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Entanglement entropy

A measure of the quantity of entanglement between different parts of a quantum system

(here: in its ground state).

• Reduced density matrix:

ρA = TrĀ(|gs〉〈gs|)

A

s x i+1s xxi−1s x i+L−1s x i+Ls
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• Entanglement entropy:

SA = −TrA(ρA log(ρA))

It is the “number of links betweenA and Ā in the ground state” ⇒ SA = SĀ.
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Scaling limit and partition functions on multi-sheeted Rie mann surfaces

• Scaling limit: correlation length ξ → ∞, L/ξ = mr fixed

QFT, mass m, lagrangian density L[ϕ]

• “Replica trick:” SA = − lim
n→1

d

dn
TrA(ρn

A)

• Partition function on Riemann surfaces for n ∈ N in the scaling limit:

A〈φ|ρA|ψ〉A ∼
r

ψ>
φ|< A

|

TrA(ρn
A) ∼ Zn =

∫

[dϕ]Mn
exp

[

−

∫

Mn

d2x L[ϕ](x)

]

Mn :



Branch points are not local fields in the QFT L

(x)
/
L[φ]

=

Zn 6∝ 〈T (0)T̃ (r)〉L



Branch-point twist fields

Local twist fields associated to cyclic permutation symmetry of the n-copy model

• Multi-copy model on R
2:

L(n)[ϕ1, . . . , ϕn](x) = L[ϕ1](x) + . . .+ L[ϕn](x)

• Symmetry L(n)[σϕ1, . . . , σϕn] = L(n)[ϕ1, . . . , ϕn], with σϕi = ϕi+1 mod n

• Associated twist fields T :

〈T (a) · · ·〉L(n) ∝

∫

Ca

[dϕ1 · · · dϕn]R2 exp

[

−

∫

R2

L(n)[ϕ1, . . . , ϕn](x)

]

Ca:

(a)

i

i+1φ T

(x)

(x)

φ



Branch points are local fields in the QFT L(n)

With additional twist field T̃ associated to the inverse symmetry σ−1, we have

〈T (0)T̃ (r)〉L(n) ∝

∫

C0,r

[dϕ1 · · · dϕn]R2 exp

[

−

∫

R2

L(n)[ϕ1, . . . , ϕn](x)

]

= Zn

C0,r:

~

i

i+1φ T

(x)

(x) (0) T(r)

φ



Short- and large-distance entanglement entropy

Zn = ε2dn〈T (0)T̃ (r)〉L(n) , SA = − lim
n→1

d

dn
Zn

where ε is a non-universal short-distance cutoff and dn is the scaling dimension of T :

dn =
c

12

(

n−
1

n

)

[Calabrese and Cardy, 2004]

• Short distance: logarithmic behavior

〈T (0)T̃ (r)〉L(n) ∼ r−2dn ⇒ SA ∼ −
c

3
log

(ε

r

)

• Large distance: saturation

〈T (0)T̃ (r)〉L(n) ∼ 〈T 〉2
L(n) ⇒ SA ∼ −

c

3
log(mε) − U

U =
d

dn

(

m−2dn〈T 〉2
L(n)

)

∣

∣

∣

∣
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Our result [Cardy, Castro Alvaredo, D.], [Castro Alvaredo, D.]: for any massive integrable QFT,

the entropy with its first correction to saturation at large distances is

SA ∼ −
c

3
log(mε) − U −

1

8

∑̀

α=1

K0(2rmα) +O
(

e−3rm1
)

where ` is the number of particles in the spectrum of the QFT, andmα are the masses of the

particles, with m1 ≤ mα ∀α.



Scattering matrix in integrable quantum field theory

In scattering:

• the number of particles and the set of their momenta are conserved

• the scattering matrix factorises into a product of two-particle scattering matrices, as if

particles were interacting by pairs at space-time points that are far apart

Analytic properties and Yang-Baxter equation for the two-particle scattering matrix gives a

Riemann-Hilbert problem that can be solved



Form factors of branch-point twist fields

For an integrable QFT L with a spectrum of one particle, no bound state, and S-matrix S(θ)

• Scattering matrix of L(n):

Sii(θ) = S(θ) ∀ i = 1, . . . , n,

Sij(θ) = 1, ∀ i, j = 1, . . . , n and i 6= j,

• Form factors of branch-point twist field in L(n):

Fµ1...µk

k (θ1, . . . , θk) := 〈gs|T (0)|θ1, . . . , θk〉
in
µ1,...,µk

F
...µiµi+1...

k (. . . , θi, θi+1, . . .) = Sµiµi+1(θi − θi+1)F
...µi+1µi...

k (. . . , θi+1, θi, . . .)

F
µ1µ2...µk

k (θ1 + 2πi, . . . , θk) = F
µ2...µk µ1+1

k (θ2, . . . , θk, θ1)

−iResθ̄0=θ0
F

µµµ1...µk

k+2
(θ̄0 + iπ, θ0, θ1 . . . , θk) = F

µ1...µk

k (θ1, . . . , θk)

−iResθ̄0=θ0
F

µ µ+1 µ1...µk

k+2
(θ̄0 + iπ, θ0, θ1 . . . , θk) = −

k
Y

i=1

Sµµi
(θ0i)F

µ1...µk

k (θ1, . . . , θk)



The quasi-periodicity relation

Fµ1µ2...µk

k (θ1 + 2πi, . . . , θk) = Fµ2...µkµ1+1
k (θ2, . . . , θk, θ1)

+1θ1θ 2θ µ2µ1 θkµk

+2πi

µ1

T(0)

...

1



The kinematic residue equations

−iResθ̄0=θ0
Fµµµ1...µk

k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) = Fµ1...µk

k (θ1, . . . , θk)

−iResθ̄0=θ0
Fµ µ+1 µ1...µk

k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) = −
k

∏

i=1

Sµµi
(θ0i)F

µ1...µk

k (θ1, . . . , θk)

...

kµk0θ0θ µ

πi+

T(0)

...

µ 0θ µ

T(0)

θkµkµ+10θ

πi+

θ



The structure of the two-particle form factors

• Basic properties: F ij
2 (θ1, θ2) = F 1 1+j−i

2 (θ1 − θ2)

• Only F 11
2 (θ) matters: F 1j

2 (θ) = F 11
2 (2πi(j − 1) − θ) , j = 2, . . . , n

• Non-trivial constraints: F 11
2 (θ) = S(θ)F 11

2 (−θ) = F 11
2 (2πin− θ)

2

11

F2

12

F2

13

πi n2

πi2 πi

θ

−

π

n

i F



The exact two-particle form factors

With the integral representation for the scattering matrix:

S(θ) = exp

[
∫ ∞

0

dt

t
g(t) sinh

(

tθ

iπ

)]

the solution is

F 11
2 (θ) =

〈T 〉 sin
(

π
n

)

2n sinh
(

iπ−θ
2n

)

sinh
(

iπ+θ
2n

)

F 11
min(θ)

F 11
min(iπ)

where

F 11
min(θ) = exp

[

∫ ∞

0

dt

t sinh(nt)
g(t) sin

(

it

2

(

n+
iθ

π

))2
]



Ising and sinh-Gordon cases

• Ising case:

S(θ) = −1 , F 11
min(θ) = −i sinh

θ

2n

• sinh-Gordon case:

S(θ) =
tanh 1

2

(

1 − iπB
2

)

tanh 1
2

(

1 + iπB
2

) , g(t) =
8 sinh tB

4 sinh t
2

(

1 − B
2

)

sinh t
2

sinh t

Checks:

• Evaluating the scaling dimension using Cardy-Delfino-Simonetti formula and

Fring-Mussardo form factors of the stress-energy tensor in sinh-Gordon: exact formula in

the Ising case, good numerical accuracy in the sinh-Gordon case

• Evaluating the form factors directly in the angular quantisation using

Brazhnikov-Lukyanov’s angular quantisation for integrable models



Two-point correlation functions

〈T (0)T̃ (r)〉 = 〈gs|T (0)T̃ (r)|gs〉

=
∑

state k

〈gs|T (0)|k〉〈k|T̃ (r)|gs〉

= 〈T 〉2 + n
n

∑

j=1

∫

dθ1dθ2e
−mr(cosh θ1+cosh θ2)|F 1j

2 (θ1 − θ2)|
2 + . . .

= 〈T 〉2
(

1 +
n

4π2

∫ ∞

−∞

dθf(θ, n)K0(2rm cosh(θ/2)) + . . .

)

where

〈T 〉2f(θ, n) = |F 11
2 (θ)|2 +

n−1
∑

j=1

|F 11
2 (−θ + 2πij)|2



We would like to evaluate lim
n→1

d

dn
(nf(θ, n)) ⇒ analytic continuation f̃(θ, n) of f(θ, n)

from n = 1, 2, 3, . . . to n ∈ [1,∞)

The analytic continuation f̃(θ, n) of f(θ, n) does not converge unformely as n→ 1 on

θ ∈ R, that is, f̃(0, 1) 6= f(0, 1) = 0



The non-zero value of f̃(0, 1) comes from the collision of poles of

|F 11
2 (2πij)|2 = F 11

2 (2πij)2 as function of j as n→ 1, as can be seen from Poisson’s

re-summation formula

F2

11

πi n2

πi2 πi

θ

−n

πi F2

11

πi n2

θ

n

π

1

i

Poisson re-summation formula:

n−1
∑

j=1

s(θ, j) =
∑

k∈Z

(snk − sk)

s(θ, j) = |F 11
2 (−θ + 2πij)|2 , sk =

∫ n

0

dj e−
2πijk

n s(θ, j)



Extracting the poles:

s(θ, j) ∼
iF 11

2 (−2θ + 2πin− iπ)

−θ − 2πij + 2πin− iπ
−
iF 11

2 (−2θ + iπ)

−θ − 2πij + iπ
+ c.c.

and re-summing them exactly gives

f̃(θ, n) ∼ f̃(0, 1)

(

iπ(n− 1)

2(θ + iπ(n− 1))
−

iπ(n− 1)

2(θ − iπ(n− 1))

)

, f̃(0, 1) =
1

2

Hence the derivative is supported at θ = 0:
(

∂

∂n
f̃(θ, n)

)

n=1

= π2f̃(1)δ(θ)



There is an exact analytic continuation:

Consider the closed-contour integral
∫

C

dj

2πi
π cotπj F 11

2 (2πij)2

i F2

11

πi n2

πi2 πi

θ

−n

π

C

Assuming F 11
2 (0) = 0 and F 11

2 (θ) = 0 at |θ| → ∞:

f̃(0, n) =
1

2
−

1

2π

∫ ∞

−∞

Im(S(−θ)) coth

(

θ

2

)

|F 11
2 (θ)|2dθ



Multi-particle and bound-state case (diagonal scattering )

| . . . , θµi
, θµi+1 , . . .〉 = Sµiµi+1 | . . . , θµi+1 , θµi

, . . .〉 , µ = (type, sheet)

• For every particle type, there is a kinematic residue ⇒ contribution at n = 1

• Possible bound states give additional poles on the physical sheet, on the imaginary line

of θ, but they never collide ⇒ no contribution at n = 1.

F2

11

πi n2

πi2 πi

θ

−n

πi F2

11

πi n2

θ

n

π

1

i



Conclusions

We have derived the first correction to saturation of the entanglement entropy in any IQFT

with diagonal scattering, and observed that it is very universal.

• The generalisation to non-diagonal scattering gives the same entropy formula

• The constant U that characterises the saturation itself can be evaluated in the Ising

model, and possibly conjectures can be found in interacting models following ideas for

evaluating one-point functions by Bazhanov, Lukyanov, Zamolodchikov.

• The evaluation of the higher-particle corrections to the entanglement entropy should be

possible

• It would be interesting to understand: 1) if the “link” picture holds, 2) what happens for

massless integrable models, 3) if what replaces our formula (or if it still holds) in

non-integrable models


