Calculus on infinite-dimensional manifolds, conformal field theory, and its probabilistic descriptions

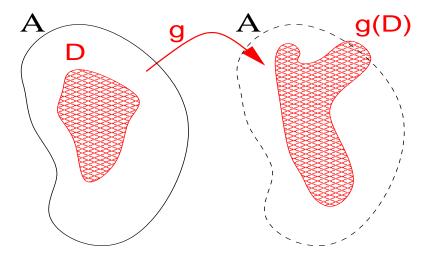
Benjamin Doyon

King's College London

Université de Genève, March 2010

Manifold of conformal maps

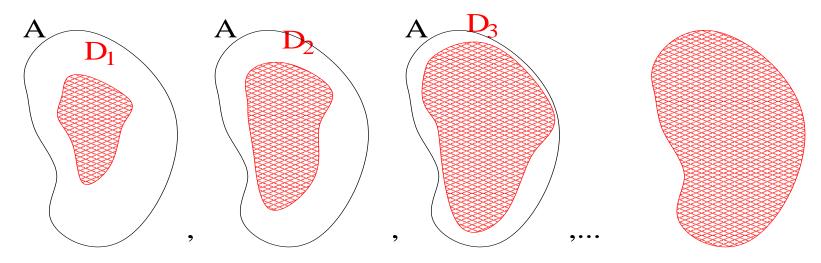
Consider a simply connected bounded domain A and the set of maps g that are conformal on some domain (below: the domain D) inside A.



Local topology around the **identity map**: what sequence of conformal maps $(g_1, g_2, g_3, ...)$ can be said to **converge** to the identity?

A-topology:

- domains D_n tend to A
- compact convergence: uniform convergence on any compact subset



$$\lim_{n \to \infty} \sup(g_n(z) - z : z \in D_n) = 0$$

- Topology preserved under conformal maps $G: A \to B$ between simply connected domains A, B.
- By **conformal transport**, define the *A*-topology for any domain *A* of the Riemann sphere (bounded or not).

A manifold structure?

Take a family $(g_{\eta} : \eta > 0)$ with $\lim_{\eta \to 0} g_{\eta} = id$. We have that $g_{\eta} - id$ is holomorphic on D_{η} (for A bounded).

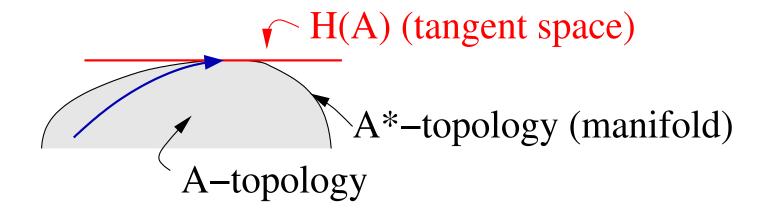
Is A-topology locally like the vector space H(A) of holomorphic functions on A with compact convergence topology?

Not quite... need to **restrict to** A^* -topology :

"smooth" approach to id in A^* -topology \Rightarrow "smooth" approach in A-topology:

$$\lim_{\eta \to 0} g_{\eta} = \mathrm{id} \quad (A \text{-topology}), \quad \lim_{\eta \to 0} \frac{g_{\eta}(z) - z}{\eta} = h(z) \quad \exists \quad (\text{compactly for } z \in A).$$

We say: $(g_{\eta} : \eta > 0) \in \mathbf{F}(A)$.



What about unbounded (still simply connected) domains A?

Define likewise A^* -topology by conformal transport. Restriction:

$$\{g: \exists h \in \mathbf{H}^{>}(A) \mid h \partial g = g \circ h\}$$

where $\mathbb{H}^{>}(A)$: holomorphic functions h(z) on A except for $O(z^2)$ as $z \to \infty$ (if $\infty \in A$).

- Tangent space $\cong \mathrm{H}^{>}(A)$
- Choosing any $a\in\hat{\mathbb{C}}\setminus A$, approach to identity in $\mathbf{F}(A)$ described by

$$g_{\eta}(z) = a + \frac{z - a}{1 - \frac{\eta}{z - a} h_{\eta}^{(a)}(z)}.$$

with $h_\eta^{(a)}(z)/(z-a)^2$ holomorphic on D_η , compactly convergent to $h(z)/(z-a)^2$

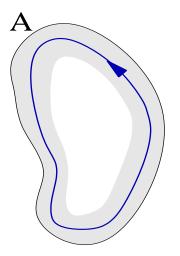
Derivatives

Derivative of a function on A^* -manifold at id = element of the cotangent space at id. Need continuous dual $\mathbb{H}^{>*}(A)$ (space of continuous linear functionals) of $\mathbb{H}^{>}(A)$.

Any continuous linear functional $\Upsilon: {\rm H}^>(A) \to \mathbb{R}$ is of the form

$$\Upsilon(h) = \oint_{\partial A^-} \mathrm{d} z \, \alpha(z) h(z) + \oint_{\partial A^-} \bar{\mathrm{d}} \bar{z} \, \bar{\alpha}(\bar{z}) \bar{h}(\bar{z})$$

for some α holomorphic on an annular neighbourhood of ∂A inside A.



Arbitrariness of α : functional Υ is characterised by a **class of functions**:

$$\mathcal{C} = \left\{ \alpha + u : u \in \mathbf{H}^{<}(A) \right\}$$

where $\mathbb{H}^{<}(A)$: holomorphic functions h(z) on A with $O(z^{-4})$ as $z \to \infty$ (if $\infty \in A$).

- $\exists \gamma \in \mathcal{C} \mid \gamma$ is holomorphic on $\hat{\mathbb{C}} \setminus A$, except possibly for a pole of order 3 at some point $a \in \hat{\mathbb{C}} \setminus A$ if $\infty \in A$, and 0 at a if $\infty \notin A$.
- For any given a, γ is unique.

- Function $f:\Omega \to \mathbb{R}$
- Point $\Sigma \in \Omega$
- Action $g(\Sigma) \in \Omega$ for any g in A-neighbourhood of id.

$$\begin{split} A\text{-differentibility: for any } (g_\eta:\eta>0)\in \mathbf{F}(A)\text{,}\\ \lim_{\eta\to 0}\frac{f(g_\eta(\Sigma))-f(\Sigma)}{\eta} = \nabla^A f(\Sigma)h, \qquad \nabla^A f(\Sigma)\in \mathbf{H}^{>*}(A) \end{split}$$

 $\begin{aligned} \text{Case } A &= \mathbb{D}: \text{ can use basis } H_{n,s}(z) = e^{i\pi s/4} z^n, \ n = 0, 1, 2, 3, \dots, \ s = \pm, \\ f_{n,s}(\Sigma) &:= \lim_{\eta \to 0} \frac{f((\text{id} + \eta H_{n,s})(\Sigma)) - f(\Sigma)}{\eta} \quad \exists \\ \lim_{\eta \to 0} \frac{f(g_{\eta}(\Sigma)) - f(\Sigma)}{\eta} &= \sum_{n \geq 0, s = +} c_{n,s} f_{n,s}(\Sigma) \quad \text{converges} \end{aligned}$

with $h = \sum_{n,s} c_{n,s} H_{n,s}$.

Definitions and notation:

- $\nabla^A f(\Sigma)$: the conformal A-derivative of f at Σ
- $\nabla_h f(\Sigma) = \nabla^A f(\Sigma)h$: the directional derivative of f at Σ in the direction h
- $\Delta^A f(\Sigma)$: the holomorphic A-class of f at Σ , the corresponding class of holomorphic functions
- $\Delta_{a;z}^A f(\Sigma)$: the holomorphic A-derivative of f at Σ , the unique member (almost) holomorphic on $\hat{\mathbb{C}} \setminus A$ with a pole of maximal order 3 at z = a or the value 0 at z = a

Main properties

How much depends on the domain A?

- If f is A- and B-differentiable and $h \in H^{>}(A) \cap H^{>}(B)$, then $\nabla^{A} f(\Sigma)h = \nabla^{B} f(\Sigma)h =: \nabla_{h} f(\Sigma)$
- If f is A- and B-differentiable and $A \cup B \neq \hat{\mathbb{C}}$, then

$$\Delta_{a;z}^{A} f(\Sigma) \cong \Delta_{a;z}^{B} f(\Sigma) \quad \forall \quad a \in \hat{\mathbb{C}} \setminus (A \cup B)$$

(equality possibly up to pole of order 3...) and also in general

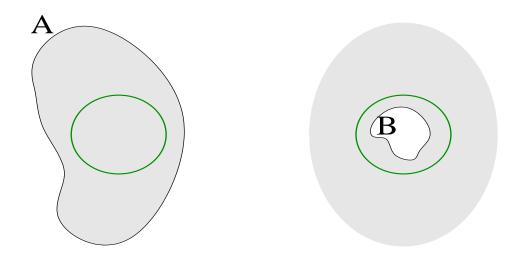
$$\Delta^{A}_{a;z} f(\Sigma) \cong \Delta^{A}_{b;z} f(\Sigma) \quad \forall \quad a, b \in \hat{\mathbb{C}} \setminus A$$

(equality up displacement of zero or of pole of order 3...)

- Consider set Ξ of all domains A such that f is A-differentiable.
- Equivalence relation: domains with intersecting complements are equivalent, complete by transitivity.
- Denote by [A] the equivalence class, or **sector** containing A

 \Rightarrow Ξ is divided into sectors where holomorphic derivatives are "the same" under \cong

Example: Σ = a circle, Ω = a space of smooth loops. Two natural sectors: [A] = bounded sector, [B] = another sector:



How does the derivative transform under conformal maps?

- A-differentiability of f at $\Sigma \iff g(A)$ -differentiability of $f \circ g^{-1}$ at $g(\Sigma)$
- "Holomorphic dimension-2" transformation property for the holomorphic A-class:

$$\Delta^A f(\Sigma) = (\partial g)^2 \left(\Delta^{g(A)} (f \circ g^{-1})(g(\Sigma)) \right) \circ g.$$

Global stationarity

The global holomorphic A-derivative

If f is **globally stationary:** derivative = 0 along 1-parameter subgroups of the group of global conformal maps (möbius maps), then:

$$\Delta_z^{[A]} f(\Sigma) := \begin{cases} \Delta_{\infty;z}^A f(\Sigma) & (\infty \in \hat{\mathbb{C}} \setminus A) \\ \Delta_{a;z}^A f(\Sigma) & (\infty \in A, \text{ any } a \in \hat{\mathbb{C}} \setminus A) \end{cases}$$

- Well defined, and only depends on the sector
- Holomorphic for $z\in\hat{\mathbb{C}}\setminus\cap[A]$ for both bounded and unbounded sectors
- $O(z^{-4})$ as $z \to \infty$ in bounded sector
- "Holomorphic dimension-2" transformation property for G a möbius map:

$$\Delta_z^{[A]} f(\Sigma) = (\partial G(z))^2 \Delta_{G(z)}^{[G(A)]} (f \circ G^{-1}) (G(\Sigma))$$

The A-connection

For a conformal transformation $g: A \rightarrow B$, define:

$$\Gamma_{z;g}^{[A]}f(\Sigma) := \Delta_z^{[A]}f(\Sigma) - (\partial g(z))^2 \Delta_{g(z)}^{[g(A)]}(f \circ g^{-1})(g(\Sigma)).$$

- $\Gamma^{[A]}_{z;g}f(\Sigma)$ is in ${\rm H}^<(A)$ as function of z
- $\Gamma^{[A]}_{z;G}f(\Sigma) = 0$ for G global conformal map
- Transformation property:

 $\Gamma_{z;g_1 \circ g_2}^{[A]} f(\Sigma) = \Gamma_{z;g_2}^{[A]} f(\Sigma) + (\partial g_2(z))^2 \Gamma_{g_2(z);g_1}^{[g_2(A)]} (f \circ g_2^{-1})(g_2(\Sigma))$

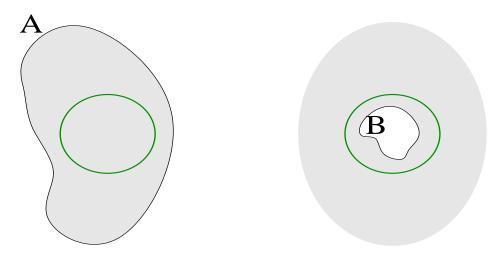
 It is like a connection 1-form but lives in the class fiber bundle instead of the cotangent space. Could it be that the functional dependence is multiplicative? Then,

$$\Gamma^{[A]}_{z;g}f(\Sigma) = \{g,z\}c(f)(\Sigma)$$

where $\{g, z\}$ is the Schwarzian derivative.

General transformation of global derivatives

Consider two domains A and B such that $\hat{\mathbb{C}} \setminus A \subset B$.



Consider a conformal map $g: A \to A'$. Then

$$\Delta_z^{[B]} f(\Sigma) - (\partial g(z))^2 \,\Delta_{g(z)}^{[\hat{\mathbb{C}} \setminus g(\hat{\mathbb{C}} \setminus B)]}(f \circ g^{-1})(g(\Sigma)) = \Gamma_{z;g}^{[A]} f(\Sigma)$$

In particular, if f is A-stationary (A-derivative = 0), then the r.h.s. is 0.

Application to CFT

Conformal Ward identities with boundary

Consider a CFT correlation function of n fields \mathcal{O}_j at positions z_j in a domain C:

n

 $\langle \prod_{j=1} \mathcal{O}_j(z_j) \rangle_C$

Covariant under conformal maps $g: C \to C'$

$$\langle \prod_{j=1}^{n} (g \cdot \mathcal{O}_j)(g(z_j)) \rangle_{g(C)} = \langle \prod_{j=1}^{n} \mathcal{O}_j(z_j) \rangle_C$$

 $g \cdot \mathcal{O}_j$ is a linear transformation (over a ring of functions). Example: primary fields

$$(g \cdot \mathcal{O})(g(z)) = (\partial g(z))^{\delta} (\bar{\partial} \bar{g}(\bar{z}))^{\delta} \mathcal{O}(g(z))$$

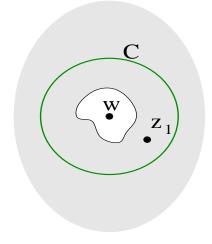
~

Consider

$$\begin{split} \Sigma &= (\partial C; z_1, \dots, z_n; \mathcal{O}_1, \dots, \mathcal{O}_n) \in \text{domains} \times \mathbb{C}^n \times \text{fields}^{\otimes n} \\ g(\Sigma) &= (g(\partial C); g(z_1), \dots, g(z_n); g \cdot \mathcal{O}_1, \dots, g \cdot \mathcal{O}_n) \\ f(\Sigma) &= \langle \prod_{j=1}^n \mathcal{O}_j(z_j) \rangle_C : \text{ globally stationary, and } A \text{-stationary for any } A \supset \overline{C} \end{split}$$

Insertion of stress-energy tensor is given by global derivative:

$$\langle T(w) \prod_{j=1}^{n} \mathcal{O}_{j}(z_{j}) \rangle_{C} - \langle T(w) \rangle_{C} \langle \prod_{j=1}^{n} \mathcal{O}_{j}(z_{j}) \rangle_{C} = \Delta_{w}^{[\hat{\mathbb{C}} \setminus N(w)]} f(\Sigma)$$



One-point average and partition functions

Consider the ratio of partition functions

$$Z(C|D) = \frac{Z_C Z_{\widehat{\mathbb{C}} \setminus \overline{D}}}{Z_{C \setminus \overline{D}} Z_{\widehat{\mathbb{C}}}}.$$

Using Liouville action for transformation of partition functions as well as the basic formula

$$\delta \log Z_A = \frac{1}{2} \int_{\overline{A}} d^2 x \, \langle \delta \eta_{ab}(x) T^{ab}(x) \rangle_A$$

we find

$$\langle T(w) \rangle_C = \Delta_{w \mid \partial C \cup \partial D}^{[\widehat{\mathbb{C}} \setminus N(w)]} \log Z(C|D)$$

Application to CLE

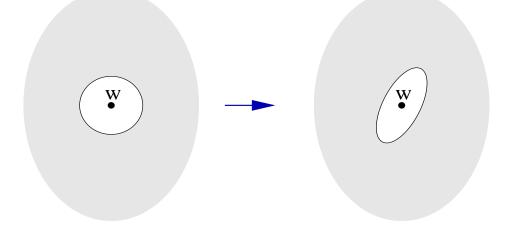
Consider

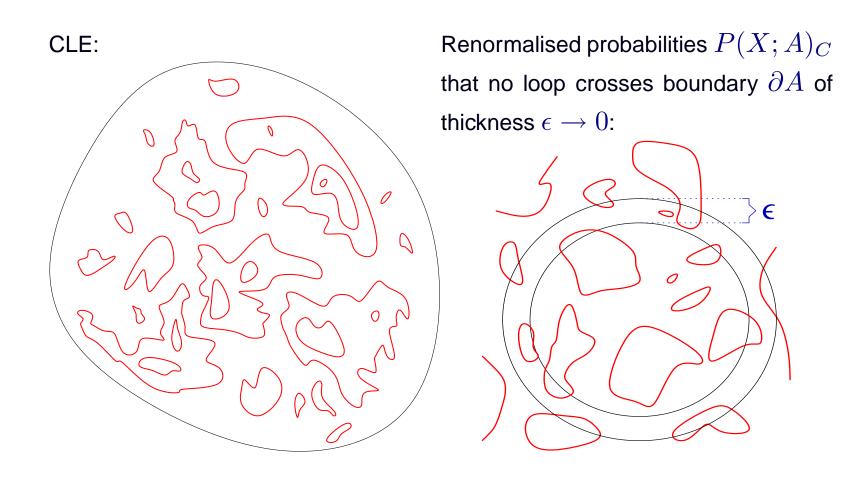
$$h_w = \frac{e^{2\pi i\theta}}{w-z}$$

It is such that

$$\frac{1}{2\pi} \int d\theta \, e^{-2\pi i\theta} \, \nabla_{h_w} f(\Sigma) = \Delta_w^{[\hat{\mathbb{C}} \setminus N(w)]} f(\Sigma)$$

Interpret $abla_{h_w} f(\Sigma)$ geometrically: $\mathrm{id} + \eta h_w$ gives





Theorems:

- $P(X)_A = P(X|A)_C := P(X;A)_C / P(A)_C$ (X supported inside A)
- $P(X)_{C\setminus A} = P(X|A)_C$ (X supported inside $C \setminus \overline{A}$)

T(w) =

- $P(A)_C$ is global conformally invariant, but in general conformally covariant

This reproduces conformal Ward identities

$$\langle T(w)\mathcal{O}_X\rangle_C - \langle T(w)\rangle_C P(X)_C = \Delta_w^{[\hat{\mathbb{C}}\setminus N(w)]} P(X)_C$$

as well as one-point average with identification:

$$Z(C|D) = \frac{P(\hat{\mathbb{C}} \setminus \overline{C})_{\hat{\mathbb{C}}}}{P(\hat{\mathbb{C}} \setminus \overline{C})_{\hat{\mathbb{C}} \setminus \overline{D}}}$$

Perspectives

- Applications to other probability models of CFT
- Descendants: derivative $\partial/\partial z$ of $\Delta_z^{[\hat{\mathbb{C}}\backslash N(w)]}f(\Sigma)$; multiple conformal derivatives
- Other symmetry currents when internal symmetries are present...