

Linear integral equations for finite-temperature dynamical correlation functions in the quantum Ising model

Benjamin Doyon

Rudolf Peierls Centre for Theoretical Physics,

Oxford University, UK

EPSRC postdoctoral fellow

in collaboration with Adam Gamsa (Oxford University)

Faro, July 2007

The problem of finite-temperature correlation functions in real time

 Near quantum criticality, at temperatures, energies and momenta of the order of the gap, what is observed is described by finite-temperature real-time correlation functions of QFT

$$\langle \mathcal{O}(x,t)\mathcal{O}(0,0)\rangle_T = \frac{\operatorname{Tr}\left(e^{-H/T}\mathcal{O}(x,t)\mathcal{O}(0,0)\right)}{\operatorname{Tr}\left(e^{-H/T}\right)}$$

• Neutron scattering experiments \Rightarrow dynamical structure factor $\stackrel{F,T}{\Leftrightarrow} \langle \mathcal{O}(x,t)\mathcal{O}(0,0)\rangle_T$

What does the dynamical structure factor look like at low energies (non-perturbative regime of QFT)?

Main idea of the talk

- The correlation functions of the quantum Ising model at finite temperature form a solution to an **integrable non-linear partial differential equation (sine/sinh-Gordon equation)**.
- There is a method to solve such equations: the inverse scattering method. It gives the solution at all times for any given initial condition. The initial condition is encoded into scattering data. A way of representing the solution is in terms of linear integral equations (Gelfand-Levitan-Marchenko equations), which take the scattering data as input.
- We show that the scattering data that corresponds to the Ising correlation functions are obtained from the **finite-temperature form factors** introduced and calculated some time ago [BD 2005, 2006]. This solves the problem in the Ising model.

Integrable QFT: results from exact form factors?

- The Hilbert space of QFT is described by asymptotically free particles with fixed rapidities θ_j.
- Integrable QFT: in many cases, matrix elements are known (form factors)

$$\langle \theta_1, \ldots, \theta_m | \mathcal{O}(0,0) | \theta'_1, \ldots, \theta_n \rangle$$

• Direct calculation:

$$\langle \mathcal{O}(x,t)\mathcal{O}(0,0)\rangle_T \propto \sum_{\substack{\text{state } v \\ \text{state } w}} e^{-E_v/T} \langle v|\mathcal{O}(x,t)|w\rangle \langle w|\mathcal{O}(0,0)|v\rangle$$

an infinite series of plane waves with coefficients given by squares of form factors

Two problems:

- Poles in form factors need to be regularised (normalisation of fields and coefficients of plane waves are not given by form factors)
- The expansions in the space-like and time-like regions must be very different: the continuation from one region to another must involve an infinite re-summation

A paradigmatic example: the quantum Ising model

Quantum spin-1/2 chain in a transverse magnetic field:

$$H = -\sum_{j} (J\sigma_j^z \sigma_{j+1}^z + h\sigma_j^x)$$

There is a quantum critical point at a special value h_c of h \Rightarrow QFT of free massive Majorana fermions

Twist fields in Majorana QFT	Operators in quantum spin chain
$\sigma(x)$	$a^{-1/8}\sigma^z_{x/a}$ for $h < h_c$ (ordered regime)
$\mu(x)$	$a^{-1/8}\sigma^z_{x/a}$ for $h>h_c$ (disordered regime)

The finite-temperature expansion in space-like region

- Form factors on the cylinder:
 - large x expansion at t = 0 from form factors on the cylinder [Bugrij 2000, 2001]
 - analytically continued to $t^2 < x^2$ [Altshuler, Konik, Tsvelik 2005, 2006]
- Finite-temperature form factors [BD 2005, 2006] (directly gives $t^2 < x^2$)
 - Liouville space \mathcal{L} : space of operators, with $\{A^+(\theta), A^-(\theta')\} = \delta(\theta \theta')$

$$|\theta,\pm\rangle^{\mathcal{L}} \equiv (1-e^{\mp \frac{m\cosh\theta}{T}})A^{\pm}(\theta)$$
$$|\theta,\pm;\theta',\pm'\rangle^{\mathcal{L}} \equiv (1-e^{\mp \frac{m\cosh\theta}{T}})(1-e^{\mp' \frac{m\cosh\theta'}{T}})A^{\pm}(\theta)A^{\pm'}(\theta')$$

- inner product: ${}^{\mathcal{L}}\langle v|w\rangle^{\mathcal{L}} = \frac{\operatorname{Tr}\left(e^{-H/T}\mathcal{U}\,V^{\dagger}W\right)}{\operatorname{Tr}\left(e^{-H/T}\mathcal{U}\right)}$ for $|v\rangle^{\mathcal{L}} \equiv V, \ |w\rangle^{\mathcal{L}} \equiv W$

- right-action of fields

$${}^{\mathcal{L}}\langle v|\hat{\mathcal{O}}(x,t)|w\rangle^{\mathcal{L}} = \frac{\operatorname{Tr}\left(e^{-H/T}\mathcal{U}\;V^{\dagger}\mathcal{O}(x,t)W\right)}{\operatorname{Tr}\left(e^{-H/T}\mathcal{U}\right)}$$

- finite-temperature form factors

$$F_{\epsilon_{1},\ldots,\epsilon_{k}}^{\sigma\pm}(\theta_{1},\ldots,\theta_{k}) = {}^{\mathcal{L}} \langle \operatorname{vac} | \hat{\sigma}_{\pm}(0,0) | \theta_{1},\epsilon_{1};\ldots;\theta_{k},\epsilon_{k} \rangle^{\mathcal{L}} = \prod_{j=1}^{k} \left(1 - e^{-\frac{\epsilon_{j}m\cosh\theta_{i}}{T}} \right) \frac{\operatorname{Tr} \left(e^{-H/T} \mathcal{U} \ \sigma_{\pm}(0,0) A^{\epsilon_{1}}(\theta_{1}) \cdots A^{\epsilon_{k}}(\theta_{k}) \right)}{\operatorname{Tr} \left(e^{-H/T} \mathcal{U} \right)}$$

- finite-temperature two-point function as "vacuum expectation value"

$$\langle \sigma(x,t)\sigma(0,0)\rangle_T = \mathcal{L}\langle \operatorname{vac}|\hat{\sigma}_+(x,t)\mathbf{1}^{\mathcal{L}}\hat{\sigma}_-(0,0)|\operatorname{vac}\rangle^{\mathcal{L}}$$

- expansion from decomposition of the identity

$$\mathbf{1}^{\mathcal{L}} = \sum_{k=0}^{\infty} \sum_{\substack{\epsilon_1, \dots, \epsilon_k \\ =\pm}} \int_{\mathrm{Im}(\theta_j) = \epsilon_j 0^+}^{d\theta_1 \cdots d\theta_k} \frac{|\theta_1, \epsilon_1; \dots; \theta_k, \epsilon_k\rangle^{\mathcal{L} \mathcal{L}} \langle \theta_1, \epsilon_1; \dots; \theta_k, \epsilon_k|}{\prod_{j=1}^k \left(1 - e^{-\frac{\epsilon_j m \cosh \theta_j}{T}}\right)}$$

Exact finite-temperature form factors are obtained by solving a Riemann-Hilbert problem [BD 2005, 2006]

$$F_{\epsilon_1,\ldots,\epsilon_k}^{\sigma_{\pm}}(\theta_1,\ldots,\theta_k) \propto \prod_{j=1}^k h_{\pm\epsilon_j}(\theta_j) \prod_{1 \le i < j \le k} \left(\tanh\left(\frac{\theta_j - \theta_i}{2}\right) \right)^{\epsilon_i \epsilon_j}$$
$$h_{\pm}(\theta) = e^{\pm \frac{i\pi}{4}} \exp\left[\pm \int_{-\infty\mp i0^+}^{\infty\mp i0^+} \frac{d\theta'}{2\pi i} \frac{1}{\sinh(\theta - \theta')} \ln\left(\frac{1 + e^{-\frac{m\cosh\theta'}{T}}}{1 - e^{-\frac{m\cosh\theta'}{T}}}\right) \right]$$

$$\begin{aligned} h_{-}(\theta) &= -h_{-}(\theta + 2\pi i) \\ \text{has zeroes at } \theta &= \frac{i\pi}{2} + \operatorname{arcsinh} \left(\frac{2\pi nT}{m}\right), \ n \in \mathbb{Z} \\ \text{has poles at } \theta &= \frac{i\pi}{2} + \operatorname{arcsinh} \left(\frac{2\pi nT}{m}\right), \ n \in \mathbb{Z} + \frac{1}{2} \end{aligned}$$

Going to time-like region?

The expansion is space-like only

 $\cdots \int_{\mathrm{Im}(\theta_j) = \epsilon_j 0^+} d\theta_k e^{\sum_{j=1}^k i\epsilon_j m(x \sinh \theta_j - t \cosh \theta_j)} \cdots \Rightarrow \text{ convergence for } t^2 < x^2$

Obtaining a time-like expansion requires infinite re-summations

- Semi-classical approximation to go around this problem ($T \ll m$ only) [Sachdev 1996, Sachdev, Young 1997]
- Partial resummation, valid (conjecturally) for $T \ll m$ [Altshuler, Konik, Tsvelik 2005, 2006]
- Other ways to go around the problem ($T \ll m$ only) [Reyes, Tsvelik 2006]

Our method: correlation functions from classical integrability

The dynamical correlation functions of the quantum Ising chain satisfy integrable partial differential equations

 $\langle \sigma(x,t)\sigma(0,0)\rangle_T = e^{\chi/2}\cosh(\varphi/2), \quad \langle \mu(x,t)\mu(0,0)\rangle_T = e^{\chi/2}\sinh(\varphi/2)$

$$(\partial_x^2 - \partial_t^2)\varphi = \frac{m^2}{2}\sinh(2\varphi)$$

$$(\partial_x^2 - \partial_t^2)\chi = \frac{m^2}{2}(1 - \cosh(2\varphi))$$

$$(\partial_x^2 + \partial_t^2)\chi = -(\partial_x \varphi)^2 - (\partial_t \varphi)^2$$

$$\partial_x \partial_t \chi = -\partial_x \varphi \partial_t \varphi$$

The inverse scattering method

$$\begin{array}{ccc} \text{initial condition } \varphi(x,0) & \stackrel{\text{scattering problem}}{\longrightarrow} & \text{initial scattering data } a(\theta), b(\theta) \\ \downarrow & \downarrow \\ \text{solution } \varphi(x,t) & \stackrel{\text{GLM integral equations}}{\longleftarrow} & a(\theta,t) = a(\theta) , \quad b(\theta,t) = b(\theta) e^{itm\cosh\theta} \end{array}$$

Two problems to solve:

- Find initial scattering data $a(\theta), b(\theta)$
- Obtain large-t asymptotics of $\varphi(x,t)$ from GLM equations

Zero-curvature formulation and scattering data

The compatibility condition of the equations

$$(\partial_x - A_x)\Psi(x,t;\theta) = (\partial_t - A_t)\Psi(x,t;\theta) = 0$$

(or zero-curvature condition of the connections A_x, A_t), with

$$A_{x} = \frac{i}{4} \begin{pmatrix} 2i\partial_{t}\varphi & m(e^{\theta-\varphi}-e^{\varphi-\theta}) \\ m(e^{\varphi+\theta}-e^{-\varphi-\theta}) & -2i\partial_{t}\varphi \end{pmatrix}$$
$$A_{t} = \frac{i}{4} \begin{pmatrix} 2i\partial_{x}\varphi & -m(e^{\theta-\varphi}+e^{\varphi-\theta}) \\ -m(e^{\varphi+\theta}+e^{-\varphi-\theta}) & -2i\partial_{x}\varphi \end{pmatrix}$$

for all $\theta \in \mathbb{R},$ is equivalent to the sinh-Gordon equation for φ

The scattering problem is

$$(\partial_x - A_x)\Psi(x;\theta) = 0$$

The scattering data are coefficients in the Jost solutions to the scattering problem: independent solutions analytic in the strip $\text{Im}(\theta) \in [0, \pi]$:

	$x o \infty$	$x ightarrow -\infty$
$\Psi_{J_+}(x;\theta)$	$v_+(x;\theta)$	$a(\theta)v_{+}(x;\theta) - b(\theta)v_{-}(x;\theta)$
$\Psi_{J_{-}}(x;\theta)$	$c(\theta)v_+(x;\theta) - d(\theta)v(x;\theta)$	$v_{-}(x; heta)$

$$d = -a, \ b^* = -b, \ |a|^2 + bc^* = 1$$
$$v_+(x;\theta) = e^{\frac{ixm\sinh\theta}{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \ v_-(x;\theta) = e^{\frac{-ixm\sinh\theta}{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

Wronskian equations imply that $a(\theta)$ is analytic in the strip ${\rm Im}(\theta) \in [0,\pi]$

A special solution to the scattering problem

With $\varphi(x)$ given by the finite-temperature correlation functions at t = 0, a solution is

$$\Psi = \Psi_{\rm sym} \equiv e^{-\chi/2} \begin{pmatrix} \tilde{F} - iF \\ \tilde{F} + iF \end{pmatrix}$$

$$F(x;\theta) = \mathcal{L}\langle \operatorname{vac}|\hat{\sigma}_{+}(x/2,0)\hat{A}^{+}(\theta)\hat{\mu}_{-}(-x/2,0)|\operatorname{vac}\rangle^{\mathcal{L}}$$

$$\tilde{F}(x;\theta) = \mathcal{L}\langle \operatorname{vac}|\hat{\mu}_{+}(x/2,0)\hat{A}^{+}(\theta)\hat{\sigma}_{-}(-x/2,0)|\operatorname{vac}\rangle^{\mathcal{L}}$$

Generalisation of the zero-temperature case showed by Fonseca and Zamolodchikov [2003]. Two copies of the Majorana theory, a and b; resulting conserved U(1) charge Z_0 ; consequences of the conserved charge $[P_a - P_b, Z_0]$ on the objects above.

This solution is invariant under the symmetry transformations

- $\Psi^{\mathbf{v}}(x;\theta) = \sigma^z \Psi(x;\theta + i\pi)$
- $\bar{\Psi}(x;\theta) = \Psi^*(-x;\theta)$

The asymptotics of this special solution can be obtained from the **finite-temperature form factors** by using the resolution of the identity $1^{\mathcal{L}}$:

$$\overset{\mathcal{L}}{\sim} \langle \operatorname{vac} | \hat{\sigma}_{+}(x/2,0) \hat{A}^{+}(\theta) \hat{\mu}_{-}(-x/2,0) | \operatorname{vac} \rangle^{\mathcal{L}} \\ \overset{x \to \infty}{\sim} \overset{\mathcal{L}}{\sim} \langle \operatorname{vac} | \hat{\sigma}_{+}(x/2,0) | \operatorname{vac} \rangle^{\mathcal{L}} \overset{\mathcal{L}}{\sim} \langle \operatorname{vac} | \hat{A}^{+}(\theta) \hat{\mu}_{-}(-x/2,0) | \operatorname{vac} \rangle^{\mathcal{L}}$$

We then obtain the following asymptotics:

	$x o \infty$	$x ightarrow -\infty$
$\Psi_{\rm sym}(x;\theta)$	$g_{+}h_{+}v_{+}(x;\theta) - g_{-}h_{-}v_{-}(x;\theta)$	$ig_+hv_+(x;\theta) - igh_+v(x;\theta)$

$$g_{\pm}(\theta) = \frac{1}{1 - e^{\mp \frac{m \cosh \theta}{T}}}$$

 $h_{\pm}(heta)=$ one-particle finite-temperature form factors

The scattering data

Inspired by this explicit solution, we make the following ansatz for the scattering data

$$a(\theta) = \alpha(\theta) \frac{h_{-}(\theta)}{h_{+}(\theta)}, \quad b(\theta) = i\beta(\theta) \frac{g_{-}(\theta)}{g_{+}(\theta)}$$

- x-independence of the wronskian $\det(\Psi_{\mathrm{sym}},\Psi_{J_+})$ - $\Psi_{J_+}^{
m v}$ and $ar{\Psi}_{J_+}$ can be written as linear combinations of $\Psi_{
m sym}$ and Ψ_{J_+} - analyticity of $a(\theta)$ in the strip $\text{Im}(\theta) \in [0,\pi]$ - large- θ analysis \downarrow $\beta(\theta) = 1 + \alpha(\theta)$ $\alpha(\theta) \in \mathbb{R}$ for $\theta \in \mathbb{R}$ $\alpha(\theta + i\pi) = -\alpha(\theta)$ $\alpha(\theta) \sim 1 \text{ as } \theta \to \pm \infty$ $\alpha(\theta)$ has zeroes at $\theta = \frac{i\pi}{2} + \operatorname{arcsinh}\left(\frac{2\pi nT}{m}\right), \ n \in \mathbb{Z} + \frac{1}{2}$ $\alpha(\theta)$ is analytic for $\operatorname{Im}(\theta) \in [0, \pi]$ except maybe for poles at $\theta = \frac{i\pi}{2} + \operatorname{arcsinh}\left(\frac{2\pi nT}{m}\right), \ n \in \mathbb{Z}$

The unique solution is

$$\alpha(\theta) = \frac{1 + e^{-\frac{m\cosh\theta}{T}}}{1 - e^{-\frac{m\cosh\theta}{T}}}, \quad \beta(\theta) = \frac{2}{1 - e^{-\frac{m\cosh\theta}{T}}}$$

The Gelfand-Levitan-Marchenko linear integral equations

$$e^{2\varphi(x)} = 1 + \frac{4i}{m}W(x,x)^{-} - \frac{4i}{m}W(x,x)^{+} + \frac{16}{m^{2}}\left(U(x,x)^{-} - U(x,x)^{+}\right)U(x,x)^{+} \\ - \frac{16}{m^{2}}\left(\partial_{x}U(x,y)^{+} + \partial_{y}U(x,y)^{-}\right)|_{x=y} \\ -\frac{2}{m}\sigma^{z}U(x,y) = F_{0}(x+y)\left(\begin{array}{c}1\\1\end{array}\right) + \int_{x}^{\infty}\left[F_{0}(y+z)U(x,z) + F_{-1}(y+z)W(x,z)\right]dz \\ \frac{2}{m}\sigma^{z}W(x,y) = F_{-1}(x+y)\left(\begin{array}{c}1\\1\end{array}\right) + \int_{x}^{\infty}\left[F_{-1}(y+z)U(x,z) + F_{-2}(y+z)W(x,z)\right]dz \\ F_{j}(x) = \frac{1}{4\pi}\int_{-\infty}^{\infty}d\theta e^{(j+1)\theta}\left(e^{\frac{ixm\sinh\theta}{2}}\frac{b(\theta+i\pi)}{a(\theta)} + (-1)^{j}e^{\frac{-ixm\sinh\theta}{2}}\frac{b(\theta)}{a(\theta+i\pi)}\right) \\ \end{array}$$

Conclusions and perspectives

We derived linear integral equations that determine the finite-temperature dynamical correlation functions in the quantum Ising model near its critical point

- We have checked that it reproduces the known finite-temperature form factor expansion in the space-like region $t^2 < x^2$, up to (including) three-particle terms
- Calculation of the near-light-cone time-like asymptotic $t \to \infty, x \to \infty$ with $0 < t x \ll t, x$, for all m, T, is in progress check of unrigorous proposed asymptotics will be possible, with extension to $T \sim m$
- This is a systematic method to evaluate any expansion of the finite-temperature Ising correlators; numerical solution could also be useful
- Structure of expansion:
 - Wick's theorem \rightarrow classical integrable PDE
 - Two-particle form factors \rightarrow structure of linear problem
 - One-particle form factor (leg-factors) \rightarrow scattering data