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Driven quantum mechanics in a dispersive environment

e Two separate thermal/particle baths can exchange electrons with a quantum mechanical

system (impurity).
e The two baths are held at a fixed difference of chemical potential.
e \With a steady particle flow, the system is in a “non-equilibrium steady state”.

— Interplay between out-of-equilibrium and quantum mechanics
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Goal of talk

e Show in some detail how the real-time formulation (Keldysh, cf. lectures of A. Kamenev)

gives rise to the scattering state formulation (cf. talks of N. Andrei, H. Saleur (next week)).

e Describe the two main, decoupled ingredients of the scattering state formulation: steady

state (Y -operator) and dynamics (({-operator).

e Specialise these ingredients to various situations: CFT, perturbation theory, integrable

models.
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Pictorial representation

e Electrodes: 1-d massless relativistic free fermions on semi-line 7 > 0

e Impurity: boundary degree of freedom at r = 0
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e Equivalent unfolded representation: right-moving fermions on line
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Dynamics of impurity models: quantum observables

e Fermions of metallic sheets (or electrodes) V1 o(z):

{U;(2), 0, (2")} = 16, 5:0(x — 2)

L
d
_ T ,
H, = —z/_L dx Z \IJJ(ZE)%\IJ](ZC)
71=1,2
d

[He, ¥j(2)] = i—— ()
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® Impurity’s observables:
— fermionic d,,, d];, annihilation and creation of electrons on the impurity

— bosonic (hermitian): Dg, internal observable/change of the impurity states preserving

the electron number; hamiltonian H;

L : : : 1
e Impurity interaction: tunnelling 7, T(;E, co-tunnelling Uéo’i ):

=% (\If}(O)Tada + dgT;\Ifj(O)) + 3 o)UY e, 0)D;

j?a j?kWB

H=H,+H; +1=Hy+1




In particular: interacting resonant-level model (IRLM)

Spinless bulk electrons, two-state impurity degree of freedom:

H = H, + t(4](0)d + 9} (0)d + h.c.) + U(1h]41(0) 4 1J12(0))d"d + eqd'd




Applying a voltage: steady-state current
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/ Constructing the steady in real time: the Schwinger-Keldys h formulation

)
Yy upL

e Time ¢t = 0: leads isolated from impurity  at potential difference V, in equilibrium
with thermal and particle bath = pg = e~ (Ho=VQ)/T \yhere

1 1
Q=3 [ dz(r(@) - vlia(a) = 5~ Ny

2
e Bath disconnected and potential V" brought to O.

e Connection with impurity: tunnelling strengths turned on (local quantum quench).

e Time { = o<: steady-state reached =

_ _—iHt _ _iHt T Tr (p(t)J)
p(t) = e poe™™,  {Jine = lim Tr (p(t))

J = —ilH, Q]
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Large-time limit

e Does the limit exist? In order to reach the steady state: L > t > T—1. Limit exists in
IRLM by Caldeira-Leggett: tunnelling allows relaxation by emission of electrons. Limit is
proven to exist [BD, Andrei 06] in Kondo by SU (2) symmetry, thanks to large-time

factorisation of correlation functions:

— interaction picture expression
0 t
(J)(t) = <7>exp [—z/ dt’](t’)] J P exp [—z/ dt’[(t’)]>
t 0 0

— large-time factorisation

(L(t1)I(t2)I(t3)J)o — (L(t1)I(t2))o (I(t3)J])o




4 )

e What is the result of the limit?  If V' = 0, one can show [BD, Andrei 06] that it is
e~ H/T  Thermalisation after local quench. Hence for V' # 0, correct non-equilibrium
steady state. Note: out of equilibrium, “slowly turning on interaction” does not help. Baths

essential not only to obtain steady state, but also to maintain it.

e Limit of what objects? The limit exists (correlation functions factorise) only for operators
supported on a finite interval. For instance: () no, but J yes.

Reduction of allowed observables = loss of information = irreversibility.
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Scattering states and Hershfield’s density matrix

e Quantum mechanics: starting with a quantum state looking like a free wave function in a
region of order L where the potential is flat, taking the limit L > t > a where a is
some scale in the problem, and looking only around the region where the potential is not

flat, one gets a scattering state .

e In general, scattering states are not large- L limits of eigenstates of H(L). They are

eigenstates of H (L = 00) in a very special sense.

e The limit L > t > T~! in the Schwinger-Keldysh formulation should be naturally
described by scattering states of ~ _H. Initial statistical distribution e~ (Ho—VQ)/T qf

(finite- L) states gives rise to statistical distribution of scattering states of H :

_ TTscatt. states (pne(9>
(O)ne =
Trscatt. states (pne)
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e The operator p,,. is Hershfield’s density matrix for non-equilibrium steady states
[Hershfield 93] (although it was introduced in a different way). Usually introducing the Y
operator:

e = ¢~ H=VY)/T

A priori, Y may depend on I’ and V!
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Properties of Y operator
[Hershfield 93], [Mehta, Andrei 06], [BD 07], [BD 09]

e Steady-state condition.
If O is finitely supported, then also [H, O] is. Then (|H, O]) . can be calculated, and it

is zero by the fact that the large-time limit exists. Since this holds for any O, this implies

(H,Y] =0

because finitely supported operators are enough observables to determine scattering
states.
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/o Asymptotic conditions. \

-

Tr(p(t)O)
Tr(p(t))

(O)se = lim <Pexp [—z’ /t it [I(t’),-]] (9>0

Operators in I (t) are finitely supported on the right ~ for ¢ > 0. So:

1. Writing lim;_, o in interaction picture  with respect to H(, we have

(O(x) Ve "= (O())o

2. Quasi-periodicity properties under x — x + /T for Re(x) < 0 are evaluated using
commutators [Hy — V@, O(z)] (rhs) and [H — VY, O(x)] (L.h.s.). Since
|H,O(x)] = [Ho, O(x)] for z # 0, we must have

:IJ<£,...

Y,0(z)---] " = 1Q,0(z) -]
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From this, formal definition of Y on scattering states
[BD 09]

Scattering states through Lippman-Schwinger equation (:n states):

1
E, — Hy+ 10"

v) = |v)o + Ifv)

where |v) is eigenstate of Hy = H,. + H;, and |v) is eigenstate of H, with energy F,,.
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e Bare wave function. For minimal particles on the impurity , bare wave function gives

x<0,...

0l10(z) - --v) = =" (0]O(x) - - - [v)o

e Hybridisation. Only states |v>o with minimal particles on impurity give non-zero |’U>

—> minimal-particle bare wave functions at negative position s fully determine \v)

- only “one” minimal-particle state thanks

to hopping in IRLM — Yiv) = qlv) for Qlv)o = qlv)o

- SU(2) invariance in Kondo model
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Operator construction

e From hybridisation, we know the quantum numbers of scattering states. Then (IRLM):

T
{ap,j’

ap i} =0(p—p)oj , apjilvac)=0(p>0), a

l

_ NI
H = Z/O dpp @ a, ;apj
J

1
Y ==
2

/dp (: a;’lap,l D a;’zap,g :)

p,Jj

~

vac) = 0 (p < 0)
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e Find a representation of the canonical commutation relations and the equations of
motion [H,,(z)] = ..., [H,d| = ..., where H is bounded from below.

e For x # 0, the operators 1 (x), H form a closed algebra:

H, ()] = i oy (@) (a#0)

Solution:

dp 1pT CLp’j (x < O)

vile) = Vo ) Ua, ;U (x> 0)

The unitary operator {/ encodes all the impurity-related dynamics, and in fact defines the

impurity model

-




Local current vs scattering formalism

J = —i[H,Q] = —%dwo(()) + h.c.
But also
o0 0~ o0
— d — d d
Q= | doo@)= [ dvq@)+ | dugta)
so that




1 : —1;

1
= 7 Z pm<’in|Qm—uQinu_1|0Ut><OUt|in>

in, out

1 . -
= Z Z pzn<zn|an — Qout‘OUt> <0ut\m>

in, out

D) =7 5 0in@in — Qoue)llimlout)

in, out
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Current noise from Y operator

A careful evaluation of the large-time limit [BD, Andrei 06] shows that

0
Y = lim e Qe = +/ J(t)

t— 00
— 00

Current noise (with 0. = J — (J)pe):

) /_ At ({T(0), 6.7V = 200 — Q.67 )y = 4T%<J>ne 20,5 e

[Fuijii 08]

-
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/ How to construct the {f operator?

e CFT: conformal boundary state ) _; . B; ;i) r ® |J)L gives rise to U operator.

e Free theory (RLM, U = 0): use even and odd sectors: 9 , = (11 & ¥2)/V/2.

Operators H, 1. and d form a closed algebra. Solve.

€ —p+it?
B Gd—p—’it2

_ _—1i [ dpo al ap.e X0)
Z/{_e f Pp,ep7 ep

Continuity conditions through the impurity [BD 07]:

—iv2td = 1. (07) — 1).(07) (note also: {1/, (0F),d"} = ZFit/\@>
Resolution of the impurity and consistency of operator algebra [BD 07, 09]:

_ e(04) + 4 (0)
2

e (0)
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Non-locality

In the free case U = (), we find, after inverse Fourier transform,

Y - Q=

1 /OO dp e~ (£ Fic)z (iﬂthwo(x) + 2t° /OO da’ 1 (2" )b (x + :1:')) + h.c.
2 Jo 0

e Non-locality: not integral over x of local density at . Related to the fact that Y

describes a non-equilibrium state.

e But weak non-locality: the non-locality is exponentially vanishing. Related to the fact that
there is relaxation at large times, which is essential for the steady state to be reached

and to exist.
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Interacting case, IRLM U # 0

e General perturbative form of solution:

Uap, U = ezcbpa e+ U /dpldpg Ipips - a;1+p2_p,e/oa’p1,e/oam,e/o T

® A systematic approach for impurity operators [BD 07]: using
U U
(1 + %cﬁd) Ye(0F) — (1 - Z—de) Ye(07) = —iv/2td
we find

(d,d", dd) :i/ dx c;, () P exp U
0 x

- /
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/ Integrability \

e Bare construction:
[tdal ([T rmvita) | i@ | s)d’) (T S5l - ) 0

with S22 (x > 0) = 5P and Sp2 (v < 0) = 1, similarly for el (@),

e ZF operators: new basis for CFT, | | ATW

0) with

_ v, W
AP7UAQ7UJ T _Sp,q AQ7wApav

e Exact expression for {£:

I = e~ i S dpdpAl (Ape

e Local conserved charges:

oo

Hn,’u N /dppnA;r?,'vAp,va U= 6_i2n=0 UnHn e
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/ Integrability out of equilibrium

e The operator Y must preserve the set of momenta, but may interchange the particle

types
Y, Z H, ,] =0 =Y mustact on one-particle subspaces

(Y

e |s the IRLM integrable out of equilibrium? Continuity conditions lead to [BD 07, 09]

deq —2(p+q)+ilp—q+2i)U ., 1+iU/2 _,.

gee —

1—iU/2

~

= [Y,) Huu]#0
v
e Mehta and Andrei: same S€€ but S¢° = §9¢ = §9° = §%¢€,

= [Y,ZHn,,U] = 0, same universal U7

-

P4 deq—2(p+q) —ilp—q+2t2) U’ P11 —4U/2° P 144U/2
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Conclusions and perspectives

We showed how the scattering state formulation naturally arises from the the real-time
formulation, and showed how using scattering states and Hershfield Y operator one can
essentially separate the dynamical part, with standard perturbative or exact descriptions,

from the “non-equilibrium state” part.

Some questions:

e Can we prove that the steady state corresponds to the maximal current? (extremisation

of entropy production?)
e Can we develop an efficient diagramatic method from the operator construction?
e Can we unify the various exact constructions of /? (“mine”, Mehta Andrei, Boulat Saleur)

e Can we perturb the { operator about non-trivial exact points?
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