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Statistical models (in two dimensions)

e Measures on functions ¢ from faces of a lattice (ex: hexagonal) to some set (ex: {T, L}).

e Locality, homogeneity: H P(0 |neighbourhood of k)ﬁ.

faces k
e Criticality: 3 = (3., correlation lengths
become infinite. Two descriptions of

large-distance behaviours:

— conformal field theory, algebraic

construction;

— conformal loop ensembles, proba-

bilistic/stochastic construction.

CFT CLE



Conformal field theory

Consider T= +1, |= —1. At criticality:

Jim e3¢ Elo(x/e)o(y/e)] = C(x,y)

e—0

(here, z, y are in R?). The coefficient C'(x,y) is a correlation function in a CFT
Cla,y) = {0(2)O0(y))
The basic ingredients of CFT (and more generally QFT) are

e Localfields O(x) <> local variables 1, o(k), 0%(k), o(k)o(neighbour of k), . ..

e correlation functions (-) < expectations of products of local variables [E|-]



The main property of CFT is conformal invariance. Consider a transformation g
conformal on a domain D. If O is “local enough,” i.e. primary , it only feels the local
translation, scaling and rotation, the latter two multiplicatively:

(O)O(2))p = (¢'(w)g' ()" (7 (D)7 (2)" (O(g(w))O(g(2)))g(p)

(here, w, z are in C; h, h are in RT; and’ is the derivative). In particular, h + h = d.

This implies the existence of the stress-energy tensor  T'(w), with Ward identities :

(T(w)O(2)---)p = (T'(w))p(O(2) - - ) p+

h 1 0 1 0
((w — z)? + w— z 0z T ) (O(z)---)p + /aD dsw — 9D(s) 9(0D(s)) (Oz) )

From explicit calculations in some models: 7" is not a primary field, there is a central

charge c € R:

T(w) = ¢/ (@ T(gw) 5o} {g.0} = (éiag%) -3 (5 )



The algebraic structure of CFT [Kac, Lepowsky, ..., Cardy, Z amokodchikoy, ...; 1980 —]

e Virasoro algebra:

T(w)O(z) = ) (w—2)"""}(L,0)(2)

nez

C

[Lm, Ln] = (m — n)Lm+n -+ Em(mQ — 1)5m—|—n,0

e “Chiral part” of local fields: elements of highest weight modules for the Virasoro

algebra — more generally, for a vertex operator algebra — characterised by the weight h

e Correlation functions: modular invariant chiral-anti-chiral pairings of “Clebsch-Gordon

coefficients” of tensor products of VOA modules.



Conformal fields, SLE, and CLE

Conformal fields as described correspond to local observables of the statistical

model .

All correlation functions  of conformal fields can be obtained from SLE,,: appropriate

martingales [Bauer, Bernard 2002 —].
But generically conformal fields are not local observables of the random curve in SLE

Some fields do correspond to local SLE observables: stress-energy tensor (k = 8/3)
and U (1)-current (k = 4) [D., Riva, Cardy 2006], parafermions (some x > 4) [Riva,
Rajabpour, Cardy; 2006 —].

For more general fields and arbitrary central charge, we need all the loops: CLE
Only for Kk = 8/3 is there a local weight function describing the SLE curve.

One can also extend the CFT algebraic structure in order to describe natural SLE

observables [Cardy, Watts, Mathieu, Ridout, Simmons].



Constructing the stress-energy tensor [D., Riva, Cardy (20 06)]

e Consider the algebraic definition of the stress-energy tensor from the identity field 1:

(L—21)(w) = T(w)

e Interpret geometrically:

The stress-energy tensor is the result of a conformal transformation that preserves oo,
on a simply connected domain that excludes the point w,

whose extension to w has a simple pole at that point.

e Hence the stress-energy tensor should be obtained from the conformal transformation

€2 62@9

16(w — 2)

f() =2+

for € small.



Conformal restriction?
Consider a statistical model on C, with a random set I (e.g.: the loops of the O(n) model).

If we restrict the model to nothing intersecting the boundary of a domain B C C, then this

should be equivalent to looking at the model on C \ B.



w, €): the disk of diameter be /2 centered at w, for some b > 1
w, €, 0): the ellipse obtained from f(C \ D(w,¢)) = C\ E(w,¢,0).
(z,...): e.g. event that at least one loop winds in a certain way around points z, . . .

(w,e,0): theevent ' N OE (w,e,0) =

4 f
— (2, 1,
SCHIEIIR 7

Ze



P(X(z,..))ce\pw.e) = PX(f(2):--))c\Ew,e0)
— P(X(f(z)v ) |Y(w7€7‘9))(c
P(X(f(z ) M Y(w7 &, 9))((3

= P(Y(w, £, (9))(CP(X(Z, .. -))C\D(w,s)

220210 5

= c.+... ) P(X(z,...NY
(1+16(w—z)8z+cc+ ) (X(z,..)NY (w,e,0))c
CC:2627;9 O

16(w — z) 0z

= P(X(z,..)NY(w,&,0))c + ( +c.c.+ .. ) P(X(z,...))c

Hence, the stress-energy tensor is the “insertion of a small rotating avoided ellipse”:

= — lim i/% doe *"P(X(z,..)NY (w,e,0))c = ( L 9 + ) P(X(z,...))c

e—0 TTe2 w—z0z



Problem: zero central charge!

For small £, only translation, rotation and scaling affect the rotating ellipse:

27
_ lim % / doe 2 P(X(z,...)NY (w,e,0))c
e—0 71€E 0
8
= —(@g(w))* iy = [ B P(X(g(2)..) N Y (glw),2.0)ycc

(can be shown by providing an appropriate modification of f(z) in order to produce a

conformally transformed ellipse from C \ D(w, €)).

Construction works for the true restriction measure [Lawler, Schramm, Werner 2003]
SLEg/3 [D., Riva, Cardy 2006], generalises the construction for the boundary stress-energy

tensor [Friedrich, Werner (2003)]. In this case, the central charge indeed is zero.



Conformal loop ensembles [Sheffield, Werner 2005 —]

Consider the set Sp whose elements are collections of at most a countable infinity of
self-avoiding, disjoint loops lying on a simply connected domain D.

A conformal loop ensemble can be seen as a family of measures 1. on the sets Sp for all
simply connected domains D, with the three properties .



1. Conformal invariance.

For any conformal transformation [ : D — D’

ip = ppr - f

e Expected, but hard to prove from statistical models.

e The only non-trivial condition is for f : D — D for one given canonical domain D). The

rest is definition for other domains.



2. Nesting.

The measure [ p restricted on a loop v C D and on all loops outside 7 is equal to the CLE

measure £ p_ on the domain D, C D delimited by 7y (i.e. with D, = ).
e This is (usually) simple to see from statistical models.
e |t says that the inner boundary of a loop is like the boundary of a domain.

e It can be implemented by an iterative construction: first construct a measure on outer

loops only, then inside every outer loop put the conformally transported measure, etc.



3. Conformal restriction.

Given a domain B C D suchthat D \ B is simply connected, consider B, the closure of
the set of points of B and points that lie inside loops that intersect 5. Then the measure on

each component C; of D \ B obtained by restriction on loops that intersect B, is uc, .




e This is again (usually) simple to see from statistical models.
e Itis “trying” to say two things:
1. the outer boundary of a loop is like a domain boundary;

2. the measure restricted on no loop crossing 0B is a product of independent CLE

measures;

neither of which can be exactly implemented as conditions on (. For the first: requires
CLE on non-simply connected domains. For the second: impossible because around any

point there is a.s. infinitely many loops.



Relations between CLE and SLE

® In both cases, there is a condition of conformal invariance and conditions saying that the

curves are like domain boundaries.

e There is a construction of a family of CLE’s parametrised by a parameter ~ for

8/3 < k < 4 which have the property that locally, the loops look like SLE,.

e Both CLE and SLEg /3 have (slightly different) conformal restriction properties. In both

cases, curves/loops are everything there is.



The stress-energy tensor with non-zero central charge [D.]
Infinitely many small loops: modify conformal restriction, give rise to non-zero central charge.

Basic idea: suppose we have a “regularised” probability P**5({z,...}; A)p depending on
a simply connected domain A (disjoint from z, . . .), which in a sense imposes that no loop

crosses OA. Suppose it has the following properties:

PS(X(g(2), - )i 0oy = Flgn AP (X (5, ); A)p
P*8(X(g9(2),-..)i9(A))gpy = P"*(X(z,...);A)p forg conformalonC + {oc}

Pe(X(z,. )i A)p
Preg (A)D

P(X(z,...))p\a

Then, we have the Ward identities...
1 0

w— 2z 0z

~im - /O% doe ?""P*8(X (z,...); E(w,¢e,0))c = ( + .. ) P(X(z,...))c

e—0 7'(552



... and the correct transformation properties:
e Fourier decomposition: f(g, E(w,£,0)) = >, 7 fan(g, w, €)e*™™

e Fourier transform of the transformation equation:

/o ' dfe =29 Pree(X (g(2),...); g(E(w, e, 0))) (D)

27
— / d@e_%ef(g, E(w, £, 9))Preg(X(27 .. )7 E(w7 &, 9))D
0

e Deduce that f2(g, w, e) ~ &% fa(g, w), with f2(g, w) holomorphic in w, and the
correct transformation properties with central term fo(g, w) /4.

e Automorphic factor: f(ho g, A) = f(g,A)f(h,g(A))

e Infinitesimally f2(h o g,w) = fa(g, w) + (Og(w))? f2(h, g(w)), with constraint
f2(g,w) = 0 for g conformal on C + {0} (global conformal transformation), has
solution f5(g, w) = (¢/3){g, w} (for some ¢) — the Schwarzian derivative.



Construction in CLE

Consider a family of events S(A, e) characterised by any simply connected domains A and

any small enough real numbers € > 0, defined as follows:

e For A =D, itis the event that no loop intersect both (1 — €)9ID and ID.

e For A # I, itis the event g4 (£ (D, €)), where the conformal transformations g 4 is
chosen such that A = g4 (D), and such that if A = G(B) for some global conformal
transformation G, then there is a global conformal transformation K with K (B) = B

suchthatgs = G o K o gg.



The reqgularised probability can be defined by

(for A simply connected and disjoint from z, . . .):

e (o vy i P )N EAO)p
PrE(X ()i A)p = Nl ==

“Theorems:”

® The limit exists.

P8(X(z,...); A)p
Preg(A)D

transformation conformal on D \ A.

Preg(){(g(z)7 .. -); g(A))Q(D)

Pree(X(z,...): A)p
g is a global conformal transformation.

, as a function of z, . . . and A, is invariant under any

e The ratio

e The ratio is independent of z, ... and of D, and is 1 if



“Theorem.” Any two “local” objects that are zero on the unit disk and transform like the

stress-energy tensor, have the same “correlation functions”.

Corolary. Any “local” object that is zero on the unit disk and transforms like the stress-energy

tensor, satisfies the conformal Ward identities.



Conclusion

We have constructed an object (the limit of an integral of the limit of a ratio of probabiilities...)

that satisfies the conformal Ward identities, and that transforms like the stress-energy tensor.
e Can we re-construct the vertex operator algebra from this?
e What are the events / objects corresponding to rational modules?

e Can we repeat the construction on surfaces of arbitrary genus?



