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The problem of finite-temperature correlation functions in real time

• Near quantum criticality, at temperatures, energies and momenta of the order of the

gap , what is observed is described by finite-temperature real-time correlation

functions of QFT

〈O(x, t)O(0, 0)〉T =
Tr
(

e−H/TO(x, t)O(0, 0)
)

Tr
(

e−H/T
)

• Neutron scattering experiments⇒ dynamical structure factor
F.T.
⇔ 〈O(x, t)O(0, 0)〉T

What does the dynamical structure factor look like at low energies

(non-perturbative regime of QFT)?



Main idea of the talk

• The correlation functions of the quantum Ising model at finite temperature form a solution

to an integrable non-linear partial differential equation (sin e/sinh-Gordon equation) .

• There is a method to solve such equations: the inverse scattering method . It gives the

solution at all times for any given initial condition. The initial condition is encoded into

scattering data . A way of representing the solution is in terms of linear integral equations

(Gelfand-Levitan-Marchenko equations), which take the scattering data as input.

• We show that the scattering data that corresponds to the Ising correlation functions are

obtained from the finite-temperature form factors introduced and calculated some time

ago [BD 2005, 2006]. This solves the problem in the Ising model.



Integrable QFT: results from exact form factors?

• The Hilbert space of QFT is described by asymptotically free particles with fixed

rapidities θj .

• Integrable QFT: in many cases, matrix elements are known (form factors)

〈θ1, . . . , θm|O(0, 0)|θ′1, . . . , θn〉
• Direct calculation:

〈O(x, t)O(0, 0)〉T ∝
∑

state v
state w

e−Ev/T 〈v|O(x, t)|w〉〈w|O(0, 0)|v〉

an infinite series of plane waves with coefficients given by sq uares of form factors

Two problems :

• Poles in form factors need to be regularised (normalisation of fields and coefficients of

plane waves are not given by form factors)

• The expansions in the space-like and time-like regions must be very different: the

continuation from one region to another must involve an infinite re-summation



A paradigmatic example: the quantum Ising model

Quantum spin-1/2 chain in a transverse magnetic field:

H = −
∑

j

(Jσz
j σz

j+1 + hσx
j )

There is a quantum critical point at a special value hc of h

⇒ QFT of free massive Majorana fermions

Twist fields in Majorana QFT Operators in quantum spin chain

σ(x) a−1/8σz
x/a for h < hc (ordered regime)

µ(x) a−1/8σz
x/a for h > hc (disordered regime)



The finite-temperature expansion in space-like region

• Form factors on the cylinder :

– large x expansion at t = 0 from form factors on the cylinder [Bugrij 2000, 2001]

– analytically continued to t2 < x2 [Altshuler, Konik, Tsvelik 2005, 2006]

• Finite-temperature form factors [BD 2005, 2006] (directly gives t2 < x2)

– Liouville space L: space of operators, with {A+(θ), A−(θ′)} = δ(θ − θ′)

|θ,±〉L ≡ (1− e∓
m cosh θ

T )A±(θ)

|θ,±; θ′,±′〉L ≡ (1− e∓
m cosh θ

T )(1− e∓
′ m cosh θ′

T )A±(θ)A±′

(θ′)

– inner product: L〈v|w〉L =
Tr(e−H/T U V †W)

Tr(e−H/T U)
for |v〉L ≡ V, |w〉L ≡W

– right-action of fields

L〈v|Ô(x, t)|w〉L =
Tr
(

e−H/TU V †O(x, t)W
)

Tr
(

e−H/TU
)



– finite-temperature form factors

F σ±
ε1,...,εk

(θ1, . . . , θk) = L〈vac|σ̂±(0, 0)|θ1, ε1; . . . ; θk, εk〉
L =

k
∏

j=1

(

1− e−
εjm cosh θi

T

)Tr
(

e−H/TU σ±(0, 0)Aε1(θ1) · · ·A
εk(θk)

)

Tr
(

e−H/TU
)

– finite-temperature two-point function as “vacuum expectation value”

〈σ(x, t)σ(0, 0)〉T = L〈vac|σ̂+(x, t)1Lσ̂−(0, 0)|vac〉L

– expansion from decomposition of the identity

1
L =

∞
∑

k=0

∑

ε1,...,εk
=±

∫

Im(θj)=εj0+

dθ1 · · · dθk
|θ1, ε1; . . . ; θk, εk〉

L L〈θ1, ε1; . . . ; θk, εk|
∏k

j=1

(

1− e−
εj m cosh θi

T

)



Exact finite-temperature form factors are obtained by solving a Riemann-Hilbert problem [BD

2005, 2006]

F σ±
ε1,...,εk

(θ1, . . . , θk) ∝
k
∏

j=1

h±εj (θj)
∏

1≤i<j≤k

(

tanh

(

θj − θi

2

))εiεj

h±(θ) = e±
iπ
4 exp

[

±

∫ ∞∓i0+

−∞∓i0+

dθ′

2πi

1

sinh(θ − θ′)
ln

(

1 + e−
m cosh θ′

T

1− e−
m cosh θ′

T

)]

h−(θ) = −h−(θ + 2πi)

has zeroes at θ =
iπ

2
+ arcsinh

(

2πnT

m

)

, n ∈ Z

has poles at θ =
iπ

2
+ arcsinh

(

2πnT

m

)

, n ∈ Z +
1

2



Going to time-like region?

The expansion is space-like only

· · ·

∫

Im(θj)=εj0+

dθ1 · · · dθke
Pk

j=1
iεjm(x sinh θj−t cosh θj) · · · ⇒ convergence for t2 < x2

Obtaining a time-like expansion requires infinite re-summations

• Semi-classical approximation to go around this problem (T � m only) [Sachdev 1996,

Sachdev, Young 1997]

• Partial resummation, valid (conjecturally) for T � m [Altshuler, Konik, Tsvelik 2005,

2006]

• Other ways to go around the problem (T � m only) [Reyes, Tsvelik 2006]



Our method: correlation functions from classical integrab ility

The dynamical correlation functions of the quantum Ising chain satisfy

integrable partial differential equations

〈σ(x, t)σ(0, 0)〉T = eχ/2 cosh(ϕ/2) , 〈µ(x, t)µ(0, 0)〉T = eχ/2 sinh(ϕ/2)

(∂2
x − ∂2

t )ϕ =
m2

2
sinh(2ϕ)

(∂2
x − ∂2

t )χ =
m2

2
(1− cosh(2ϕ))

(∂2
x + ∂2

t )χ = −(∂xϕ)2 − (∂tϕ)2

∂x∂tχ = −∂xϕ∂tϕ



The inverse scattering method

initial condition ϕ(x, 0)
scattering problem

−→ initial scattering data a(θ), b(θ)

↓ ↓

solution ϕ(x, t)
GLM integral equations

←− a(θ, t) = a(θ) , b(θ, t) = b(θ)eitm cosh θ

Two problems to solve:

• Find initial scattering data a(θ), b(θ)

• Obtain large-t asymptotics of ϕ(x, t) from GLM equations



Zero-curvature formulation and scattering data

The compatibility condition of the equations

(∂x −Ax)Ψ(x, t; θ) = (∂t −At)Ψ(x, t; θ) = 0

(or zero-curvature condition of the connections Ax, At), with

Ax =
i

4





2i∂tϕ m(eθ−ϕ − eϕ−θ)

m(eϕ+θ − e−ϕ−θ) −2i∂tϕ





At =
i

4





2i∂xϕ −m(eθ−ϕ + eϕ−θ)

−m(eϕ+θ + e−ϕ−θ) −2i∂xϕ





for all θ ∈ R, is equivalent to the sinh-Gordon equation for ϕ



The scattering problem is

(∂x −Ax)Ψ(x; θ) = 0

The scattering data are coefficients in the Jost solutions to the scattering problem:

independent solutions analytic in the strip Im(θ) ∈ [0, π]:

x→∞ x→ −∞

ΨJ+
(x; θ) v+(x; θ) a(θ)v+(x; θ)− b(θ)v−(x; θ)

ΨJ−
(x; θ) c(θ)v+(x; θ)− d(θ)v−(x; θ) v−(x; θ)

d = −a, b∗ = −b, |a|2 + bc∗ = 1

v+(x; θ) = e
ixm sinh θ

2

(

1

1

)

, v−(x; θ) = e
−ixm sinh θ

2

(

1

−1

)

Wronskian equations imply that a(θ) is analytic in the strip Im(θ) ∈ [0, π]



A special solution to the scattering problem

With ϕ(x) given by the finite-temperature correlation functions at t = 0, a solution is

Ψ = Ψsym ≡ e−χ/2





F̃ − iF

F̃ + iF





F (x; θ) = L〈vac|σ̂+(x/2, 0)Â+(θ)µ̂−(−x/2, 0)|vac〉L

F̃ (x; θ) = L〈vac|µ̂+(x/2, 0)Â+(θ)σ̂−(−x/2, 0)|vac〉L

Generalisation of the zero-temperature case showed by Fonseca and Zamolodchikov [2003]. Two

copies of the Majorana theory, a and b; resulting conserved U(1) charge Z0; consequences of the

conserved charge [Pa − Pb, Z0] on the objects above.

This solution is invariant under the symmetry transformations

• Ψv(x; θ) = σzΨ(x; θ + iπ)

• Ψ̄(x; θ) = Ψ∗(−x; θ)



The asymptotics of this special solution can be obtained from the finite-temperature form

factors by using the resolution of the identity 1
L:

L〈vac|σ̂+(x/2, 0)Â+(θ)µ̂−(−x/2, 0)|vac〉L

x→∞
∼ L〈vac|σ̂+(x/2, 0)|vac〉L L〈vac|Â+(θ)µ̂−(−x/2, 0)|vac〉L



We then obtain the following asymptotics:

x→∞ x→ −∞

Ψsym(x; θ) g+h+v+(x; θ)− g−h−v−(x; θ) ig+h−v+(x; θ)− ig−h+v−(x; θ)

g±(θ) =
1

1− e∓
m cosh θ

T

h±(θ) = one-particle finite-temperature form factors



The scattering data

Inspired by this explicit solution, we make the following ansatz for the scattering data

a(θ) = α(θ)
h−(θ)

h+(θ)
, b(θ) = iβ(θ)

g−(θ)

g+(θ)



- x-independence of the wronskian det(Ψsym, ΨJ+
)

- Ψv
J+

and Ψ̄J+
can be written as linear combinations of Ψsym and ΨJ+

- analyticity of a(θ) in the strip Im(θ) ∈ [0, π]

- large-θ analysis

⇓

β(θ) = 1 + α(θ)

α(θ) ∈ R for θ ∈ R

α(θ + iπ) = −α(θ)

α(θ) ∼ 1 as θ → ±∞

α(θ) has zeroes at θ = iπ
2 + arcsinh

(

2πnT
m

)

, n ∈ Z + 1
2

α(θ) is analytic for Im(θ) ∈ [0, π] except maybe for poles at θ = iπ
2 + arcsinh

(

2πnT
m

)

, n ∈ Z

The unique solution is

α(θ) =
1 + e−

m cosh θ
T

1− e−
m cosh θ

T

, β(θ) =
2

1− e−
m cosh θ

T



The Gelfand-Levitan-Marchenko linear integral equations

e
2ϕ(x) = 1 +

4i

m
W (x, x)− −

4i

m
W (x, x)+ +

16

m2

`

U(x, x)− − U(x, x)+
´

U(x, x)+

−
16

m2

`

∂xU(x, y)+ + ∂yU(x, y)−
´

|x=y

−
2

m
σ

z
U(x, y) = F0(x + y)

0

@

1

1

1

A +

Z

∞

x

h

F0(y + z)U(x, z) + F−1(y + z)W (x, z)
i

dz

2

m
σ

z
W (x, y) = F−1(x + y)

0

@

1

1

1

A +

Z

∞

x

h

F−1(y + z)U(x, z) + F−2(y + z)W (x, z)
i

dz

Fj(x) =
1

4π

∫ ∞

−∞

dθe(j+1)θ

(

e
ixm sinh θ

2
b(θ + iπ)

a(θ)
+ (−1)je

−ixm sinh θ
2

b(θ)

a(θ + iπ)

)



Conclusions and perspectives

We derived linear integral equations that determine the finite-temperature dynamical

correlation functions in the quantum Ising model near its critical point

• We have checked that it reproduces the known finite-temperature form factor expansion

in the space-like region t2 < x2, up to (including) three-particle terms

• Calculation of the near-light-cone time-like asymptotic t→∞, x→∞ with

0 < t− x� t, x, for all m, T , is in progress – check of unrigorous proposed

asymptotics will be possible, with extension to T ∼ m

• This is a systematic method to evaluate any expansion of the finite-temperature Ising

correlators; numerical solution could also be useful

• Structure of expansion:

– Wick’s theorem→ classical integrable PDE

– Two-particle form factors→ structure of linear problem

– One-particle form factor (leg-factors)→ scattering data


