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Almost complex surfaces

The receiving space

o Let S3 be the unit 3-sphere regarded as the group of unit
quaternions, so

SS={x+yitzi+wk : XP+y’+22+nw?=1}.

o We will look at almost complex surfaces (ie 2 real dimensions) in the
product S3 x S3, when this latter is equipped with
(a) a special almost complex structure J,
(b) a special Riemannian metric g (not the product metric).
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The almost complex structure

To define J (and several other structures too), we first define it at
the identity (1,1), and then use the group structure on S3 x S% to
move it round the whole space.

We first define J on tangent vectors (a, 3) € T(1,1)(S> x §3) by

1
V3
Then, if (X, Y) € T(,,q)(S* x 5%), we translate back to (1,1), ie

(X, Y) = (p X, g 1Y),

J(o, B) = (28 — a, —2a + B).

then apply J as defined above to give

1
(X,Y)— %(2(1\/ —p X, —2p X +q71Y)

and then translate back to (p, q) to give (Butruille),

J(X,Y)=—=(2pqg Y — X, —2gp7 X + Y).

1
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B —
@ An easy check shows that

S =—.

@ The standard product metric <,> on S3 x 5% is not J-invariant.
@ Define a J-invariant metric g on S3 x S% in a natural way by taking

1
gU.V)=3(<UV>+<JUIV>), UVe Tip.) (5% x S3).

@ One can work out the Riemannian connection V for g, and it turns
out that (S3 x S3, g, J) is a nearly Kahler manifold in that

P=—Id, g(JU,JV)=g(U,V), U,V e Ty,qS® x5,

and
(VUJ) Uu=0.
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e In fact, (S3 x S3,g,J) is a homogeneous nearly-Kaehler manifold,
with nearly-Kahler isometries given by

(p,q) — (apc™t,bgc™?), a,b,c being unit quaternions.

@ Recently, Butruille has shown that the only homogeneous
6-dimensional, non-Kaehler nearly-Kaehler manifolds are S8, CP3,
S3 x S3 and SU(3)/ T2 (the manifold of flags in C3).

@ Luc, Franki and | have looked at almost complex surfaces (2 real
dimensions) in the nearly-Kaehler S, so it was not surprising that
we'd have a go at looking at almost complex surfaces in one or more
of the above. It looked to us that S3 x S3 was the simplest to deal
with (after S8), so that's the one we went for!
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The almost product structure

@ One of the important things you want to know is the curvature
tensor R of (53 x S3, g), and to do this (and for other things too) it
is convenient to define a new tensor P. Proceeding as we did with J,
we first define P at (1,1) and then use the group structure to move
it round the whole space.

@ So, take
P(a, B) = (B,2), (a,B) € Ta(S® x S3),
and then, if (X,Y) € T(p,q)53 x S§3, we define
P(X,Y)=(pg 'Y, qp™X).

@ We call P an almost product structure (because it reflects the
product structure but it's not parallel). Easy checks show that

P?2=Id, PJ=—JP,
g(PU,PV) =g(U,V) for U,V tangential to S* x S>.
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The curvature tensor

@ It then turns out that

R(U, V)W = %(g(v, W)U — g(U, W)V)+

o (g(JV, W)JU — g(JU, W)V +2g(U, JV)IW)+

%(g(PV7 W)PU—g(PU, W)PV+g(JPV, W)JPU—-g(JPU, W)JPV).

o A calculation using the expression for R above shows that

Let U,V span a J-invariant 2-plane W. If P(W) is perpendicular to W,
then VW has sectional curvature K equal to 2/3. On the other hand, if
P(W) =W, then W has K = 0.
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Almost complex surfaces

o Definition A smooth immersion ¢ : M — S3 x S3 of a surface M
is said to be an almost complex surface if the image of the derivative
d¢ is J-invariant at each point.

@ There are no 4-dimensional almost complex submanifolds in a
compact non-Kaehler, nearly-Kaehler 6-manifold (Podesta and Spiro

(2010)).

o Standard arguments show:

An almost complex surface in a nearly-Kaehler manifold is minimal, and
is totally geodesic if and only if K = K (where K is the sectional
curvature of the tangent plane as a plane in S x S3, and K is the
sectional curvature of the induced metric).

@ This is really useful because it doesn't seem easy to compute the
second fundamental form directly.
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Totally geodesic ac surfaces

@ Let's look for almost complex surfaces which are also totally
geodesic. The almost product structure P plays a large role here.

If an almost complex surface is totally geodesic, then either
(i) P(tgt space) L tgt space, in which case K = K = 2/3,
or

(ii) P(tgt space) = tgt space, in which case K = K = 0.




Almost complex surfaces

Totally geodesic ac surfaces

@ Let's look for almost complex surfaces which are also totally
geodesic. The almost product structure P plays a large role here.

Theorem

If an almost complex surface is totally geodesic, then either
(i) P(tgt space) L tgt space, in which case K = K = 2/3,
or

(ii) P(tgt space) = tgt space, in which case K = K = 0.

Proof.

@ The Codazzi equation shows that if U is a unit tangent vector to the
almost complex surface, then R(U, JU)U is also tangential to the
almost complex surface, and so is a scalar multiple of JU.

| N

o The form of R, and a careful choice of U, shows either
P(tgt space) L tgt space or P(tgt space) = tgt space.

o Lemmas 1 and 2 show K = K = % in former case and K = K = 0 in
latter case.
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Two examples

We now give two examples, one to illustrate each of the above
possibilities.
Example 1 Let ¢ : R?2 — S x S3 be given by

¢(s,t) = (coss + isins,cost + isint).

@ A short calculation shows that this immersion is almost complex and
P(tgt space) = tgt space.

o It is also quick to check that g(¢s, ¢s) = g(é+, @) = 4/3, and
g(dbs, ) = —2/3. In particular, all are constant so that the induced
metric is flat (ie has sectional curvature K = 0).

@ That ¢ is totally geodesic now follows from Lemma 1 and Lemma 2.

e This gives a flat, almost complex, totally geodesic torus in S3 x S3.
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o Example 2 Let S? be the 2-sphere of unit imaginary quaternions,
and let ¢ : S> — 53 x S3 be given by

B(x) = %(1 —V3x,1+V3x).

o Calculations similar to those in the previous example show this this
is an almost complex surface with P(tgt space) L tgt space. The
induced metric is 3/2 times the standard metric on 52 so that the
induced sectional curvature K is 2/3. It now follows from Lemma 1
and Lemma 2 that this almost complex 2-sphere is totally geodesic.

@ This gives an almost complex, totally geodesic, constant curvature
2-sphere in §3 x S3.
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e
What do | want to achieve?

o Classify (ie, find) all almost complex 2-spheres in S3 x S3.

e Find all totally geodesic almost complex surfaces in S3 x S3.
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What tools can | hope to use?

Complex variable techniques have been very useful in the study of
minimal and CMC surfaces (and ac surfaces). For example:
o The Weierstrass representation of minimal surfaces in R3.
@ Hopf's theorem: An immersed CMC 2-sphere in R® must be
embedded as a round sphere. Proved by:
o using the second fundamental form to construct a holomorphic

differential on any CMC surface in R3.
o using the Hopf Index Theorem to deduce that all such differentials

vanish on a 2-sphere.
o This then implies that every point is an umbilic point, which in turn

implies that we have the round 2-sphere.

So, we are looking for holomorphic data.
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Isothermal Coordinates

@ Let’s now explore the maths of an almost complex surface ¢ using
isothermal coordinates (u, v).

e So, write ¢(u, v) = (p(u, v), q(u, v)) € S3 x S3 with
J(pu, qu) = (pv, qv). We may then write

plpu=a, p'p=8, qlqu=7 qlq =4,

where o, 3, v, § are tangent vectors to the set S3 of unit
quaternions at 1. That is to say, a, (3, v, § take values in the
imaginary quaternions.

@ Then (pu,qu) = (pa, g7) and (pv, q,) = (pB, gd), so the almost
complex condition J(py, g,) = (pv, g.) enables us to find 7, J in
terms of «, (. This then enables us to show that the metric induced
on the almost complex surface is

(v + ﬂﬂ)(du2 + dv2),

where “." denotes the standard inner product in R3.
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Integrability conditions

@ We now consider the integrability condition p,, = pyy.
o This gives that

ay, — fBu=af — Ba=2ax [ (vector cross product).

@ The similar condition for g, after substituting for v, § in terms of
«, 3 gives

au+ﬁv:\%axﬁ~

@ A short calculation now gives

(@.B)y = %(a.a — 3.8)y and (a.f)y = —%(a.a Y
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Integrability conditions

We now consider the integrability condition p,, = py.
This gives that

ay, — fBu=af — Ba=2ax [ (vector cross product).

@ The similar condition for g, after substituting for v, § in terms of
«, 3 gives
2
ay+ By = ﬁa x 3.
@ A short calculation now gives

(@.B)y = %(a.a — 3.8)y and (a.f)y = —%(a.a Y

@ Ooh - the Cauchy-Riemann equations!! What is the geometry of the
this holomorphic data?
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Let ¢ : M — S3 x S3 be an almost complex surface and let
N = g(Pé,,¢,). Then Ndz? is a holomorphic differential, and the
following three conditions are equivalent.
(i) Adz2 = 0
(i) a.ao — 8.6 =0, and a.3 =0. (cf previous CR equations)
(iii) P maps the tangent spaces of ¢ to normal spaces.

The previous CR equations were:

(a.B)u = %(a.a —B.8)y and (a.8), = f%(a.a —B.B8)u

so (ii) above is just the condition that the holomorphic function with real
part a.3 and imaginary part %(a.a — B.8) is zero.
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@ Let's now change direction slightly and look again at the equations

2
—fBu=2axp3, a,+pb, =—ax/f.
B p p 73 p
o If we precede a, 3 by rotation in the tangent spaces of M through
angle 27/3 to give & = _,a + ‘fﬁ and 3 = —\[a - fﬁ then the
above equations become
o o 4 -
&v:ﬁu; &u'i_/gv:_idxﬁ'

V3
@ The first equation is an integrability condition. It shows that the
form &du + (dv is closed.
@ Hence, if the surface M is simply-connected, there exists an
immersion ¢ : S — R3 with e, = & and ¢, = 3.
@ Moreover, the other equation gives

EuutEW=— Eu X Ey.

V3
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@ Let's now change direction slightly and look again at the equations
2
—ax .
VR
o If we precede a, 3 by rotation in the tangent spaces of M through
angle 27/3 to give & = _,a + ‘fﬁ and 3 = —\2[04 - 2ﬁ then the
above equations become

*ﬂu:2axﬂa O‘u+ﬂv:

~ ~ 4 .
&y = By, Gay+ 0y \/ga x f.
@ The first equation is an integrability condition. It shows that the
form &du + (dv is closed.
@ Hence, if the surface M is simply-connected, there exists an
immersion ¢ : S — R3 with e, = & and ¢, = 3.
@ Moreover, the other equation gives

EuutEW=— Eu X Ey.

V3
@ Ooh - the equation for a surface in R3 with constant mean curvature
when the coordinates are isothermal for ¢; the surface having been

scaled to have CMC = —2/+/3.
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Let M be a simply connected surface, and let ¢ : M — S3 x S3 be an
almost complex surface with Adz?> = 0. Then there exists a
corresponding immersion ¢ : M — R3 withe, = & and ¢, = 5 and this
immersion has constant mean curvature equal to —2/+/3.

Proof.
@ We need to prove that (u, v) are isothermal coordinates for ¢ (ie.,
.6 — p.p=0and &0 =0).
@ A quick calculation shows that this holds if and only if
a.a— (3.6=0and a.0 =0.
@ Theorem 2 now shows that if Adz? = 0 then (u, v) are isothermal
coordinates for €, as required.

o Note that, in this case, the metric induced by ¢ is equal to
&.a(du? + dv?) = a.a(du?® + dv?), ie, half that induced on the ac
surface (which was (a.a + 3.8)(du? + dv?).)
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Every almost complex 2-sphere in S3 x S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.
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s

Every almost complex 2-sphere in S3 x S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.

@ Since S? admits no non-zero holomorphic differentials, an almost
complex 2-sphere has Adz? = 0.




Almost complex surfaces

s

Every almost complex 2-sphere in S3 x S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.

Proof.

| A\

@ Since S? admits no non-zero holomorphic differentials, an almost
complex 2-sphere has Adz? = 0.

@ The corresponding CMC 2-sphere £ must be the round sphere (by

Hopf’s theorem), and since it has mean curvature —2/+/3 then it
has radius v/3/2 and hence sectional (or Gaussian) curvature 4/3.
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@ The corresponding CMC 2-sphere £ must be the round sphere (by
Hopf’s theorem), and since it has mean curvature —2/+/3 then it
has radius v/3/2 and hence sectional (or Gaussian) curvature 4/3.

@ The metric induced on S? by ¢ is half that induced on the ac
surface, so this latter has constant sectional curvature K = 2/3.




Almost complex surfaces

s

Every almost complex 2-sphere in S3 x S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.

Proof.

@ Since S? admits no non-zero holomorphic differentials, an almost
complex 2-sphere has Adz? = 0.

| A\

@ The corresponding CMC 2-sphere £ must be the round sphere (by
Hopf’s theorem), and since it has mean curvature —2/+/3 then it
has radius v/3/2 and hence sectional (or Gaussian) curvature 4/3.

@ The metric induced on S? by ¢ is half that induced on the ac
surface, so this latter has constant sectional curvature K = 2/3.

o Also, P maps the tangent spaces of ¢ to normal spaces, so, by
Lemma 1, the sectional curvature K is also equal to 2/3.
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Every almost complex 2-sphere in S3 x S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.
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@ The metric induced on S? by ¢ is half that induced on the ac
surface, so this latter has constant sectional curvature K = 2/3.

@ Also, P maps the tangent spaces of ¢ to normal spaces, so, by
Lemma 1, the sectional curvature K is also equal to 2/3.

@ It now follows from Lemma 2 that the almost complex surface is
totally geodesic.
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s

Every almost complex 2-sphere in S3 x S3 is totally geodesic, and is
obtained by applying a nearly-Kaehler isometry to our earlier example.

4

@ Since S? admits no non-zero holomorphic differentials, an almost
complex 2-sphere has Adz? = 0.

@ The corresponding CMC 2-sphere £ must be the round sphere (by
Hopf’s theorem), and since it has mean curvature —2/+/3 then it
has radius v/3/2 and hence sectional (or Gaussian) curvature 4/3.

@ The metric induced on S? by ¢ is half that induced on the ac
surface, so this latter has constant sectional curvature K = 2/3.

@ Also, P maps the tangent spaces of ¢ to normal spaces, so, by
Lemma 1, the sectional curvature K is also equal to 2/3.

@ It now follows from Lemma 2 that the almost complex surface is
totally geodesic.

@ The uniqueness part essentially follows from the uniqueness of CMC
2-spheres in R3 (and the double cover S3 = SU(2) over SO(3)).
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@ We can use similar techniques to classify other types of almost
complex surface in §3 x S3.

Theorem

Let M be an almost complex surface in S3 x S3 such that

P(tgt space) = tgt space. Then M may be obtained by applying a
nearly-Kaehler isometry to the flat totally-geodesic torus example we
gave earlier.

Theorem

| A

If M is an almost complex surface in S3 x S with parallel second
fundamental form, then M is totally geodesic. In fact, M may be
obtained by applying a nearly-Kaehler isometry to one of the two
totally-geodesic examples (torus or 2-sphere) we gave earlier.




