

department of mathematical SCIENCES

The density matrix formulation for quantum impurities in steady states out of equilibrium

Based on: [BD, Andrei PRB 06], [BD PRL 07] and Capri Spring School 2009 lecture notes

Benjamin Doyon

Department of mathematical sciences, Durham University, UK

Thanks to: Denis Bernard, Édouard Boulat, Hubert Saleur, Dirk Schuricht, ...

Trieste, July 2009

Driven quantum mechanics in a dispersive environment

- Two separate thermal/particle baths can exchange electrons with a quantum mechanical system (impurity).
- The two baths are held at a fixed difference of chemical potential.
- With a steady particle flow, the system is in a "non-equilibrium steady state".

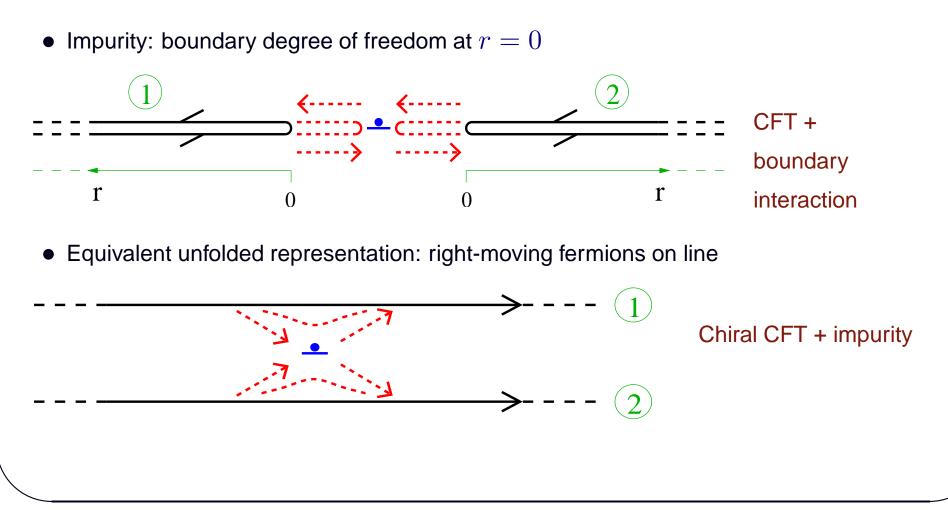
 \Rightarrow Interplay between out-of-equilibrium and quantum mechanics

Goal of talk

- Show in some detail how the real-time formulation (Keldysh, cf. lectures of A. Kamenev) gives rise to the scattering state formulation (cf. talks of N. Andrei, H. Saleur (next week)).
- Describe the two main, decoupled ingredients of the scattering state formulation: steady state (Y-operator) and dynamics (\mathcal{U} -operator).
- Specialise these ingredients to various situations: CFT, perturbation theory, integrable models.

Pictorial representation

• Electrodes: 1-d massless relativistic free fermions on semi-line $r \ge 0$



Dynamics of impurity models: quantum observables

• Fermions of metallic sheets (or electrodes) $\Psi_{1,2}(x)$:

$$\{\Psi_j(x), \Psi_{j'}^{\dagger}(x')\} = \mathbf{1}\delta_{j,j'}\delta(x-x')$$

$$H_e = -i \int_{-L}^{L} dx \sum_{j=1,2} \Psi_j^{\dagger}(x) \frac{d}{dx} \Psi_j(x)$$
$$[H_e, \Psi_j(x)] = i \frac{d}{dx} \Psi_j(x)$$

- Impurity's observables:
 - fermionic $d_{lpha}, d_{lpha}^{\dagger}$, annihilation and creation of electrons on the impurity
 - bosonic (hermitian): D_{β} , internal observable/change of the impurity states preserving the electron number; hamiltonian H_i
- Impurity interaction: tunnelling $T_{\alpha}, T_{\alpha}^{\dagger}$, co-tunnelling $U_{\beta}^{(0,\pm 1)}$:

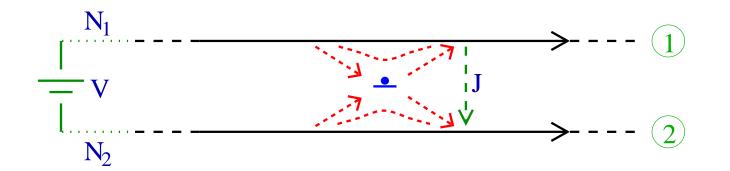
$$I = \sum_{j,\alpha} \left(\Psi_j^{\dagger}(0) T_{\alpha} d_{\alpha} + d_{\alpha}^{\dagger} T_{\alpha}^{\dagger} \Psi_j(0) \right) + \sum_{j,k,\beta} \Psi_j^{\dagger}(0) U_{\beta}^{(j-k)} \Psi_k(0) D_{\beta}$$

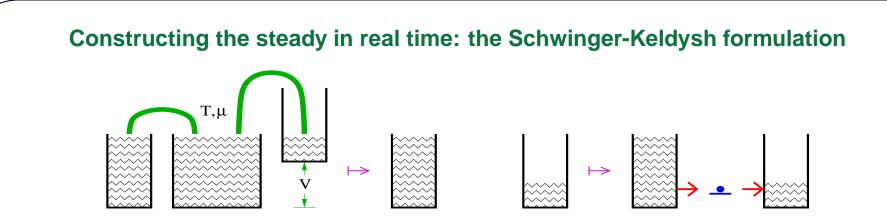
$$H = H_e + H_i + I = H_0 + I$$

In particular: interacting resonant-level model (IRLM)

Spinless bulk electrons, two-state impurity degree of freedom:

 $H = H_e + \frac{t}{(\psi_1^{\dagger}(0)d + \psi_2^{\dagger}(0)d + h.c.)} + \frac{U}{(\psi_1^{\dagger}\psi_1(0) + \psi_2^{\dagger}\psi_2(0))d^{\dagger}d} + \epsilon_d d^{\dagger}d$





• Time t = 0: leads isolated from impurity at potential difference V, in equilibrium with thermal and particle bath $\Rightarrow \rho_0 = e^{-(H_0 - VQ)/T}$ where

$$Q = \frac{1}{2} \int dx \left(\psi_1^{\dagger} \psi_1(x) - \psi_2^{\dagger} \psi_2(x) \right) = \frac{1}{2} (N_1 - N_2)$$

• Bath disconnected and potential V brought to 0.

- Connection with impurity: tunnelling strengths turned on (local quantum quench).
- Time $t = \infty$: steady-state reached \Rightarrow

$$\rho(t) = e^{-iHt} \rho_0 e^{iHt} , \quad \langle J \rangle_{ne} = \lim_{t \to \infty} \frac{\operatorname{Tr} \left(\rho(t)J\right)}{\operatorname{Tr} \left(\rho(t)\right)} , \quad J = -i[H,Q]$$

Large-time limit

- Does the limit exist? In order to reach the steady state: $L \gg t \gg T^{-1}$. Limit exists in IRLM by Caldeira-Leggett: tunnelling allows relaxation by emission of electrons. Limit is proven to exist [BD, Andrei 06] in Kondo by SU(2) symmetry, thanks to large-time factorisation of correlation functions:
 - interaction picture expression

$$\langle J \rangle(t) = \left\langle \mathcal{P} \exp\left[-i \int_{t}^{0} dt' I(t')\right] J \mathcal{P} \exp\left[-i \int_{0}^{t} dt' I(t')\right] \right\rangle_{0}$$

- large-time factorisation

 $\langle I(t_1)I(t_2)I(t_3)J\rangle_0 \rightarrow \langle I(t_1)I(t_2)\rangle_0 \langle I(t_3)J\rangle_0$

- What is the result of the limit? If V = 0, one can show [BD, Andrei 06] that it is $e^{-H/T}$. Thermalisation after local quench. Hence for $V \neq 0$, correct non-equilibrium steady state. Note: out of equilibrium, "slowly turning on interaction" does not help. Baths essential not only to obtain steady state, but also to maintain it.
- Limit of what objects? The limit exists (correlation functions factorise) only for operators supported on a finite interval. For instance: Q no, but J yes.
 Reduction of allowed observables ⇒ loss of information ⇒ irreversibility.

Scattering states and Hershfield's density matrix

- Quantum mechanics: starting with a quantum state looking like a free wave function in a region of order L where the potential is flat, taking the limit $L \gg t \gg a$ where a is some scale in the problem, and looking only around the region where the potential is not flat, one gets a scattering state.
- In general, scattering states are not large-L limits of eigenstates of H(L). They are eigenstates of $H(L = \infty)$ in a very special sense.
- The limit $L \gg t \gg T^{-1}$ in the Schwinger-Keldysh formulation should be **naturally** described by scattering states of H. Initial statistical distribution $e^{-(H_0 - VQ)/T}$ of (finite-L) states gives rise to statistical distribution of scattering states of H:

$$\langle \mathcal{O} \rangle_{ne} = \frac{\text{Tr}_{scatt. \ states} \left(\rho_{ne} \mathcal{O} \right)}{\text{Tr}_{scatt. \ states} \left(\rho_{ne} \right)}$$

• The operator ρ_{ne} is Hershfield's density matrix for non-equilibrium steady states [Hershfield 93] (although it was introduced in a different way). Usually introducing the Y operator:

$$\rho_{ne} = e^{-(H - VY)/T}$$

A priori, Y may depend on T and V!

${\rm Properties} \ {\rm of} \ Y \ {\rm operator}$

[Hershfield 93], [Mehta, Andrei 06], [BD 07], [BD 09]

• Steady-state condition.

If \mathcal{O} is finitely supported, then also $[H, \mathcal{O}]$ is. Then $\langle [H, \mathcal{O}] \rangle_{ne}$ can be calculated, and it is zero by the fact that the large-time limit exists. Since this holds for any \mathcal{O} , this implies

$$[H,Y] = 0$$

because finitely supported operators are enough observables to determine scattering states.

- Asymptotic conditions.
 - 1. Writing $\lim_{t\to\infty} \frac{\operatorname{Tr}(\rho(t)\mathcal{O})}{\operatorname{Tr}(\rho(t))}$ in **interaction picture** with respect to H_0 , we have

$$\langle \mathcal{O} \rangle_{ne} = \lim_{t \to \infty} \left\langle \mathcal{P} \exp \left[-i \int_t^0 dt' \left[I(t'), \cdot \right] \right] \mathcal{O} \right\rangle_0$$

Operators in I(t) are finitely supported on the right for t > 0. So:

$$\langle \mathcal{O}(x) \cdots \rangle_{ne} \stackrel{x < 0, \dots}{=} \langle \mathcal{O}(x) \rangle_0$$

2. Quasi-periodicity properties under $x \mapsto x + i/T$ for $\operatorname{Re}(x) < 0$ are evaluated using commutators $[H_0 - VQ, \mathcal{O}(x)]$ (r.h.s.) and $[H - VY, \mathcal{O}(x)]$ (l.h.s.). Since $[H, \mathcal{O}(x)] = [H_0, \mathcal{O}(x)]$ for $x \neq 0$, we must have

$$[Y, \mathcal{O}(x) \cdots] \stackrel{x < 0, \dots}{=} [Q, \mathcal{O}(x) \cdots]$$

From this, formal definition of \boldsymbol{Y} on scattering states

[BD 09]

Scattering states through Lippman-Schwinger equation (in states):

$$|v\rangle = |v\rangle_0 + \frac{1}{E_v - H_0 + i0^+}I|v\rangle$$

where $|v\rangle_0$ is eigenstate of $H_0 = H_e + H_i$, and $|v\rangle$ is eigenstate of H, with energy E_v .

• Bare wave function. For minimal particles on the impurity, bare wave function gives

$$\langle 0|\mathcal{O}(x)\cdots|v\rangle \stackrel{x<0,\dots}{=} \langle 0|\mathcal{O}(x)\cdots|v\rangle_0$$

• Hybridisation. Only states $|v\rangle_0$ with minimal particles on impurity give non-zero $|v\rangle$.

 \Rightarrow minimal-particle bare wave functions at negative positions fully determine |v
angle

 only "one" minimal-particle state thanks to hopping in IRLM

$$\Rightarrow \qquad Y|v\rangle = q|v\rangle \quad \text{for} \quad Q|v\rangle_0 = q|v\rangle_0$$

- SU(2) invariance in Kondo model

Operator construction

• From hybridisation, we know the quantum numbers of scattering states. Then (IRLM):

 $\{a_{p,j}^{\dagger}, a_{p',j'}\} = \delta(p - p')\delta_{j,j'}, \quad a_{p,j}|\text{vac}\rangle = 0 \ (p > 0), \quad a_{p,j}^{\dagger}|\text{vac}\rangle = 0 \ (p < 0)$

$$H = \sum_{j} \int_{0}^{\infty} dp \, p \, : a_{p,j}^{\dagger} a_{p,j} \, :$$
$$Y = \frac{1}{2} \int dp \, \left(: a_{p,1}^{\dagger} a_{p,1} \, : - : a_{p,2}^{\dagger} a_{p,2} \, : \right)$$

- Find a representation of the canonical commutation relations and the equations of motion $[H, \psi_j(x)] = \ldots$, $[H, d] = \ldots$, where H is bounded from below.
- For $x \neq 0$, the operators $\psi_j(x)$, H form a closed algebra:

$$[H, \psi_j(x)] = i \frac{d}{dx} \psi_j(x) \quad (x \neq 0)$$

Solution:

$$\psi_j(x) = \int \frac{dp}{\sqrt{2\pi}} e^{ipx} \begin{cases} a_{p,j} & (x < 0) \\ \mathcal{U}a_{p,j}\mathcal{U}^{\dagger} & (x > 0) \end{cases}$$

The unitary operator \mathcal{U} encodes all the impurity-related dynamics, and in fact defines the impurity model

Local current vs scattering formalism

$$J = -i[H,Q] = -\frac{it}{\sqrt{2}}d^{\dagger}\psi_{o}(0) + h.c.$$

But also

$$Q = \int_{-\infty}^{\infty} dx \, q(x) = \int_{-\infty}^{0} dx \, q(x) + \int_{0^{+}}^{\infty} dx \, q(x)$$

 $\sim -$

so that

 $J = q(0^{-}) - q(0^{+})$

$$J\rangle = \langle q(0^{-}) - q(0^{+}) \rangle$$

$$= \frac{1}{L} \langle \int_{-L/2}^{L/2} dx \left(q_{in}(x) - \mathcal{U}q_{in}(x)\mathcal{U}^{-1} \right) \rangle$$

$$= \frac{1}{L} \langle Q_{in} - \mathcal{U}Q_{in}\mathcal{U}^{-1} \rangle$$

$$= \frac{1}{L} \sum_{in} \rho_{in} \langle in|Q_{in} - \mathcal{U}Q_{in}\mathcal{U}^{-1}|in \rangle$$

$$= \frac{1}{L} \sum_{in, out} \rho_{in} \langle in|Q_{in} - \mathcal{U}Q_{in}\mathcal{U}^{-1}|out \rangle \langle out|in \rangle$$

$$= \frac{1}{L} \sum_{in, out} \rho_{in} \langle in|Q_{in} - Q_{out}|out \rangle \langle out|in \rangle$$

$$\langle J \rangle = \frac{1}{L} \sum_{in, out} \rho_{in} \langle Q_{in} - Q_{out}||\langle in|out \rangle|^{2}$$

Current noise from Y operator

A careful evaluation of the large-time limit [BD, Andrei 06] shows that

$$Y = \lim_{t \to \infty} e^{-iHt} Q e^{iHt} = Q + \int_{-\infty}^{0} J(t)$$

Current noise (with $\delta J = J - \langle J \rangle_{ne}$):

$$2\int_{-\infty}^{0} dt \,\langle \{J(t), \delta J\} \rangle_{ne} = 2\langle \{Y - Q, \delta J\} \rangle_{ne} = 4T \frac{d}{dV} \langle J \rangle_{ne} - 2\langle \{Q, \delta J\} \rangle_{ne}$$

[Fujii 08]

How to construct the \mathcal{U} operator?

- CFT: conformal boundary state $\sum_{i,j} B_{i,j} |i\rangle_R \otimes |j\rangle_L$ gives rise to $\mathcal U$ operator.
- Free theory (RLM, U = 0): use even and odd sectors: $\psi_{e,o} = (\psi_1 \pm \psi_2)/\sqrt{2}$. Operators H, ψ_e and d form a closed algebra. Solve.

$$\mathcal{U} = e^{-i\int dp \,\phi_p a_{p,e}^{\dagger} a_{p,e}}, \quad e^{i\phi_p} = \frac{\epsilon_d - p + it^2}{\epsilon_d - p - it^2}$$

Continuity conditions through the impurity [BD 07]:

$$-i\sqrt{2}td = \psi_e(0^+) - \psi_e(0^-)$$
 (note also: $\{\psi_e(0^\pm), d^\dagger\} = \mp it/\sqrt{2}$)

Resolution of the impurity and consistency of operator algebra [BD 07, 09]:

$$\psi_e(0) = \frac{\psi_e(0^+) + \psi_e(0^-)}{2}$$

Non-locality

In the free case U = 0, we find, after inverse Fourier transform,

$$Y - Q = -\frac{1}{2} \int_0^\infty dx \, e^{-(t^2 + i\epsilon)x} \left(i\sqrt{2}t d^{\dagger}\psi_o(x) + 2t^2 \int_0^\infty dx' \psi_e^{\dagger}(x')\psi_o(x+x') \right) + h.c.$$

- Non-locality: not integral over x of local density at x. Related to the fact that Y describes a non-equilibrium state.
- But weak non-locality: the non-locality is exponentially vanishing. Related to the fact that there is relaxation at large times, which is essential for the steady state to be reached and to exist.

Interacting case, IRLM $U \neq 0$

• General perturbative form of solution:

$$\mathcal{U}a_{p,e}\mathcal{U}^{\dagger} = e^{i\phi_{p}}a_{p,e} + U \int dp_{1}dp_{2} f_{p_{1},p_{2}} : a_{p_{1}+p_{2}-p,e/o}^{\dagger}a_{p_{1},e/o}a_{p_{2},e/o} : + \dots$$

• A systematic approach for impurity operators [BD 07]: using

$$\left(1 + \frac{iU}{2}d^{\dagger}d\right)\psi_e(0^+) - \left(1 - \frac{iU}{2}d^{\dagger}d\right)\psi_e(0^-) = -i\sqrt{2}td$$

we find

$$\left(d, d^{\dagger}, d^{\dagger}d \right) = i \int_{0}^{\infty} dx c_{in}^{T}(x) \mathcal{P} \exp\left[\int_{x}^{0} dx' (-iE_{in}(x') + A) \right]$$

Integrability

• Bare construction:

 $\int [dx] \left(\prod e^{i\phi_p(x) + ipx} \psi_e^{\dagger}(x) \,|\, e^{ipx} \psi_o^{\dagger}(x) \,|\, \delta(x) d^{\dagger} \right) \left(\prod S_{p,q}^{e|o,e|o}(x-y) \right) |0\rangle$

with $S_{p,q}^{v,w}(x>0) = S_{p,q}^{v,w}$ and $S_{p,q}^{v,w}(x<0) = 1$, similarly for $e^{i\phi_p(x)}$.

• ZF operators: new basis for CFT, $\prod A_{p,v}^{\dagger}|0
angle$ with

$$A_{p,v}A_{q,w} = -S_{p,q}^{v,w}A_{q,w}A_{p,v}$$

• Exact expression for \mathcal{U} :

$$\mathcal{U} = e^{-i\int dp\,\phi_p A_{p,e}^{\dagger}A_{p,e}}$$

• Local conserved charges:

$$H_{n,v} = \int dp \, p^n A_{p,v}^{\dagger} A_{p,v}, \quad \mathcal{U} = e^{-i\sum_{n=0}^{\infty} u_n H_{n,e}}$$

Integrability out of equilibrium

• The operator \boldsymbol{Y} must preserve the set of momenta, but may interchange the particle types

 $[Y, \sum_{v} H_{n,v}] = 0 \Rightarrow Y$ must act on one-particle subspaces

• Is the IRLM integrable out of equilibrium? Continuity conditions lead to [BD 07, 09]

$$S_{p,q}^{e,e} = \frac{4\epsilon_d - 2(p+q) + i(p-q+2it^2)U}{4\epsilon_d - 2(p+q) - i(p-q+2it^2)U}, \ S_{p,q}^{e,o} = \frac{1+iU/2}{1-iU/2}, \ S_{p,q}^{o,e} = \frac{1-iU/2}{1+iU/2}$$
$$\Rightarrow \quad [Y, \sum_v H_{n,v}] \neq 0$$

• Mehta and Andrei: same $S^{e,e}$ but $S^{e,o} = S^{o,e} = S^{o,o} = S^{e,e}$.

$$\Rightarrow [Y, \sum_{v} H_{n,v}] = 0, \text{ same universal } \mathcal{U}?$$

Conclusions and perspectives

We showed how the scattering state formulation naturally arises from the the real-time formulation, and showed how using scattering states and Hershfield Y operator one can essentially separate the dynamical part, with standard perturbative or exact descriptions, from the "non-equilibrium state" part.

Some questions:

- Can we prove that the steady state corresponds to the maximal current? (extremisation of entropy production?)
- Can we develop an efficient diagramatic method from the operator construction?
- Can we unify the various exact constructions of \mathcal{U} ? ("mine", Mehta Andrei, Boulat Saleur)
- Can we perturb the \mathcal{U} operator about non-trivial exact points?