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Goal: constructing CFT from continuum random processes



Schramm-Loewner evolution [Schramm (1999), Lawler, Schra mm, Werner (2001, ...)]

Tracing random curves in the upper half plane

using stochastic conformal maps :
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Bt: standard Brownian motion, normalised by E[B2
t ] = t.



Defining random curves on any simply connected domain D

through conformal transport f : H → D

µH[γ] = µD[f(γ)]



Conformally invariant family of measures

Family of measures on curves

defined on any simply connected domain with any starting and ending point ,

with two properties :

• Conformal transport (with f : H → D; 0 7→ a, ∞ 7→ b)

b

=
dist.

0
a



• Domain Markov property (the curve itself is like the boundary of a domain)
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Domain walls in statistical models at criticality

and other non-local critical objects

SLEκ description (constructive CFT?):

• We expect that critical curves, like domain walls (walls of clusters that are connected to

the boundary) in statistical models at criticality, are conformally invariant in the continuum

limit ⇒ described by some SLEκ

• Proofs: relatively little is required; proofs of conformally invariant scaling limit exist for

domain wall in gaussian field, percolation, Ising model... [S. Smirnov (2001,...)]

• SLEκ gives precise description of these non-local objects in the scaling limit

Algebraic description (axiomatic CFT)

• We expect algebraic description: Virasoro algebra / vertex operator algebra, Verma

modules, null vectors...

• Powerful for correlation functions of local variables

• But: no proof of algebraic description from statistical model



How to relate both?

One approach: assuming CFT, coupling it with SLE [Bauer, Bernard (2002,...)]

Other approach: constructin CFT from SLE (and eventually other random processes)



The SLE equation and level-2 boundary null field
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With T = dt:

P (z1, z̄1, . . .) = E[P (gdt(z1) −
√

κ dBt, ḡdt(z̄1) −
√

κ dBt, . . .)] , dB2
t = dt

Equation obtained: equivalent to null-vector equation for

〈O(z1, z̄1) · · ·φ1,2(0)φ1,2(∞)〉
〈φ1,2(0)φ1,2(∞)〉

with

O : d = s = 0, primary , c =
(6 − κ)(3κ − 8)

2κ
, h1,2 =

6 − κ

2κ



Holomorphic bulk fields
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Solving the null-vector equation in the case of:

The curve being on the right of z1 and on the left of z2

with z1 → z2 → w gives

lim
ε→0

ε−s

∫

dθ e−isθ P (z1, z̄1, z2, z̄2) ∝ w−s ∝ 〈Os(w)φ1,2(0)φ1,2(∞)〉
〈φ1,2(0)φ1,2(∞)〉

if and only if the following condition is satisfied:
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8
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Particular cases

s = 1

κ = 4, c = 1: spin-1 holomorphic U(1) current in the gaussian field

s = 1
2

κ = 16
3

, c = 1
2

, holomorphic fermion in the Ising model (the domain wall is in the FK

representation)

s = 2

κ = 8
3

, c = 0, holomorphic stress-energy tensor in the O(0) loop model (where the domain

wall is a self-avoiding random walk, and there are no loops remaining) (cf. [Friedrich, Werner

(2003)])



A case for the stress-energy tensor

Why a spin-2 rotating slit

• A generic stress-energy tensor Tij measures the flow in the direction j of energy locally

stored in distortions in the direction i

• Distortions where energy is stored are at cluster or domain walls in statistical models.

• If the wall is vertical: x-distortion. If the wall is horizontal: y-distortion.

• In complex coordinates z = x + iy, we have

T ≡ Tzz =
1

4
(Txx − Tyy − 2iTxy)

• “Morally”, this agrees with

〈T (w) · · ·〉 ∝ lim
ε→0

ε−2

∫

dθ e−2iθ P
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Why κ = 8
3

, c = 0

• SLE does not give direct information on the loops. In SLE, we measure only the energy

on the domain wall, not on cluster boundaries in the bulk.

• Must have a model where no energy is in the bulk. All energy must be on the domain

wall, there should be no “vacuum energy”.

• Central charge must be zero, since the theory cannot “feel the boundary” of the domain

where it lies.

• Should correspond to O(n) loop model at n = 0. The partition function of the O(n)

loop model is

Z =
∑

configurations

xtotal length
c nnumber of loops

and one has (from Coulomb gas arguments)

n = 2 cosπ
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Conformal restriction at κ = 8
3

[LSW (2003); Bauer, Friedrich (2004)]
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Deriving the conformal Ward identities

• Consider now with the algebraic definition of the stress-energy tensor:

L−2(w)1 = T (w)

• Interpret geometrically:

The stress-energy tensor is the result of a conformal transformation

that preserves ∞ and that has a simple pole at a point w



Hence, consider the conformal transformation
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In equations:

PH\Dw,ε
(z, z̄) = PH\Sw,ε,θ
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where

Tw,ε,θ = {γ ∩ Sw,ε,θ 6= ∅}



Integrating over the angle θ:

Q(z, z̄; w) = lim
ε→0
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Generalisations

• It is possible to prove that the stress-energy tensor transforms like a spin-2 holomorphic

field ⇒ multi-point correlation functions of stress-energy tensors

• Method works for any conformal restriction measure with appropriate smoothness

properties:

– Similar method for boundary stress-energy tensor [Friedrich, Werner (2003)]: there it

is possible to get to c 6= 0 theories, using conformal restriction measures that

reproduce connected correlation functions

– Generalisation to certain sub-measures of CLE6 (percolation), again c = 0 theory

• Other holomorphic fields: we don’t expect multi-point correlation functions to be defined

in SLE, because of anomalies

• Proof of lattice holomorphicity of parafermions in Potts models...



Perspectives

• Stress-energy tensor and other local bulk fields in CLE

• OPE’s, vertex operator algebra

• Null-vectors and modules for VOA

• Analysis of c = 0 cases: logarithmic companion t of stress-energy tensor....


