Proceedings of The Second International
Workshop on Diff. Geom. 2{1998) 17-34.

ON HOMOGENEOUS HYPERSURFACES
IN RIEMANNIAN SYMMETRIC SPACES

JURGEN BERNDT

1. Introduction

The aim of this note is to present a survey about the classifica-
tion problem of homogeneous hypersurfaces in Riemannian symmetric
spaces. Let (M, g) be a Riemannian manifold and I(M, g) its isometry
group. A homogeneous submanifold of (M, g) is a connected submani-
fold N of M which is an orbit of some closed subgroup G of I(M,g).
If the codimension of N is one, then N is called a homogeneous hyper-
surface. Suppose N is a homogeneous hypersurface of M. Then there
exists some closed subgroup G of I(M. g) having N as an orbit. Since
the codimension of NV is one, the regular orbits of the action of G on
M have codimension one, that is, the action of G on M is of coho-
mogeneity one. Thus the classification of homogeneous hypersurfaces
Is equivalent to the classification of cohomogeneity one actions up to
orbit equivalence. Therefore we start with some general remarks about
cohomogeneity one actions. I would like to thank Andreas Kollross for
explaining me details of his results in an early stage.

2. The orbit structure of cohomogeneity one actions

Let (M, g) be a complete Riemannian manifold and G a closed sub-
group of I(M, g) acting on M with cohomogeneity one. We equip the
orbit space M /G with the quotient topology relative to the canonical
projection M — M/G. Then M/G is a one-dimensional Hausdorff
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space homeomorphic to the real line R, the circle S!, the half-open in-
terval [0, 00), or the closed interval [0,1]. This was proved by Mostert
[20] in the case G is compact and by Bérard-Bergery [2] in the general
case. The following basic examples illustrate these four cases. Consider
a one-parameter group of translations in R®. Then the orbits are paral-
lel lines in R, and the space of orbits 1s homeomorphic to R. Rotating
a torus around its vertical axis through the center leads to an orbit
space homeomorphic to S'. And rotating a sphere around some axis
through its center yields an orbit space homeomorphic to [0, 1]. Even-
tually, rotating a plane around some fixed point leads to an orbit space
homeomorphic to [0, cc).

If M/G is homeomorphic to R or S, each orbit of the action of G is
regular and the orbits form a codimension one Riemannian foliation on
M. In the case M /G is homeomorphic to [0. >c) or [0, 1] there exist one
or two singular orbits. respectively. If a singular orbit has codimension
greater than one, then each regular orbit is geometrically a tube around
this singular one. And if the codimension of a singular orbit is one, then
each regular orbit is an equidistant hypersurface to it. and the natural
projection from a regular orbit to the singular one is a covering map.

If M is simply connected and compact, then for topological reasons
M /G must be homeomorphic to [0,1] and each singular orbit must
have codimension greater than one. Thus each regular orbit is a tube
around any of the two singular orbits. and each singular orbit is a focal
set of any regular orbit. If M is simply connected and non-compact,
then M/G must be homeomorphic to R or [0,oc). In the latter case
the singular orbit must have codimension greater than one, and each
regular orbit is a tube around the singular one. This discussion gives
us a rough idea of what homogeneous hypersurfaces look like.

3. Homogeneous hypersurfaces in real space forms

Any isometry is an affine map with respect to the Riemannian con-
nection. As a consequence from the Weingarten formula we thus see
that any homogeneous hypersurface has constant principal curvatures,
In a space of constant curvature a-hypersurface has constant principal
curvatures if and only if it is isoparametric. An isoparametric hyper-
surface is a level hypersurface of an isoparametric function. This is a
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smooth function f : M — R so that ||df|* = a(f) and Af = b(f) for
some smooth function a and some continuous function b on R. Isopara-
metric functions and hypersurfaces in R" were classified by Levi-Civita
[17] in the case n = 3 and by Segre [23] in the general case. It is
easy to see that each of these isoparametric hypersurfaces is homoge-
neous. This establishes the classification of homogeneous hypersurfaces
in Euclidean spaces.

Theorem 1. A hypersurface in R", n = 3. is homogeneous if and only
if it s

(1) a hypersphere in R", or

(2) an affine hyperplane in R"™, or

(3) a tube around a k-dimensional affine subspace of R" for some 1 <
k<n-2.

The isometry group of R" is the semi-direct product I(R"™) = O(n) x
R"™, where R™ acts on itself by translations. As closed subgroups of
I(R"™) giving the homogeneous hypersurfaces of type (1), (2), (3) one
may choose SO(n), R*™ !, SO(n — k) x R*. respectively.

In a series of papers [7], [8], 9]. [10], Cartan made an attempt to clas-
sify the isoparametric hypersurfaces in the real hyperbolic space RH™
and the sphere 5. He succeeded in the case of the hyperbolic space,
and obtained various results in the case of the sphere. As concerns
the hyperbolic space. the crucial step in the classification is a formula
which is derived from the equations of Gauss and Codazzi and describes
a relation among the principal curvatures. This formula implies that
the number of distinct principal curvatures is at most two. If there
is just one principal curvature, then the hypersurface is umbilical and
hence a horosphere, a geodesic hypersphere, a totally geodesic real hy-
perbolic hyperplane or an equidistant hypersurface to it. If there are
two distinct principal curvatures, one can use theory of focal sets to de-
duce that the hypersurface is a tube around some totally geodesic real
hyperbolic subspace. All these spaces are in fact homogeneous, which
implies

Theorem 2. A hypersurface in RH™, n > 3. is homogeneous if and
only if it is
(1) a geodesic hypersphere in RH™. or
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(2) a horosphere in RH™, or

(3) a totally geodesic RH™™' or an equidistant hypersurface to it, or

(4) a tube around a k-dimensional totally geodesic RH* in RH™ for some
12k En=2

As subgroups of the identity component SO%(1,n) of the isometry
group of RH™ one may choose (1) the isotropy group SO(n); (2) the
nilpotent part in some Iwasawa decomposition of SO°(1,7), which
is isomorphic to the abelian Lie group R"™'; (3) SO%(1,n — 1); (4)
SO°(1,k) x SO(n -k).

For spheres Cartan’s formula does not provide sufficient information
to determine the possible number of distinct principal curvatures. Only
later it was proved by Miinzner [21], using sphere bundles and meth-
ods from algebraic topology, that the number g of distinct principal
curvatures of an isoparametric hypersurface in S™ equals 1, 2, 3,4 or 6.
Already Cartan classified the isoparametric hypersurfaces with at most
three distinct principal curvatures. They all turn out to be homoge-
neous. Surprisingly, for g = 4 there are non-homogeneous isoparametric
hypersurfaces. The first such examples were discovered by Ouzeki and
Takeuchi [22], later Ferus, Karcher and Miinzner [13] constructed fur-
ther series of examples by using representations of Clifford algebras. It
was shown by Abresch [1] that the case g = 6 occurs only in S7 and
S'3. Dorfmeister and Neher [12] proved that in S7 an isoparametric
hypersurface must be homogeneous. This is still an open problem in
the case of S'3. Now, as concerns the classification of homogeneous
hypersurfaces, the following result by Hsiang and Lawson [15] settles
also the remaining cases g = 4, 6:

Theorem 3. A hypersurface in S™ is homogeneous if and only if it
is a principal orbit of the isotropy representation of some Riemannian
symmetric space of rank two.

We can therefore read off the classification of homogeneous hypersur-
faces in spheres from the classification of compact, simply connected,
Riemannian symmetric spaces. In detail. we get the following homoge-
neous hypersurfaces ¥ in ™ = SO(n + 1)/S0(n):
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g = 1: Then N is a geodesic hypersphere in S™. A suitable subgroup
of SO(n+ 1) is the isotropy group SO(n), and the corresponding Rie-
mannian symmetric space of rank two is

(SO(2) x SO(n +1))/SO(n) = S x §™ .

g = 2: Then N is a Riemannian product of two spheres, namely
%) x S F YY) P2 Eri=, B i<l  O<hSm—1

A suitable subgroup of SO(n + 1) is SO(k + 1) x SO(n — k), and the
corresponding Riemannian symmetric space of rank two is

(SO(k+2) x SO(n—k+1))/(SO(k+1)x SO(n—k)) = §*+1 x gn—*

g = 3: Then N is congruent to a tube around the Veronese embedding
of RP? into S*, or of CP? into S7. or of HP? into S13, or of QP2 into
525, The corresponding Riemannian symmetric spaces of rank two are

SU(3)/80(3) , SU(3), SU(6)/Sp(3) , Eg/Fy ,

respectively. These homogeneous hypersurfaces might also be described
as the principal orbits of the natural action of SO(3), SU(3), Sp(3),
Fy on the unit sphere in the linear subspace of all traceless matrices in
the Jordan algebra of all 3 x 3-Hermitian matrices with coefficients in
R. C. H, O, respectively. The singular orbits of these actions give the
Veronese embeddings of the corresponding projective spaces.

g =4: Then N is a principal orbit of the isotropy representation of
Sp(2) , SO(10)/U(5) , Eg/Spin(10)- T,
or of a two-plane Grassmannian

G5 (R*?) = SO(k + 2)/S0(k) x SO(2) (k >
G2(CH?) = SU(k +2)/S(U (k) x U(2)) (k >
Ga(H**?) = Sp(k +2)/Sp(k) x Sp(2) (k> 2) .
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The homogeneous hypersurfaces related to G3(R**?) are the principal
orbits of the action of SO(k) x SO(2) on the unit sphere S%*~! in
Mat(k x 2,R) = R?* defined by

(A, -B). Xs=AXB™,

with A € SO(k), B € SO(2) and X € Mat(kx2,R). The homogeneous
hypersurfaces related to the complex and quaternionic Grassmannians
are obtained from the analogous actions of S(U(k) x U(2)) and Sp(k) x
Sp(2) on the unit sphere in Mat(k x 2,C) = C%* ~ R* and Mat(k x
2, H) =~ H?* =~ R%, respectively.

The homogeneous hypersurfaces related to Sp(2) = Spin(5) are the
principal orbits of the adjoint representation of Sp(2) in the unit sphere
S? of its Lie algebra sp(2) ~ R'".

The unitary group U(5) acts on C5 and hence on A2C® =~ C!? ~ R*
in a natural way. The principal orbits of this action in the unit sphere
S19 correspond to the principal orbits of the action of the isotropy
representation of SO(10)/U(5).

Denote by A1t and A~ the two real half-spin representations of
Spin(10) on B3 ~ C'° and by € theé canonical representation of
T=~U(l) on C'® by multiplication with unit complex numbers. Then
the isotropy representation of Eg/Spin(10) - T is equivalent to A™ @
€3 + A~ ® £73, and its principal orbits in the unit sphere 331 ¢ B
are homogeneous hypersurfaces.

g = 6: Then N is a principal orbit of the isotropy representation of
G4/S0O(4) or of the compact exceptional Lie group G». The isomor-
phisms Spin(4) ~ Sp(1) x Sp(1) and R® ~ H* give rise to an action of
Spin(4) on R® by means of

()"* ru'} ' (z? '“‘} s ()'.Z._ U!'-""_l) »

where (A, u) € Sp(1) x Sp(1) and (z,v) € Ha® H. The principal orbits
of this action in the unit Sph&rﬁ_r_s_? are homogeneous hypersurfaces
with six distinct principal curvatures. Miyaoka [19] proved that the
orbits of this action are precisely the inverse images under the Hopf
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map S7 — §* of the orbits of the action of SO(3) on S* as described
in the case g = 3.

The principal orbits in the unit sphere S12 of the Lie algebra g, ~ R**
of the adjoint representation of the Lie group G2 are homogeneous hy-
persurfaces with six distinet principal curvatures, all of whose multi-
plicities are two.

5. Homogeneous hypersurfaces in projective spaces

For real projective spaces the classification of homogeneous hyper-
surfaces can be deduced from the one on spheres by using the two-fold
covering S™ — RP™. An interesting fact is that in complex projective
spaces the theories of isoparametric hypersurfaces and hypersurfaces
with constant principal curvatures arve different. In fact, Wang [25]
showed that certain non-homogeneous isoparametric hypersurfaces in
spheres project to isoparametric hypersurfaces in complex projective
spaces with non-constant principal curvatures. Here, projection is with
respect to the Hopf map S*"*t! — CP". Tt is still an open problem
whether anv hvpersurface with constant principal curvatures is isopara-
metric in CP". The classification of homogeneous hypersurfaces in CP™
was achieved by Takagi [24]. Every homogeneous hypersurface in CP"
is the projection of a homogeneous hypersurface in S*"**+!. But not
every homogeneous hypersurface in S2**! is invariant under the S!-
action and hence does not project to a homogeneous hypersurface in
CP". In fact. Takagi proved that those which do project are precisely
those which arise from isotropy representations of Hermitian symmetric
spaces of rank two. In detail. this gives the following classification:

Theorem 4. A hypersurface in CP", n > 2, is homogeneous if and
only f it is congruent to
(1) a tube around a k-dimensional totally geodesic CP* in CP™ for some
D<k<n—1, or
(2) a tube around the compler quadric {[z] € CP™ |23 +...+ 2
CP" gr
(3) a tube around the Segre embedding of CP' x CP* into CP?**+1_ op
(4) a tube around the Plicker embedding of the complex Grassmann man-

ifold G(C®) into CP®, or
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(5) a tube around the half spin embedding of the Hermitian symmelric
space SO(10)/U(5) into CP.

The corresponding Hermitian symmetric spaces of rank two are (1
CP**1 x CP™F, (2) GF (R™?), (3) G2(C™*?), (4) SO(10)/U(5), (5
E¢/Spin(10) - T.

For the quaternionic projective space HP™ an analogous argument,

was carried out by D’Atri [11] in order to obtain the classification of
homogeneous hypersurfaces:

)
)

Theorem 5. A hypersurface in HP™, n > 2, is homogeneous if and
only if it is a tube around some totally geodesic HP* in HP™ for some
ke {0,...,n—1}, or around some totally geodesic CP™ in HP™.

The tubes around HP* are the principal orbits of the action of Sp(k-+
1) x Sp(n — k) C Sp(n + 1) on HP™. The two singular orbits of this
action are totally geodesic HP* and HP"~*-1, The tubes around CP"
are the principal orbits of the action of U(n + 1) € Sp(n + 1) on HP".

The methods used by Takagi and D’Atri do not work in the case of the
Cayley projective plane @P?. In this situation. the classification follows
from a more general result by Kollress [16] which will be discussed in
more detail in the next section.

Theorem 6. A hypersurface in QP? is homogeneous if and only if it
15 a geodesic hypersphere or a tube around some totally geodesic HP?
in QP2

The geodesic hyperspheres are obviously the orbits of the isotropy
group Smn(9) C Fy. The second singular orbit of this action is a
totally geodesic QP! = S® The tubes around HP? are the principal
orbits of the action of Sp(3) x SU(2) C Fy. Here, the second singular
orbit is Sp(3)/Sp(2) = §*1

6. Homogeneous hypersurfaces in Riemannian symmetric
spaces of compact type

The classification of homogenegus hypersurfaces in irreducible, sim-
ply connected. Riemannian symmetric spaces of compact type is a
part of the more general classification of hyperpolar actions (up to
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orbit equivalence) on these spaces due to Kollross [16]. Hyperpolar
actions on symmetric spaces are sometimes viewed as generalizations
of s-representations, that is, of isotropy representations of semisimple
Riemannian symmetric spaces. An isometric action of a closed Lie
group on a semisimple Riemannian symmetric space M is said to be
hyperpolar if there exists a closed, totally geodesic, flat submanifold
of M meeting each orbit of the action and intersecting always perpen-
dicularly. It is obvious that the cohomogeneity of a hyperpolar action
must be less or equal than the rank of the symmetric space. In partic-
ular, the hyperpolar actions on Riemannian symmetric spaces of rank
one are precisely the isometric actions of cohomogeneity one, whose
classification up to orbit equivalence we described in the previous sec-
tion. A large class of hyperpolar actions was discovered by Hermann
[14]. Suppose (G, K) and (G, H) are two Riemannian symmetric pairs
of compact type. Then the action of H on the Riemannian symmetric
space G/K is hyperpolar. Also. the action of H x K on G given by
(h.k) - g := hgk™! is hyperpolar. Note that in particular the action
of the isotropy group of a semisimple Riemannian symmetric space is
hyperpolar.

We describe the idea for the classification by Kollross in the special
case when the action is of cohomogeneity one and the symmetric space
= G/K is of rank > 2 and not of group type. Suppose H is a
maximal closed subgroup of G. If H is not transitive on M, then its
cohomogeneity is at least one. Since the cohomogeneity of the action of
any closed subgroup of H is at least the cohomogeneity of the action of
H. and we are interested only in classification up the orbit equivalence,
it suffices to consider only maximal closed subgroups of G. But it may
happen that H acts transitively on G/K. This happens precisely in
four cases, where we write down G/K = H/(H N K):

O(2n)/U(n) SO{?TE -1)/U(n—1) (n>4),
SU(2n)/Sp(n) = SU(2n —1)/Sp(n—1) (n > 3) ,
GT(R") = SO(T)/S0(2) x SO(5) = G»/U(2) ,
G5 (R®) = S0(8)/50(3) x SO(5) = Spin(T)/SO(4) .



26 JURGEN BERNDT

In these cases one has to go one step further and consider maximal
closed subgroups of H which then never happen to act also transitively.
Thus it is sufficient to consider maximal closed subgroups of &, with the
few exceptions just mentioned. In order that a closed subgroup H acts
with cohomogeneity one it obviously must satisfy dim H > dim M - 1.
This rules already out a lot of possibilities. For the remaining maximal
closed subgroups one has to calculate case by case the cohomogeneity.
One way to do this is to calculate the codimension of the slice repre-
sentation at [K], this is the action of the isotropy group H N K on the
normal space of the orbit through [K]. This procedure eventually leads
to the classification of all cohomogeneity one actions up to orbit equiv-
alence, and hence to the classification of homogeneous hypersurfaces,
on M = G/K. It turns out that with five exceptions all homogeneous
hypersurfaces arise via the construction of Hermann. The exceptions
come from the following actions:

1. The action of G3 C SO(7) on SO(7)/U(3 8)/U(4) = G+ (R®).
2. The action of G5 C SO(7) on SO(T) ;50{3 X 50 (4) = GT(R").
3. The action of Spin(9) C SO(16) on SO(16)/50(2) x 50{14} =

GF(R*).

4. The action of Sp(n)Sp(1) C SO(4n) on SO(4n)/SO(2) x SO(4n —
2) = GF(R*™). -

The action of SU(3) € G2 on G2/SO(4)

on

7. Homogeneous hypersurfaces in Riemannian symmetric
spaces of non-compact type

We have already discussed above the classification of homogeneous
hypersurfaces in real hyperbolic space RH™. The method of Cartan
does not work for the hyperbolic spaces CH™, HH™ and QH?2. The
reason 1s that the equations of Gauss and Codazzi become too compli-
cated. Nevertheless, we can apply the method of Cartan to the special
class of curvature-adapted hypersurfaces. For these hypersurfaces the
equations of Gauss and Codazzi simplify considerably. A hypersurface
N of a Riemannian manifold M is called curvature-adapted if its shape
operator and its normal Jacobi eperator commute with each other. Re-
call that the normal Jacobi operator of V is the self-adjoint (local)
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tensor field on N defined by R(..£)&, where R is the Riemannian cur-
vature tensor of M and £ is a (local) unit normal vector field of N. If
M is a space of constant curvature, then the normal Jacobi operator
is a multiple of the identity at each point, whence any hypersurface is
curvature-adapted. But for more general ambient spaces this condition
is quite restrictive. For instance, in a non-flat complex space form, say
CP"™ or CH™, a hypersurface N is curvature-adapted if and only if the
structure vector field on NV is a principal curvature vector everywhere.
Recall that the structure vector field of N is the vector field obtained
by rotating a local unit normal vector field to a tangent vector field
using the ambient Kéhler structure. In [3] the author derived the clas-
sification of all curvature-adapted hypersurfaces in CH™ with constant
principal curvatures. Any of these is homogeneous, which leads to

Theorem 7. A hypersurface in CH™, n > 2, is curvature-adapted and
homogeneous if and only if if is
(1) a geodesic hypersphere in CH™, or
(2) a tube around some totally geodesic CH* in CH™ for some 1 < k <
n-—1.,or
(3) a horosphere in CH". or
(4) a tube around some totally geodesic RH™ wn CH™.

The geodesic hyperspheres are obviously the principal orbits of the
isotropy group S(U(1) x U{n)) of SU(1,n) at some point. The tubes
around a totally geodesic CH*® are the principal orbits of the action of
S(U(1,k) x U(n—k)) € SU(1,n). The horospheres arise as the orbits
(there are only principal orbits in this case) of the nilpotent part in
any Iwasawa decomposition of SU(1,n). Note that this nilpotent part
is isomorphic to the (2n — 1)-dimensional Heisenberg group. Eventu-
ally. the tubes around RH™ are the principal orbits of the action of
SO(1,n) c SU(1,n).

A hypersurface N in a quaternionic space form M, say HP™ or HH™,
is curvature-adapted if and only if the three-dimensional distribution,
which is obtained by rotating the normal bundle of N into the tangent,
bundle of N by the almost Hermitian structures in the quaternionic
Kahler structure of M. is invariant under the shape operator of N.
The curvature-adapted hypersurfaces in HP™ and HH™ with constant
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principal curvatures were classified in [4]. In the case of the quaternionic
hyperbolic space this leads to

Theorem 8. A hypersurface in HH™, n = 2, is curvature-adapted and
homogeneous if and only if it is
(1) a geodesic hypersphere in HH™, or
(2) a tube around some totally geodesic HH* in HH™ for some 1 < k <
n—1, or
(3) a horosphere in HH™, or
(4) a tube around some totally geodesic CH™ in HH™.

The geodesic hyperspheres are the principal orbits of the isotropy
group Sp(l) x Sp(n) of Sp(l,n) at some point. The tubes around a
totally geodesic HH* are the principal orbits of the action of Sp(1, k) x
Sp(n — k) € Sp(l.,n). The horospheres arise as the orbits of the
nilpotent part in any Iwasawa decomposition of Sp(l.n). And the
tubes around CH™ are the principal orbits of the action of SU(1,n) C
Sp(l,n).

Of course. the question arises naturally whether any homogeneous hy-
persurface in CH™ or HH™ is curvature-adapted. As the classifications
by Takagi and D'Atri show, the answer for the corresponding question
in CP™ and HP™ is yes. But recently Lohnherr and Reckziegel [18]
found an example of a homogeneous ruled hypersurface in CH™ which
is not curvature-adapted. Consider a horocycle in a totally geodesic
and totally real RH* € CH™. At each point of the horocycle we attach
a totally geodesic CH™~! orthogonal to the complex hyperbolic line
determined by the tangent vector of the horocycle at that point. By
varying with the points on the horocycle we get a homogeneous ruled
hypersurface in CH™. In [5] the author constructed this hypersurface
by an algebraic method. Using this method more examples of homoge-
neous hypersurfaces in CH™ were found. Also, this method generalizes
to the other Riemannian symmetric spaces of non-compact type, as
well as to some other homogeneous Hadamard manifolds, to produce
examples of homogeneous hypersurfaces. We shall now describe this
construction in more detail.

Suppose M = G /K is a Riemanttan symmetric space of non-compact
type with G equal to the identity component of the full isometry group
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of M. The Iwasawa decomposition G = KAN of G implies that M
can be realized as a solvable Lie group S = AN equipped with some
left-invariant Riemannian metric. Obviously, every closed subgroup of
S of codimension one determines a Riemannian foliation of M = S by
homogeneous hypersurfaces. To determine the closed subgroups with
codimension one it is easier to work on the Lie algebra level. Denote
by s = a & n the Lie algebra of § = AN.

We first discuss the familiar case of real hyperbolic space RH™. Here
we have G = SO%1,n), K = SO(n), A=R and N = R"!, N be-
ing equipped with the standard abelian Lie group structure. Then A
13 one-dimensional and hence N is a closed subgroup of codimension
one in §. The orbits of V are the horospheres in RH™ centered at the
point at infinity determined by A. Let V' be some unit vector in n.
Then the orthogonal complement V+ of RV in s is a Lie subalgebra of
codimension one. The corresponding closed subgroup of S has a totally
geodesic RH™ ™! as an orbit, the other orbits are the equidistant hyper-
surfaces to it. These two Lie subalgebras describe, up to congruence,
all homogeneous hypersurfaces in RH™ which can be obtained via this
construction. Of course. we do not get anything new. But imitating
this construction for the hyperbolic spaces over C. H and © we get new
examples of homogeneous hypersurfaces in these spaces. We describe
this now in a more general context, details may be found in [5].

Let m € N, ¢ the standard negative definite quadratic form on 3 :=
R™, and J : Cl{3.q) — End(v) . Z + Jz a real representation of the
Clifford algebra Cl(3.¢) on some n-dimensional real vector space v. If
m # 3(mod 4), then there exists a unique irreducible Clifford module
0 over Cl(3,q) and v is the k-fold direct sum of ? for some k & N.
[f m = 3(mod 4), then there are two inequivalent irreducible Clifford
modules 0, and dy over Ci(3,q) and v = (8%10,) @ (@*20,) for some
k1,k2 € N. On the direct sum n = v j of the vector spaces v and 3 we
define an inner product < .,. > as follows. On 3 the inner product is
Just minus the polarization of the quadratic form g. The vector spaces
v and 3 are supposed to be perpendicular with respect to the inner
product. Finally we require that for any unit vector Z € 3 the map Jz
is an orthogonal map on v with respect to the induced inner product
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on v. It can be shown that such an inner product exists and is unique.
We then define a skew-symmetric bilinear map [.,.] : n x n — n by

U+ X, V+Y],W+ 2Z>=<JzU, V>

foral U,V,W € v and X,Y, Z € 3. This turns n into a two-step nilpo-
tent Lie algebra with m-dimensional center 3, a so-called generalized
Heisenberg algebra. Choosing m = 1 vields the classical Heisenberg
algebras. The connected and simply connected Lie group N with Lie
algebra n and equipped with the left-invariant Riemannian metric in-
duced from the inner product on n is called a generalized Heisenberg

group.
Next, we extend n to a solvable Lie algebra. Let a be a one-dimensional
real vector space and 4 € a a non-zero vector. By defining

[&ﬂ:%V,[Aﬂ:Z

for all VV € v and Z € 3 the Lie algebra structure on n extends to a Lie
algebra structure on s = n & a. Since the derived subalgebra of s is the
nilpotent Lie algebra n, s is solvable. We extend the inner product on n
to an inner product on s by requiring that a and n are perpendicular to
each other and A is of unit length. The connected, simply connected,
solvable Lie group S with Lie algebra s and equipped with the left-
invariant Riemannian metric induced from the inner product on s is
called a Damek-Ricel space. A Damek-Ricei space S is symmetric if
and only if

(i) m = 1; then S is isometric to the complex hyperbolic space CH™/?+1,
or
(ii) m = 3 and v is an isotypic module; then S is isometric to the quater-
nionic hyperbolic space HH™ 41, or
(iii) m = 7 and v is irreducible; then S is isometric to the Cayley hyper-
bolic plane QH?2.

In all these cases the symmetric metric is the one for which the sec-
tional curvature lies between —1sand —1/4. Moreover, the Lie group
S in this construction coincides with the one arising from the Iwasawa
decomposition as described above. The non-symmetric Damek-Ricei
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spaces are harmonic manifolds with non-positive sectional curvature
taking values between —1 and 0. For more information about general-
ized Heisenberg groups and Damek-Ricci spaces we refer the reader to
the book [6] by the author, Tricerri and Vanhecke.

Let m be a linear subspace of s with codimension one. Then m is a
Lie subalgebra of s if and only if there exist some unit vector Vj € o
and some # € R such that

m™ = R(cosfVp +sind A) .

For any unit vector Vy € v and any ¢ € K we denote the orthogonal
complement of R{cosfVy +sinf A) in s by s(#.V;). Clearly, we may
assume f €|—n/2,7/2]. The Lie algebra s(w/2.V}) is the generalized
Heisenberg algebra n and hence two-step nilpotent. For # # 7/2 the Lie
algebra s(6. V) is solvable but not nilpotent. Under the action of the
group of orthogonal automorphisms of s, the pairwise non-congruent
members in the family of Lie subalgebras s(#,1}) are indexed by 8 €
[0.7/2]. Let 8 € [0,7/2[. Then any two Lie subalgebras s(8. V) of s
are congruent by an orthogonal automorphism of s if and only if

(i) s is the Lie algebra of a symmetric Damek-Ricci space S, that is,
of complex hyperbolic space, of quaternionic hyperbolic space, or of
Cayley hyperbolic plane: or

(ii) the dimension of 3 is two; or

(iii) the dimension of 3 is five or six and v is an irreducible module.

We denote by S(#, Vy) := Exp(s(#,Vy)) the connected, simply con-
nected Lie subgroup of S with Lie algebra s(#,Vy). Since Exp :s — S
is a diffeomorphism, S(6. ;) 1s a closed subgroup of S. Since S acts on
itself isometrically by left translations, the subgroup S(#, V) acts on S
in an obvious manner isometrically with cohomogeneity one. The orbits
of this action form a Riemannian foliation §(#, V) on S consisting of
homogeneous hypersurfaces of S. Each orbit of the action of S{0, Vp)
on S is a left translate of S(#, V5) for some suitable # €]—x/2, 7 /2[. In
particular, for each # €]-n/2, /2] the Riemannian foliations §(0, Vy)
and §(#, V) on S coincide up to some left translation in S. The Rie-
mannian folation §(7 /2. Vy) on S is the horosphere foliation containing



32 JURGEN BERNDT

the generalized Heisenberg group N in S as a horosphere. Each orbit
of the action of S(w/2, V) on S is a suitable left translate of V.

The homogeneous hypersurface S(8, Vy), 8 € [0,7/2], of S has three
(for & # w/2) or two (for # = 7 /2) distinct principal curvatures

] 1 3 i |
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4

with multiplicities n — m, m, m or n.m, respectively. The mean curva-
ture of §(6, V4) is [(n+2m)/(2n + 2m)]siné. In particular, S(0,V;) is a
minimal homogeneous hypersurface of S. Moreover, the homogeneous
hypersurface §(f, Vp) of S is curvature-adapted if and only if # = n/2.
Suppose S is CH*T!, HH**! or OH?. Then the homogeneous hyper-
surface S70, V) is a ruled hypersurface of S whose generators are totally
geodesic CH*, HH* and OH! in S, respectively. In case of CH**!
the base curve of S(0,Vj) is a horocycle in some suitable totally real.
totally geodesic RH? in HH**!. Hence S(0. V) coincides with the ho-
mogeneous ruled hypersurface constructed in [18]. The homogeneous
hypersurfaces S(#,Vp). # €]0.7/2], are not ruled in the above sense.
A complete classification of the homogeneous hypersurfaces in CH™,
HH™ and OH?, as well as in the other Riemannian symmetric spaces
of non-compact type and rank > 2, is still unknown.
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