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Entanglement in quantum mechanics

• Entanglement occurs when a measurement in a quantum state of an observable

somewhere immediately affects future measurements of observables elsewhere.

Example: pair of opposite-spin photons created during some annihilation process:

|ψ〉 =
1√
2

(| ↑ ↓ 〉 + | ↓ ↑ 〉) , 〈Â〉 = 〈ψ|Â|ψ〉

• What is special: Bell’s inequality says that this cannot be described by local variables .

• This is particular to pure states . Mixed states are described by density matrices

ρ =
∑

α

pα|ψα〉〈ψα| , 〈Â〉 = Tr(ρÂ)

(for pure states, ρ = |ψ〉〈ψ|; for finite temperature, ρ = e−H/kT ). A situation that

looks similar to |ψ〉 but without entanglement is:

ρ =
1

2
(| ↑ ↓ 〉〈 ↑ ↓ | + | ↓ ↑ 〉〈 ↓ ↑ |)



How to measure (or quantify) quantum entanglement?

• Quantum entanglement is useful: at the basis of better performances of the (still

theoretical) quantum computers. It is also a fundamental property of quantum mechanics.

• In pure states , there are various propositions for measures of quantum entanglement.

Consider the entanglement entropy :

– With the Hilbert space a tensor product H = s1 ⊗ s2 ⊗ · · · ⊗ sN = A⊗ Ā, and a

given state |gs〉 ∈ H, calculate the reduced density matrix :

ρA = TrĀ(|gs〉〈gs|)

A

s x i+1s xxi−1s x i+L−1s x i+Ls
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– The entanglement entropy is the resulting von Neumann entropy :

SA = −TrA(ρA log(ρA)) = −
∑

eigenvalues of ρA
λ6=0

λ log(λ)



The entanglement entropy

• It is the entropy that is measured in a subsystemA, once the rest of the system Ā – the

environment – is forgotten.

If we think A is all there is, we will think the system is in a mixed state, with density matrix given by

ρA. The entropy of ρA measures how mixed ρA is. This mising is due to the connections, or

entanglement, with the environment.

• It was proposed as a way to understand black hole entropy
[Bombelli, Koul, Lee, Sorkin 1986].

• Then it was proposed as a measure of entanglement
[Bennet, Bernstein, Popescu, Schumacher 1996].

• Examples:

– Tensor product state:

|gs〉 = |A〉 ⊗ |Ā〉 ⇒ ρA = |A〉〈A| ⇒ SA = −1 log(1) = 0.

– The state |gs〉 = 1√
2

(| ↑ ↓ 〉 + | ↓ ↑ 〉):

ρ1st spin =
1

2
(| ↑ 〉〈 ↑ |+| ↓ 〉〈 ↓ |) ⇒ S1st spin = −2×

(

1

2
log

(

1

2

))

= log(2)



There are no known good measures of quantum entanglement in m ixed states.



One basic property of entanglement entropy

Entanglement entropy is not “directional”: SA = SĀ. Proof:

• Consider anti-linear map f : A→ Ā with f |A〉 = 〈A|gs〉. Similarly f̄ : Ā→ A with

f̄ |Ā〉 = 〈Ā|gs〉.

• Then ρA : A→ A is ρA = f̄f and ρĀ : Ā→ Ā is ρĀ = ff̄ .

• Hence if ρA|A〉 = λ|A〉 then f̄f |A〉 = λ|A〉 ⇒ (ff̄)f |A〉 = λf |A〉 so that

ρĀf |A〉 = λf |A〉.

• Hence ρA and ρĀ have the same set of non-zero eigenvalues (with the same

degeneracies).



Scaling limit

• Say |gs〉 is a ground state of some local spin-chain Hamiltonian, and that the chain is

infinitely long.

• An important property of |gs〉 is the correlation length ξ:

〈gs|σ̂iσ̂j |gs〉 ∼ e−|i−j|/ξ as |i− j| → ∞

• Suppose there are parameters in the Hamiltonian such that for certain values, ξ → ∞.

This is a quantum critical point .

• We may adjust these parameters in such a way that the length L of A stays in proportion

to ξ: L/ξ = mr.

• The resulting entanglement entropy has a universal part: a part that does not depend

very much on the details of the Hamiltonian.

• This is the scaling limit , and what we obtain is a quantum field theory . Here: with a

mass m – or with many massesmα associated to many correlation lengths – and where

r is the dimensionful length of A in the scaling limit.



Short- and large-distance entanglement entropy

Consider ε = 1/(m1ξ), a non-universal QFT cutoff with dimenions of length. Then:

• Short distance: 0 � L� ξ, logarithmic behavior [Holzhey, Larsen, Wilczek 1994;

Calabrese, Cardy 2004]

SA ∼ c

3
log

(r

ε

)

• Large distance: 0 � ξ � L, saturation

SA ∼ − c
3

log(m1ε) + U

where c is the central charge of the corresponding critical point.



The next correction term

We found [Cardy, Castro Alvaredo, D. 2007], [Castro Alvaredo, D. 2008], [D. 2008]

SA ∼ − c
3

log(m1ε) + U − 1

8

∑̀

α=1

K0(2rmα) +O
(

e−3rm1
)

where ` is the number of particles in the spectrum of the QFT, andmα are the masses of the

particles, with m1 ≤ mα ∀α.

• This next correction term depends only on the particle spectrum, but not on their

interaction (i.e. not on the way they scatter off each other).

• In generic QFT, the largest mass is less than twice the smallest mass. Hence, the

entanglement entropy provides “clean” information about “half” of the spectrum.



Partition functions on multi-sheeted Riemann surfaces

[Callan, Wilczek 1994; Holzhey, Larsen, Wilczek 1994]

• We can use the “replica trick” for evaluating the entanglement entropy:

SA = −TrA(ρA log(ρA)) = − lim
n→1

d

dn
TrA(ρn

A)

• For integer numbers n of replicas, in the scaling limit, this is a partition function on a

Riemann surface:

A〈φ|ρA|ψ〉A ∼
r

ψ>
φ|< A

|

TrA(ρn
A) ∼ Zn =

∫

[dϕ]Mn
exp

[

−
∫

Mn

d2x L[ϕ](x)

]

Mn :



Branch-point twist fields

[Cardy, Castro Alvaredo, D. 2007]

• Consider many copies of the QFT model on the usual R2:

L(n)[ϕ1, . . . , ϕn](x) = L[ϕ1](x) + . . .+ L[ϕn](x)

• There is an obvious symmetry under cyclic exchange of the copies:

L(n)[σϕ1, . . . , σϕn] = L(n)[ϕ1, . . . , ϕn] , with σϕi = ϕi+1 mod n



• The associated twist fields T , when inside correlation functions, gives

〈T (0) · · ·〉L(n) ∝
∫

C0

[dϕ1 · · · dϕn]R2 exp

[

−
∫

R2

d2x L(n)[ϕ1, . . . , ϕn](x)

]

· · ·

with branching conditions on the line x ∈ (0,∞) given by

C0 : ϕi(x, 0
+) = ϕi+1(x, 0

−) (x > 0)

x T

(  )

(  ) (0)

ϕ
i

ϕ +1i

x



• Another twist field T̃ is associated to the inverse symmetry σ−1, and we have

〈T (0)T̃ (r)〉L(n) ∝
∫

C0,r

[dϕ1 · · · dϕn]R2 exp

[

−
∫

R2

d2x L(n)[ϕ1, . . . , ϕn](x)

]

= Zn

C0,r:

rT

(  )

(  ) (0) T
~ϕ

ϕ
i

+1i

x

x (  )



Locality in QFT

• A field O(x) is local in QFT if measurements associated to this field are quantum

mechanically independent from measurements of the energy density (or Lagrangian

density ) at space-like distances. That is, equal-time commutation relations vanish:

[O(x, t = 0),L(n)(x′, t = 0)] = 0 (x 6= x′) .

• This means that:

x
1ϕ2[(n)L , ,...,

=O

]ϕ
n

x’(  )
(  )

ϕ

• Branch-point twist fields are local fields in the n-copy theory.



Short- and large-distance entanglement entropy revisited

Hence we have

Zn = Dnε
2dn〈T (0)T̃ (r)〉L(n) , SA = − lim

n→1

d

dn
Zn

where Dn is a normalisation constant, and dn is the scaling dimension of T [Calabrese,

Cardy 2004]:

dn =
c

12

(

n− 1

n

)

• Short distance: 0 � L� ξ, logarithmic behavior

〈T (0)T̃ (r)〉L(n) ∼ r−2dn ⇒ SA ∼ c

3
log

(r

ε

)

• Large distance: 0 � ξ � L, saturation

〈T (0)T̃ (r)〉L(n) ∼ 〈T 〉2L(n) ⇒ SA ∼ − c
3

log(m1ε) + U



Asymptotic states

• In QFT, the Hilbert space is described by particles com-

ing from the far past (in-states) or going to the far future

(out-states). The overlap between in- and out-states

is the scattering matrix .

out-states
...

...

in-states

• With particle trajectories chosen to meet all at a point in space-time, the set of all

possible configurations of incoming particles (particle types and rapidities) form a basis

for the Hilbert space. Idem for outgoing particles.

• These in-states or out-states are denoted |θ1, θ2, . . . , θk〉in,out
α1,α2,...,αk

with

θ1 > . . . > θk for in-states and the opposite for out-states, where θi’s are rapidities

and αi’s are particle types. Here we assume all particles of the model have non-zero

mass.

• Energy and momentum of these states are the sums of those of individual particles:

E =
∑k

i=0mαi
cosh θi and P =

∑k
i=0mαi

sinh θi.



Form factors and two-point function

• In the n-replica model L(n), there are n times as many particle types, which we will

denote by µ = (α, j) with j = 1, . . . , n the replica label.

• The two-point function of branch-point twist fields can be decomposed into the in-basis,

giving a large-distance expansion :

〈T (0)T̃ (r)〉L(n) = 〈vac|T (0)T̃ (r)|vac〉 =
∞
∑

k=0

∑

α1,...,αk
j1,...,jk

∫

dθ1 · · · dθk

(2π)k
|Fµ1,...,µk

(θ1, . . . , θk)|2e−r
Pk

i=1 mαi
cosh θi

where the matrix elements involved are called form factors (where we choose, say, the

in-states):

Fµ1,...,µk
(θ1, . . . , θk) = 〈vac|T (0)|θ1, . . . , θk〉inµ1,...,µk



Analytic properties of two-particle form factors

Consider Fµ1,µ2(θ1, θ2) = Fµ1,µ2(θ1 − θ2) (by relativistic invariance) as an analytic

function of θ ≡ θ1 − θ2.

• Such form factors for usual (non-twist) fields have a well-known analytic structure:

using Mandelstam’s s-variable s = m2
α1

+m2
α2

+ 2mα1mα2 cosh(θ), there is a

branch cut from s = (mα1 +mα2)
2 to ∞, just above which we are describing the

physical form factor with an in-state, and just below which it is the form factor with an

out-state instead. Between 0 and (mα1 +mα2)
2, there may be poles due to bound

states, and there are no other singularities on the physical sheet.

s

�� ��

in
out

πi2

θ

�� ��
����

in

in

out

out

• Form factors for branch-point twist-fields have modified analytic properties .



Change of sign of θ (as usual)

For θ1 < θ2:

Fµ1,µ2(θ1 − θ2) = 〈vac|T (0)|θ1, θ2〉out
µ1,µ2

j1 6=j2
= 〈vac|T (0)|θ2, θ1〉inµ2,µ1

= Fµ2,µ1(θ2 − θ1)

2θ21θ µ1 µ2θ21θ µ1µ



Quasi-periodicity relation (different)

Fµ1,µ2(θ + 2πi) = Fµ2,µ̂1(−θ) , µ̂ = (α, j + 1 mod n)

(0)

θ1θ µ1

+2πi

θ2µ2 µ1

T

1



The kinematic residue equation (new)

−iFµ1,µ2(θ + πi) ∼ 〈T 〉δα1,ᾱ2(δj1,j2 − δj1+1,j2)

θ
, ᾱ2 = anti-particle of α2

θ

T(0)

πi+πi+

T(0)

µ2θµµθ1 2θ µ1



The structure of the two-particle form factors

Putting all that together, only F(α1,1),(α2,1)(θ) matters, thanks to the relation

F(α1,j1),(α2,j2)(θ) = F(α1,1),(α2,1)(θ + 2πi(j1 − j2)) for 0 ≤ j1 − j2 ≤ n− 1. It has

the following analytic structure:

i n2

πi2 πi

α1 α2,1 (       ),1(       )

α1 α2,2(       ) ,1(       )

α1 α2,3 ,1(       ) (       )

θ

−n

F

F

F

in

in

out
π

out

i

π



Correction term to the entanglement entropy

• The two-particle contribution to the entanglement entropy is

d

dn



〈T 〉 n

8π2

∑̀

α,β=1

∫ ∞

−∞
dθ1dθ2fα,β(θ1 − θ2, n)e−r(mα cosh θ1+mβ cosh θ2)





n=1

〈T 〉fα,β(θ, n) =

n−1
∑

j=0

|F(α,1),(β,1)(θ + 2πij)|2

• The form factors themselves vanish like n− 1 as n→ 1, because the branch-point twist

field becomes the identity field .

• The only contribution to the entanglement entropy comes from the collision of kinematic

poles at θ = 0, giving
(

d
dnfα,β(θ, n)

)

n=1
= π2

2 δ(θ)δα,β̄ :

πi n2

πi

πi n2

πi2 πi

θ

n 1

θ

−

π

n

i



Heuristic: entanglement density and pair creations

• Entanglement entropy should “count” the connections betweenA and Ā:
�� �� �� �� �� ��   !! "" ## $$ %% && ''(( ))** ++ ,, --

• This should be valid for A of large extent:

SA ∼
∫

A

dx

∫

Ā

dx′s(x− x′) ⇒ s(x) ∼ −1

2

d2S[0,x]

dx2
(1)



• The entanglement density s(x− x′) should receive contributions whenever the

quantum fluctuation at x is somehow correlated with that at x′.

• At large distances x− x′ � m−1, the main contribu-

tions should be due to particles coming from a common

virtual pair created far in the past.

x’ x

• The particles have to survive a time t, and the probability for this is rule by quantum

uncertainty principles, ∝ e−Et where E is the total energy of the pair, independently

from the interaction between the particles.

• With velocity v, time t = (x− x′)/(2v) and energyE = 2m/
√

1 − v2, we have

s(x− x′) ∼
∑

α

m2
α

∫ 1

0

f(v)e
−mα(x−x′)

v
√

1−v2

for some f(v). This has the correct behaviour ∝ e−2m(x−x′). With

f(v) = 1/(32v3(1 − v2)2), it reproduces exactly the main result.



Conclusions

• We have derived the first correction to saturation of the entanglement entropy in any

two-dimensional QFT, and observed that it is very universal: it does not depend on the

scattering matrix!

• This is one of the few examples where the analytic structure of matrix elements in QFT

gives exact results, outside of integrable models.

• We have provided a heuristic “explanation” in terms of counting virtual pair creations far

in the past – the collision of the kinematic poles seem to say that we are only considering

contributions from particles coming from a common virtual pair...

• How to make this picture more precise? Can we verify the formula using other methods

(there are many subtleties in the calculation)? How much of this can be generalised to

higher dimensions?


