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Criticality and nucleation

Sensitivity: divergence of susceptibilities, critical exponents.
Scale invariance: statistical self-similarity, scaling relations.
Universality: independence from microscopic detail.

Thermodynamic criticality may be seen as occurring when two 
phases start to coexist simultaneously.

Criticality displays (at least!) three fundamental properties:

A simple picture of criticality is that of 
nucleation: at criticality it costs no free 
energy to create a phase boundary, so 
by entropic considerations phase 
boundaries (bubbles) are created at all 
scales and both phases coexist.
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Sensitivity:
- phase boundaries are easily destroyed by a small external field;
- fluctuations are efficiently transferred from small to large scales.
Scale invariance:
- bubbles occur at all scales creating a scale invariant distribution;
- this may manifest itself through critical opalescence:

Universality:
- the bubbles can be seen as large-scale emergent random objects, 
that keep only partial information from microscopic fluctuations.

Criticality and nucleation
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A proposed concept: attempting to connect these properties 
together in a quantitative way, there should be a universal quantity 
(to be defined!) describing how much of the fluctuations of small 
bubbles are carried to large scale fluctuations: 

Criticality and nucleation

c
This and the bubble picture can be made somewhat more precise 
in two-dimensional models.
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Two dimensions: spins and random loops

Consider a homogeneous, isotropic model of local spins (up or 
down) where the two phases are spin-up and spin-down; for 
instance the well-known Ising model at its critical temperature.
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Two dimensions: spins and random loops

CLECFT

Consider a homogeneous, isotropic model of local spins (up or 
down) where the two phases are spin-up and spin-down; for 
instance the well-known Ising model at its critical temperature.

In the standard critical scaling limit, one 
observes correlations between local spins (or 
other local observables) at large separations:

The exponent    and the function                 are universal 
quantities, and are described by Conformal field theory.

η

�σ(sw1) · · ·σ(swn)� ∼ s−ηF (w1, . . . , wn)

F (w1, . . . , wn)
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Two dimensions: spins and random loops

CLECFT

Consider a homogeneous, isotropic model of local spins (up or 
down) where the two phases are spin-up and spin-down; for 
instance the well-known Ising model at its critical temperature.

But there is another way of 
taking the scaling limit: 
obser v ing the c luster 
boundaries (the bubbles) 
at large scales:

The measure    on the resulting set of nested disjoint loops is 
universal, and is described by Conformal Loop Ensembles.

A

µA

SLE and CLE: Schramm (1999), Lawler, Sheffield, Werner (2006-); Scaling limit proof (Ising): Smirnov et al. (2006-)
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Two dimensions: spins and random loops

CLECFT

There are many models besides the Ising models where explicit 
domain boundaries may be define naturally, e.g. the so-called O(n) 
models.

A

µA = scaling limit of xtotal lengthn#loops

x =
1�

2 +
√
2− n

Nienhuis (1982)Case n=1 (Ising): proved by Chelkak and Smirnov (2008)
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Conformal loop ensembles

Conformal invariance: consequence of scale invariance + 
homogeneity + isotropy + locality: a conformal transformation is 
locally a homotety + translation + rotation.

µA = µg(A) ◦ g
g

z g(z)

S. Sheffield and W. Werner (2006-; Ann. Math. 2012)
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Conformal loop ensembles

Conformal invariance: consequence of scale invariance + 
homogeneity + isotropy + locality: a conformal transformation is 
locally a homotety + translation + rotation.

Restriction / a cluster boundary is a domain boundary: 
spins don’t know if a wall of e.g. plus-spins is a domain boundary, a 
restriction condition, or cluster boundary.

µA = µg(A) ◦ g
g

Inside loops: Outside loops:

z g(z)

S. Sheffield and W. Werner (2006-; Ann. Math. 2012)
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Conformal loop ensembles

By the Riemann Mapping Theorem, any simply connected 
hyperbolic domain can be conformally mapped to the unit disk: the 
above form a strong set of conditions.

As a consequence, there is a unique one-parameter family of solutions 
to the above conditions (on such domains): CLEc

c ∈ (0, 1]

S. Sheffield and W. Werner (2006-; Ann. Math. 2012)
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- the Poisson density in the stochastic construction of CLE;
- the fractal dimension   
  of any loop;
- the Boltzman weight     
  for the presence of a loop.

Conformal loop ensembles

By the Riemann Mapping Theorem, any simply connected 
hyperbolic domain can be conformally mapped to the unit disk: the 
above form a strong set of conditions.

As a consequence, there is a unique one-parameter family of solutions 
to the above conditions (on such domains): CLEc

c ∈ (0, 1]

The parameter      is related in a precisely known fashion to:c

c =
(7− 4d)(3d− 4)

d− 1

d

n
c =

(2− 3y)(4y − 1)

1− y
, cos(2πy) = −n

2

Bauer, Bernard, Cardy; Beffara, Sheffield, Werner (2002-)

S. Sheffield and W. Werner (2006-; Ann. Math. 2012)
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Measuring the shape of small loops

Can we relate     to the fluctuations of loops? For this purpose, let 
us try to measure the shape of small loops. Consider the indicator 
variable         that there be at least one loop winding in the annular 
domain     .

I(N)
N

c
BD (2011,2012,2013)
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Measuring the shape of small loops

Taking the normalized limit where the annular domain becomes a 
curve      we obtain a weight for loops that are «near» that shape:α

E(α) := lim
N→α

I(N)

E
�
I(N)

�
Ĉ

N → α

Can we relate     to the fluctuations of loops? For this purpose, let 
us try to measure the shape of small loops. Consider the indicator 
variable         that there be at least one loop winding in the annular 
domain     .

I(N)
N

c
BD (2011,2012,2013)
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Measuring the shape of small loops

N → α

The normalization factor                is zero in the limit            , and 
the way it tends to zero depends on how wiggly the loops tend to 
be (cf. fractal dimension). This is a nontrivial renormalization.

N → αE
�
I(N)

�
Ĉ

Taking the normalized limit where the annular domain becomes a 
curve      we obtain a weight for loops that are «near» that shape:

E(α) := lim
N→α

I(N)

E
�
I(N)

�
Ĉ

α

BD (2011,2012,2013)
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We may think of the variable           as a Wilson loop (or more 
precisely, the dual to a Wilson loop).

Measuring the shape of small loops

N → α

Taking the normalized limit where the annular domain becomes a 
curve      we obtain a weight for loops that are «near» that shape:

E(α) := lim
N→α

I(N)

E
�
I(N)

�
Ĉ

α

E(α)

BD (2011,2012,2013)
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Ellipses

� θ
w

Consider the curve                        to be an ellipse as above of 
eccentricity , and define a further renormalized variable 
corresponding to a rotating infinitesimal ellipse of spin 2:

e

spin 2

T (w) := lim
�→0

1

2π�2

� 2π

0
dθ e−2iθ E(α(w, θ, �, e))

�
� :=

�e

2

�

α = α(w, θ, �, e)

BD (2011,2012,2013)
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Ellipses

� θ
w

Consider the curve                        to be an ellipse as above of 
eccentricity , and define a further renormalized variable 
corresponding to a rotating infinitesimal ellipse of spin 2:

e

spin 2

Then, the following expectation on the Riemann sphere is:

α = α(w, θ, �, e)

T (w) := lim
�→0

1

2π�2

� 2π

0
dθ e−2iθ E(α(w, θ, �, e))

�
� :=

�e

2

�

E
�
T (w1)T (w2)

�
Ĉ =

c/2

(w1 − w2)4

BD (2011,2012,2013)
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Ellipses

� θ
w

Consider the curve                        to be an ellipse as above of 
eccentricity , and define a further renormalized variable 
corresponding to a rotating infinitesimal ellipse of spin 2:

e

spin 2

Then, the following expectation on the Riemann sphere is:

α = α(w, θ, �, e)

T (w) := lim
�→0

1

2π�2

� 2π

0
dθ e−2iθ E(α(w, θ, �, e))

�
� :=

�e

2

�

Note: CFT two-point function of holomorphic stress-energy tensor

E
�
T (w1)T (w2)

�
Ĉ =

c/2

(w1 − w2)4
= �T (w1)T (w2)�Ĉ

BD (2011,2012,2013)
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spin 2

That is, the number     measures the strength of the correlation 
between the «events» that separated infinitesimal loops are elliptic 
and rotating with spin 2 (shape correlations).

spin 2

c

Ellipses

c/2

(w1 − w2)4
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A rotating ellipse of spin 2 can be interpreted as a 
two-crest wave propagating at the spin-2 speed on 
a circle: we find large-distance correlations 
between such wave-like fluctuations at 
small scales.

Ellipses

spin 2

spin 2

That is, the number     measures the strength of the correlation 
between the «events» that separated infinitesimal loops are elliptic 
and rotating with spin 2 (shape correlations).

spin 2

c

c/2

(w1 − w2)4
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spin 2 spin 2

Ellipses

spin 2

Tranfer of certain types of fluctuations from small to 
large scales is proportional to c

· · ·

Since there is a.s. infinitely 
many loops around every 
point, these correlations mean 
such wave-like fluctuations 
must travel from small to large 
scales:

c/2

(w1 − w2)4

jeudi 25 juillet 2013



Hypotrochoids and Virasoro

This can be generalized to higher number of crests using the 
hypotrochoids (natural generalizations of the ellipse):

αk(w, θ, �, b) :=
�
w + �eiθ(beiβ + b1−ke(1−k)iβ) : β ∈ [0, 2π)

�
k = 2 k = 3 k = 4 k = 5

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

This can be generalized to higher number of crests using the 
hypotrochoids (natural generalizations of the ellipse):

αk(w, θ, �, b) :=
�
w + �eiθ(beiβ + b1−ke(1−k)iβ) : β ∈ [0, 2π)

�
k = 2 k = 3 k = 4 k = 5

Tk,m(w) := lim
�→0

m!

2π�km

� 2π

0
dθ e−kmiθ E(αk(w, θ, �, b))

It can also be generalized 
to higher spins, and to any 
correlation function on any 
domain. E

�
Tk1,m1(w1) · · · Tkn,mn(wn)

�
A

�
T2,1(w) = T (w)

�

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

Result: these expectation values are equal to correlation functions of 
descendants of the stress-energy tensor in CFT:

E
�
Tk1,m1(w1) · · · Tkn,mn(wn)

�
A
= �Tk1,m1(w1) · · ·Tkn,mn(wn)�A

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

Result: these expectation values are equal to correlation functions of 
descendants of the stress-energy tensor in CFT:

E
�
Tk1,m1(w1) · · · Tkn,mn(wn)

�
A
= �Tk1,m1(w1) · · ·Tkn,mn(wn)�A

They are explicit functions of     whenever the domain     is simply 
connected.

c A

They include the conformal Ward identities of Belavin, Polyakov and 
Zamolodchikov (1984)

as well as the conformal boundary conditions of Cardy (1984).

T (w1)T (w2) ∼
c/2

(w1 − w2)4
+

2T (w2)

(w1 − w2)2
+

∂T (w2)

w1 − w2

SLE8/3 boundary: Friedrich and Werner (2003); SLE8/3 bulk: BD, Riva and Cardy (2006)

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

Result: these expectation values are equal to correlation functions of 
descendants of the stress-energy tensor in CFT:

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m) δm+n,0

Stress-energy tensor and descendants have algebraic meaning via 
the Virasoro algebra, where      is the associated central charge:

By the state-operator correspondence, they are elements of the 
identity module, for instance we have:

c

E
�
Tk1,m1(w1) · · · Tkn,mn(wn)

�
A
= �Tk1,m1(w1) · · ·Tkn,mn(wn)�A

Tk,1 = L−k1

Tk,2 = (L2
−k + (k − 1)L−2k)1

Tk,3 = (L3
−k + 3(k − 1)L−2kL−k + 2(k − 1)(2k − 1)L−3k)1

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

∂

∂w
=

This means that these small-scale wave-like fluctuations generate 
the structure of the Virasoro vertex operator algebra. For instance:

T2,1(w) T3,1(w)

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

∂

∂w
=

spin 2 spin 3

This means that these small-scale wave-like fluctuations generate 
the structure of the Virasoro vertex operator algebra. For instance:

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

∂

∂w
=

spin 2 spin 3

This means that these small-scale wave-like fluctuations generate 
the structure of the Virasoro vertex operator algebra. For instance:

�
T2,1(w)T2,1(w

�)− singular part
�

w=w�
= T2,2(w)− T4,1(w)

(Wilson’s Operator Product Expansion)

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

∂

∂w
=

spin 2 spin 3

    Regular
    part of 

spin 2 spin 4
� �2

= −
spin 4

This means that these small-scale wave-like fluctuations generate 
the structure of the Virasoro vertex operator algebra. For instance:

(Wilson’s Operator Product Expansion)

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

∂

∂w
=

spin 2 spin 3

spin 2 spin 4
� �2

= −
spin 4

This means that these small-scale wave-like fluctuations generate 
the structure of the Virasoro vertex operator algebra. For instance:

Transfer of Fluctuations from small to large scales 
gives rise to the Virasoro (vertex operator) algebra

    Regular
    part of 

(Wilson’s Operator Product Expansion)

BD (2011,2012,2013)
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Hypotrochoids and Virasoro

Descendants of the stress-energy tensor were initially introduced in 
CFT as an algebraic structure useful in order to evaluate correlation 
functions of physical fields. Here we have for the first time a 
statistical interpretation: measuring fluctuations of small 
loops.
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with

From small to large scales

Random variable measuring macroscopic loops, e.g. I(N)

E
�
T (w)O

�
A
= Z id ∂

∂η
Zg E

�
g · O

�
g·A

����
η=0

g(z) = z +
η

w − z

g · I(N) = I(g(N))

The derivative is conjugated by the relative partition function:

Zg :=
1

E
�
E(g(∂A))

�
g(Ĉ\neighborhood of w)

This is a generalization of the conformal Ward identities to non-local 
observables.

BD (2011,2012,2013)
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From small to large scales

T (w) := lim
�→0

1

2π�2

� 2π

0
dθ e−2iθ E(α(w, θ, �, e))

�
� :=

�e

2

�

diameter O(�)

fluctuations O(�2)

Random variable measuring macroscopic loops, e.g. I(N)

E
�
T (w)O

�
A
= Z id ∂

∂η
Zg E

�
g · O

�
g·A

����
η=0

g(z) = z +
η

w − z
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From small to large scales

fluctuations O(1)

T (w) := lim
�→0

1

2π�2

� 2π

0
dθ e−2iθ E(α(w, θ, �, e))

�
� :=

�e

2

�

2-crest spin-2 small-loop fluctuations give 
macroscopic fluctuations of large loops.

Random variable measuring macroscopic loops, e.g. I(N)

E
�
T (w)O

�
A
= Z id ∂

∂η
Zg E

�
g · O

�
g·A

����
η=0

g(z) = z +
η

w − z
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From small to large scales

fluctuations O(1)

T (w) := lim
�→0

1

2π�2

� 2π

0
dθ e−2iθ E(α(w, θ, �, e))

�
� :=

�e

2

�

2-crest spin-2 small-loop fluctuations give 
macroscopic fluctuations of large loops

Higher number of crest / higher spin give 
finer fluctuations of large loops (fractals).

Random variable measuring macroscopic loops, e.g. I(N)

E
�
T (w)O

�
A
= Z id ∂

∂η
Zg E

�
g · O

�
g·A

����
η=0

g(z) = z +
η

w − z
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Conformal transformations

The central charge appears because of the renormalization used in 
defining the variables          ,   which modifies their natural 
conformal transformation properties. Infinitesimally, we have:

Tk,m(w)

αk(w, θ, �, b) �→ αk(w
�, θ�, ��, b) + corrections

E(αk) �→ F E(α�
k + corrections)

g
w w�

w� = g(w)

��eiθ
�
= ∂g(w)�eiθ

An extra factor is involved in the renormalized indicator variable:

T (w) �→ (∂g(w))2T (g(w)) +
c

12
{g, w}1

and the angle integral is further affected by the «corrections», 
giving, for instance, the extra term in

BD (2011,2012,2013)
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Remarks

The construction is not unique: we may use a different definition 
(more like a Wilson loop) giving the same results; and any local 
operator transforming like the stress-energy tensor and vanishing on 
the unique disk should be a stress-energy tensor.

The construction gives more generally connections between loop 
fluctuations / shape correlations, the theory of manifold of 
conformal maps, and the theory of geometric vertex operator 
algebras of  Y.-Z. Huang.

The formal derivation show that this may be applicable much more 
generally: CFT structure in other contexts?
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Conclusion

At criticality in two dimensions, the bubbles representing 
boundaries between phases are well-defined objects at large scales; 
this picture is made precise thanks to conformal loop ensembles.

I have shown how the structures of conformal field theory can be 
extracted from these conformal random loops.

I have attempted to interpret my results as indicative of how 
universal aspects of small-scale fluctuations are transferred to larger 
scales.

To be done: generalization to other symmetry fields, understanding 
null-vector equations, applications beyond CLE....
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