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Plan of the talk

Definition of twist fields in QFT

Definition of the model we will consider: the free Dirac fermion on the Poincaré disk
How twist fields in this model are related to Painlevé VI

The connection problems we are interested in

Constructions of the quantum fields and solutions to the connection problems



Twist fields in quantum field theory

For every global symmetry of a (local) quantum field theory, there exists an associated

local twist field

Partition function:
7 = / AUt qwle= AP AATT AT] = AW O]

Insertion of twist field: universal covering of punctured plane, or plane with a cut

Dy = / AWt dw]e—AY" Y]
V(Zp)=A¥(p)
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e The result is independent of the shape of the cut:
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e Multipoint insertion are defined similarly = Z

OAq (p1)70A2(p2),---

e Correlation functions are regularised ratios:

€1,€2,...
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e Twist fields are local fields



Example: free fermion theory on the Poincar & disk

Free Dirac fermion of mass m on the Poincaré disk of Gaussian curvature —1/R2

(maximally symmetric space):

_ 2mR
A = dxdy U [ v*0x + Y0, + )}
x24y2<1 Y (7 TS (x2 + Y2)2)
with
VR _ 0 1 0O 1
U= , =0T, = , Y=
v — 0 1 0

The Dirac fermion has internal U (1) symmetry

Aa U 6271'7;(1\1] 7 \IJT . 6—27Tia\IjT
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(we will take 0 < @ < 1)



More precise definitions: correlation functions

Path integral ideas lead to constraints on correlation functions, which completely define them

With p in the universal covering of D\ {(0, 0), (ax, ay) }, consider for instance the spinor

F(p) = (04(0,0)54r (ax, ay)¥(p))

e Equations of motion (where (x,y) € ID corresponds to p)

2mR
) 0 =0

(vxﬁx + 470y +

e Asymptotic behaviors

F(p) — 0 ((1 2 y2)1/2+u) as  x2 4 y2 1
F(p)| = O (Ix — ax+ily - a))|* ") as (x,y) = (ax,ay)
F(p)l=O(x+iy]*) as (x.y) — (0,0)

e Monodromy properties:

F(Z(O,O)p) _ 627m'ozF(p) 7 F(Z(ax,ay)p) — GQWia/F(p)



For multiple twist field insertions, this leads to determinant representation

Path integral ideas also lead to an expression for the two-point function of twist fields as a

regularised ratio of determinants (for instance, with 0 < x < 1)

d detr ., (VXaX +770y + 1—(32@2)2)
<O'a(0, O)Ua/ (X, 0)> — lim €1a€2a/
€1—0,e2—0 det 7, , (,VXaX + Y0y + 1—(121‘52)2)

where F,, o is the space of spinor-valued functions on D\ ([—1, 0] U [x, 1]) which vanish
on the boundary of ) and which have the appropriate monodromy properties around the
point (0, 0) and around the point (x, 0).

Nl o W
LIJ /\O(’LIJ



The eigenvalue problem leads to an isomonodromic deformation problem , since changing
the positions of twist fields does not change the monodromy they induce. A linear system is
obtained by looking at a certain space of solutions to the eigenvalue problem with fixed
monodromies, then by considering the action of space-time symmetries on this space and of
derivatives with respect to the positions of singular points. Compatibility leads to

Painlev &€ equations .



Painlev é equations

It was shown by Palmer, Beatty and Tracy (1993) that the two-point function (in its functional

determinant representation) is related to Miwa-Jimbo tau-function of Painlevé VI:

(0a(71)00r (72)) = 7(s)
LinT(s) = f(w, 22, s) s = tanh” (—d(x;]’%m))

|21 — 22|

(geodesic distance) d(x1,x2) = 2R arctanh (|1_le_2|) , 2§ =X; 1y

f(w,w', s) is a rational function of w, w’, sandof mR, «, o', and w = w(s) satisfies

Painlev é VI differential equation

W (L S (w’)2+1+1+ L) w
2\w w—-—1 w-—s S s—1 w— 8

_ w(w —1)(w — s) ((1 —42)s(s—1) (A —1)2s Ls=1) )\2>

s?(1 — s)? 2(w — s)? 22 (w—1)2 2

~

with parameters t = mR, A=a—a’, A\=a+ o', v=0.



Remarks

® This is a generalisation of much older results, which can be summarised as follows:

— In the case of the flat geometry (2 — ©0), one obtains a description in terms of the
Painlevé V equation (Sato, Miwa, Jimbo 1979, 1980)

— In the case of a theory with only Z9 symmetry (the Majorana fermion — Ising model) in
flat geometry, one obtains a description in terms of the Painlevé Ill equation (Wu,
McCoy, Tracy, Barouch 1976)

The Dirac theory on the Poincaré disk is the most general case where | am aware of an

analysis of Painlevé transcendents from QFT

e Other methods exist for relating Painlevé equations to two-point functions:

— In the case of flat geometry, it is possible to express the two-point function as a
Fredholm determinant, and to derive from this the description in terms of Painlevé

equations (Its, I1zergin, Korepin, Slavnov 1990; Bernard, Leclair 1997)

— The occurence of Painlevé equations in free fermion theories was later understood in
the context of the Majorana theory as a consequence of certain non-local conserved
charges (Fonseca, Zamolodchikov 2003; B.D. Ph.D. thesis Rutgers University 2004)



Asymptotics, exponents from QFT, and Jimbo’s formula

Concentrate on singular points s = 0 and s = 1 only. If one assumes power-law behaviors
w~ Bs™ as s—0, 1—w~A(1—-5)"t as s—1

then PVI does not fix the exponents involved.
But correlation functions describe a special transcendent:

e Short distance: ¢ = 1 CFT (free massless boson)

/
2 oo

= 7(8) ~ (0atar)s as s — 0

= ko=a+d O<a+ad <1)

d, = «

e Large geodesic distance: cluster property of correlation functions

7(s) ~ (0a){0a) as s— 1=k =142y (u>1/2)

This should fix the transcendent, and in particular Jimbo’s formula (1982) gives
(o) T(a)T(1—a—ao)* T(a+a + p)
'l—a)l'l—ao)'a+a)?’I'(1l —a—ao + pu)

although these values of kg, kK1 were excluded, being a special “degenerate” case.

B=u




Connection problem: the value of A and the relative normalisation of the tau-function

e From conformal perturbation theory, one can calculate B

e From form factor expansion

sin(ra) sin(ma" ) I'(p+ )T'(1+ p— )T (p+ ") T(1 + p— ')

A= m2I(1 4 2u)?

(note: Jimbo’s formula for A is singular at our values of kg, K1)

e From vacuum expectation values of twist fields

with




We will calculate these quantities using a method that is related to Baxter’'s method of corner
transfer matrix in integrable lattice model, obtaining and evaluating trace formulas for the

guantities of interest



Constructing correlation functions: quantization scheme s and Hilbert spaces

The poincaré disk is maximally symmetric: SU (1, 1) space-time symmetry

With
a b
S=1 _ , detS=1
b a
there is an action on fields that preserves A:
( az+b az+b
Z —, ZF> = .
S 4 bz + a bz + a (z =x+1y)
\IJR»—>(bz+&)\I!R, \PLH(bZ—Fa)\I}L
\




It is convenient to consider three SU (1, 1) subgroups:

cosh sinh
X, — (n) - nER

sinh(n) cosh(n) yL

1sinh(n) 2 cosh(n
p, [ b0 deoshin |
i cosh(n) ¢sinh(n)

ei? 0
Ry = | , 0€]0,27]
0 6—19

Three useful quantization schemes:

|. Hamiltonian (time translation generator) is generator for )/; space is effectively compact;

this gives a good scheme for large distance expansion s — 1

Il. Momentum (space translation generator) is generator for X’; space is non-compact;

iIsometry generator is unitary , which gives tools for evaluating matrix elements

l1l. Hamiltonian is generator for /R ; time is compact and periodic; twist fields have simple

realisations allowing explicit evaluations from trace formulas



Angular quantization scheme: trace formulas

Hamiltonian H 4 generates compact subgroup R

0
—~O=H
g90 = 14, 0]
1
HA:/ @:\pwy(yf&?— e )\11: 8
e T sinh 7

{(U(n), ¥ ("} =16(n—1"), r=¢€"

Correlation functions of fermion fields are traces over the Hilbert space H 4 of functions of r
on the segment 1 € [€, 1] which form a module for the canonical anti-commutation relations

and on which H 4 acts and is Hermitian:

T . —2mHa
e—0 Tr. (—27Ha)

Uy
It is easy to diagonalise H 4 in terms of partial waves U, (1)) = ( > :
Uy

V=D cy(me ™ W= culme”, fen e} = b
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Angular quantization is well adapted to twist fields: they are simply operators producing

symmetry transformations on H 4, hence diagonalised by eigenstates of H 4

&

06(0,0)]4 = e*™2@ | Q = U(1)-charge

Correlation functions involving fermion fields and one twist fields are regularised traces

. 2 TI’€ (6—27THA—|—27T’iOéQ . )
(0a(0,0)---) :ll_{%e Tr, (e—27Ha ...)

The proper boundary condition at = € for giving the conformal normalisation is

r=e: Up=¥;, wh=0!



One-point functions can be evaluated
Evaluation of the traces:
e factorisation in independent two-dimensional spaces HEX) for each v: infinite product
e take V < Vyax then v, — OO Simultaneously on both traces

e in the limit ¢ — 0, what counts is the density of states J,, In S(v):

( Uy ) - ( —ie” " S(v) )

(/24 w)(1/2 —iv + )
C T(1/2 —a)D(1/2 4 iv + )

where

S(v)

The result is

o0 dv (1 T 6—27r1/—|—27m'a)(1 e 6—27T1/—27Tz'a)
(0q) = €xp [/0 o In ( = ) 0, In S(V)]




Non-stationary quantization scheme: form factors

Momentum operator Py generates non-compact subgroup X’:

Y Cy : "time"
X T
T[ / 4 E n "
- o x - Space

| | N y
iy = wablec i), A= [ ¥ (vae 107 ge + e ) v
X y Yy
0

iz 0= [Px, O], {U(&), UH(E)} = 16(& — &)

Correlation functions are “time”-ordered products:
<Ol (gx 1 Sy 1)02 (€X27 gy 2)> —

(vac|O1(€x1,8y1)O02(&x2,&y2) - - - [vac) Ey1>&y2
(_1)f1f2 <VaC‘02(€x27 €y2)01(£x17 Sy 1) T |vac> €y2 > fyl




Fermion operators are written

V(6 &) = [ do p)[iv97 P (0. -6,) €5 AT () + P(,) e AL W)

where
e Waves P(w, &, )e™ " fixed from condition that they form module for su(1,1) (as

differential operators) with Casimir equal to ,uz — 1/4 (equations of motion)

e Density contains all singularities in the finite w-plane
F+p+ )T G+r—)
27T (4 + )’

e Mode operators satisfy normalised canonical algebra

p(w) {Ac(w), AT, (W)} = d(w — w')de e

plw) =

Hilbert space H is space of functions that forms a module for canonical anti-commutation
relations (chosen with basis that diagonalises momentum operator) with vacuum |vac) that
has the property
. lim U, &y )|vac) = lim \IJT(§X,§y)|V&c> =0
YT T4 y T

Fock space over mode algebra; appropriate choice of P(w, &) gives A.(w)|vac) = 0.



The resolution of the identity gives an expansion for two-point functions in terms of form
factors

Denote states by

W1y Whn)ey e, = Ail (wy) - AT (wp)|vac)

€n

Then,
o 1 n

te= 3 30 [ T plen) | fors oo s s
n=0 €1,---,Em 1=1

which gives

(vac|og (21)00 (T2)|vac) = (0a)(0a) Z %

ZG/ ﬁdwjp(wj) X

oz d(xq1,x9)
XFa(w17"'7w’n)€1,-.-,€n(F—Ot/(wn7"'7w1)6n,...,€1)*€ i(w1++wn) 21R2

where form factors are

<Va’C‘O-Ot (07 0)‘(")17 R 7wn>€1,...,€

n

Fo(wy,...,wy)

€1,...5€En

(vac|o,|vac)



The embedding H — H 4 ® H 4 allows the evaluation of form factors via trace formulas

e States in H are associated to operators in H 4:

W1y ey Wn)eg ey, = Oy (W1) -+ - ae, (Wn)

e Operators acting on 7 are identified with left-action on End(H 4)

Oluy e H = ma(O)U € End(Hy) if|lu)y =U

e The inner product on H is associated with traces in H 4:

Tr (e_QWHA Ul V)
Tr (e—27Ha)

(ufv) =

if luy =U, |v) =V.

® Hence form factors are

F (w " ) B Tr (6—27THA+27Ti04Qa€1 (wl) . e aen (w’l’b))
a\Wlsy:.--yWnjer,....ep, — Tr (6_27THA+27TiO{Q)




e Two sets of conditions define the operators a.(w):
{ae(w), ¥(n — —00,0)} = {ac(w), T (n — —00,0)} =0

and

Tr (G_QWHAWA(‘I’(fxa &y ))ay (W))

<V&C“P(£X75y)|w>_|_ — Tr (G—QWHA) — e—iﬁxp(wjgy)

e They can be calculated explicitly:

o 0

0r@)= [ v, a@ = [ drgiwe,

— 00 — 00

—TV 1 .
cy) — —p % (ptt—ig) € I (5 + 1+ ’W)
g(v;w) = /m27Fe T(1—|—,u)1“(% +w)

X

1 1
><F(,LL+§+iV,,LL-|—§—’i%;l—FQ,LL;Q—iO)

F(a,b;c;2—140) = lim F(a,b;c;2 — ie)

e—0t

where F(a, b; c; z) is Gauss’s hypergeometric function on its principal branch.



Integrals involved can be evaluated by contour deformation: sum of residues of poles

We had:

(vacloa(21)0a (T2)|vac) = (0a)(0) Z %

ZG/ ﬁdwjp(wj) X

d(xq,x9)
2R

1

XFa(wl’ S 7wn)el,..,,€n (F—Oé’(wna ce 7Wl)en,...,ﬂ)*G_i(wl—l'""{'wn)

It turns out that F, (wl, . ,wn)el,m,en are entire functions of all spectral parameters

—> contour deformation, getting residues at poles of density p(w):

w=—i\g = —i(1+2u+2k), k=0,1,2,...




Isometric quantization scheme: large-distance expansion
Hamiltonian /) generates non-compact subgroup ).

In isometric quantization, states form a discrete set, parametrized by spectral parameters
k1, ko, ... with energies A\, + Ak, + - - -. The residue evaluation above is exactly a

“form-factor” expansion in isometric quantization.
e All residues can be evaluated in terms of rational and Gamma functions of 1 and o

e The exponential of the geodesic distance occurs in the form

e_(p(1+2“)+Q)d(gy), p=0, ¢g=0 o p=12,..., ¢q=0,1,2,...

In particular,
<02x(-77;<<7a’ (>y)> _q _ g2utl (w J(Flojz(; ;a/)Ae_(1+2”)—d(9§y) 4
On)\O o/ v
which gives

1 —w=A(1l—s)T2H Z D,y (1 —s)PUF20+a Do =1

»,q=0



Conclusions and perspectives

| have described how to solve certain connection problems of Painlevé VI, using its

association with correlation functions in 2-dimensional integrable QFT:
e Asymptotic near s = 0: conformal perturbation theory
e Asymptotic near s = 1: form factor expansion

Questions and future research:
e What about the point s = 00? Is it accessible from QFT?

e The Dirac theory on the sphere can be solved similarly; it leads to PVI with ,u2 — —,uz.

Asymptotics? Connection problem?

e Special case o + o/ = 1 leads to logarithmic behaviors; other operators than o,
descendent under fermion algebra, can be considered; all these should correspond to yet
other Painlevé VI transcendents.

e More general free fermion theory can be considered: with, for instance, SU (n)
invariance, and associated twist fields. What Painlevé equation do they generate? What

transcendents? Solving other connection problems?



