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Manifold of conformal maps

Consider a simply connected bounded domain A and the set of maps g that are conformal

on some domain (below: the domain D) inside A.




what sequence of conformal maps

Local topology around the identity map

Ity?

(gl, g2, 33, .. ) can be said to converge to the ident
e domains D,, tend to A

A-topology

uniform convergence on any compact subset

® compact convergence
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e Topology preserved under conformal maps G : A — B between simply connected
domains A, B.

e By conformal transport , define the A-topology for any domain A of the Riemann
sphere (bounded or not).



A manifold structure?

Take a family (g, : 7 > 0) with lim, ¢ g, = id. We have that g,, — id is holomorphic on
D,, (for A bounded).

Is A-topology locally like the vector space  H(A) of holomorphic functions  on A with

compact convergence topology?
Not quite... need to restrict to A*-topology :
A*-topology = A-topology N{g:Jh € H(A) | hdg = go h}

homeomorphism: A*-topology <« H(A)
id < 0



“smooth” approach to id in A*-topology = “smooth” approach in  A-topology :

lim g, =id (A-topology), lim gn(2) = 2

= h(z) d (compactlyforz € A).
lim li 920505 — 1(2) 3 (compacty o = € 4)

We say: (g, : 1 > 0) € F(A).

vy~ H(A) (tangent space)

/ \A*—topology (manifold)

A—topology




What about unbounded (still simply connected) domains A?

Define likewise A*-topology by conformal transport. Restriction:
{g:3dh eH”(A) | hOg=goh}
where H> (A) : holomorphic functions 1 (z) on A except for O(2?) as 2 — oo (if oo € A).
e Tangent space =2 H~ (A)

e Choosing any a € C \ A, approach to identity in F(.A) described by
Z—a

)

gn(2) = a+

with h%a)(z)/(z — a)* holomorphic on D,;, compactly convergentto h(z)/(z — a)?



Derivatives

Derivative of a function on A*-manifold at id = element of the cotangent space at id.

Need continuous dual H~*(A) (space of continuous linear functionals) of ~ H”(A).

Any continuous linear functional T : H” (A) — R is of the form
T(h) = ]{ dz a(z)h(z) + 7{ dz a(z)h(z)
OA~ OA~
for some o holomorphic on an annular neighbourhood of 0 A inside A.

A



Arbitrariness of v functional T is characterised by a class of functions:
C={a+u:uecH (A}
where H<(A) : holomorphic functions h(z) on A with O(27%) as z — oo (if oo € A).

e 1y e | 7y is holomorphic on @ \ A, except possibly for a pole of order 3 at some
pointa € C\ Aifoo € A, and O ataif co & A.

e [or any given a, 7y is unique.



e Function f : 2 — R
e Point X € )

e Action g(X) € 2 for any g in A-neighbourhood of ¢d.

A-differentibility: for any (g, : 7 > 0) € F(A),

n—0 )

Case A = I: can use basis Hy, s(z) = ¢™*/*2", n=0,1,2,3,..., s = =+,
' H,5)(%) = f(E
foo(8) = lim L0 1Hn0)(2) = F) -

n—0 n

lim fgn(*)) = (%) = Z Cn,sfn,s(2) converges

n—0
n n>0,s=+

withh =) cnsHnp,s.



Definitions and notation:
o VA f(X): the conformal A-derivative of f at 3
o V,f(X) = VAF(X)h: the directional derivative of ~ f at 3 in the direction A

° AAf(Z): the holomorphic A-class of f at XJ, the corresponding class of holomorphic

functions

o Af;zf(E): the holomorphic  A-derivative of f at 3., the unique member (almost)

holomorphic on C \ A with a pole of maximal order 3 at z = « or the value 0 at z = a



Main properties
How much depends on the domain ~ A?
e If fis A-and B-differentiable and h € H” (A) NH~ (B), then

VAF(D)h = VEF(S)h = V) f(3)

e If fis A- and B-differentiable and A U B # C, then
AL F(Z)=2AB F(Z) V acC\(AUB)
(equality possibly up to pole of order 3...) and also in general
AL FE)ZALF(E) VY a,beC\A

(equality up displacement of zero or of pole of order 3...)



e Consider set = of all domains A such that f is A-differentiable.

e Equivalence relation: domains with intersecting complements are equivalent, complete

by transitivity.
e Denote by [A] the equivalence class, or sector containing A
— = is divided into sectors where holomorphic derivatives are “ the same” under =

Example: > = a circle, {) = a space of smooth loops. Two natural sectors: | A] = bounded
sector, [ B] = another sector:

A



How does the derivative transform under conformal maps?
e A-differentiability of fatY <  g(A)-differentiability of f o g~ at g(X)

e “Holomorphic dimension-2” transformation property for the holomorphic A-class:

AAF(E) = (99)? (A% (fog7)(9(D))) o 9.



Global stationarity

The global holomorphic  A-derivative

If f is globally stationary: derivative = 0 along 1-parameter subgroups of the group of
global conformal maps (mobius maps), then:

A% f(R) (o€ C\ A
AL F(E) (o€ A, anyace C\ A)

e Well defined, and only depends on the sector
e Holomorphic for z € C \ N[A] for both bounded and unbounded sectors
e O(z%) as z — oo in bounded sector

e “Holomorphic dimension-2” transformation property for G a mobius map:

AN f(3) = (0G(2))?A5 5 (F 0 GTH(G(D))



The A-connection

For a conformal transformation g : A — B, define:

PA () = AWF(E) — (99(2)2A V) (f o g~ 1) (g(2)).

o I‘,[;?g]f(Z) is in H< (A) as function of z
o I’LAC];f(Z) = 0 for GG global conformal map
e Transformation property:

[ igioge f(2) = THL £(2) + (992(2))* T2 (£ 0. 951 (92(2))

e |tis like a connection 1-form but lives in the class fiber bundle instead of the cotangent

space. Could it be that the functional dependence is multiplicative? Then,

MY f(2) = {g. z}e(F)(2)

where {g, z} is the Schwarzian derivative.



General transformation of global derivatives

Consider two domains A and B such that C \ A C B.
A

Consider a conformalmap g : A — A’. Then

APLF(5) — (9g(2))2 ALLED (£ 6 1) (g(x)) = T

z g(z)

In particular, if f is A-stationary ( A-derivative = 0), then the r.h.s. is 0.



Application to CFT

Conformal Ward identities with boundary

Consider a CFT correlation function of n2 fields O; at positions z; in a domain C"
n
(1o
J=1
Covariant under conformal maps g : C' — C’

1@ 06 Maer =10

g - Oj is a linear transformation (over a ring of functions). Example: primary fields

(9-0)(9(2)) = (99(2))°(09(2))° O(g(2))



Consider

Y = (00;z1,...,20;01,...,0,) € domains x C" x fields®"
9(¥) = (9(9C);g(21),.--,9(2n);9 - O1,...,9-Oy)
f(x) = <H O;(z;))c : globally stationary, and A-stationary forany A > C

Insertion of stress-energy tensor is given by global deriva tive:

w) ﬁ Oj(z))c — H O;(%))c = AW £(3)




One-point average and partition functions

Consider the ratio of partition functions

ZCZ@\ﬁ

ZC\EZ@ |

Z(C|D) =
Using Liouville action for transformation of partition functions as well as the basic formula

1
510g A= 5/ dQ;U <577ab(5’7)T“b(g;)>A
A

we find

C\N (w
(T(w))e = A} sehp log Z(C|D)



Consider

It is such that

Application to CLE

_— 627?19
Yo w—z
1 : ’
oo [ A0V, f(2) = AP (D)
7

Interpret V. f(X) geometrically : id + nh,, gives

ORECEN



CLE: Renormalised probabilities P(X; A) ¢
that no loop crosses boundary 0 A of

thickness ¢ — 0:




Theorems:
e P(X)4s=P(X|A)c :=P(X;A)c/P(A)c (X supported inside A)
e P(X)ona = P(X|A)c (X supported inside C'\ A)
° P(A)C Is global conformally invariant , but in general conformally covariant




This reproduces conformal Ward identities
(T(w)Ox)e — (T(w)) e P(X)e = AFWOIP(X)

as well as one-point average with identification:




Perspectives

e Applications to other probability models of CFT

e Descendants: derivative 0/0z of A[ZC\N(w”f(Z); multiple conformal derivatives

e Other symmetry currents when internal symmetries are present...



