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Minimal Liouville surfaces in Euclidean spaces

Jiirgen Berndt, John Bolton and Lyndon M. Woodward

Abstract. We determine all simply connected holomorphic Liouwville
curves in 'Il.'.'r.i inz 3} and deduce from this the classification of all

. . . ) 3
minimal Liouwville surfaces in R,

1. Introduction,

Let S be a two-dimensional Riemannian manifold. A local coordinate system (x,¥) on §
is called a Liouville coordinate svstem if the metric of 5 is of the form

ds® = (f(x)+g(y)dx"+ dy) (1.1)

for suitable smooth functions f(x) and gly). Also, 5 is a Liouville surface if it may be co-
vered by a family of Liouville coordinate neighbourhoods. Rotational surfaces in R7 are
examples of Liouville surfaces, the meridians and parallels of latitude are the coordinate
lines of a Liouville coordinate neighbourhood. The local theory of Liouville surfaces has
been investigated by, for instance, Liouville [12], Dini [8], Stiickel [13,14], Koenigs [11]
and Walser [16]), who discovered many interesting properties. We review some of them in
Section 2, together with some of the more recent global developments due to Viesel [15]
and Kivohara [10].

In 1940, Alt [1] showed that anv minimal Liouville surface in R3 is locally isometric to
a rotational surface in R>. The simplest examples of minimal Liouville surfaces in R, apart
from the plane, are the catenoid and helicoid. These and their associates have the proper-
ty that the one-parameter family of isometries of the surface extends to a one-parameter
family of rigid motions of R3, Indeed, these are the only minimal surfaces with this pro-

perty. Thus all other examples, which include Enneper’s surface, are examples of Bonnet
surfaces (see [5, p. 72-92].

Alt’s proof of his theorem has two main ingredients. Firstly, he uses the fact that a
simply connected minimal surface S in R* is the real part of a holomorphic curve ¢ : 5 -
2 with isotropic differential and obtains an expression for the form ¢ must take if S is to

be a Liouville surface in the induced metric. Secondly, he uses a criterion (due to
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Darboux) to obtain conditions that must be satisfied by the WeierstraB representation of a
minimal Liouville surface in R7. Putting these together, he obtains an explicit expression
for the Weierstral representation of any minimal Liouville surface and then deduces his
theorem.

In this note we present an alternative proof of Alt’s result. There are similarities, in
that we also obtain conditions on a holomorphic curve ¢ which has a minimal Liouville
surface as its real part, but we then use isotropy conditions to obtain an explicit expres-
sion for the WeierstraBl representation of a minimal Liouville surface in R>. As a conse-
quence of this description it is not hard to see that any minimal Liouville surface is an
open subset of a minimally immersed complete Liouville R< which admits a one-parame-
ter group of isometries.

In Section 2 we give a brief history of the study of Liouville surfaces. In Section 3 we
determine all simply connected holomorphic Liouville curves in C€", and then use this to
prove Alt’s result in Section 4. The arguments we give rely on elementary facts from linear
algebra rather than the arguments involving differential equations and polynomials given
by Alt. We also give, in Section 5, an example of a minimal Liouville surface in R4

which is not locally isometric to a surface of revolution.

It is a pleasure to acknowledge the financial support for this research given by the Re-
search and Initiatives Committee of the University of Durham.

2. A brief history.

In this section we shall outline some features of Liouville surfaces to recall the im-
portance of such surfaces in geometry.

a) Integrability of the geodesic flow. In 1839 C.G.J. Jacobi [9] succeeded in integrating
the differential equations of the geodesics on a triaxial ellipsoid by use of a method
developed by him and W.R. Hamilton, and which is generally known nowadays as
Hamilton-Jacobi theory. The basic idea was to introduce suitable coordinates on the
ellipsoid so that the Hamilton-Jacobi equation of the geodesics could be solved by
separation of variables. Shortly after that J. Liouville [12] recognized that Jacobi’s
method could be applied to a larger class of surfaces. He proved that if the square of the
line element ds of a surface S is given by

ds® = (f(x) +g(y))(dx>+dy?) (2.1)

where (x,y) is a coordinate system on S and f and g are functions depending on x and y
only, respectively, then the Hamilton-Jacobi equation of the geodesics of S can be solved
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by separation of variables. To establish this, Liouville showed that
f(x}sinziu] +z(y) cuszirx} = const, (2.2)

where « is the angle between some geodesic and the lines y = const. Surfaces which
may be covered by a family of coordinate neighbourhoods such that ds® is of the form
(2.1) are now known as Liouville surfaces. Rotational surfaces and quadrics in R? are
examples of Liouville surfaces. In 1889 P. Stickel [13] proved that Liouville surfaces are
characterized among surfaces by the property that the Hamilton-Jacobi equation of the

geodesics can be solved by separation of variables.
Equation (2.2) is precisely the condition for

3 (g{y}ld}:2+ f(x}dsz

f(x)+ gy}
to be a first integral for the geodesic flow of S. This shows that Liouville surfaces admit a
quadratic first integral for the geodesic flow (apart from the trivial one, namely the
energy function). Tt was proved by G. Darboux [7, p. 33] that this property essentially
characterizes Liouville surfaces. M.G. Koenigs [11] found all surfaces admitting several
quadratic first integrals for the geodesic flow. Recently K. Kiyohara [10] determined the
diffeomorphism classes of all two-dimensional compact Riemannian manifolds admitting a
quadratic first integral for the geodesic flow which is not a constant multiple of the
energy function and which does not come from a local Killing vector field (note that this
is Kiyohara’s definition of a compact Liouville surface). These classes are given by the
sphere S:, the real projective plane RPE, the torus T* and the Klein bottle K. Moreover,
he characterizes all Liouville surfaces which are diffeomorphic to 52 or conformally iso-
morphic to TZ or K2,

b) Geodesic maps. E. Beltrami [2] proved in 1865 that the only surfaces admitting a
geodesic map into the plane are those of constant curvature. In the same article he posed
the problem of determining all pairs of surfaces admitting locally a geodesic and non-
homothetical diffeomorphism from one to the other. Four years later this problem was
solved by U. Dini [8]. He proved that two surfaces can be mapped geodesically and non-
homothetically onto each other if and only if their first fundamental forms, say d512 and
dsz?' respectively, are of the form

ds;? = (f(x)-g)(dx*+dy>) and ds,? = ( LI =8y

1
560 100 /\Teo T

with respect to a suitable coordinate system (x,y). One can readily see, using an ele-
mentary coordinate transformation, that dszz is the metric of a Liouville surface. Thus
the solution of Beltrami’s problem is given by suitable pairs of Liouville surfaces.
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c) Geometric characterizations of Liouville coordinates. There are two interesting
geometric characterizations of Liouville coordinates. Firstly, in [8] Dini proved that a
coordinate system (x,y)-on a surface is Liouville if and only if it is isothermal and has
coordinate lines consisting of geodesic ellipses and hyperbolas. Recall that a geodesic
ellipse (resp. hyperbola) is a curve such that the sum (resp. difference) of the geodesic
distances to two given geodesically non-parallel curves is constant. On the triaxial ellip-
soid, for example, the geodesic ellipses and hyperbolas of the standard Liouville coordina-

te net are given by the intersections with the confocal hyperboloids (see e.g. [17]).

A second geometric characterization of Liouville coordinates is due to K. Zwimer [17],
see also [4] A coordinate system (x,y) on a surface is Liouville if and only if it satis-
fies Ivory’s diagonal property, namely that for any sufficiently small rectangle along the

coordinate lines of x and y, the two geodesic diagonals are of the same length.

d) Critical points. The critical points on a Liouville surface with line element ds sa-
tisfying (2.1) are defined to be the points where f+g = 0. Geometric properties of closed
curves consisting of critical points have been studied by P. Stiackel [14]. On analytic
Liouville surfaces the set of critical points has been investigated by H. Viesel [15]. In
particular, he gives an argument to show that in the analytic case there are at most four
critical points on a Liouville surface. H. Walser [16] studied the behaviour of Liouville
coordinates in the neighborhood of critical points.

3. Holomorphic Liouville curves in €.

We first recall that a conformal minimal immersion of a simply connected Riemann
surface S into R™ (nz 3) is the real part of a holomorphic curve in €™ with isotropic dif-
ferential. In this section we find all holomorphic Liouville curves in €", and then in the

next section we consider consequences of the isotropy condition.

Let S be a metric Riemann surface and ¢ : S — €" be a holomorphic isometric
immersion. If (x,y) is a Liouville coordinate system on S then the corresponding complex
coordinate z = x+iy will be called a complex Liouville coordinate. Note that if z is a

complex Liouville coordinate then so is i'z for r=1,2,3.

Theorem 3.1. Let ¢ : S = C" be a holomorphic isometric immersion of a metric Riemann
surface S. Then a complex coordinate z on S is a complex Liouville coordinate if and
only if, up to a translation of C", the map ¢ can be written in the form

P = Pt Pg t P, (3.1)
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where
p4lz) = pél(upexp(wpz} + Bpexpl-wpz)up |
p_(z) = p:irsﬂ(upexp{impz} + Bpe:cp{—impz])up s
el = 2 (o Bpz)ug

p=r¢-5-¢1
Here, r;s are non-negative integers with r+ss<n, w,,...,0.,s are positive real numbers,

B1sees®py Py ey @re complex numbers and uy,...,U, is a unitary basis of C",

We prove the theorem by writing the Liouville condition (1.1) in terms of a differential
equation for ¢ (see Proposition 3.2 below), which is easily seen to have (3.1) as its gene-
ral solution. In fact, the basis uy,...,u, of C" in Theorem 3.1 is a basis of eigenvectors of
the Hermitian matrix A of Proposition 3.2, while m?,....mf,—uf+1,...,—mf,$ are the non-zero

eigenvalues of A,

We recall that a holomorphic curve ¢ : S — C" is said to be linearly full if 9(S) is
not contained in an affine hyperplane of C", or equivalently, if 8¢/8z,...8"p /82" are
linearly independent almost everywhere on S,

Propesition 3.2. A complex coordinate z on S is a complex Liouville coordinate if and
only if there is an nx n Hermitian matrix A such that

Pazy = APy . (3.2)

Proof. The induced metric on S is given by ds° = Icpztzldzlz. so z is a complex Liouville
coordinate if and only if

(lo,P)se = (6,Pss | (3.3)

or equivalently,

(P2) P22z = (Prza) Py . (3.4)

where ™ denotes the adjoint. Let F be the n x n matrix-valued function whose k-th column is
8 p/az", Repeated differentiation of (3.4) with respect to both z and 2 shows that

F—Fzz = l:1:'-zz}l"]::' (3.5)

Thus, as (3.4) is just one entry in the matrix equation (3.5), we see that (3.4) and (3.5)
are equivalent. We may assume without loss of generality that ¢ is linearly full
(otherwise replace C" by the vector subspace spanned by the image of ¢,). Then F is a
non-singular matrix except possibly at isolated points, and it now follows that z is a
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complex Liouville coordinate if and only if
F,F' = (E,,F)* (3.6)
almost everywhere.

Assume then that z is a complex Liouville coordinate. Since the left hand side of
(3.6) is holomorphic and the right hand side is anti-holomorphic, it follows that the matrix
valued function A = FZZF”] is a constant Hermitian matrix. Hence

F,, = AF, (3.7)
and taking the first column of (3.7) gives (3.2). (Note that (3.7) must hold everywhere.)

Conversely, if {3.2) holds for some Hermitian matrix A, then repeated differentiation
with respect to z shows that (3.7), and hence (3.6), holds. Hence z is a complex Liouville

coordinate, and Proposition 3.2 is proved O

It follows from Theorem 3.1 that, if S is simply connected and a Liouville surface,
then S is an open subset of € and ¢ : S — €" may be extended to a holomorphic curve
defined on the whole of C. In the next section we will be interested in knowing when S
is locally isometric to a surface admitting a one-parameter family of isometries. To this

end we first consider the corresponding problem for holomorphic curves in C€".

Proposition 3.3. Let p : € — C" (nz3) be an immersion such that the standard coordi-
nate z on C is a complex Liouville coordinate, and suppose that ¢ is linearly full. Then
the metric induced on C admits a one-parameter family of isometries if and only if each
of the following conditions hoids:

(i) rs=10,
(ii) woBp = 0 for p=l,..res

(ii1) Ep = 0 for p=r+s+1,....n .

Proof. The metric induced on C is given by ds® = |*-j:-z|2|dz|2. Assume that (i), (ii) and (iii)
hold with, say, s = 0. Then the one-parameter family, indexed by the real variable t,
given by z — z+it is a group of isometries. If r = 0 but s # 0, then the required family is
given by z — z+t.

Conversely, any one-parameter family of isometries must consist of conformal transfor-
mations of € and so be of the form t(t) : z —= a(t)z + b(t), te I, for suitable continuous
complex functions a(t) and b(t) defined on an open interval I of real numbers with 0& I
and t(t) equal to the identity map if and only if t = 0. By the Calabi rigidity theorem [6]
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the family extends to a unique one-parameter family of holomorphic isometries
v = B(t)v + c(t)
of €", where B(t) & U(n) and c{t)e €™ Thus
pla(t)z + b(t)) = B(thelz) + cft) , tel. (3.8)

Since  is assumed to be linearly full, the eigenspaces of the matrix A of Proposition 3.2
are all of dimension at most two. Hence r,s are not both zero. It then follows from (3.5)
and (3.1) that a(t) = 1 for all te | and that the eigenspaces of A are stable under B(t).
For simplicity, we first consider the case where the eigenspaces are all of dimension
one. Also, using thf,: fact that b{t) = 0 if and only if t = 0, we see that usBy = 0 for
p=l,...,r+s (and that c(t) is unitarily orthogonal to up,'l. Further, if r 2 0, then b(t) is imagi-
nary, while if s+ 0 then b(t) is real. Hence rs = (). Lastly, if r+s < n (so r+s+] = n by the
assumption that the dimension of the eigenspaces of A are of dimension one) we see that
Bn = D.

The case where A has at least one eigenspace of dimension two is similar but requires
the expression for ¢ to be modified. For instance, if the eigenspace of A corresponding to
the eigenvalue mf} = mé (p# q) has dimension two then, in (3.1),

(apexpluyz)+ Bpexp(-wpz))u, + (xgexp( tg2) +Bgexp(-wgz))ug
should be replaced by '

#pexplupz)li,+ ﬁqcxp{-qu}ﬁ‘q,
where ﬁ‘p,ﬁ'q are suitable unit vectors with the same span as Us,Ug. It then follows that
Up is orthogonal to i, and the proof proceeds as before. O

Remark 3.4. In the case where n = 2 the above proposition still holds if one of r,s is
non-zero. In the case r = s = 0 the curve is, up to a translation, of the form

o(2) = (;qz+ Bz gzt foz’)
and ¢ is linearly full if and only if @ B> -wafy = 0. In this case the induced metric always
admits a one-parameter group of isometries.

Remark 3.5. We note from the preceding proof that the one-parameter family of isome-
tries of S is the restriction of a one-parameter family (g.)} of isometries of €™ which, in
the linearly full case, is of the form

ilYpefoiE‘p{t)}up , if A is non-singular ,
8 gl"fp“p] =1
P pz=1 TpexpiOp(tuy + (v, + agb(t)u, , if A is singular .
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Here, we have put ©,(t) equal to -iwgb(t) if B,=0 and s=0, to iwpb(t) if =,=0 and s=0, to
mpb[t} if Pp=0 and r=0, and to ~:11Fb[t}, if «,=0 and r=0.

4. Minimal Liouville surfaces in R°.

Recall that if f : S = R"™ is a conformal minimal immersion of a simply connected
Riemann surface S then F = Re ¢, where ¢ : § = €" is a holomorphic curve with isotro-
pic differential « = dyg. In this case the metrics induced on S by f and p are equal. We

also have
f = Re [«, (4.1)
which gives the Weierstrall representation of f.

Let @ : S = C" be a holomorphic isometric immersion of a metric Riemann surface S
and let z be a complex coordinate on S. To simplify the notation let us write Y = ¢,
Then o = Ydz, and it follows from Proposition 3.2 that z is a complex Liouville
coordinate on S and ¢ has isotropic differential if and only if there exists a Hermitian

nx= n matrix A such that ¥ is a solution of

Yoo = AY , ¥ = @1, (4.2)

where - denotes the complex bilinear extension to €" of the standard inner product on
R".

In this section we find all solutions to (4.2) in the case n = 3, and obtain the following
theorem.

Theorem 4.1. (Alt [1]) Letf: S — R be a linearly full isometric minimal immersion of a
simply connected surface S. Then S is a Liouville surface if and only if f = Re Jx ,
where the one-form w on S is given in terms of a suitable complex Liouville coordinate z
on S by

o = c(rf:xp{}.lz}vl + if2exp(haz)va + },exp(hz}v;;)dz (4.3)

for some unitary basis vy,vz.,v3 of c> with V3 = Vi, V2 = Vp, some complex number c =0
and some real numbers r* 0, hq,hs.h3 with hq > 0, hq# A3 and Ay+hg = 2)a.

In particular, since lu[? is a function of Re z only we have the following corollary.

Corollary 4.2. (Alt [1D) A minimal Liouville surface in R> is locally isometric to a
rotational surface in R>.
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Remark 4.3. The WeierstraB representation of a conformal minimal immersion into R° is
given in terms of a suitable holomorphic differential w and meromorphic function g by f =
Re [o, where

x = (1-g%i(1+g9),2g)w . (4.9)
The one-form « of (4.3) can be written in this form as follows. Let a = log(r) and let

be the complex coordinate on S given by = -((};- X,)z+a). Also, let ey,ez,63 be the
orthonormal basis of R> obtained by setting

vi = (i//2)e1+ies) , va =e3.
Then the one-form o of (4.3) becomes

o = Eexp{lﬁ}({l—exp[ﬂj}ﬂ. + i{l+exp(20)es + EE:{p{Ue;;)dC,
where % = %y/(h5-%,) and & is a non-zero complex constant. This is of the form of
(4.4) with g = exp(D and w = Fexp(ri)di. A further coordinate change, namely E =
exp(0), gives « in the form
ee((1-8Dey + i1+ EDey + 28eq)d

where y = (21~ %h2)/(h2-X¢). As noted in Bianchi [3, p. 379] this is exactly the form of
the Weierstral representation for a non-planar minimal surface which is locally isometric

1

o

to a rotational surface. For example, taking %, = 0 gives the familv of minimal surfaces
associated to the helicoid. Similarly, taking Ap = p, p=1,2,3, gives the associated family of
Enneper’s surface.

Remark 4.4. It follows from Remark 3.5 that, with the exception of the helicoid and its
associates, each minimal Liouville surface in R” is a Bonnet surface, that is to say a
surface in R which is a member of a one-parameter family of surfaces in R® with the
same metric and mean curvature, no two of which are congruent in R".

We will now prove Theorem 4.1 by obtaining all linearly full solutions to the system
(4.2) in the case n = 3. We do this by first writing down all linearly full solutions of Y,,
= AY, where A is a Hermitian 3 x 3 matrix, and then determining which solutions are iso-
tropic. The proof involves some case by case arguments. However, it turns out in the
case n = 3, that if (4.2) admits a linearly full isotropic solution then this imposes strong
restrictions on the matrix A. For instance, as will be seen, A and A have to commute. A

direct proof of this result, which would further simplify the argument, has eluded us.

From now on we assume n = 3. We first find all solutions to (4.2) in the "generic
case” where the Hermitian 3 x 3 matrix A has distinct non-zero eigenvalues. The solutions
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of Y,, = AY are then of the form
¥ = oYY, (4.5)
where

Yo (z) = ii(mpexp{mpz} * EpExp{-mpZ])up,
p=
3
Y(z) = 2 1(|:::F,,expl’_impz} + Epexp{-impz})up.
p:r*

Here, O0srs3; wp.swel; w,>.>w0320; ay,22,25,81,82,85 are complex numbers; and
. . =¥

2 2 2 2
up,Uz,u3 iS a unitary basis of ¢, The gigenvalues of A are wi,....0;,~W L1000~ W3,

The method of proof of Theorem 4.1 is indicated by Proposition 3.3. In the following
two lemmas we show that the conditions (i) and (ii) of that proposition are satisfied by any
linearly full isotropic curve Y of the form (4.5).

Lemma 4.5. If Y is given by (4.5) and is both isotropic and linearly full, then r = 0 or
r=3

Proof. Assume that r = 1 or 2. Then the coefficients of exp(* 2w;z), exp(* Ziw,,,2) and
exp({* wy*iw .)2z) in the expression obtained from (4.5) for ¥+Y must all be zero. This
gives the following:

2 5 2 i 2 e 2 i
ST B 0, S 0, Bpailpe) sy = 0, E‘r +1Urs1 " Upet = 0,
Byl gy Upsy < 0 , Bifrsauyprupey =0, ogfpiqUp- 0y = 0, oBuprupsy = 0.

Since Y is assumed to be linearly full, =; and 5, are not both zero, and neither are o 4
and B,,;. The above equations then show that uy and u.,y span a two-dimensional isotro-

pic subspace of Ca, which is impossible. O

Lemma 4.5 shows that, replacing z by iz if necessary, we may assume that Y is of the
form of (4.5) withr = 3 and Y_ = 0. That is to say, ¥ = Y, and r = 3.

Lemma 4.6. If Y = Y, withr = 3 and if Y is linearly full and isotropic then uyf, = 0 for
p=1,2,3.

Proof. By replacing z by -z if necessary, we may assume that «; # 0. Then, consideration
of the highest power, exp(2w,2z), in the expression for Y-Y shows that

upcuy = 0. (4.6)
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The case w5 # 0. Considering the next highest power exp((w;* w;)z) we have that

uprus = 0 (4.7)
But then, from (4.6) and (4.7) we see that, without loss of generality we may assume that
u3 = U; and up =0, . (4.8)
Then
0 = Y- = (mlcxp{ulz} + Elercp{—u,z})(af3exp(m3z} + B3axp{~u3z})
+ (uzexp{m:z} + Bzexp{—mzz})z : (4.9)

The constant termn on the right hand side of (4.9) must be zero, so it follows, since
x>* 0, that Bs = 0. Consideration of the negative powers, exp(-(wj-wsjz) and
exp(-(w+w3)z), shows that By = 0. Consideration of the positive powers, exp((w;+w3)z),
exp((wy-w3)z) and exp(2wzz), shows that asf5 = 0.

The case s = 0. Here, the only positive exponents of exp(z) in Y'Y are wj+ws,

wW-t3, Wi-w3 and 2w, with coefficients syaguy-us, oyfsug-us, oyBauy-ug and oa3up-us
respectively. Since w;+w3 is strictly the largest exponent, we have asu;-uz = 0. It now
follows that

uprug = 0, (4.10)

because if x5 = 0 then consideration of the coefficient of exp({w;-w3)z) shows that (4.10)
still holds. Then, as before, it follows from (4.6) and (4.10) that we may assume that

u> = Uy and uz =u3z . (4.11)
Thus

Y'Y = (xle:-:p{mlz} + Elexp[-mlz})ﬁzexp{-mzz} + (u3cxp{m3zj * B3Exp[—maz]l)2,

and consideration of the coefficients of the negative powers of exp(z) shows that §; = B3
= 0. This completes the proof of Lemma 4.6. O

It now follows in the case where A has three distinct non-zero eigenvalues that ¥ may
be written in the form

Y = yexp(hiz)vy + voexplhaz)ve + vaexplhaz)vsy , (4.12)

where Ay > k3 > ha, hy > 0, vq,72,73 are non-zero complex numbers and vy,vz,v3 form a
unitary basis of ©3. Then, using (4.12),

3
0 = Y'Y = 2 Tinexp{{1{+1j}z}v{-vj . (4.13)
i,i=1
However, since Ay > A3 > A3 we see that

Vi*Vp = ¥y"V¥a = Va'Vg3 = WVa*Vq E D, {4114}
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so, without loss of generality we may assume that v4 = ¥y and v» = V,. Then (4.13) redu-
ces to

0 = vy3exp(2haz) + 2vyvaexp((h+ha)z) .

Theorem 4.1 now follows in the generic case, after possibly applying a suitable

allowable coordinate change of the form w = ikz, for k=1,2,3.

We now outline the arguments required to prove the theorem in the non-generic cases

where either A is singular or has a repeated eigenvalue.

Assume A is not singular but has a repeated non-zero eigenvalue. In this case we easi-

ly see that all eigenvalues may be assumed to be positive. Hence we may write Y as
follows:

Y = yexplugz)vy + vaexpl-wizlva + (IseNP(tﬂ'aZ] * EEENPf‘HszJ)Vas

with wy,w3 distinct positive real numbers, vq,¥2 non-zero complex numbers and v unita-

rily orthogonal to both v; and v,. Consideration of the coefficients of exp(2 (wy+w3)z)

and exp(*2wsz) in ¥+Y = 0 shows that if w3f3# 0 then V3V = 0 for p=1,2,3, which is
impossible. Hence w323 = 0 and in a similar manner to the generic case one may show
that Y may be written in the required form with 5 = -3 and 3 = -34,. (Pictures of an

example of this tvpe appear at the end of this section.)

Assume A is singular. In this case it is easily seen that Y may be written in the form

of (4.3) with either A3 = 0, or %5 = 0 (which gives the one-parameter family of surfaces
associated with the helicoid).

On the next page are two pictures of the surface which is the image of the immersion
f given by (4.3) withc =42, r =1, 3; =1, A5 = =1, k3 = - 3. This image (which is a mini-
mally immersed cylinder of total curvature equal to -8m) has reflectional symmetry in
the origin (corresponding to z = z+in) and a symmetry given by rotation through = about
the second coordinate axis (corresponding to z ~ Z). We would like to thank Cherry
Kearton for his help in producing these pictures.
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5. A remark concerning the four-dimensional case.

It is not true in general that a minimal Liouville surface in R™ admits a one-parameter
group of isometries. This is easily seen by considering the minimal immersion f = Re s :
€ — R? determined by

w, = explz)v; + exp(-2)¥; + expliz)va - exp(-iz)vs ,

where v; = (1/42)(ey+iea), va = (1/43)(e3+iey) and ey,....e4 is the standard basis of R™.
In this particular example, ¢, satisfies (3.2) with the corresponding Hermitian matrix A
having eigenvalues of different signs. It appears to be the case that if 5 is a mimmal
Liouville surface in R? which is the real part of a holomorphic curve in c? whose corre-
sponding Hermitian matrix A is semi-definite, then S is locally isometric to a rotational
surface. However, our discussion of this case is neither short nor illuminating!
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