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NATURALLY REDUCTIVE RIEMANNIAN HOMOGENEOUS
SPACES AND REAL HYPERSURFACES IN
COMPLEX AND QUATERNIONIC SPACE FORMS

JURGEN BERNDT AND LIEVEN VANHECKE

ABSTRACT. We prove that the p-umbilical real hypersurfaces in non-flat complex space
forms and the Q-quasiumbilical real hypersurfaces in non-flat quaternionic space forms
are equipped with a naturally reductive homogeneaus structure. Moreover, we show that
all simply connected, non-symmetric, three-dimensional naturally reductive Hiemannian
homogeneous spaces can be realized via standard models of n-umbilical real hypersurfaces
in complex projective and hyperbolic spaces of complex dimension two.

KEevworDs. Complex and quaternionic space forms, n-umbilical and Q-quasiumbilical real
hypersurfaces, naturally reductive homogeneous spaces and structures,

MS cLassiFicaTion. 53B20, 53C30, 53C40, 53055,

l. INTRODUCTION

In [1] W. Ambrose and M. Singer provided an infinitesimal characterization of Rie-
mannian homogeneous spaces which extends that of E. Cartan for symmetric spaces.
Using this theory, F. Tricerri and the second author [17] introduced the concept of
homogeneous structures and used decomposition theory of spaces of tensors to char-
acterize among the Riemannian homogeneous spaces the naturally reductive ones by a
simple additional property of their homogeneous structures. The concept of (naturally
reductive) homogeneous structures constitutes the methodical background in this note.
We shall now summarize our results.

We prove that every n-umbilical real hypersurface in a non-Euclidean Kahler manifold
of constant holomorphic sectional curvature can be equipped with a naturally reductive
homogeneous structure (Theorem 1). From this we conclude that every

- geodesic hypersphere in a complex projective space or a complex hyperbolic space,

- horosphere in a complex hyperbolic space;

- universal covering space of a tube about a totally geodesic complex hyperbolic hy-
perplane in a complex hyperbolic space
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is a non-symmetric naturally reductive Riemannian homogeneous space (Corollary 1).
For the geodesic hyperspheres this is already known from the work of W. Ziller in [20].
Every horosphere in a complex hyperbolic space is isometric to a Heisenberg group (see
for instance [G]), which is also known to be naturally reductive (see [9]). However, it
seems to us not to be known that the latter spaces are naturally reductive.

0. Kowalski [11] has provided a group-theoretical classification of all simply con-
nected three-dimensional naturally reductive Riemannian homogeneous spaces. Using
his classification it turns out (Theorem 2) that every non-synunetric, simply counected,
three-dimensional naturally reductive Riemannian homogeneous space is isometric to
one of the above examples (where, of course, the ambient space has to be of complex
dimension two). So we see that these particular homogeneouns spaces can be realized
geometrically in a nice way.

We then study the quaternionic analogue and prove that every Q-quasiumbilical real
hypersurface in a non-Euclidean quaternionic Kihler manifold of constant quaternionic
sectional curvature can be equipped with a naturally reductive homogeneous structure
(Theorem 3). This leads to the conclusion that every

- geodesic hypersphere in a quaternionic projective space or a quaternionic hyperbolic
space;

- horosphere in a quaternionic hyperbolic space;

- tube about a totally geodesic quaternionic hyperbolic hyperplane in a quaternionic
hyperbolic space

I1s a non-symmetric naturally reductive Riemannian homogeneous space.(Corollary 2).
Also here the latter examples for naturally reductive spaces seems to be new for us.
The geodesic hyperspheres have been treated by W. Ziller [20]. Aud every liorosphere
in a quaternionic hyperbolic space is isometric to a generalized Heisenberg group with
three-dimensional center (see [6]), which is known to be naturally reductive (see [9]).

The article is organized in the following way. In Section 2 we recall the basic notion
of homogeneous structure. Section 3 is divided into two parts. Firstly, we provide basic
material about real hypersurfaces in complex space forms. In the second part we prove

the above results concerning the p-umbilical real hypersurfaces. Finally, in Section 4 we
study the quaternionic analogue.

2. HOMOGENEOUS STRUCTURES

In this section we recall brielly the notion of homogeneous structure (see [17] for more
details).

A homogeneous structure on a Riemannian manifold (M, g) is a tensor field T of type
(1,2) such that

(1) | 9(TxY,Z) + g(Y.TxZ) = 0,

(2) (VwR)X,Y)Z = TwR(X,Y)Z - R(TwX,Y)Z — R(X,TwY)Z - R(X.Y)TwZ,
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(3) (VxTWZ =TxTyZ ~-TyTxZ - Tr,v &

for all vector fields W, X,Y, Z on M. Here, V is the Levi Civita connection and R is the
Riemannian curvature tensor of (M, g). If we put V:=V T, then the conditions (1),
(2) and (3) are equivalent to Vg = 0, VR = 0 and VT = 0, respectively.

A Riemannian manifold on which there exists a homogeneous structure is a locally
homogeneous Riemannian manifold. W. Ambrose and L.M. Singer [1] have proved that
a complete and simply connected Riemannian manifold is homogeneous if and only if it
admits a homogencous structure. Naturally reductive Riemannian homogeneous spaces
are characterized by the additional property

(4) TxX =0

for all vector fields X [17, Chapter 6], that is, by means of a naturally reductive homo-
geneous slruclure.

3. REAL HYPERSURFACES IN COMPLEX SPACE FORMS

a) Preliminaries

Let M be an m-dimensional (m > 2) Kihler manifold of constant holomorplic sec-
tional curvature ¢ € R\ {0}. The standard models for such non-Euclidean complex
space forms are the complex projective space CP™(¢) (for ¢ > 0) and the complex hy-
perbolic space CH™(c) (for ¢ < 0). We denote by g the Riemannian metric and by V
the Levi Civita connection of M. J is the complex structure and Q the corresponding

Kéhler form on M defined by Q(X,Y):= g(X,JY). The Riemannian curvature tensor
R of M is given by

R(X.Y)Z = 45@{ Y,Z)X — g(X,2)Y + g(JY,2)IX — g(JX,Z)JY - 29(JX,Y)J Z).

Next, let M be an orientable real hypersurface in M and € a unit normal field on
M. We also denote by g the induced Riemannian metric on M. V is the Levi Civita
connection and R the Riemannian curvature tensor of (M, g). Further, A denotes the
shape operator of M with respect to £, We define a unit vector field U/ on M by

U= —JE
and denote the corresponding one-form by 5, that is,
n(X):=g(X,U) (=-2(X,0))
Let P be the skew-symumetric tensor field of type (1,1) on M characterized by
JX = PX 4+ 3(X)E
for all vector fields X on M. PX is the tangential componeut of JX and we have

(5) P*X = —X +9(X)U.
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For the readers convenience we formulate explicitely the fundamental equations for
submanifolds adapted to our special situation (see for instance [19]) :

the equation of Gauss : .
VxY =VxY 4 g(AX,Y)

the equation of Weingarten :
Vxé=-AX;

the equation of Gauss of second order :

R(X,Y)Z :3(9(1/,2},1' - 9(X,Z)Y + g(PY,Z)PX - g(PX,Z)PY - 29(PX,Y)PZ)
+ 9(AY, Z)AX - g(AX,Z)AY;

the equation of Codazzi :

(VxA)Y = (VyA)X = EET;EX}P}' ~)(Y)PX — 29(PX,Y)U).

Evaluating the tangential part of both sides of Vx(JY) = JVyY by means of the
equations of Gauss and Weingarten yields

(6) (VxP)Y = g(Y)AX — g(AX,Y)U.

Analogously, from Vx(J€) = JV € we get

(7) VxU = PAX,
and hence
(8) (Vxn)Y = g(PAX,Y).

b) 7-umbilical real hypersurfaces and naturally reductive homogeneous
structures '

The Codazzi equation for a real hypersurface in a non-flat complex space form M
is not trivial, that is, VA is not symmetric in its variables. As a consequence there
are no umbilical real hypersurfaces in non-Euclidean complex space forms of complex
dimension greater than one, a fact already observed by Y. Tashiro and §. Tachibana
[16]. Further, the shape operator of a geodesic hypersphere in M is of the form

(9) AX = AX 4 un(X)U

for some A, € R (see below). This suggests the following definition [10] : An orientable
real hypersurface M of M is called n-umbilical if its shape operator 4 is of the form (9)
for some functions A and u on M.

Let M be a connected n-umbilical real hypersurface in M. Then the functions A and
i are constant and so M has two distinct constant principal curvatures A and o := A+
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of multiplicities 2(1: — 1) and 1, respectively [10, Lemma 2.5]. The corresponding spaces
of principal curvature vectors are D and J(L M)(= RU), where L M is the normal
bundle of M in M and D is the orthogonal complement of J(L M) in the Langent
bundle T'M of M. The model spaces for y-umbilical real hypersurfaces in CP™(¢) and
CH™(c) and their principal curvatures are drawn up in the following Table 1 (see [2] for
more details concerning the explicit computation of & and A for these model spaces):

M (v A
geodesic hyperspliere of radius - :
TE ]l],rrg“/ﬁ{ in CP™(c) Vo coler) 3'.5‘:-::01‘,{5._,51"}
geodesic hypersphere of radius 5
reRyin éH"‘[c] v—ecoth{y/—cr) "f_,:_*‘ coth( "?r)
horosphere in CH™(¢) W= -"—IE
tube of radius » € Ry about
EH™=Y(e) in TH™(¢) v=ccoth(y/=cr) "’F I‘.anll[‘*f.;_”-rj

Table 1. -umbilical real hypersurfaces in CP™(¢) and CH™(¢)

Remarks. 1. It has been proved by M. Kon [10, Theorem 3.2] (for ¢ > 0) and S. Montiel
and A. Romero [14, Corollary 5.3] (for ¢ < 0) that every n-umbilical real hypersurface
i a non-flat complex space form is locally isometric to one of these model spaces.

2. Note that 7/ /e is the injectivity radius of CP™(¢). The set of points at a distance
of 7 /\/e from a fixed point in CP™(c) is a totally geodesic embedding of CL™=1(¢) in
CP™(c). Thus a geodesic hypersphere of radius v €]0,7//¢[ in CP™(¢) can also be
regarded as a tube of radius 7/\/¢ — v about CP"~!(c) in CP™(c) (see [4, p. 493] for
more details).

3. In the above table CH™~'(c) is the standard totally geodesic embedding of
CH™=1(¢) in CH™(c). Every tube M about CH™='(¢) in CH™(¢) is an S'-bundle
over CIT™~'(¢). As CH™~(¢) is contractible to a point, M must be diffeomorphic to
Cm=1 x 5. Hence the fundamental group of M is isomorphic to Z. The other model
spaces in Table 1 are simply connected : Every geodesic hypersphere is obviously dif-
feomorphic to an ordinary sphere, a horosphere in CH™(¢) is diffeomorphic to R2™m-1.

Following the method of proof for geodesic hypersplieres used by F. Tricerri and the
second author in [18] we have

Theorem 1. Let M be an ny-umbilical real hypersurface in a Kahler manifold of con-
stant holomorphic sectional curvature ¢ € R\ {0}. Then

(10) TxY := A(n(Y)PX — n(X)PY - g(PX,Y)U)

defines a naturally reductive homogencous structure on M.
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Proof. Equations (1) and (4) are consequences of the skew-symmetry of P. Next, insert-
ing (9) into the Gauss equation of second order and using the fact that Au+¢/4 = 0
(which can be deduced easily from Table 1) we get

R(X,Y)Z =(\* + %}{g{}’, Z)X - g( X, Z)Y)
¥ E{Q{F}’, Z)PX - g(PX,Z)PY — 29(PX,Y)PZ
= g(Y, Zm(XW + g(X, Z)y(Y)U = (YN Z)X + 9(X)n(Z)Y).

Using this expression for R and (6) - (10) a straightforward calculation shows that (2)
is valid. Eventually, equation (3) follows by a simple computation using (5) - (10). O

Remark. Note that (10) is equivalent to
a(TxY,Z)=3AxnAN)X,Y,Z),

and so Tx X = 0 trivially.

Every model space in Table 1 can be realized as a level set of a certain function
and is therefore closed and hence complete : A geodesic hypersphere is a level set of a
distance function to a point, a horosphere in CH™(¢) arises as a level set of a Busemann
function on CH™(c), and a tube about CH™~1(¢)in CH™(c)is a level set of the distance
function to CH™~'(c) on CH™(c). The completeness of these model spaces follows also
from their homogeneity : Given any two points p and ¢ on the model space M, the
two-point homogeneity of the ambient space M implies that there is an isometry (not
uniquely determined) f of M with f(p) = ¢ and fe€p = &,. It is not hard to see that
such an isometry maps M into itsell and hence induces an isometry on M (see also |2,
Section 6.2]). Combining now Theorem 1 and the above mentioned result of Ambrose
and Singer we get , '

Corollary 1. Every

- geodesic hypersphere in a complex projective space or a complex hyperbolic space;

- horosphere in a complex hyperbolic space;

- universal covering space of a tube about a totally geodesic complex hyperbolic hy-
perplane in a complex hyperbolic space

is a (simply connected) naturally reductive Riemannian homogeneous space.

In [11] O. Kowalski gave a group-theoretical classification of all simply connected,
three-dimensional naturally reductive Riemannian homogeneous spaces (see also [17]).
We shall now see that the non-symmetric ones are precisely those spaces listed in Corol-
lary 1 which are of dimension three.

Theorem 2. Let N be a three-dimensional, simply connected, naturally reductive Rie-
mannian homogeneous space. Then N is isometric to one of the following spaces :
(I) a symmetric space (more precisely, to §°, B>, RH? 5% x R or RH? x R);
(II) a geodesic hypersphere of some radius r €)0,7/./¢[ in CP%(¢) or a geodesic hy-
persphere of some radius v € R} in CH?(c);
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(I111) the universal covering space of a tube of some radius r € Ry about CH(¢) in
CH?*(¢c);
(IV) a horosphere in CH?(¢).

If N is not simply connected, it is locally isometric to one of these model spaces.

Proof. In the course of proving Theorem 1 we have already calculated an expression
for the Riemannian curvature tensor of an 5-umbilical real hypersurface M. From this
expression we get for the Ricci tensor Ric of M

(11) RicX = aX - %rm;{X}U

with 3
a:=2(m—1)A* + 5™

In particular, the Ricci tensor of M has the two distinct eigenvalues a and 2(m — 1)A?
of multiplicity 2(m — 1) and 1, respectively.

Due to O. Kowalski [11] N is isometric to a symmetric space or to (G,g), where
G is one of the following groups equipped with a suitable left-invariant metric g : the
special unitary group SU(2), the universal covering group 5L(2,R)™ of SL(2,R), or the
three-dimensional Heisenberg group Hj3. Moreover, the Ricci tensor of (G, g) has two
distinct eigenvalues a and b of multiplicity two and one, respectively, with

b>0anda+b>0,if G =5U(2);
b>0anda+b<0,ifG=SL(2,R)™;
b>0anda=-b, if G= H,.

We assume that NV is non-symmetric. Then N must be isometric to one of the above
spaces ((G,g). At first we assume that ¢ = SU(2) and put ¢ := a—0b. If ¢ > 0,
there exists precisely one r €0, 7/+/c[ such that b = (c/2) cot?(y/er/2). By means of
Table 1 and (11) a geodesic hypersphere of radius r in CP?(c) has the two distinct
Ricci roots a and b of multiplicity two and one, respectively. As a geodesic hypersphere
in CP*(c) is diffeomorphic to S and hence simply connected, the uniqueness part of
Kowalski’s classification yields that (§U(2),¢) is isometric to a geodesic hypersphere
of this particular radius r in CP?(c). Analogously, if ¢ < 0, we get that (SU(2),g) is
isometric to a geodesic hypersphere of radius r € R4 in CH?(c), where 7 is uniquely
determined by b = —(¢/2) coth?(y/=cr/2). Along the same line of argumentation we get
that (SL(2,R)™,g) is isometric to the universal covering of the tube of radius r about
CH'(¢)in CH?(c), where c and r are given by ¢ := a—band b = —(¢/2) ta.nhz[\;"_rﬂ
and that (H3, g) is isometric to a horosphere in CHz[—%} O

Remark. From Theorem 2 and the classification of all four-dimensional naturally re-
ductive Riemannian homogeneous spaces in [12] we also get the following conclusion :
The non-symmetric, simply connected, four-dimensional naturally reductive Riemann-
tan homogeneous spaces are precisely the Riemannian products N x R, where N is one
of the model spaces (11), (111) or (1V) in Theorem 2.
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4. REAL HYPERSURFACES IN QUATERNIONIC SPACE FORMS

We now study the analogous situation in non-flat quaternionic space forms.

a) Preliminaries

Let M be an m-dimensional (m > 2) quaternionic Kahler manifold of constant
quaternionic sectional curvature ¢ € R\ {0}. The standard models for such spaces
are the quaternionic projective space HP™(¢) (for ¢ > 0) and the guaternionic hyper-
bolic space HH™(¢) (for ¢ < 0). Let ¢ be the Riemannian metric, ¥ the Levi Civita |
connection and 7 the quaternionic Kihler structure of M. The Riemaunian curvature
tensor If of M is locally of the form

R(X.Y)Z :-{J{i Z)X —g(X,2)Y
a
+ ) (G ZVX = g(LiX, Z)Y = 29(0iX.Y')0:2)),

where Jy,./3,J3 is a canonical local basis of 7 (see [8] for more details).

Next, let M Dbe an orientable real hypersurface in M and € a unit normal field on
M. lhe induced Riewannian metric on M will also he tlmmtml by g. We denote by A
the shape operator of M with respect to £, by ¥ the Levi Civita connection and by It
the Riemanuian curvature tensor of (M, g). Let Ji.Js, Jy be a canonical local basis of
J such that

[;:-I = '_Jt"f

is a vector field on an open subset V of M(i = 1,2,3). The corresponding one-form will
be denoted by »;, that is,

(X)) = g(X, ;).

Let F; be the skew-symmetric tensor field of type (1,1) on V' characterized by

JiX = PN+ ?j;‘lll,\_ )&

for all vector fields X on V. P.X is the tangential component of J; X and we have (here,
and henceforth, the index has to be taken modulo three)

P =0, Pl = Uipa, PilUis = =Uiyy,
(12) BN ==X 4 50005
PiPig1 X = Pipa X + nig1(X Wi, PiPia X = =Pipi X 4 0 X)U;

The equations of Gauss and Weingarten are like the ones in the complex case. The
equation of Gauss of second order and the equation of Codazzi are locally of the form

R(X,Y)Z =§{y(r,2}x —g(X,2)Y
3

+ ) (9UBY, Z)PiX = g(PiX, Z)PY - 29(P,X,Y)P:Z))

+ 9(AY, Z)AX — g(AX,Z)A}
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and

2
(VxA)Y —(VyA)X = 45 S (m(X)BY = gi(Y)P:X — 29(PiX, Y)U:),

=1
respectively. As 7 is parallel, there exist local one-forms ¢y, g2, g3 on M such that
(13) Vadi = qipa( X )igr — gisa (X ) igo

for all vector fields X on M. Evaluating the tangential part of (VxJ;)Y by means of
(13) on the one hand, and by nieans of the equations of Gauss and Weingarten on the
other hand, gives

(14) (Vx F)Y = 9i(Y)AX — g(AX,Y)U; + qis2( X )Pir Y = giga(X) Piga.
Also, from (13) and the equations of Gauss and Weingarten we get
(15) VUi = qisa(X)Uig1 = s (X)Vipa + PAX,

and hence

(16) (V)Y = g (X )i (V) = qiga (X )niga(Y) + g( BAX,Y),

b) @-quasiumbilical real hypersurfaces and naturally reductive homogeneous
structures

iFrom the Codazzi equation it can be deduced that there are no umbilical real hy-
persurfaces in non-flat quaternionic space forms of quaternionic dimension greater than
one (see for example [5]). Thus a geodesic hypersphere in M is not umbilical. Its shape
operator A is locally of the form

3

(17) AX = AX 40 m(X)U;

for some A, ;1 € R (see for instance [3]). Following C.S. Houh [7] we call a connected
real hypersurface M in M Q-quasiumbilical if its shape operator is locally of the form
(17) with some functions A and g on M. J.S. Pak [15, Theorem 4] proved that on every
(-quasiumbilical real hypersurface M in M the functions A and p are constant and

(18) A+ E = {J

(Note that' Pak used another sign convention.) Therefore every @-quasiumbilical real hy-
persurface M in a non-flat quaternionic space form has two distinct principal curvatures,
namely A and a := A 4 p, with multiplicities 4(m — 1) and 3, respectively. The corre-
sponding spaces of principal curvature vectors are D and J(L M)(= RU; @ RU; @ RU,
locally), where D is the orthogonal complement of 7(L M) = {JE|J® £ € T® L M}
in TM. The standard models of Q-quasiumbilical real hypersurfaces in HP™(¢) and

HH™(c) are :
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- a geodesic hypersphere of radius r € 10,7/ /e[ in HP™(e);
- a geodesic hypersphere of radius r € Ry in HI™(c);
- a horosphere in HH™(c):

- a tube of radius v € Ry about the standard totally geodesic embedding of H// L
in HH™(e).

Every Q-quasiumbilical real hypersurface in M is locally congruent to oue of the above
model spaces (for ¢ > 0 see [13, Theorem 5.7], for ¢ < 0 see [3, Theorem 2]).

We now prove the quaternionic analogue of Theorem 1.

Theorem 3. Let M be a Q-quasiumbilical real hypersurface in a quaternionic Killer
manifold of constant quaternionic sectional curvature c € R\ {0}. Then the tensor field
T on M, which is locally given by

3
TxY =AY (mlY)P:X = i(X)PY = g(P,X, V)U;)

{]Q] S 3

= 1 3 (et (XDiga(Y) = tiga( X (V) U,

=]

is a naturally reductive homogeneous structure on M,

Proof. The proof is analogous to the one of Theorem 1, but needs some more effort.
Equations (1) and (4) are consequences of the skew-symmetry of Py, P, and P;. To see
the validity of (2) one may proceed as follows :

Step 1. Insert (17) into the equation of Gauss of second order and use (18} to obtain an
expression for R.

Step 2. lusert (17) into (14), (15) and (16) and use these formulae to compute
(Vw R)(X,Y)Z with R as calculated in Step 1.

Step 3. Compute the right-hand side of (2) with & as calculated in Step 1.
Step {. The resulting expression involves terms of the form

[TW P.‘ - PITW}X : jl;l-[fTwX) and Tw U|'1

which can be computed by meauns of the explicit expression of T in (19) and the formulae
in (12).

Step 5. Insert these expressions into the one computed in Step 3. This gives precisely
the formula derived in Step 2, whence (2) is shown.

The validity of (3) can be seen in this way : First compute the left-hand side of (3)

from (19) using (14)-(16) and then the right-hand side of (3) from (19) using (12). Both
sides coincide. O

Remark. The tensor field T' defined in (19) satisfies

3
9(TxY,Z)=3A) (m AL)X,Y,2) —6u(m Am A ms)(X,Y, Z),

i=1
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where $4( X, Y) :=g( X, ;iY).

Every geodesic hypersphere in HP™(c) or HH ™ (c) is diffeomorphic to §" =1 every
horosphere in HH™(¢) is diffeomorphic to R*™~', and every tube about HH™1(c)
in HH™(c) is diffeomorphic to H™~! x §%. Thus all the above model spaces for Q-
quasiumbilical real hypersurfaces in HP™(c) and HH™(c) are simply connected. As
in the complex case the completeness of these spaces can be deduced both from their
homogeneity and from the fact that they arise as level sets of certain functions. So
Theorem 3 combined with the result of Ambrose and Singer yields

Corollary 2. Every

- geodesic hypersphere in a quaternionic projective space or a quaternionic hyperbolic
space;

- horosphere in a quaternionic hyperbolic space;

- tube about a totally geodesic quaternionic hyperbolic hyperplane in a quaternionic
hyperbolic space

is a (simply connected) naturally reductive Riemannian homogeneous space.
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