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Statistical models (in two dimensions)

• Measures on functions σ from faces of a lattice (ex: hexagonal) to some set (ex: {↑, ↓}).

• Locality, homogeneity:
∏

faces k

p(σ|neighbourhood of k)β .

• Criticality: β = βc, correlation lengths

become infinite. Two descriptions of

large-distance behaviours:

– conformal field theory, algebraic

construction;

– conformal loop ensembles, proba-

bilistic/stochastic construction.

CLECFT



Conformal field theory

Consider ↑= +1, ↓= −1. At criticality:

lim
ε→0

ε−2d
E[σ(x/ε)σ(y/ε)] = C(x, y)

(here, x, y are in R
2). The coefficient C(x, y) is a correlation function in a CFT

C(x, y) = 〈O(x)O(y)〉

The basic ingredients of CFT (and more generally QFT) are

• Local fields O(x) ⇔ local variables 1, σ(k), σ2(k), σ(k)σ(neighbour of k), . . .

• correlation functions 〈·〉 ⇔ expectations of products of local variables E[·]



• The main property of CFT is conformal invariance. Consider a transformation g

conformal on a domain D. If O is “local enough,” i.e. primary , it only feels the local

translation, scaling and rotation, the latter two multiplicatively:

〈O(w)O(z)〉D = (g′(w)g′(z))
h

(ḡ′(w̄)ḡ′(z̄))
h̄
〈O(g(w))O(g(z))〉g(D)

(here, w, z are in C; h, h̄ are in R+; and ′ is the derivative). In particular, h + h̄ = d.

• This implies the existence of the stress-energy tensor T (w), with Ward identities :

〈T (w)O(z) · · ·〉D = 〈T (w)〉D〈O(z) · · ·〉D+
„

h

(w − z)2
+

1

w − z

∂

∂z
+ . . .

«

〈O(z) · · ·〉D +

Z

∂D

ds
1

w − ∂D(s)

∂

∂(∂D(s))
〈O(z) · · ·〉D

• From explicit calculations in some models: T is not a primary field, there is a central

charge c ∈ R:

T (w) 7→ g′(w)2T (g(w))+
c

12
{g, w} , {g, w} =

(

∂3g(w)

∂g(w)
−

3

2

(

∂2g(w)

∂g(w)

)2
)



The algebraic structure of CFT [Kac, Lepowsky, ..., Cardy, Z amokodchikov, ...; 1980 –]

• Virasoro algebra:

T (w)O(z) =
∑

n∈Z

(w − z)−n−2(LnO)(z)

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0

• “Chiral part” of local fields: elements of highest weight modules for the Virasoro

algebra – more generally, for a vertex operator algebra – characterised by the weight h

• Correlation functions: modular invariant chiral–anti-chiral pairings of “Clebsch-Gordon

coefficients” of tensor products of VOA modules.



Conformal fields, SLE, and CLE

• Conformal fields as described correspond to local observables of the statistical

model .

• All correlation functions of conformal fields can be obtained from SLEκ: appropriate

martingales [Bauer, Bernard 2002 –].

• But generically conformal fields are not local observables of the random curve in SLE .

• Some fields do correspond to local SLE observables: stress-energy tensor (κ = 8/3)

and U(1)-current (κ = 4) [D., Riva, Cardy 2006], parafermions (some κ > 4) [Riva,

Rajabpour, Cardy; 2006 –].

• For more general fields and arbitrary central charge, we need all the loops: CLE .

• Only for κ = 8/3 is there a local weight function describing the SLE curve.

• One can also extend the CFT algebraic structure in order to describe natural SLE

observables [Cardy, Watts, Mathieu, Ridout, Simmons].



Constructing the stress-energy tensor [D., Riva, Cardy (20 06)]

• Consider the algebraic definition of the stress-energy tensor from the identity field 1:

(L−21)(w) = T (w)

• Interpret geometrically:

The stress-energy tensor is the result of a conformal transformation that preserves ∞,

on a simply connected domain that excludes the point w,

whose extension to w has a simple pole at that point.

• Hence the stress-energy tensor should be obtained from the conformal transformation

f(z) = z +
ε2e2iθ

16(w − z)

for ε small.



Conformal restriction?

Consider a statistical model on C, with a random set Γ (e.g.: the loops of the O(n) model).

If we restrict the model to nothing intersecting the boundary of a domain B ⊂ C, then this

should be equivalent to looking at the model on C \ B.



• D(w, ε): the disk of diameter bε/2 centered at w, for some b > 1

• E(w, ε, θ): the ellipse obtained from f(C \ D(w, ε)) = C \ E(w, ε, θ).

• X(z, . . .): e.g. event that at least one loop winds in a certain way around points z, . . .

• Y (w, ε, θ): the event Γ ∩ ∂E(w, ε, θ) = ∅

ε
z f(z)

2 b
1+b2

= w
wε θ+π

f

/2b
2



P (X(z, . . .))C\D(w,ε) = P (X(f(z), . . .))C\E(w,ε,θ)

= P (X(f(z), . . .) |Y (w, ε, θ))C

=
P (X(f(z), . . .) ∩ Y (w, ε, θ))C

P (Y (w, ε, θ))C

⇒ P (Y (w, ε, θ))CP (X(z, . . .))C\D(w,ε)

=

(

1 +
ε2e2iθ

16(w − z)

∂

∂z
+ c.c. + . . .

)

P (X(z, . . .) ∩ Y (w, ε, θ))C

= P (X(z, . . .) ∩ Y (w, ε, θ))C +

(

ε2e2iθ

16(w − z)

∂

∂z
+ c.c. + . . .

)

P (X(z, . . .))C

Hence, the stress-energy tensor is the “insertion of a small rotating avoided ellipse”:

⇒ − lim
ε→0

8

πε2

Z 2π

0

dθe
−2iθ

P (X(z, . . .)∩Y (w, ε, θ))C =

„

1

w − z

∂

∂z
+ . . .

«

P (X(z, . . .))C



Problem: zero central charge!

For small ε, only translation, rotation and scaling affect the rotating ellipse:

− lim
ε→0

8

πε2

∫ 2π

0

dθe−2iθP (X(z, . . .) ∩ Y (w, ε, θ))C

= −(∂g(w))2 lim
ε→0

8

πε2

∫ 2π

0

dθe−2iθP (X(g(z), . . .) ∩ Y (g(w), ε, θ)))g(C)

(can be shown by providing an appropriate modification of f(z) in order to produce a

conformally transformed ellipse from C \ D(w, ε)).

Construction works for the true restriction measure [Lawler, Schramm, Werner 2003]

SLE8/3 [D., Riva, Cardy 2006], generalises the construction for the boundary stress-energy

tensor [Friedrich, Werner (2003)]. In this case, the central charge indeed is zero.



Conformal loop ensembles [Sheffield, Werner 2005 –]

Consider the set SD whose elements are collections of at most a countable infinity of

self-avoiding, disjoint loops lying on a simply connected domain D.

A conformal loop ensemble can be seen as a family of measures µD on the sets SD for all

simply connected domains D, with the three properties .



1. Conformal invariance.

For any conformal transformation f : D → D′,

µD = µD′ · f

• Expected, but hard to prove from statistical models.

• The only non-trivial condition is for f : D → D for one given canonical domain D. The

rest is definition for other domains.



2. Nesting.

The measure µD restricted on a loop γ ⊂ D and on all loops outside γ is equal to the CLE

measure µDγ
on the domain Dγ ⊂ D delimited by γ (i.e. with ∂Dγ = γ).

• This is (usually) simple to see from statistical models.

• It says that the inner boundary of a loop is like the boundary of a domain.

• It can be implemented by an iterative construction: first construct a measure on outer

loops only, then inside every outer loop put the conformally transported measure, etc.



3. Conformal restriction.

Given a domain B ⊂ D such that D \ B is simply connected, consider B̃, the closure of

the set of points of B and points that lie inside loops that intersect B. Then the measure on

each component Ci of D \ B̃, obtained by restriction on loops that intersect B, is µCi
.



• This is again (usually) simple to see from statistical models.

• It is “trying” to say two things:

1. the outer boundary of a loop is like a domain boundary;

2. the measure restricted on no loop crossing ∂B is a product of independent CLE

measures;

neither of which can be exactly implemented as conditions on µD . For the first: requires

CLE on non-simply connected domains. For the second: impossible because around any

point there is a.s. infinitely many loops.



Relations between CLE and SLE

• In both cases, there is a condition of conformal invariance and conditions saying that the

curves are like domain boundaries.

• There is a construction of a family of CLE’s parametrised by a parameter κ for

8/3 < κ < 4 which have the property that locally, the loops look like SLEκ.

• Both CLE and SLE8/3 have (slightly different) conformal restriction properties. In both

cases, curves/loops are everything there is.



The stress-energy tensor with non-zero central charge [D.]

Infinitely many small loops: modify conformal restriction, give rise to non-zero central charge.

Basic idea: suppose we have a “regularised” probability P reg({z, . . .}; A)D depending on

a simply connected domain A (disjoint from z, . . .), which in a sense imposes that no loop

crosses ∂A. Suppose it has the following properties:

P reg(X(g(z), . . .); g(A))g(D) = f(g, A)P reg(X(z, . . .); A)D

P reg(X(g(z), . . .); g(A))g(D) = P reg(X(z, . . .); A)D for g conformal on C + {∞}

P reg(X(z, . . .); A)D

P reg(A)D
= P (X(z, . . .))D\A

Then, we have the Ward identities...

− lim
ε→0

8

πε2

Z 2π

0

dθe
−2iθ

P
reg(X(z, . . .); E(w, ε, θ))C =

„

1

w − z

∂

∂z
+ . . .

«

P (X(z, . . .))C



... and the correct transformation properties:

• Fourier decomposition: f(g, E(w, ε, θ)) =
∑

n∈Z
f2n(g, w, ε)e2niθ

• Fourier transform of the transformation equation:
∫ 2π

0

dθe−2iθP reg(X(g(z), . . .); g(E(w, ε, θ)))g(D)

=

∫ 2π

0

dθe−2iθf(g, E(w, ε, θ))P reg(X(z, . . .); E(w, ε, θ))D

• Deduce that f2(g, w, ε) ∼ ε2f2(g, w), with f2(g, w) holomorphic in w, and the

correct transformation properties with central term f2(g, w)/4.

• Automorphic factor: f(h ◦ g, A) = f(g, A)f(h, g(A))

• Infinitesimally f2(h ◦ g, w) = f2(g, w) + (∂g(w))2f2(h, g(w)), with constraint

f2(g, w) = 0 for g conformal on C + {∞} (global conformal transformation), has

solution f2(g, w) = (c/3){g, w} (for some c) – the Schwarzian derivative.



Construction in CLE

Consider a family of events E(A, ε) characterised by any simply connected domains A and

any small enough real numbers ε > 0, defined as follows:

• For A = D, it is the event that no loop intersect both (1 − ε)∂D and ∂D.

∋

• For A 6= D, it is the event gA(E(D, ε)), where the conformal transformations gA is

chosen such that A = gA(D), and such that if A = G(B) for some global conformal

transformation G, then there is a global conformal transformation K with K(B) = B

such that gA = G ◦ K ◦ gB .



The regularised probability can be defined by

(for A simply connected and disjoint from z, . . .):

P reg(X(z, . . .); A)D = N lim
ε→0

P (X(z, . . .) ∩ E(A, ε))D

P (E(D, ε))2D

“Theorems:”

• The limit exists.

• The ratio
P reg(X(z, . . .); A)D

P reg(A)D
, as a function of z, . . . and ∂A, is invariant under any

transformation conformal on D \ A.

• The ratio
P reg(X(g(z), . . .); g(A))g(D)

P reg(X(z, . . .); A)D
is independent of z, . . . and of D, and is 1 if

g is a global conformal transformation.



“Theorem.” Any two “local” objects that are zero on the unit disk and transform like the

stress-energy tensor, have the same “correlation functions”.

Corolary. Any “local” object that is zero on the unit disk and transforms like the stress-energy

tensor, satisfies the conformal Ward identities.



Conclusion

We have constructed an object (the limit of an integral of the limit of a ratio of probabiilities...)

that satisfies the conformal Ward identities, and that transforms like the stress-energy tensor.

• Can we re-construct the vertex operator algebra from this?

• What are the events / objects corresponding to rational modules?

• Can we repeat the construction on surfaces of arbitrary genus?


