface M
is said to be an almost complex surface if the image of the derivative
dφ is J-invariant at each point.

There are no 4-dimensional almost complex submanifolds in a
compact non-Kaehler, nearly-Kaehler 6-manifold (Podesta and Spiro
(2010)).

Standard arguments show:

Lemma

An almost complex surface in a nearly-Kaehler manifold is minimal, and
is totally geodesic if and only if K̃ = K (where K̃ is the sectional
curvature of the tangent plane as a plane in S3 × S3, and K is the
sectional curvature of the induced metric).

This is really useful because it doesn’t seem easy to compute the
second fundamental form directly.
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Totally geodesic ac surfaces

Let’s look for almost complex surfaces which are also totally
geodesic. The almost product structure P plays a large role here.

Theorem

If an almost complex surface is totally geodesic, then either
(i) P(tgt space) ⊥ tgt space, in which case K = K̃ = 2/3,
or
(ii) P(tgt space) = tgt space, in which case K = K̃ = 0.

Proof.

The Codazzi equation shows that if U is a unit tangent vector to the
almost complex surface, then R̃(U, JU)U is also tangential to the
almost complex surface, and so is a scalar multiple of JU.

The form of R̃, and a careful choice of U, shows either
P(tgt space) ⊥ tgt space or P(tgt space) = tgt space.

Lemmas 1 and 2 show K̃ = K = 2
3 in former case and K̃ = K = 0 in

latter case.
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Two examples

We now give two examples, one to illustrate each of the above
possibilities.
Example 1 Let φ : R2 → S3 × S3 be given by

φ(s, t) = (cos s + i sin s, cos t + i sin t).

A short calculation shows that this immersion is almost complex and
P(tgt space) = tgt space.

It is also quick to check that g(φs , φs) = g(φt , φt) = 4/3, and
g(φs , φt) = −2/3. In particular, all are constant so that the induced
metric is flat (ie has sectional curvature K = 0).

That φ is totally geodesic now follows from Lemma 1 and Lemma 2.

This gives a flat, almost complex, totally geodesic torus in S3 × S3.



Almost complex surfaces

Example 2 Let S2 be the 2-sphere of unit imaginary quaternions,
and let φ : S2 → S3 × S3 be given by

φ(x) =
1

2
(1−

√
3x , 1 +

√
3x).

Calculations similar to those in the previous example show this this
is an almost complex surface with P(tgt space) ⊥ tgt space. The
induced metric is 3/2 times the standard metric on S2, so that the
induced sectional curvature K is 2/3. It now follows from Lemma 1
and Lemma 2 that this almost complex 2-sphere is totally geodesic.

This gives an almost complex, totally geodesic, constant curvature
2-sphere in S3 × S3.
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What do I want to achieve?

Classify (ie, find) all almost complex 2-spheres in S3 × S3.

Find all totally geodesic almost complex surfaces in S3 × S3.
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What tools can I hope to use?

Complex variable techniques have been very useful in the study of
minimal and CMC surfaces (and ac surfaces). For example:

The Weierstrass representation of minimal surfaces in R3.

Hopf’s theorem: An immersed CMC 2-sphere in R3 must be
embedded as a round sphere. Proved by:

using the second fundamental form to construct a holomorphic
differential on any CMC surface in R3.
using the Hopf Index Theorem to deduce that all such differentials
vanish on a 2-sphere.
This then implies that every point is an umbilic point, which in turn
implies that we have the round 2-sphere.

So, we are looking for holomorphic data.
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Isothermal Coordinates

Let’s now explore the maths of an almost complex surface φ using
isothermal coordinates (u, v).

So, write φ(u, v) = (p(u, v), q(u, v)) ∈ S3 × S3 with
J(pu, qu) = (pv , qv ). We may then write

p−1pu = α, p−1pv = β, q−1qu = γ, q−1qv = δ,

where α, β, γ, δ are tangent vectors to the set S3 of unit
quaternions at 1. That is to say, α, β, γ, δ take values in the
imaginary quaternions.

Then (pu, qu) = (pα, qγ) and (pv , qv ) = (pβ, qδ), so the almost
complex condition J(pu, qu) = (pv , qv ) enables us to find γ, δ in
terms of α, β. This then enables us to show that the metric induced
on the almost complex surface is

(α.α + β.β)(du2 + dv2),

where “.” denotes the standard inner product in R3.
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Integrability conditions

We now consider the integrability condition puv = pvu.

This gives that

αv − βu = αβ − βα = 2α× β (vector cross product).

The similar condition for q, after substituting for γ, δ in terms of
α, β gives

αu + βv =
2√
3
α× β.

A short calculation now gives

(α.β)u =
1

2
(α.α− β.β)v and (α.β)v = −1

2
(α.α− β.β)u

Ooh - the Cauchy-Riemann equations!! What is the geometry of the
this holomorphic data?
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Theorem

Let φ : M → S3 × S3 be an almost complex surface and let
Λ = g(Pφz , φz). Then Λdz2 is a holomorphic differential, and the
following three conditions are equivalent.
(i) Λdz2 = 0
(ii) α.α− β.β = 0, and α.β = 0. (cf previous CR equations)
(iii) P maps the tangent spaces of φ to normal spaces.

The previous CR equations were:

(α.β)u =
1

2
(α.α− β.β)v and (α.β)v = −1

2
(α.α− β.β)u ,

so (ii) above is just the condition that the holomorphic function with real
part α.β and imaginary part 1

2 (α.α− β.β) is zero.
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Let’s now change direction slightly and look again at the equations

αv − βu = 2α× β, αu + βv =
2√
3
α× β.

If we precede α, β by rotation in the tangent spaces of M through

angle 2π/3 to give α̃ = − 1
2α +

√
3

2 β and β̃ = −
√

3
2 α−

1
2β, then the

above equations become

α̃v = β̃u, α̃u + β̃v = − 4√
3
α̃× β̃.

The first equation is an integrability condition. It shows that the
form α̃du + β̃dv is closed.
Hence, if the surface M is simply-connected, there exists an
immersion ε : S → R3 with εu = α̃ and εv = β̃.
Moreover, the other equation gives

εuu + εvv = − 4√
3
εu × εv .

Ooh - the equation for a surface in R3 with constant mean curvature
when the coordinates are isothermal for ε; the surface having been
scaled to have CMC = −2/

√
3.
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Theorem

Let M be a simply connected surface, and let φ : M → S3 × S3 be an
almost complex surface with Λdz2 = 0. Then there exists a
corresponding immersion ε : M → R3 with εu = α̃ and εv = β̃, and this
immersion has constant mean curvature equal to −2/

√
3.

Proof.

We need to prove that (u, v) are isothermal coordinates for ε (ie.,
α̃.α̃− β̃.β̃ = 0 and α̃.β̃ = 0).

A quick calculation shows that this holds if and only if
α.α− β.β = 0 and α.β = 0.

Theorem 2 now shows that if Λdz2 = 0 then (u, v) are isothermal
coordinates for ε, as required.

Note that, in this case, the metric induced by ε is equal to
α̃.α̃(du2 + dv2) = α.α(du2 + dv2), ie, half that induced on the ac
surface (which was (α.α + β.β)(du2 + dv2).)
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Theorem

Every almost complex 2-sphere in S3 × S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.

Proof.

Since S2 admits no non-zero holomorphic differentials, an almost
complex 2-sphere has Λdz2 = 0.

The corresponding CMC 2-sphere ε must be the round sphere (by
Hopf’s theorem), and since it has mean curvature −2/

√
3 then it

has radius
√

3/2 and hence sectional (or Gaussian) curvature 4/3.

The metric induced on S2 by ε is half that induced on the ac
surface, so this latter has constant sectional curvature K = 2/3.

Also, P maps the tangent spaces of φ to normal spaces, so, by
Lemma 1, the sectional curvature K̃ is also equal to 2/3.

It now follows from Lemma 2 that the almost complex surface is
totally geodesic.

The uniqueness part essentially follows from the uniqueness of CMC
2-spheres in R3 (and the double cover S3 = SU(2) over SO(3)).
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We can use similar techniques to classify other types of almost
complex surface in S3 × S3.

Theorem

Let M be an almost complex surface in S3 × S3 such that
P(tgt space) = tgt space. Then M may be obtained by applying a
nearly-Kaehler isometry to the flat totally-geodesic torus example we
gave earlier.

Theorem

If M is an almost complex surface in S3 × S3 with parallel second
fundamental form, then M is totally geodesic. In fact, M may be
obtained by applying a nearly-Kaehler isometry to one of the two
totally-geodesic examples (torus or 2-sphere) we gave earlier.


