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/ Experiments on quantum dots \

L P Kouwenhoven and C M Marcus 1998 Quantum dots, Physics World, June, 35-39.
D Goldhaber-Gordon et al. 1998 Kondo effect in a single-electron transistor, Nature 391, 156-159.
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/ Quantum dot: what happens \

see: L P Kouwenhoven and L Glazman 2001 Revival of the Kondo effect, Physics World, January, 33-38

e Quantum dot: mesoscopic object = many

electrons, discrete energy levels

e By adjusting Vg: number of electrons fixed
on the dot

e Low 7" increase of current due to co-

tunnelling with spin flip = Kondo effect
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/ Kondo effect

Co-tunelling with spin flip = Heisenberg interaction

Selectrons near dot ° Sdot

At small temperatures, a cloud of partially co- b density of states

herent electrons form around the dot , and
the density of states peaks at the Fermi en-

ergy .
Electrons can use these dot states to go from

one side to the other, so conductivity in-

energy

creases.

In usual Kondo effect, of magnetic impurities in
metals, the Kondo cloud gives more scattering

of electrons’ plane waves in different mo-

Qenta, thus reducing conductivity
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The questions

The system with nonzero bias voltage is out of equilibrium : entropy increases. With a

steady electric current, we have a non-equilibrium steady state . The dynamics that allow

the steady state to occur is purely from quantum mechanics
— Interplay between out-of-equilibrium and quantum mechanics

e How to study such a situation? The Kondo cloud idea was studied theoretically only at

equilibrium.
e \What happens with universality? What is the effect of a large voltage?

e The Kondo and Anderson models (and other impurity models) are integrable. What

happens with integrability out of equilibrium?

| will try to answer some of these questions with a simpler example: the Interacting resonant

level model.
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/ The state of theoretical methods \

e Perturbative techniques are very tedious, and real-time perturbation theory presents

pathologies in certain cases.

e Universality is still poorly understood in general (Wilson’s RG is not directly applicable);

and in particular the “large voltage” limit is subject of debates.

e Exact methods (from integrability) apply only when the exact quasi-particles do not

couple carriers from both baths.

e New proposed exact method [Mehta, Andrei 2006], on the interacting resonant level
model (IRLM), suggest we have a freedom in the choice of exact quasi-particles, and
raised many questions [D. 2007; Boulat, Saleur 2007]; there is now some confusion

about this model.

| will present a “way of thinking” about non-equilibrium steady states in impurity models that is
conceptully clear and simple, gives full perturbative series, gives non-perturbative results with
physically motivated truncations, and can explain what integrability means out of equilibrium.
\ In the IRLM, I will discuss the behavior of the current in a certain universal regime. /




/ Interacting resonant level model \

e “Electrodes”: 1-d massless spinless relativistic free fermions on semi-line r > 0

e Impurity: “occupied — non-occupied” boundary degree of freedom at » = 0
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e Equivalent unfolded representation: right-moving fermions on line (with hamiltonian H)

[ — >————
-
Se sl _a=" '7
~ Sa=” P

| Chiral CFT + impurity
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H = Ho + t(¢](0)d + ¢3(0)d + h.c.) + U (]1(0) + ¢312(0))dd + €qad' d
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Applying a voltage: steady-state current
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Out of equilibrium V' % 0: non-equilibrium steady state

e Equilibrium: usual density matrix poq = e~ (HT#N+--)

e Non-equilibrium steady state:

— different density matrix ppon_oq 7 € P HTHN+-)

— entropy production

e Questions about non-equilibrium steady states:

Formulation?
Density matrix pnon—eq?
Universality?

Integrability?




/ Schwinger-Keldysh formulation

e
Yy upL

e Time ty: leads isolated from impurity  at potential difference V/, in equilibrium with
thermal and particle bath = pg = e PHo=VQ) where 6= T and

Q=3 [ do(@his — vlv1) = (N2 - V)

e Bath disconnected and potential V" brought to O.

e Connection with impurity: tunnelling strengths turned on

e Time 0: steady-state reached =

,0 — ethopoe—tho : <<]>3.3. — llm
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Potential problems with Schwinger-Keldysh formulation

e In marginally renormalisable models, it is hard to obtain the full perturbative series;
e |t is far from potential exact formulations, based on scatterings and exact steady states;

e There may be problems with reaching a non-equilibrium steady state, associated to an

expression for the current that is not perturbative in the tunelling strengths.
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In

Hershfield density matrix for Lippman-Schwinger steady sta tes

guantum systems, steady state = quantum state . Density matrix

p = exp[—S(H —VY)]

where Y [Hershfield 1993] has properties:

e it is diagonalisable and conserved by the dynamics [H, Y| = 0;

~

e its eigenvalues y on any eigenstate |v) of H, Y |v) = y|v) is equal to the eigenvalue of

(Q on the eigenstate |v)" that interpolates to |v) when the impurity is added,

Qlv)° = y|v)°.

That is, quantum averages are

Te(p-)

C T TR

and the definition of Y means that

-

(O1(21) O () - - -) 71<0,23<0,... Tr (exp [=6(Ho = V@Q)] O1(21)O2(2) - --)

Tr (exp [-B(Ho — VQ)])

/
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Interpolating states:

Pictorially:
_____ V>
______ v
—
~AL
RS,
S s 2
In equation:
<0, 22 <0, ...
20|01 (#1)Oa(x2) -+ [w)® 772 (v|O1(21)O2(x2) - - - [w)
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Special cases of Y

e If () is still conserved by H, then Y = Q;

e If () has a corresponding local conserved charge in the dynamics H (like in integrable

models), theniitis Y’;

e Otherwise Y is a non-local conserved charge. A property of non-equilibrium steady

states?
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Equations of motion (in a wide sense)

Equations coming from stationarity of the action  (in the action formalism)

0S =0=

e.0.m.: how operators evolve in time

iImpurity conditions:  relation amongst operators at the boundary / impurity

/




/ Impurity conditions in the operator formalism \

e General form of eigenstates of H (pseudo-vacuum |0) with (x)]0) = 0, d|0) = 0):

2 / doda’ -+ gjppe,..(@,7 s UL (@) @) - (d1)]0)

k,k!,...=

e Wave functions g, 1 x/... (x,2’, . ..) do not have delta-function: finite jumps at x = 0.

e The following equation holds (where \v and |w are states in the Hilbert space):

(v / dx [H, by (2)] |w) = lim (o] / da [H, ()] + / dx [H, iy ()] |

n—07F

e This becomes (with H = Hy + Hj)

e(0%) — i (07) "”%/dx[m,w:c)]

- /
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e Problem: 1 (0) appears but 1 () has a jump at x = 0!

Spreading the impurity

e Solution: spreading the impurity:

I
e - (1
2
L]
Ty
— >--- 2
H" = / dp ()t (Y] (x)d + Ph(z)d + h.c.) +

e Equivalent to naive condition ¢ (0) = (¢, (0%) + ¥ (07))/2.

+U / dptr (21)dpr (22) (1) (1)1 (22) + 3 (21)a(22))dTd + eqd'd

/
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The impurity conditions

With the = (Y1 + 1h2)/V/2.
(1 + ngd> e (07) — (1 _ ) b (07) 'Y —itd

e Works more generally as an equation for linear maps H — F ® Z;
e Fixes bare scattering matrix of coordinate Bethe ansatz construction;

e Bethe ansatz construction of [Mehta, Andrei 2006] does not satisfy it.

-
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This implies
2U
21 — U

Do (01) 'Y —itd + (1 +

d*d) Pe(07)

—> Local operator on the right is written as impurity operators and local operator on the left

- /
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Stationarity of averages ([H, b;O(z)]) = 0 and
passing operators at 0T to operators at 0~ using impurity conditions gives (z < 0):

The steady-state conditions

—i0,(b;0(x)) = iA;(b;O(x <cj—|—ZbEw > z))

2 2 5
— +ieg, — —ieg,t
<2‘|‘€d 5 d )j

¢; = (—t.(07),t6!(07),0)

Aj

J

—un(x) 0 —tl(x)
E;i(x) = 0 un(x) —t1)e ()
ituhe(z)  dtul(x) 0 o
i,
21U
mmm:de:ﬂ,%:dwﬂF:%ianzmwaHﬁm
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/ Solving in the freecase U = 0 (and U = o0)

e Integrating:
xr

(b;O(x)) = ie A" / dx/eij/<<cj+sz-Ei7j(0)> O(z")) .

— OO
Choice of integration constant: the limit x — —oo of (b;O(x)) exists.

e The part with ¢; contains only operators on the left of the impurity: averages can be

evaluated using impurity-less theory by the steady-state d efinition

e For average of current operator

this givesatU = 0and I’ = 0

/2
(J) = — (arctan

4

V + 2¢4 V—Qed)

2 + arctan 2

-

(7) = —i{[H.Q]) =~ (h(0)d — d'y(0)) = — 2 (w}(07)d — dlesy(07))

~
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/ The general case: perturbative expansion

e Solving perturbatively the integral equation:

3
> (04 Z ”+1/ dzg - - - day X

1
x (cTe® E(z,) - eAxlE(azl + .4 x,)e®O0(zg + ...+ x,))

e Formally resums into

[ tepes| [ 51 + 1] 00

— 00

e Regularisation: use € > 0 (with & ~ 1/D where D is bandwidth) and

[.~].

-
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Results to order U

e Callan-Symanzik equation (with m = t*/2)
Uu o 0
S il —0
(7r " om i 60&‘) )

e Universal renormalised results:
D>V, T, eq, Ty with (Tg/D)FV/™ =m/D

e Physical infrared cutoffs:
T, Ay =|V/2+ ¢4

-




-

e For D>V > Tg > T,|eq|, we have

U
T

(J) ~ %TB (8e‘l’<1/2>T73) (1+0(U?))

e Wehaveat D > T > T,V, |eg], in an expansionin T = 7T /T,

J)y 1 o - 5 6
— ~ — (1 T T ou=.T
v 271_( + g2 + g4 + ( ) ))
with
go _ 21 U
g5 5 o
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Conclusions and perspectives

We have developed an efficient method for obtaining perturbative series and some
non-perturbative results in certain models of quantum impurities, that works as easily both in
and out of equilibrium.
e Results agree with
— low-1" expansion from conformal perturbation theory of Boulat and Saleur (2007)
— large-V power law observe by Boulat and Saleur (2007) at a particular value of U

— infinite-U limit of proposed exact results of Mehta and Andrei (2006)

e Results disagree with

— small-U expansion of proposed exact results of Mehta and Andrei (2006)

- /
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e |[ntegrability

— there are arguments from definition of Y for non-integrability of the non-equilibrium

steady state at generic values of U

— Impurity conditions allow re-construction of conserved charges

e Questions
— is the non-equilibrium steady state represented by Y integrable?

— what are the consequences of conservation of higher local conserved charges (e.g.

for form factors)?

— does the method take care of the pathologies found in doing Schwinger-Keldysh

real-time perturbation theory for Kondo/Anderson models?

— how can we use the “re-summed” perturbative expansion?
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