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Two possible approaches to relating CFT and SLE (or more generally, CFT and conformally

invariant random processes in the continuum):

• Getting information about SLE from CFT [Bauer, Bernard (2002,...)]

• Constructing CFT from continuum random processes [Cardy, D., Riva (2006, ...)]

I will concentrate on the second.



Conformal field theory

A physical theory to describe the scaling limit of 2-dimensional statistical models at a

second order phase transition (criticality).

Statistical models:

Z =
∑

{σi}

e−
P

(i,j) H(σi,σj)/T , 〈〈σkσl〉〉 = Z−1
∑

{σi}

σkσle
−

P

(i,j) H(σi,σj)/T

For certain choices of H and T , the system is critical :

〈〈σx/εσy/ε〉〉 ε→0∼ ε2dC(x, y)

The coefficient C(x, y) is a correlation function in a CFT

C(x, y) = 〈O(x)O(y)〉

The basic ingredients of CFT are

• Local fields O(x) ⇔ local variables of a statistical model σi, σ2
i , σiσi+1, . . .

• correlation functions 〈·〉 ⇔ averages of products of local variables 〈〈·〉〉



CFT possesses global conformal invariance

• Conformal group: group of transformations of 2-d domains, D → D′, that preserve the

angles everywhere ⇒ holomorphic/anti-holomorphic maps f(z), f(z̄)

• Symmetries: transformations preserve the domain D on which the system is defined

• Riemann sphere R
2 + {∞} – global conformal invariance: symmetries are

translations z 7→ z + ε, rotations, scaling z 7→ z + εz,

special conformal transformation z 7→ z + εz2

• Conserved currents: stress-energy tensor components T ≡ Tzz, T̄ ≡ Tz̄z̄ satisfy

∂z̄T = ∂zT̄ = 0

• Operator product expansion: non-conservation of currents at positions of local fields

〈T (w)O(z, z̄) · · ·〉 =

(

. . . +
h

(w − z)2
+

1

w − z

∂

∂z
+ . . .

)

〈O(z, z̄) · · ·〉

where h = (d + s)/2.



CFT possesses “local conformal invariance”

• With R
2 + {∞} − {D1, D2, D3, . . .}, may consider more conformal transformations

that preserve the topology only

• Around a point z, it may look like w − z 7→ w − z + ε(w − z)n for n ≥ 3

• Assuming invariance under these higher-order transformations (primary fields ):

〈T (w)O(z, z̄) · · ·〉 =

(

h

(w − z)2
+

1

w − z

∂

∂z
+ . . .

)

〈O(z, z̄) · · ·〉

• From explicit calculations in some models: T is not a primary field,

〈T (w)T (z) · · ·〉 =

(

c/2

(w − z)4
+

h

(w − z)2
+

1

w − z

∂

∂z
+ . . .

)

〈T (z) · · ·〉

• Those are called conformal Ward identities .



The algebraic structure of CFT and additional symmetries

• Virasoro algebra:

T (w)O(z, z̄) =
∑

n∈Z

(z − w)−n−2(LnO)(z, z̄)

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0

• Local fields: highest weight modules for the Virasoro algebra – more generally, for a

vertex operator algebra – characterised by the weight h

• Correlation functions: “Clebsch-Gordon coefficients” of tensor products of VOA modules.

• Reducibility: With h = h1,2 ≡ 6−κ
2κ and c = (6−κ)(3κ−8)

2κ , there is a null-field :

L−2φ1,2 −
κ

4
L2
−1φ1,2 = 0

⇒ A certain transformation that is singular at the point z is a symmetry of the correlators

〈φ1,2(z, z̄) · · ·〉



The powerful algebraic structure gives results for correlation functions of local fields, but:

• Precise relations between statistical variables and local fields are conjectural / hard to get

• Non-local objects are not described easily

• Non-rational models are out of the range of applicability for now

Axiomatic CFT



Schramm-Loewner evolution [Schramm (1999), Lawler, Schra mm, Werner (2001, ...)]

Tracing random curves in the upper half plane

using stochastic conformal maps :

t

t(z)

a0 a

g

∂

∂t
gt(z) =

2

gt(z) − at
, g0(z) = z , at =

√
κBt + a0

Bt: standard Brownian motion, normalised by E[B2
t ] = t.



Defining random curves on any simply connected domain D

through conformal transport f : H → D

µH[γ] = µD[f(γ)]



Conformally invariant family of measures

Family of measures on curves

defined on any simply connected domain with any starting and ending point ,

with two properties :

• Conformal transport (with f : H → D; 0 7→ a, ∞ 7→ b)

b

=
dist.

0
a



• Domain Markov property (the curve itself is like the boundary of a domain)

0

T

=

T

dist.

=
dist.

g
T
(z) −

0

0

a



Domain walls in statistical models at criticality

and other non-local critical objects

• We expect that critical curves, like domain walls (walls of clusters that are connected to

the boundary) in statistical models at criticality, are conformally invariant in the continuum

limit ⇒ described by some SLEκ

• Proofs: relatively little is required; proofs of conformally invariant scaling limit exist for

domain wall in gaussian field, percolation, Ising model... [S. Smirnov (2001,...)]

• SLEκ gives precise description of these non-local objects in the scaling limit



Constructing CFT from SLE

• What events correspond to “known” local fields of CFT?

• What fields or Virasoro modules correspond to other events in SLE?

• What does the algebraic structure means in the probabilistic setting? What becomes of it

in non-rational cases?

Constructive CFT?



The SLE equation and level-2 boundary null field

T

dist.

0

=
dist.

z1 z1

a
T

) − g
T 1(z

0

T

0

g
T
(z) − a

=

With T = dt:

P (z1, z̄1, . . .) = E[P (gdt(z1) −
√

κ dBt, ḡdt(z̄1) −
√

κ dBt, . . .)] , dB2
t = dt

Equation obtained: equivalent to null-vector equation for

〈O(z1, z̄1) · · ·φ1,2(0)φ1,2(∞)〉
〈φ1,2(0)φ1,2(∞)〉

with

O : d = s = 0, primary , c =
(6 − κ)(3κ − 8)

2κ
, h1,2 =

6 − κ

2κ



Holomorphic bulk fields

0

2

θεz1

z

Solving the null-vector equation in the case of:

The curve being on the right of z1 and on the left of z2

with z1 → z2 → w gives

lim
ε→0

ε−s

∫

dθ e−isθ P (z1, z̄1, z2, z̄2) ∝ w−s ∝ 〈Os(w)φ1,2(0)φ1,2(∞)〉
〈φ1,2(0)φ1,2(∞)〉

if and only if the following condition is satisfied:

κ =
8

s + 1



Particular cases

s = 1

κ = 4, c = 1: spin-1 holomorphic U(1) current in the gaussian field – simple proof for one

insertion [Cardy]

s = 1
2

κ = 16
3 , c = 1

2 , holomorphic fermion in the Ising model (the domain wall is in the FK

representation) – proof of lattice holomorphicity for one insertion [Riva, Cardy (2006)]

s = 2

κ = 8
3 , c = 0, holomorphic stress-energy tensor in the O(0) “loop model”: a domain wall

which is a self-avoiding random walk, and no loops – proof: [D., Riva, Cardy (2006), cf.

Friedrich, Werner (2003)]

〈T (w) · · ·〉 ∝ lim
ε→0

ε−2

∫

dθ e−2iθ P





w θε , . . .







Why κ = 8
3 , c = 0

• SLE does not give direct information on the loops. In SLE, we measure only the energy

on the domain wall, not on cluster boundaries in the bulk.

• Must have a model where no energy is in the bulk. All energy must be on the domain

wall, there should be no “vacuum energy”.

• Central charge must be zero, since the theory cannot “feel the boundary” of the domain

where it lies.

• Should correspond to O(n) loop model at n = 0. The partition function of the O(n)

loop model is

Z =
∑

configurations

xtotal length
c nnumber of loops

and one has (from Coulomb gas arguments)

n = −2 cosπ

(

4

κ

)



Conformal restriction at κ = 8
3 [LSW (2003); Bauer, Friedrich (2004)]

µ(γ|γ ∩ A = ∅) = µH\A(γ)

=

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

=

dist.

dist.



Deriving the conformal Ward identities

• Consider the algebraic definition of the stress-energy tensor:

(L−21)(w) = T (w)

• Interpret geometrically:

The stress-energy tensor is the result of a conformal transformation

that preserves ∞ and that has a simple pole at a point w



Hence, consider the conformal transformation

f(z) = z +
ε2e2iθ

16(w − z)
+

ε2e−2iθ

16(w̄ − z)
− ε2e2iθ

16w
− ε2e−2iθ

16w̄

Then, we have

θ+π
=

dist.

f(z)

w
wε

2

ε



Generalisations to c 6= 0

We need CLEκ – conformal loop ensemble [Werner, Sheffield (2007)]

Stress-energy tensor:

• The anomaly term c/2
(w−z)4 in 〈T (w)T (z)〉 is due to loops connecting both slits

• A certain kind of “random conformal restriction” holds, but the difficulty is in the

normalisation of measures because of the infinitely many small loops

Other holomorphic fields:

• For a boundary changing condition that corresponds to the action of a symmetry, one

insertion of the current associated to this symmetry is supported on the corresponding

domain wall

• Many insertions involve also loops connecting them ⇒ anomaly terms



Generalisations to other fields

n-changing fields in the O(n) model

• Field On′(x) such that loops around x are counted with n′ instead of n

• Scaling dimension given (from Coulomb gas arguments) by

dn′,n = (κ′−κ)(κκ′−2κ−2κ′)
κ(κ′)2

• For κ′ = 4κ
4−κ , dn′,n = 2h2,1 ⇒ differential equations for four-point functions [Gamsa,

Cardy (2006)]

• How to prove from CLEκ? Use of geometric meaning of L−2?

N -leg fields and “descendants” in the O(n) model

• Besides the loops, put N curves from the boundary of the disk to the center

• What are the possible dimensions of the corresponding field at the center? [D., Cardy

(2007)]



Perspectives

• OPE’s, vertex operator algebra

• Null-fields and modules for VOA

• Analysis of c = 0 cases: logarithmic companion t of stress-energy tensor....


