Almost complex surfaces in the product of two 3-spheres

John Bolton

Joint work with Bart Dioos, Franki Dillen and Luc Vrancken

UK-J Mathematical Forum, July 2012

The receiving space

• Let S^3 be the unit 3-sphere regarded as the group of unit quaternions, so

$$S^3 = \{x + yi + zj + wk : x^2 + y^2 + z^2 + w^2 = 1\}.$$

- We will look at almost complex surfaces (ie 2 real dimensions) in the product $S^3 \times S^3$, when this latter is equipped with
 - (a) a special almost complex structure J,
 - (b) a special Riemannian metric g (not the product metric).

The almost complex structure

- To define J (and several other structures too), we first define it at the identity (1,1), and then use the group structure on $S^3 \times S^3$ to move it round the whole space.
- We first define J on tangent vectors $(\alpha,\beta) \in T_{(1,1)}(S^3 \times S^3)$ by

$$J(\alpha,\beta)=\frac{1}{\sqrt{3}}(2\beta-\alpha,-2\alpha+\beta).$$

• Then, if $(X,Y) \in T_{(p,q)}(S^3 \times S^3)$, we translate back to (1,1), ie

$$(X,Y)\mapsto (p^{-1}X,q^{-1}Y),$$

then apply J as defined above to give

$$(X,Y) \mapsto \frac{1}{\sqrt{3}}(2q^{-1}Y - p^{-1}X, -2p^{-1}X + q^{-1}Y)$$

• and then translate back to (p, q) to give (Butruille),

$$J(X,Y) = \frac{1}{\sqrt{3}}(2pq^{-1}Y - X, -2qp^{-1}X + Y).$$

An easy check shows that

$$J^2 = -Id.$$

• The standard product metric <, > on $S^3 \times S^3$ is not J-invariant.

ullet Define a J-invariant metric g on $S^3 imes S^3$ in a natural way by taking

$$g(U,V) = \frac{1}{2}(\langle U,V \rangle + \langle JU,JV \rangle), \quad U,V \in T_{(p,q)}(S^3 \times S^3).$$

• One can work out the Riemannian connection $\tilde{\nabla}$ for g, and it turns out that $(S^3 \times S^3, g, J)$ is a *nearly Kahler* manifold in that

$$J^2 = -Id$$
, $g(JU, JV) = g(U, V)$, $U, V \in T_{(p,q)}(S^3 \times S^3)$,

and

$$(\tilde{\nabla}_U J) U = 0.$$

• In fact, $(S^3 \times S^3, g, J)$ is a homogeneous nearly-Kaehler manifold, with nearly-Kahler isometries given by

$$(p,q)\mapsto (apc^{-1},bqc^{-1}), \quad a,b,c \text{ being unit quaternions.}$$

- Recently, Butruille has shown that the only homogeneous 6-dimensional, non-Kaehler nearly-Kaehler manifolds are S^6 , $\mathbb{C}P^3$, $S^3 \times S^3$ and $SU(3)/T^2$ (the manifold of flags in \mathbb{C}^3).
- Luc, Franki and I have looked at almost complex surfaces (2 real dimensions) in the nearly-Kaehler S^6 , so it was not surprising that we'd have a go at looking at almost complex surfaces in one or more of the above. It looked to us that $S^3 \times S^3$ was the simplest to deal with (after S^6), so that's the one we went for!

The almost product structure

- One of the important things you want to know is the curvature tensor \tilde{R} of $(S^3 \times S^3, g)$, and to do this (and for other things too) it is convenient to define a new tensor P. Proceeding as we did with J, we first define P at (1,1) and then use the group structure to move it round the whole space.
- So, take

$$P(\alpha,\beta)=(\beta,\alpha),\quad (\alpha,\beta)\in T_{(1,1)}(S^3\times S^3),$$
 and then, if $(X,Y)\in T_{(p,q)}S^3\times S^3$, we define

$$P(X, Y) = (pq^{-1}Y, qp^{-1}X).$$

 We call P an almost product structure (because it reflects the product structure but it's not parallel). Easy checks show that

$$P^2=\operatorname{Id}, \quad PJ=-JP,$$
 $g(PU,PV)=g(U,V) \quad ext{for } U,V ext{ tangential to } S^3 imes S^3.$

The curvature tensor

It then turns out that

$$\begin{split} \tilde{R}(U,V)W &= \frac{5}{12} \big(g(V,W)U - g(U,W)V \big) + \\ &\frac{1}{12} \big(g(JV,W)JU - g(JU,W)JV + 2g(U,JV)JW \big) + \\ &\frac{1}{3} \big(g(PV,W)PU - g(PU,W)PV + g(JPV,W)JPU - g(JPU,W)JPV \big). \end{split}$$

ullet A calculation using the expression for $ilde{R}$ above shows that

Lemma

Let U,V span a J-invariant 2-plane \mathcal{W} . If $P(\mathcal{W})$ is perpendicular to \mathcal{W} , then \mathcal{W} has sectional curvature \tilde{K} equal to 2/3. On the other hand, if $P(\mathcal{W})=\mathcal{W}$, then \mathcal{W} has $\tilde{K}=0$.

Almost complex surfaces

- **Definition** A smooth immersion $\phi: M \to S^3 \times S^3$ of a surface M is said to be an *almost complex surface* if the image of the derivative $d\phi$ is J-invariant at each point.
- There are no 4-dimensional almost complex submanifolds in a compact non-Kaehler, nearly-Kaehler 6-manifold (Podesta and Spiro (2010)).
- Standard arguments show:

Lemma

An almost complex surface in a nearly-Kaehler manifold is minimal, and is totally geodesic if and only if $\tilde{K}=K$ (where \tilde{K} is the sectional curvature of the tangent plane as a plane in $S^3\times S^3$, and K is the sectional curvature of the induced metric).

• This is really useful because it doesn't seem easy to compute the second fundamental form directly.

Totally geodesic ac surfaces

 Let's look for almost complex surfaces which are also totally geodesic. The almost product structure P plays a large role here.

Theorem

If an almost complex surface is totally geodesic, then either

- (i) $P(tgt \ space) \perp tgt \ space$, in which case $K = \tilde{K} = 2/3$, or
- (ii) $P(tgt \ space) = tgt \ space$, in which case $K = \tilde{K} = 0$.

Totally geodesic ac surfaces

• Let's look for almost complex surfaces which are also *totally geodesic*. The almost product structure *P* plays a large role here.

Theorem

If an almost complex surface is totally geodesic, then either

- (i) $P(tgt \ space) \perp tgt \ space$, in which case $K = \tilde{K} = 2/3$, or
- (ii) $P(tgt \ space) = tgt \ space$, in which case $K = \tilde{K} = 0$.

- The Codazzi equation shows that if U is a unit tangent vector to the almost complex surface, then $\tilde{R}(U,JU)U$ is also tangential to the almost complex surface, and so is a scalar multiple of JU.
- The form of \tilde{R} , and a careful choice of U, shows either $P(\text{tgt space}) \perp \text{tgt space}$ or P(tgt space) = tgt space.
- Lemmas 1 and 2 show $\tilde{K}=K=\frac{2}{3}$ in former case and $\tilde{K}=K=0$ in latter case

Two examples

We now give two examples, one to illustrate each of the above possibilities.

Example 1 Let
$$\phi: \mathbb{R}^2 \to S^3 \times S^3$$
 be given by $\phi(s,t) = (\cos s + i \sin s, \cos t + i \sin t).$

- A short calculation shows that this immersion is almost complex and P(tgt space) = tgt space.
- It is also quick to check that $g(\phi_s, \phi_s) = g(\phi_t, \phi_t) = 4/3$, and $g(\phi_s, \phi_t) = -2/3$. In particular, all are constant so that the induced metric is flat (ie has sectional curvature K = 0).
- ullet That ϕ is totally geodesic now follows from Lemma 1 and Lemma 2.
- This gives a flat, almost complex, totally geodesic torus in $S^3 \times S^3$.

• **Example 2** Let S^2 be the 2-sphere of unit imaginary quaternions, and let $\phi: S^2 \to S^3 \times S^3$ be given by

$$\phi(x) = \frac{1}{2}(1 - \sqrt{3}x, 1 + \sqrt{3}x).$$

- Calculations similar to those in the previous example show this this is an almost complex surface with $P(\mathsf{tgt}\;\mathsf{space}) \perp \mathsf{tgt}\;\mathsf{space}$. The induced metric is 3/2 times the standard metric on S^2 , so that the induced sectional curvature K is 2/3. It now follows from Lemma 1 and Lemma 2 that this almost complex 2-sphere is totally geodesic.
- This gives an almost complex, totally geodesic, constant curvature 2-sphere in $S^3 \times S^3$.

What do I want to achieve?

• Classify (ie, find) all almost complex 2-spheres in $S^3 \times S^3$.

• Find all totally geodesic almost complex surfaces in $S^3 \times S^3$.

What tools can I hope to use?

Complex variable techniques have been very useful in the study of minimal and CMC surfaces (and ac surfaces). For example:

- The Weierstrass representation of minimal surfaces in \mathbb{R}^3 .
- Hopf's theorem: An immersed CMC 2-sphere in \mathbb{R}^3 must be embedded as a round sphere. Proved by:
 - using the second fundamental form to construct a holomorphic differential on any CMC surface in R³.
 - using the Hopf Index Theorem to deduce that all such differentials vanish on a 2-sphere.
 - This then implies that every point is an umbilic point, which in turn implies that we have the round 2-sphere.

So, we are looking for holomorphic data.

Isothermal Coordinates

- Let's now explore the maths of an almost complex surface ϕ using isothermal coordinates (u, v).
- So, write $\phi(u, v) = (p(u, v), q(u, v)) \in S^3 \times S^3$ with $J(p_u, q_u) = (p_v, q_v)$. We may then write

$$p^{-1}p_u = \alpha$$
, $p^{-1}p_v = \beta$, $q^{-1}q_u = \gamma$, $q^{-1}q_v = \delta$,

where α , β , γ , δ are tangent vectors to the set S^3 of unit quaternions at 1. That is to say, α , β , γ , δ take values in the imaginary quaternions.

• Then $(p_u,q_u)=(p\alpha,q\gamma)$ and $(p_v,q_v)=(p\beta,q\delta)$, so the almost complex condition $J(p_u,q_u)=(p_v,q_v)$ enables us to find γ , δ in terms of α , β . This then enables us to show that the metric induced on the almost complex surface is

$$(\alpha.\alpha + \beta.\beta)(du^2 + dv^2),$$

where "." denotes the standard inner product in \mathbb{R}^3 .

Integrability conditions

- We now consider the integrability condition $p_{uv} = p_{vu}$.
- This gives that

$$\alpha_{v} - \beta_{u} = \alpha \beta - \beta \alpha = 2\alpha \times \beta$$
 (vector cross product).

• The similar condition for q, after substituting for γ, δ in terms of α, β gives

$$\alpha_{\mathsf{u}} + \beta_{\mathsf{v}} = \frac{2}{\sqrt{3}} \alpha \times \beta.$$

A short calculation now gives

$$(\alpha.\beta)_u = \frac{1}{2}(\alpha.\alpha - \beta.\beta)_v$$
 and $(\alpha.\beta)_v = -\frac{1}{2}(\alpha.\alpha - \beta.\beta)_u$

Integrability conditions

- We now consider the integrability condition $p_{uv} = p_{vu}$.
- This gives that

$$\alpha_{v} - \beta_{u} = \alpha \beta - \beta \alpha = 2\alpha \times \beta$$
 (vector cross product).

• The similar condition for q, after substituting for γ, δ in terms of α, β gives

$$\alpha_{u} + \beta_{v} = \frac{2}{\sqrt{3}}\alpha \times \beta.$$

A short calculation now gives

$$(\alpha.\beta)_u = \frac{1}{2}(\alpha.\alpha - \beta.\beta)_v$$
 and $(\alpha.\beta)_v = -\frac{1}{2}(\alpha.\alpha - \beta.\beta)_u$

Ooh - the Cauchy-Riemann equations!! What is the geometry of the this holomorphic data?

Let $\phi: M \to S^3 \times S^3$ be an almost complex surface and let $\Lambda = g(P\phi_z, \phi_z)$. Then Λdz^2 is a holomorphic differential, and the following three conditions are equivalent.

- (i) $\Lambda dz^2 = 0$
- (ii) $\alpha \cdot \alpha \beta \cdot \beta = 0$, and $\alpha \cdot \beta = 0$. (cf previous CR equations)
- (iii) P maps the tangent spaces of ϕ to normal spaces.

The previous CR equations were:

$$(\alpha.\beta)_u = \frac{1}{2}(\alpha.\alpha - \beta.\beta)_v$$
 and $(\alpha.\beta)_v = -\frac{1}{2}(\alpha.\alpha - \beta.\beta)_u$,

so (ii) above is just the condition that the holomorphic function with real part $\alpha.\beta$ and imaginary part $\frac{1}{2}(\alpha.\alpha-\beta.\beta)$ is zero.

Let's now change direction slightly and look again at the equations

$$\alpha_{\mathbf{v}} - \beta_{\mathbf{u}} = 2\alpha \times \beta, \quad \alpha_{\mathbf{u}} + \beta_{\mathbf{v}} = \frac{2}{\sqrt{3}}\alpha \times \beta.$$

• If we precede α,β by rotation in the tangent spaces of M through angle $2\pi/3$ to give $\tilde{\alpha}=-\frac{1}{2}\alpha+\frac{\sqrt{3}}{2}\beta$ and $\tilde{\beta}=-\frac{\sqrt{3}}{2}\alpha-\frac{1}{2}\beta$, then the above equations become

$$\tilde{\alpha}_{\mathbf{v}} = \tilde{\beta}_{\mathbf{u}}, \quad \tilde{\alpha}_{\mathbf{u}} + \tilde{\beta}_{\mathbf{v}} = -\frac{4}{\sqrt{3}}\tilde{\alpha} \times \tilde{\beta}.$$

- The first equation is an integrability condition. It shows that the form $\tilde{\alpha}du + \tilde{\beta}dv$ is closed.
- Hence, if the surface M is simply-connected, there exists an immersion $\varepsilon: S \to \mathbb{R}^3$ with $\varepsilon_u = \tilde{\alpha}$ and $\varepsilon_v = \tilde{\beta}$.
- Moreover, the other equation gives

$$\varepsilon_{uu} + \varepsilon_{vv} = -\frac{4}{\sqrt{3}}\varepsilon_u \times \varepsilon_v.$$

Let's now change direction slightly and look again at the equations

$$\alpha_{\mathbf{v}} - \beta_{\mathbf{u}} = 2\alpha \times \beta, \quad \alpha_{\mathbf{u}} + \beta_{\mathbf{v}} = \frac{2}{\sqrt{3}}\alpha \times \beta.$$

• If we precede α,β by rotation in the tangent spaces of M through angle $2\pi/3$ to give $\tilde{\alpha}=-\frac{1}{2}\alpha+\frac{\sqrt{3}}{2}\beta$ and $\tilde{\beta}=-\frac{\sqrt{3}}{2}\alpha-\frac{1}{2}\beta$, then the above equations become

$$\tilde{\alpha}_{\mathbf{v}} = \tilde{\beta}_{\mathbf{u}}, \quad \tilde{\alpha}_{\mathbf{u}} + \tilde{\beta}_{\mathbf{v}} = -\frac{4}{\sqrt{3}}\tilde{\alpha} \times \tilde{\beta}.$$

- The first equation is an integrability condition. It shows that the form $\tilde{\alpha}du + \tilde{\beta}dv$ is closed.
- Hence, if the surface M is simply-connected, there exists an immersion $\varepsilon: S \to \mathbb{R}^3$ with $\varepsilon_u = \tilde{\alpha}$ and $\varepsilon_v = \tilde{\beta}$.
- Moreover, the other equation gives

$$\varepsilon_{uu} + \varepsilon_{vv} = -\frac{4}{\sqrt{3}}\varepsilon_u \times \varepsilon_v.$$

• Ooh - the equation for a surface in \mathbb{R}^3 with constant mean curvature when the coordinates are isothermal for ε ; the surface having been scaled to have CMC = $-2/\sqrt{3}$.

Let M be a simply connected surface, and let $\phi: M \to S^3 \times S^3$ be an almost complex surface with $\Lambda dz^2 = 0$. Then there exists a corresponding immersion $\varepsilon: M \to \mathbb{R}^3$ with $\varepsilon_u = \tilde{\alpha}$ and $\varepsilon_v = \tilde{\beta}$, and this immersion has constant mean curvature equal to $-2/\sqrt{3}$.

- We need to prove that (u, v) are isothermal coordinates for ε (ie., $\tilde{\alpha}.\tilde{\alpha}-\tilde{\beta}.\tilde{\beta}=0$ and $\tilde{\alpha}.\tilde{\beta}=0$).
- A quick calculation shows that this holds if and only if $\alpha.\alpha-\beta.\beta=0$ and $\alpha.\beta=0$.
- Theorem 2 now shows that if $\Lambda dz^2 = 0$ then (u, v) are isothermal coordinates for ε , as required.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

Proof.

• Since S^2 admits no non-zero holomorphic differentials, an almost complex 2-sphere has $\Lambda dz^2 = 0$.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

- Since S^2 admits no non-zero holomorphic differentials, an almost complex 2-sphere has $\Lambda dz^2 = 0$.
- The corresponding CMC 2-sphere ε must be the round sphere (by Hopf's theorem), and since it has mean curvature $-2/\sqrt{3}$ then it has radius $\sqrt{3}/2$ and hence sectional (or Gaussian) curvature 4/3.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

- Since S^2 admits no non-zero holomorphic differentials, an almost complex 2-sphere has $\Lambda dz^2 = 0$.
- The corresponding CMC 2-sphere ε must be the round sphere (by Hopf's theorem), and since it has mean curvature $-2/\sqrt{3}$ then it has radius $\sqrt{3}/2$ and hence sectional (or Gaussian) curvature 4/3.
- The metric induced on S^2 by ε is half that induced on the ac surface, so this latter has constant sectional curvature K=2/3.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

- Since S^2 admits no non-zero holomorphic differentials, an almost complex 2-sphere has $\Lambda dz^2 = 0$.
- The corresponding CMC 2-sphere ε must be the round sphere (by Hopf's theorem), and since it has mean curvature $-2/\sqrt{3}$ then it has radius $\sqrt{3}/2$ and hence sectional (or Gaussian) curvature 4/3.
- The metric induced on S^2 by ε is half that induced on the ac surface, so this latter has constant sectional curvature K = 2/3.
- Also, P maps the tangent spaces of ϕ to normal spaces, so, by Lemma 1, the sectional curvature \tilde{K} is also equal to 2/3.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

- Since S^2 admits no non-zero holomorphic differentials, an almost complex 2-sphere has $\Lambda dz^2 = 0$.
- The corresponding CMC 2-sphere ε must be the round sphere (by Hopf's theorem), and since it has mean curvature $-2/\sqrt{3}$ then it has radius $\sqrt{3}/2$ and hence sectional (or Gaussian) curvature 4/3.
- The metric induced on S^2 by ε is half that induced on the ac surface, so this latter has constant sectional curvature K = 2/3.
- Also, P maps the tangent spaces of ϕ to normal spaces, so, by Lemma 1, the sectional curvature \tilde{K} is also equal to 2/3.
- It now follows from Lemma 2 that the almost complex surface is totally geodesic.

Every almost complex 2-sphere in $S^3 \times S^3$ is totally geodesic, and is obtained by applying a nearly-Kaehler isometry to our earlier example.

- Since S^2 admits no non-zero holomorphic differentials, an almost complex 2-sphere has $\Lambda dz^2 = 0$.
- The corresponding CMC 2-sphere ε must be the round sphere (by Hopf's theorem), and since it has mean curvature $-2/\sqrt{3}$ then it has radius $\sqrt{3}/2$ and hence sectional (or Gaussian) curvature 4/3.
- The metric induced on S^2 by ε is half that induced on the ac surface, so this latter has constant sectional curvature K=2/3.
- Also, P maps the tangent spaces of ϕ to normal spaces, so, by Lemma 1, the sectional curvature \tilde{K} is also equal to 2/3.
- It now follows from Lemma 2 that the almost complex surface is totally geodesic.
- The uniqueness part essentially follows from the uniqueness of CMC 2-spheres in \mathbb{R}^3 (and the double cover $S^3 = SU(2)$ over SO(3)).

• We can use similar techniques to classify other types of almost complex surface in $S^3 \times S^3$.

Theorem

Let M be an almost complex surface in $S^3 \times S^3$ such that $P(tgt\ space) = tgt\ space$. Then M may be obtained by applying a nearly-Kaehler isometry to the flat totally-geodesic torus example we gave earlier.

Theorem

If M is an almost complex surface in $S^3 \times S^3$ with parallel second fundamental form, then M is totally geodesic. In fact, M may be obtained by applying a nearly-Kaehler isometry to one of the two totally-geodesic examples (torus or 2-sphere) we gave earlier.