The vertex operator algebra of conformal loop ensembles

Benjamin Doyon

King's College London

CMP 268, 687-716, 2006 (math-ph/0511054) with V. Riva and J. Cardy arXiv:0903.0372 & arXiv:0908.1511 (submitted to CMP) arXiv:1004.0138

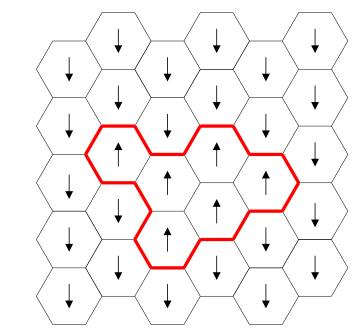
in preparation

Cardiff, October 2010

Scaling limits and emergent behaviours Example: the Ising model

Microscopic model: measure on functions σ from faces of a lattice (ex: hexagonal) to some set (ex: spin $\{\uparrow, \downarrow\} = \{+1, -1\}$), with properties of locality, homogeneity

$$\mu(\sigma) = \exp\left[\beta \sum_{\text{neighbouring faces } j,k} \sigma(j)\sigma(k)\right]$$



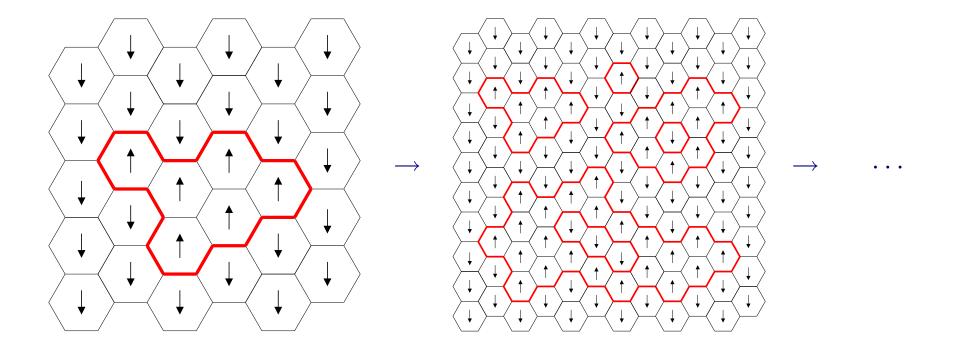
Critical point $\beta = \beta_c$: Emergent universal large-distance correlations!

Quantum field theory, a theory for emergent correlations:

The scaling limit of expectations is:

$$\lim_{\varepsilon \to 0} \varepsilon^{-1/4} \mathbb{E}^{(\beta = \beta_c - \alpha \varepsilon)} [\sigma(x/\varepsilon)\sigma(y/\varepsilon)] = C^{(\alpha)}(x,y)$$

 $(x, y \in \mathbb{R}^2)$. The coefficient $C^{(\alpha)}(x, y)$ is a correlation function in a QFT $C^{(\alpha)}(x, y) = \langle \mathcal{O}(x)\mathcal{O}(y) \rangle^{(\alpha)}$



The basic ingredients of QFT are

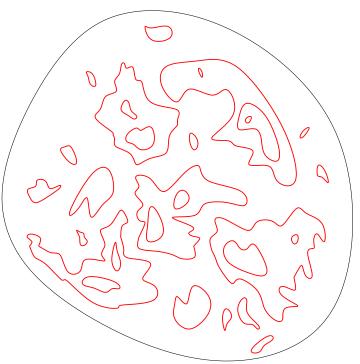
- Local fields $\mathcal{O}(x) \Leftrightarrow \text{local variables } 1, \sigma(k), \sigma^2(k), \sigma(k)\sigma(\text{neighbour of } k), \ldots$
- correlation functions $\langle \cdot \rangle \Leftrightarrow$ expectations of products of local variables $\mathbb{E}[\cdot]$

Some questions:

- 1. Are there emergent random objects?
- 2. What is the measure theory for them?
- 3. Can we prove that it emerges from the microscopic theory?
- 4. Can we reproduce the QFT local correlations from the measure theory?

Conformal loop ensembles

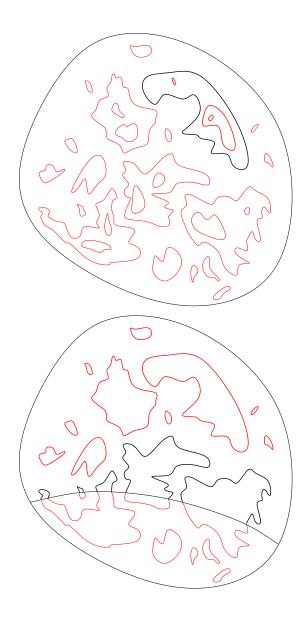
Conformal loop ensembles: Consider the set S_D whose elements are collections of at most a countable infinity of self-avoiding, disjoint loops lying on a simply connected domain D.



A conformal loop ensemble can be seen as a family of measures μ_D on the sets S_D for all simply connected domains D, with three defining properties.

- 1. Conformal invariance. For any conformal transformation $f: D \to D'$, we have $\mu_D = \mu_{D'} \circ f$.
- 2. Nesting. The measure μ_D restricted on a loop $\gamma \subset D$ and on all loops outside γ is equal to the CLE measure $\mu_{D\gamma}$ on the domain $D_{\gamma} \subset D$ delimited by γ .
- 3. Conformal restriction. Given a domain $B \subset D$ such that $D \setminus B$ is simply connected, consider \tilde{B} , the closure of the set of points of B and points that lie inside loops that intersect B. Then the measure on each component C_i of $D \setminus \tilde{B}$, obtained by restriction on loops that intersect B, is μ_{C_i} .

[Sheffield, Werner 2005 –]



Some properties:

- One-parameter family of measures: $\kappa \in (8/3,4]$
- Fractal dimension of loops: $1+\kappa/8$
- Almost every point is almost surely surrounded by infinitely many loops
- Should describe all central charges between 0 and 1 : $c = \frac{(6-\kappa)(3\kappa-8)}{2\kappa}$

A fundamental field of CFT: the stress-energy tensor

Conformal field theory: with g conformal on a domain D of $\hat{\mathbb{C}}$, there exists a map $\mathcal{O} \mapsto g \cdot \mathcal{O}$ such that

$$\left\langle \prod_{i} \mathcal{O}_{i}(z_{i}) \right\rangle_{D} = \left\langle \prod_{i} (g \cdot \mathcal{O}_{i})(g(z_{i})) \right\rangle_{g(D)}$$

For primary fields, $(g \cdot \mathcal{O})(g(z)) = (\partial g)^h (\overline{\partial} \overline{g})^{\tilde{h}} \mathcal{O}(g(z))$, with $h, \tilde{h} \in \mathbb{R}^+$. Locality and basic QFT concepts: existence of stress-energy tensor T(w), with conformal Ward identities:

$$\left\langle T(w)\prod_{i}\mathcal{O}(z_{i})\right\rangle_{D}\sim\sum_{i}\left(\frac{h_{i}}{(w-z_{i})^{2}}+\frac{1}{w-z_{i}}\frac{\partial}{\partial z_{i}}\right)\left\langle\prod_{i}\mathcal{O}(z_{i})\right\rangle_{D}$$

T is not a primary field, there is a central charge $c \in \mathbb{R}$:

$$(g \cdot T)(g(w)) = (\partial g(w))^2 T(g(w)) + \frac{c}{12} \{g, w\}, \quad \{g, w\} = \left(\frac{\partial^3 g(w)}{\partial g(w)} - \frac{3}{2} \left(\frac{\partial^2 g(w)}{\partial g(w)}\right)^2\right)$$

Boundary condition $T = \overline{T}$ on \mathbb{R} [Cardy 1984] and analyticity arguments [BPZ 1984] \Rightarrow exact w dependence of $\langle T(w) \prod_i \mathcal{O}(z_i) \rangle_D$.

There's more: OPE, associativity, commutativity,... \Rightarrow Vertex operator algebra [Kac, Lepowsky, ...]. A vertex operator algebra $(V, Y, \mathbf{1}, \omega)$ is a \mathbb{Z} -graded quasi-finite vector space

$$V = \coprod_{n \in \mathbb{Z}} V_{(n)}; \text{ for } v \in V_{(n)}, \text{ wt } v = n,$$

equipped with a linear map $Y(\cdot, x)$:

$$\begin{array}{rcl} Y(\cdot,x) \, : \, V & \to & (\operatorname{End}\,V)[[x,x^{-1}]] \\ & v & \mapsto & Y(v,x) = \displaystyle{\sum_{n \in \mathbb{Z}}} v_n x^{-n-1} \,, \ v_n \in \operatorname{End}\,V, \end{array}$$

where Y(v, x) is called the **vertex operator** associated with v, and two particular vectors, 1, $\omega \in V$, called respectively the **vacuum vector** and the **conformal vector**, with the some properties, mainly: vacuum property:

$$Y(\mathbf{1},x) = 1_V$$
 (1_V is the identity on V);

creation property:

$$Y(v,x)\mathbf{1} \in V[[x]] \quad \text{and} \ \lim_{x \to 0} Y(v,x)\mathbf{1} = v \ ;$$

Virasoro algebra conditions: Let

$$L(n) = \omega_{n+1}$$
 for $n \in \mathbb{Z}$, i.e., $Y(\omega, x) = \sum_{n \in \mathbb{Z}} L(n) x^{-n-2}$

•

Then

$$[L(m), L(n)] = (m-n)L(m+n) + c_V \frac{m^3 - m}{12} \,\delta_{n+m,0} \,1_V$$

for $m,n\in\mathbb{Z}$, where $c_V\in\mathbb{C}$ is the central charge,

Jacobi identity:

$$x_0^{-1}\delta\left(\frac{x_1 - x_2}{x_0}\right)Y(u, x_1)Y(v, x_2) - x_0^{-1}\delta\left(\frac{x_2 - x_1}{-x_0}\right)Y(v, x_2)Y(u, x_1)$$
$$= x_2^{-1}\delta\left(\frac{x_1 - x_0}{x_2}\right)Y(Y(u, x_0)v, x_2)$$

where

$$\delta(x) = \sum_{n \in \mathbb{Z}} x^n, \qquad (x_1 - x_2)^{-n} = \sum_{k=0}^{\infty} \frac{(n)_k}{k!} x_1^{-n} \left(\frac{x_2}{x_1}\right)^k$$

Virasoro vertex operator algebra:

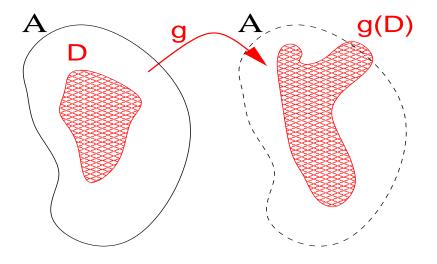
- V = Virasoro highest-weight module
- State-field correspondence: $(\partial^{n_1}T \cdots \partial^{n_k}T) \mapsto L(-2 n_1) \cdots L(-2 n_k)\mathbf{1}$
- Product of vertex operators reproduce correlation functions, e.g.:

$$\left\langle (TT)(w_1)T(w_2)\prod_i \mathcal{O}(z_i) \right\rangle_D = \left(v_{\{z_i\},D}, Y(L(-2)^2 \mathbf{1}, w_1)Y(L(-2)\mathbf{1}, w_2)\mathbf{1} \right)$$

A general analytic set-up with Virasoro vertex operator algebra structure [BD 2010]

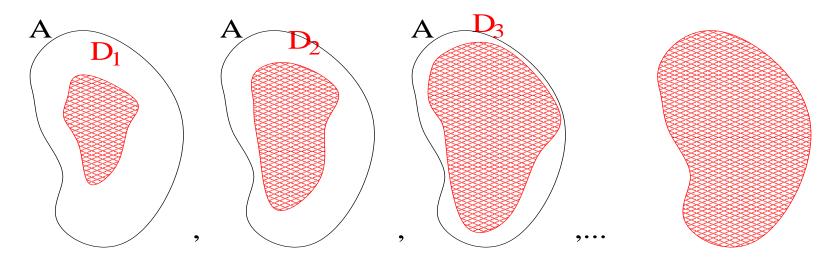
Local manifold of conformal maps around the identity:

Consider a simply connected bounded domain A and the set of maps g that are conformal on some domain (below: the domain D) inside A.



A-topology:

- growing domains D_n tend to A
- compact convergence: uniform convergence on any compact subset



$$\lim_{n \to \infty} \sup(g_n(z) - z : z \in D_n) = 0$$

- Topology preserved under conformal maps $G: A \to B$ between simply connected domains A, B.
- Leads to manifold structure: A certain restriction of the A-topology gives a homeomorphism to the vector space H(A) of holomorphic functions on A with compact convergence topology (A*-manifold).
- Family $(g_\eta:\eta>0)\in {\rm F}(A)$:

$$\lim_{\eta \to 0} g_{\eta} = \mathrm{id} \quad (A \text{-topology}), \quad \lim_{\eta \to 0} \frac{g_{\eta}(z) - z}{\eta} = h(z) \quad \exists \quad (\text{compactly for } z \in A).$$

• Tangent space in general is $H^>(A)$: holomorphic functions h(z) on A except for $O(z^2)$ as $z \to \infty$ if $\infty \in A$.

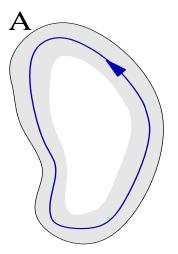
Derivatives:

Derivative of a function on A^* -manifold at id = element of the cotangent space at id. Need continuous dual $H^{>*}(A)$ (space of continuous linear functionals) of $H^>(A)$.

Any continuous linear functional $\Upsilon: {\tt H}^>(A) \to \mathbb{R}$ is of the form

$$\Upsilon(h) = \oint_{\partial A^-} \mathrm{d} z \, \alpha(z) h(z) + \oint_{\partial A^-} \bar{\mathrm{d}} \bar{z} \, \bar{\alpha}(\bar{z}) \bar{h}(\bar{z})$$

for some α holomorphic on an annular neighbourhood of ∂A inside A.



Arbitrariness of α : functional Υ is characterised by a **class of functions**:

$$\mathcal{C} = \left\{ \alpha + u : u \in \mathbf{H}^{<}(A) \right\}$$

where $\mathbb{H}^{<}(A)$: holomorphic functions h(z) on A with $O(z^{-4})$ as $z \to \infty$ if $\infty \in A$.

- Function $f:\Omega \to \mathbb{R}$
- $\bullet \ \operatorname{Point} \Sigma \in \Omega$
- Action $g(\Sigma) \in \Omega$ for any g in A-neighbourhood of id.

A-differentibility: for any $(g_\eta:\eta>0)\in {f F}(A)$,

$$\lim_{\eta \to 0} \frac{f(g_{\eta}(\Sigma)) - f(\Sigma)}{\eta} = \nabla^{A} f(\Sigma)h, \qquad \nabla^{A} f(\Sigma) \in \mathrm{H}^{>*}(A)$$

Some definitions and notations:

- $\nabla^A f(\Sigma)$: the conformal A-derivative of f at Σ
- $\nabla_h f(\Sigma) = \nabla^A f(\Sigma)h$: the directional derivative of f at Σ in the direction h
- $\Delta^A f(\Sigma)$: the holomorphic A-class of f at Σ

Transformation under conformal maps:

- A-differentiability of f at $\Sigma \iff g(A)$ -differentiability of $f \circ g^{-1}$ at $g(\Sigma)$
- "Holomorphic dimension-2" transformation property for the holomorphic A-class:

$$\Delta^A f(\Sigma) = (\partial g)^2 \left(\Delta^{g(A)} (f \circ g^{-1})(g(\Sigma)) \right) \circ g$$

The global holomorphic A-derivative

If f is globally invariant, i.e. invariant under möbius maps, then:

 $\Delta_z^{[A]}f(\Sigma):=\text{unique function in }\Delta^Af(\Sigma)\text{ holomorphic on }\hat{\mathbb{C}}\setminus A\text{, zero at }\infty\text{ if }\infty\in\hat{\mathbb{C}}\setminus A$

- Exists and only depends on the sector [A]
- Holomorphic for $z \in \hat{\mathbb{C}} \setminus \cap[A]$
- $O(z^{-4})$ as $z \to \infty$
- "Holomorphic dimension-2" transformation property for G a möbius map:

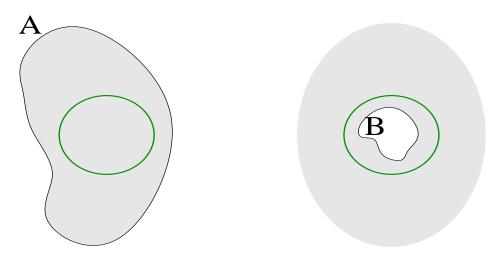
 $\Delta_z^{[A]} f(\Sigma) = (\partial G(z))^2 \Delta_{G(z)}^{[G(A)]} f(G(\Sigma))$

Sectors:

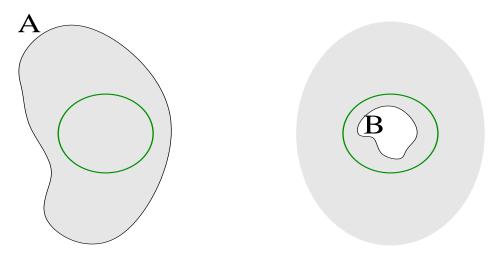
- Consider set Ξ of all domains A such that f is A-differentiable.
- Equivalence relation: domains with intersecting complements are equivalent, complete by transitivity.
- Denote by [A] the equivalence class, or **sector** containing A

 $\Rightarrow \Xi$ is divided into sectors where global holomorphic derivatives are the same

Example: $\Sigma = a$ circle, $\Omega = a$ space of smooth loops. Two natural sectors: [A] = bounded sector, [B] = another sector:



Consider two domains A and B such that $\hat{\mathbb{C}} \setminus A \subset B$.



If f is A-invariant, i.e. invariant under maps conformal on A, then: for $g: A \to A'$,

$$\Delta_z^{[B]} f(\Sigma) = (\partial g(z))^2 \, \Delta_{g(z)}^{[\hat{\mathbb{C}} \setminus g(\hat{\mathbb{C}} \setminus B)]} f(g(\Sigma))$$

Virasoro vertex operator algebra structure of conformal derivatives

Consider

$$h_{n,w}(z) = (w-z)^{n+1}, \quad \Delta[h_{n,w}] = \frac{1}{2\pi} \int_0^{2\pi} d\theta \, e^{-i\theta} \nabla_{e^{i\theta}h_{n,w}}$$

We have $\Delta[h_{-2,w}] = \Delta_w^{[\hat{\mathbb{C}}_w]}$, and the Witt algebra

 $\Delta[h_{n,0}]\Delta[h_{m,0}]f(\Sigma) - \Delta[h_{m,0}]\Delta[h_{n,0}]f(\Sigma) = (n-m)\Delta[h_{n+m,0}]f(\Sigma)$

Consider a function $Z(\Sigma)$ with the conditions

$$\Delta[h_{n,0}]\Delta[h_{m,0}]\log Z(\Sigma) = \begin{cases} 0 & \begin{pmatrix} n \ge 1, -1 - n \le m \le -2, n + m \ne 0 \\ \text{or} & \\ n \le -2, -1 \le m \le -2 - n \\ \text{const(n)} & (m + n = 0, n \ge -1) \end{cases}$$

Virasoro algebra:

$$L(n) = \begin{cases} Z^{-1}\Delta[h_{n,0}]Z & (n \le -2) \\ \Delta[h_{n,0}] & (n \ge -1) \end{cases}$$

Function $f(\Sigma)$ invariant under maps conformal on $D \ni 0 \Rightarrow$ highest-weight vector 1. If \cdot represents Lie action on $\Delta[h_{n,w}]$ given its transformation property under conformal maps, then

$$Z^{-1}\prod_{j}\Delta[h_{n_{j},w}]\cdot\prod_{j}\Delta[h_{n_{j}',w'}]\cdots Zf = Y(\prod_{j}L(n_{j})\mathbf{1},w)Y(\prod_{j}L(n_{j}')\mathbf{1},w')\cdots \mathbf{1}$$

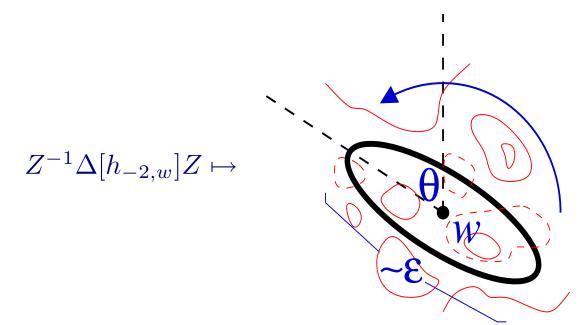
Relation to CFT:

- $f(\Sigma) =$ correlation function $\langle \prod_i \mathcal{O}(z_i) \rangle_D$ with Lie action on fields and domain D
- Insertion of $(\prod_j \partial^{n_j} T)(w)$ given by action of $Z^{-1} \prod_j \Delta[h_{-2-n_j,w}]Z$
- Z = relative partition function

$$\frac{Z_D Z_{\widehat{\mathbb{C}} \setminus \overline{C}}}{Z_{D \setminus \overline{C}}}, \quad \overline{C} \subset D$$

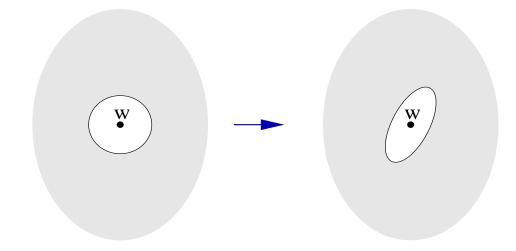
Application to CLE [BD 2009,2010]

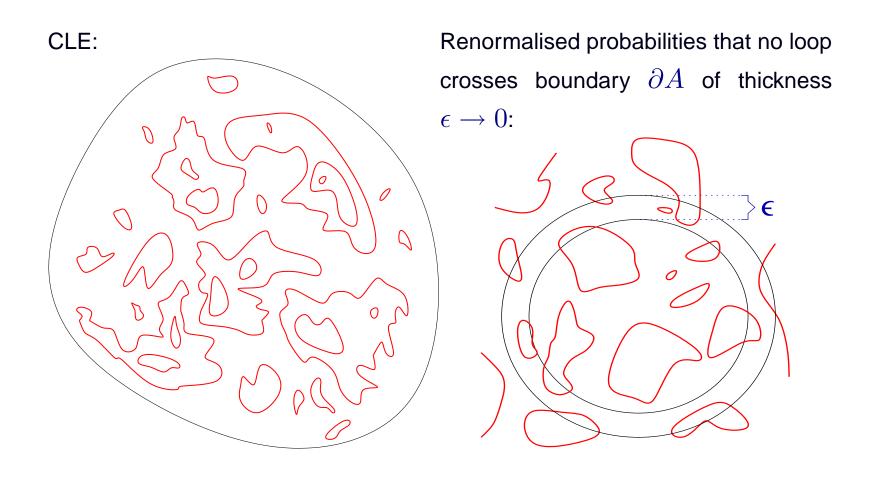
- $f(\Sigma) =$ probability function, or expectations, or limits thereof
- Relate Z-conjugated conformal derivatives to local random variables



• Universality: anything that is **local** and that **transforms like the stress-energy tensor** in fact **is** the stress-energy tensor (likewise for descendants). Hence "free-field" representation for the whole vertex operator algebra constructed out of "bosons" $\phi(z_1)\phi(z_2) \mapsto n(z_1, z_2) =$ number of loops surrounding both points z_1, z_2 .

Interpret $\Delta[h_{-2,w}]f(\Sigma)$ geometrically: $\mathrm{id} + \varepsilon^2 e^{2i\theta}h_{-2,w}$ gives





Perspectives

- Applications to other probability models of CFT, or to other situations altogheter, where there is a concept of scale invariance (e.g. fractals?)
- Other symmetry currents when internal symmetries are present...