Solving Painlevé connection problems using two-dimensional integrable quantum field theory

Benjamin Doyon
Rudolf Peierls Centre for Theoretical Physics, Oxford University, UK
EPSRC postdoctoral fellow
based in part on work Nucl. Phys. B675 (2003) 607-630

Newton Institute, Cambridge, September 2006

> Plan of the talk

- Definition of twist fields in QFT
- Definition of the model we will consider: the free Dirac fermion on the Poincaré disk
- How twist fields in this model are related to Painlevé VI
- The connection problems we are interested in
- Constructions of the quantum fields and solutions to the connection problems

Twist fields in quantum field theory

For every global symmetry of a (local) quantum field theory, there exists an associated local twist field

Partition function:

$$
Z=\int\left[d \Psi^{\dagger} d \Psi\right] e^{-\mathcal{A}\left[\Psi^{\dagger}, \Psi\right]}, \quad \mathcal{A}\left[\Lambda \Psi^{\dagger}, \Lambda \Psi\right]=\mathcal{A}\left[\Psi^{\dagger}, \Psi\right]
$$

Insertion of twist field: universal covering of punctured plane, or plane with a cut

$$
Z_{\sigma_{\Lambda}}=\int_{\Psi(\mathcal{Z} p)=\Lambda \Psi(p)}\left[d \Psi^{\dagger} d \Psi\right] e^{-\mathcal{A}\left[\Psi^{\dagger}, \Psi\right]}
$$

- The result is independent of the shape of the cut:

- Multipoint insertion are defined similarly $\Rightarrow Z_{\sigma_{\Lambda_{1}}\left(p_{1}\right), \sigma_{\Lambda_{2}}\left(p_{2}\right), \ldots}$
- Correlation functions are regularised ratios:

$$
\left\langle\sigma_{\Lambda_{1}}\left(p_{1}\right) \sigma_{\Lambda_{2}}\left(p_{2}\right) \cdots\right\rangle=\lim _{\epsilon \rightarrow 0} \epsilon^{d_{1}+d_{2}+\cdots} \frac{Z_{\sigma_{\Lambda_{1}}\left(p_{1}\right), \sigma_{\Lambda_{2}}\left(p_{2}\right), \ldots}^{\epsilon_{1}, \epsilon_{2}, \ldots}}{Z}
$$

- Twist fields are local fields

Example: free fermion theory on the Poincaré disk

Free Dirac fermion of mass m on the Poincaré disk of Gaussian curvature $-1 / R^{2}$ (maximally symmetric space):

$$
\mathcal{A}=\int_{\mathrm{x}^{2}+\mathrm{y}^{2}<1} d \mathrm{x} d \mathrm{y} \bar{\Psi}\left(\gamma^{\mathrm{x}} \partial_{\mathrm{x}}+\gamma^{\mathrm{y}} \partial_{\mathrm{y}}+\frac{2 m R}{1-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}\right) \Psi
$$

with

$$
\Psi=\binom{\Psi_{R}}{\Psi_{L}}, \quad \bar{\Psi}=\Psi^{\dagger} \gamma^{\mathrm{y}}, \quad \gamma^{\mathrm{x}}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), \quad \gamma^{\mathrm{y}}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The Dirac fermion has internal $U(1)$ symmetry

$$
\begin{gathered}
\Lambda_{\alpha}: \Psi \mapsto e^{2 \pi i \alpha} \Psi, \quad \Psi^{\dagger} \mapsto e^{-2 \pi i \alpha} \Psi^{\dagger} \\
\Rightarrow \sigma_{\alpha}(x)
\end{gathered}
$$

(we will take $0<\alpha<1$)

More precise definitions: correlation functions

Path integral ideas lead to constraints on correlation functions, which completely define them With p in the universal covering of $\mathbb{D} \backslash\left\{(0,0),\left(a_{\mathrm{x}}, a_{\mathrm{y}}\right)\right\}$, consider for instance the spinor

$$
F(p)=\left\langle\sigma_{\alpha}(0,0) \tilde{\sigma}_{\alpha^{\prime}}\left(a_{\mathrm{x}}, a_{\mathrm{y}}\right) \Psi(p)\right\rangle
$$

- Equations of motion (where $(\mathrm{x}, \mathrm{y}) \in \mathbb{D}$ corresponds to p)

$$
\left(\gamma^{\mathrm{x}} \partial_{\mathrm{x}}+\gamma^{\mathrm{y}} \partial_{\mathrm{y}}+\frac{2 m R}{1-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}\right) F(p)=0
$$

- Asymptotic behaviors

$$
\begin{aligned}
& |F(p)|=O\left(\left(1-\mathrm{x}^{2}-\mathrm{y}^{2}\right)^{1 / 2+\mu}\right) \quad \text { as } \quad \mathrm{x}^{2}+\mathrm{y}^{2} \rightarrow 1 \\
& |F(p)|=O\left(\left|\mathrm{x}-a_{\mathrm{x}}+i\left(\mathrm{y}-a_{\mathrm{y}}\right)\right|^{\alpha^{\prime}-1}\right) \quad \text { as } \quad(\mathrm{x}, \mathrm{y}) \rightarrow\left(a_{\mathrm{x}}, a_{\mathrm{y}}\right) \\
& |F(p)|=O\left(|\mathrm{x}+i \mathrm{y}|^{\alpha}\right) \quad \text { as } \quad(\mathrm{x}, \mathrm{y}) \rightarrow(0,0)
\end{aligned}
$$

- Monodromy properties:

$$
F\left(\mathcal{Z}_{(0,0)} p\right)=e^{2 \pi i \alpha} F(p), \quad F\left(\mathcal{Z}_{\left(a_{x}, a_{y}\right)} p\right)=e^{2 \pi i \alpha^{\prime}} F(p)
$$

For multiple twist field insertions, this leads to determinant representation
Path integral ideas also lead to an expression for the two-point function of twist fields as a regularised ratio of determinants (for instance, with $0<x<1$)

$$
\left\langle\sigma_{\alpha}(0,0) \sigma_{\alpha^{\prime}}(\mathrm{x}, 0)\right\rangle=\lim _{\epsilon_{1} \rightarrow 0, \epsilon_{2} \rightarrow 0} \epsilon_{1}^{d_{\alpha}} \epsilon_{2}^{d_{\alpha^{\prime}}} \frac{\operatorname{det}_{\mathcal{F}_{\alpha, \alpha^{\prime}}}\left(\gamma^{\mathrm{x}} \partial_{\mathrm{x}}+\gamma^{\mathrm{y}} \partial_{\mathrm{y}}+\frac{2 m R}{1-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}\right)}{\operatorname{det}_{\mathcal{F}_{0,0}}\left(\gamma^{\mathrm{x}} \partial_{\mathrm{x}}+\gamma^{\mathrm{y}} \partial_{\mathrm{y}}+\frac{2 m R}{1-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}\right)}
$$

where $\mathcal{F}_{\alpha, \alpha^{\prime}}$ is the space of spinor-valued functions on $\mathbb{D} \backslash([-1,0] \cup[\mathrm{x}, 1])$ which vanish on the boundary of \mathbb{D} and which have the appropriate monodromy properties around the point $(0,0)$ and around the point $(\mathrm{x}, 0)$.

The eigenvalue problem leads to an isomonodromic deformation problem, since changing the positions of twist fields does not change the monodromy they induce. A linear system is obtained by looking at a certain space of solutions to the eigenvalue problem with fixed monodromies, then by considering the action of space-time symmetries on this space and of derivatives with respect to the positions of singular points. Compatibility leads to

Painlevé equations.

Painlevé equations

It was shown by Palmer, Beatty and Tracy (1993) that the two-point function (in its functional determinant representation) is related to Miwa-Jimbo tau-function of Painlevé VI:

$$
\begin{gathered}
\left\langle\sigma_{\alpha}\left(x_{1}\right) \sigma_{\alpha^{\prime}}\left(x_{2}\right)\right\rangle=\tau(s) \\
\frac{d}{d s} \ln \tau(s)=f\left(w, \frac{d w}{d s}, s\right) \quad s=\tanh ^{2}\left(\frac{d\left(x_{1}, x_{2}\right)}{2 R}\right) \\
\text { (geodesic distance) } d\left(x_{1}, x_{2}\right)=2 R \operatorname{arctanh}\left(\frac{\left|z_{1}-z_{2}\right|}{\left|1-z_{1} z_{2}\right|}\right), \quad z_{j}=\mathrm{x}_{j}+i \mathrm{y}_{j}
\end{gathered}
$$

$f\left(w, w^{\prime}, s\right)$ is a rational function of w, w^{\prime}, s and of $m R, \alpha, \alpha^{\prime}$, and $w=w(s)$ satisfies Painlevé VI differential equation

$$
\begin{aligned}
& w^{\prime \prime}-\frac{1}{2}\left(\frac{1}{w}+\frac{1}{w-1}+\frac{1}{w-s}\right)\left(w^{\prime}\right)^{2}+\left(\frac{1}{s}+\frac{1}{s-1}+\frac{1}{w-s}\right) w^{\prime} \\
& =\frac{w(w-1)(w-s)}{s^{2}(1-s)^{2}}\left(\frac{\left(1-4 \mu^{2}\right) s(s-1)}{2(w-s)^{2}}-\frac{(\tilde{\lambda}-1)^{2} s}{2 w^{2}}+\frac{\gamma(s-1)}{(w-1)^{2}}+\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

with parameters $\mu=m R, \lambda=\alpha-\alpha^{\prime}, \tilde{\lambda}=\alpha+\alpha^{\prime}, \gamma=0$.

Remarks

- This is a generalisation of much older results, which can be summarised as follows:
- In the case of the flat geometry ($R \rightarrow \infty$), one obtains a description in terms of the Painlevé V equation (Sato, Miwa, Jimbo 1979, 1980)
- In the case of a theory with only \mathbb{Z}_{2} symmetry (the Majorana fermion - Ising model) in flat geometry, one obtains a description in terms of the Painlevé III equation (Wu, McCoy, Tracy, Barouch 1976)

The Dirac theory on the Poincaré disk is the most general case where I am aware of an analysis of Painlevé transcendents from QFT

- Other methods exist for relating Painlevé equations to two-point functions:
- In the case of flat geometry, it is possible to express the two-point function as a Fredholm determinant, and to derive from this the description in terms of Painlevé equations (Its, Izergin, Korepin, Slavnov 1990; Bernard, Leclair 1997)
- The occurence of Painlevé equations in free fermion theories was later understood in the context of the Majorana theory as a consequence of certain non-local conserved charges (Fonseca, Zamolodchikov 2003; B.D. Ph.D. thesis Rutgers University 2004)

Asymptotics, exponents from QFT, and Jimbo's formula

Concentrate on singular points $s=0$ and $s=1$ only. If one assumes power-law behaviors

$$
w \sim B s^{\kappa_{0}} \quad \text { as } \quad s \rightarrow 0, \quad 1-w \sim A(1-s)^{\kappa_{1}} \quad \text { as } \quad s \rightarrow 1
$$

then PVI does not fix the exponents involved.
But correlation functions describe a special transcendent:

- Short distance: $c=1$ CFT (free massless boson)

$$
\begin{aligned}
d_{\alpha}=\alpha^{2} & \Rightarrow \tau(s) \sim\left\langle\sigma_{\alpha+\alpha^{\prime}}\right\rangle s^{\alpha \alpha^{\prime}} \quad \text { as } \quad s \rightarrow 0 \\
& \Rightarrow \kappa_{0}=\alpha+\alpha^{\prime} \quad\left(0<\alpha+\alpha^{\prime}<1\right)
\end{aligned}
$$

- Large geodesic distance: cluster property of correlation functions

$$
\tau(s) \sim\left\langle\sigma_{\alpha}\right\rangle\left\langle\sigma_{\alpha^{\prime}}\right\rangle \quad \text { as } \quad s \rightarrow 1 \Rightarrow \kappa_{1}=1+2 \mu \quad(\mu>1 / 2)
$$

This should fix the transcendent, and in particular Jimbo's formula (1982) gives

$$
B=\mu \frac{\Gamma(\alpha) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(1-\alpha-\alpha^{\prime}\right)^{2} \Gamma\left(\alpha+\alpha^{\prime}+\mu\right)}{\Gamma(1-\alpha) \Gamma\left(1-\alpha^{\prime}\right) \Gamma\left(\alpha+\alpha^{\prime}\right)^{2} \Gamma\left(1-\alpha-\alpha^{\prime}+\mu\right)}
$$

although these values of κ_{0}, κ_{1} were excluded, being a special "degenerate" case.

Connection problem: the value of A and the relative normalisation of the tau-function

- From conformal perturbation theory, one can calculate B
- From form factor expansion

$$
A=\frac{\sin (\pi \alpha) \sin \left(\pi \alpha^{\prime}\right) \Gamma(\mu+\alpha) \Gamma(1+\mu-\alpha) \Gamma\left(\mu+\alpha^{\prime}\right) \Gamma\left(1+\mu-\alpha^{\prime}\right)}{\pi^{2} \Gamma(1+2 \mu)^{2}}
$$

(note: Jimbo's formula for A is singular at our values of κ_{0}, κ_{1})

- From vacuum expectation values of twist fields

$$
\lim _{s \rightarrow 0} \frac{\tau(1-s) s^{\alpha \alpha^{\prime}}}{\tau(s)}=\frac{\left\langle\sigma_{\alpha}\right\rangle\left\langle\sigma_{\alpha^{\prime}}\right\rangle}{\left\langle\sigma_{\alpha+\alpha^{\prime}}\right\rangle}
$$

with

$$
\left\langle\sigma_{\alpha}\right\rangle=\prod_{n=1}^{\infty}\left(\frac{1-\frac{\alpha^{2}}{(\mu+n)^{2}}}{1-\frac{\alpha^{2}}{n^{2}}}\right)^{n}
$$

We will calculate these quantities using a method that is related to Baxter's method of corner transfer matrix in integrable lattice model, obtaining and evaluating trace formulas for the quantities of interest

Constructing correlation functions: quantization schemes and Hilbert spaces
The poincaré disk is maximally symmetric: $S U(1,1)$ space-time symmetry
With

$$
\mathcal{S}=\left(\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right), \quad \operatorname{det} \mathcal{S}=1
$$

there is an action on fields that preserves \mathcal{A} :

$$
\mathcal{S}:\left\{\begin{array}{l}
z \mapsto \frac{a z+\bar{b}}{b z+\bar{a}}, \quad \bar{z} \mapsto \frac{\bar{a} \bar{z}+b}{\bar{b} \bar{z}+a} \\
\Psi_{R} \mapsto(b z+\bar{a}) \Psi_{R}, \quad \Psi_{L} \mapsto(\bar{b} \bar{z}+a) \Psi_{L}
\end{array} \quad(z=\mathrm{x}+i \mathrm{y})\right.
$$

It is convenient to consider three $S U(1,1)$ subgroups:

$$
\begin{aligned}
& \mathcal{X}_{\eta}=\left(\begin{array}{cc}
\cosh (\eta) & \sinh (\eta) \\
\sinh (\eta) & \cosh (\eta)
\end{array}\right), \quad \eta \in \mathbb{R} \\
& \mathcal{Y}_{\eta}=\left(\begin{array}{cc}
i \sinh (\eta) & i \cosh (\eta) \\
i \cosh (\eta) & i \sinh (\eta)
\end{array}\right), \quad \eta \in \mathbb{R} \\
& \mathcal{R}_{\theta}=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right), \quad \theta \in[0,2 \pi[
\end{aligned}
$$

Three useful quantization schemes:
I. Hamiltonian (time translation generator) is generator for \mathcal{Y}; space is effectively compact; this gives a good scheme for large distance expansion $s \rightarrow 1$
II. Momentum (space translation generator) is generator for \mathcal{X}; space is non-compact; isometry generator is unitary, which gives tools for evaluating matrix elements
III. Hamiltonian is generator for \mathcal{R}; time is compact and periodic; twist fields have simple realisations allowing explicit evaluations from trace formulas

Angular quantization scheme: trace formulas

Hamiltonian H_{A} generates compact subgroup \mathcal{R} :

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} \mathcal{O}=\left[H_{A}, \mathcal{O}\right] \\
& H_{A}=\int_{\epsilon}^{1} \frac{d r}{r}: \Psi^{\dagger} \gamma^{y}\left(\gamma^{x} \partial_{\eta}-\frac{\mu}{\sinh \eta}\right) \Psi: \\
& \left\{\Psi(\eta), \Psi^{\dagger}\left(\eta^{\prime}\right)\right\}=\mathbf{1} \delta\left(\eta-\eta^{\prime}\right), \quad r=e^{\eta}
\end{aligned}
$$

Correlation functions of fermion fields are traces over the Hilbert space \mathcal{H}_{A} of functions of r on the segment $r \in[\epsilon, 1]$ which form a module for the canonical anti-commutation relations and on which H_{A} acts and is Hermitian:

$$
\langle\cdots\rangle=\lim _{\epsilon \rightarrow 0} \frac{\operatorname{Tr}_{\epsilon}\left(e^{-2 \pi H_{A}} \cdots\right)}{\operatorname{Tr}_{\epsilon}\left(-2 \pi H_{A}\right)}
$$

It is easy to diagonalise H_{A} in terms of partial waves $\mathcal{U}_{\nu}(\eta)=\binom{u_{\nu}}{v_{\nu}}$:

$$
\Psi=\sum_{\nu} c_{\nu} \mathcal{U}_{\nu}(\eta) e^{-\nu \theta}, \quad \Psi^{\dagger}=\sum_{\nu} c_{\nu}^{\dagger} \mathcal{U}_{\nu}^{\dagger}(\eta) e^{\nu \theta}, \quad\left\{c_{\nu}, c_{\nu^{\prime}}^{\dagger}\right\}=\delta_{\nu, \nu^{\prime}}
$$

Angular quantization is well adapted to twist fields: they are simply operators producing symmetry transformations on \mathcal{H}_{A}, hence diagonalised by eigenstates of H_{A}

$$
\left[\sigma_{\alpha}(0,0)\right]_{A}=e^{2 \pi i \alpha Q}, \quad Q=U(1) \text {-charge }
$$

Correlation functions involving fermion fields and one twist fields are regularised traces

$$
\left\langle\sigma_{\alpha}(0,0) \cdots\right\rangle=\lim _{\epsilon \rightarrow 0} \epsilon^{\alpha^{2}} \frac{\operatorname{Tr}_{\epsilon}\left(e^{-2 \pi H_{A}+2 \pi i \alpha Q} \cdots\right)}{\operatorname{Tr}_{\epsilon}\left(e^{-2 \pi H_{A}} \cdots\right)}
$$

The proper boundary condition at $r=\epsilon$ for giving the conformal normalisation is

$$
r=\epsilon: \quad \Psi_{R}=\Psi_{L}, \quad \Psi_{R}^{\dagger}=\Psi_{L}^{\dagger}
$$

One-point functions can be evaluated
Evaluation of the traces:

- factorisation in independent two-dimensional spaces $\mathcal{H}_{\mathcal{A}}^{(\nu)}$ for each ν : infinite product
- take $\nu<\nu_{\text {max }}$ then $\nu_{\text {max }} \rightarrow \infty$ simultaneously on both traces
- in the limit $\epsilon \rightarrow 0$, what counts is the density of states $\partial_{\nu} \ln S(\nu)$:

$$
\binom{u_{\nu}}{v_{\nu}} \rightarrow\binom{e^{i \nu}}{-i e^{-i \nu} S(\nu)}
$$

where

$$
S(\nu)=\frac{\Gamma(1 / 2+i \nu) \Gamma(1 / 2-i \nu+\mu)}{\Gamma(1 / 2-i \nu) \Gamma(1 / 2+i \nu+\mu)}
$$

The result is

$$
\left\langle\sigma_{\alpha}\right\rangle=\exp \left[\int_{0}^{\infty} \frac{d \nu}{2 \pi i} \ln \left(\frac{\left(1+e^{-2 \pi \nu+2 \pi i \alpha}\right)\left(1+e^{-2 \pi \nu-2 \pi i \alpha}\right)}{\left(1+e^{-2 \pi \nu}\right)^{2}}\right) \partial_{\nu} \ln S(\nu)\right]
$$

Non-stationary quantization scheme: form factors
Momentum operator $P_{\mathcal{X}}$ generates non-compact subgroup \mathcal{X} :

$$
\begin{aligned}
& \mathrm{x}+i \mathrm{y}=\tanh \left(\xi_{\mathrm{x}}+i \xi_{\mathrm{y}}\right), \quad \mathcal{A}=\int d \xi_{\mathrm{x}} d \xi_{\mathrm{y}} \bar{\Psi}\left(\gamma^{\mathrm{x}} \frac{\partial}{\partial \xi_{\mathrm{x}}}+\gamma^{\mathrm{y}} \frac{\partial}{\partial \xi_{\mathrm{y}}}+\frac{2 \mu}{\cos 2 \xi_{\mathrm{y}}}\right) \Psi \\
& -i \frac{\partial}{\partial \xi_{\mathrm{x}}} \mathcal{O}=\left[P_{\mathcal{X}}, \mathcal{O}\right], \quad\left\{\Psi\left(\xi_{\mathrm{x}}\right), \Psi^{\dagger}\left(\xi_{\mathrm{x}}^{\prime}\right)\right\}=\mathbf{1} \delta\left(\xi_{\mathrm{x}}-\xi_{\mathrm{x}}^{\prime}\right)
\end{aligned}
$$

Correlation functions are "time"-ordered products:
$\left\langle\mathcal{O}_{1}\left(\xi_{\mathrm{x} 1}, \xi_{\mathrm{y} 1}\right) \mathcal{O}_{2}\left(\xi_{\mathrm{x} 2}, \xi_{\mathrm{y} 2}\right)\right\rangle=$

$$
\begin{cases}\langle\operatorname{vac}| \mathcal{O}_{1}\left(\xi_{\mathrm{x} 1}, \xi_{\mathrm{y} 1}\right) \mathcal{O}_{2}\left(\xi_{\mathrm{x} 2}, \xi_{\mathrm{y} 2}\right) \cdots|\operatorname{vac}\rangle & \xi_{\mathrm{y} 1}>\xi_{\mathrm{y} 2} \\ (-1)^{f_{1} f_{2}}\langle\operatorname{vac}| \mathcal{O}_{2}\left(\xi_{\mathrm{x} 2}, \xi_{\mathrm{y} 2}\right) \mathcal{O}_{1}\left(\xi_{\mathrm{x} 1}, \xi_{\mathrm{y} 1}\right) \cdots|\operatorname{vac}\rangle & \xi_{\mathrm{y} 2}>\xi_{\mathrm{y} 1}\end{cases}
$$

Fermion operators are written

$$
\Psi\left(\xi_{\mathrm{x}}, \xi_{\mathrm{y}}\right)=\int d \omega \rho(\omega)\left[i \gamma^{\mathrm{x}} \gamma^{\mathrm{y}} P^{*}\left(\omega,-\xi_{\mathrm{y}}\right) e^{i \omega \xi_{\mathrm{x}}} A_{-}^{\dagger}(\omega)+P\left(\omega, \xi_{\mathrm{y}}\right) e^{-i \omega \xi_{\mathrm{x}}} A_{+}(\omega)\right]
$$

where

- Waves $P\left(\omega, \xi_{\mathrm{y}}\right) e^{-i \omega \xi_{\mathrm{y}}}$ fixed from condition that they form module for $s u(1,1)$ (as differential operators) with Casimir equal to $\mu^{2}-1 / 4$ (equations of motion)
- Density contains all singularities in the finite ω-plane

$$
\rho(\omega)=\frac{\Gamma\left(\frac{1}{2}+\mu+\frac{i \omega}{2}\right) \Gamma\left(\frac{1}{2}+\mu-\frac{i \omega}{2}\right)}{2 \pi \Gamma\left(\frac{1}{2}+\mu\right)^{2}}
$$

- Mode operators satisfy normalised canonical algebra

$$
\rho(\omega)\left\{A_{\epsilon}(\omega), A_{\epsilon^{\prime}}^{\dagger}\left(\omega^{\prime}\right)\right\}=\delta\left(\omega-\omega^{\prime}\right) \delta_{\epsilon, \epsilon^{\prime}}
$$

Hilbert space \mathcal{H} is space of functions that forms a module for canonical anti-commutation relations (chosen with basis that diagonalises momentum operator) with vacuum |vac〉 that has the property

$$
\lim _{\xi_{\mathrm{y}} \rightarrow-\frac{\pi}{4}} \Psi\left(\xi_{\mathrm{x}}, \xi_{\mathrm{y}}\right)|\mathrm{vac}\rangle=\lim _{\xi_{\mathrm{y}} \rightarrow-\frac{\pi}{4}} \Psi^{\dagger}\left(\xi_{\mathrm{x}}, \xi_{\mathrm{y}}\right)|\mathrm{vac}\rangle=0
$$

Fock space over mode algebra; appropriate choice of $P\left(\omega, \xi_{\mathrm{y}}\right)$ gives $A_{\epsilon}(\omega)|\mathrm{vac}\rangle=0$.

The resolution of the identity gives an expansion for two-point functions in terms of form factors

Denote states by

$$
\left|\omega_{1}, \ldots, \omega_{n}\right\rangle_{\epsilon_{1}, \ldots, \epsilon_{n}}=A_{\epsilon_{1}}^{\dagger}\left(\omega_{1}\right) \cdots A_{\epsilon_{n}}^{\dagger}\left(\omega_{n}\right)|\operatorname{vac}\rangle
$$

Then,

$$
\mathbf{1}_{\mathcal{H}}=\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\epsilon_{1}, \ldots, \epsilon_{n}} \int\left(\prod_{j=1}^{n} d \omega_{j} \rho\left(\omega_{j}\right)\right)\left|\omega_{1}, \ldots, \omega_{n}\right\rangle_{\epsilon_{1}, \ldots, \epsilon_{n} \epsilon_{n}, \ldots, \epsilon_{1}}\left\langle\omega_{n}, \ldots, \omega_{1}\right|
$$

which gives

$$
\begin{aligned}
& \langle\operatorname{vac}| \sigma_{\alpha}\left(x_{1}\right) \sigma_{\alpha^{\prime}}\left(x_{2}\right)|\operatorname{vac}\rangle=\left\langle\sigma_{\alpha}\right\rangle\left\langle\sigma_{\alpha^{\prime}}\right\rangle \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\epsilon_{1}, \ldots, \epsilon_{n}} \int\left(\prod_{j=1}^{n} d \omega_{j} \rho\left(\omega_{j}\right)\right) \times \\
& \quad \times F_{\alpha}\left(\omega_{1}, \ldots, \omega_{n}\right)_{\epsilon_{1}, \ldots, \epsilon_{n}}\left(F_{-\alpha^{\prime}}\left(\omega_{n}, \ldots, \omega_{1}\right)_{\epsilon_{n}, \ldots, \epsilon_{1}}\right)^{*} e^{-i\left(\omega_{1}+\cdots+\omega_{n}\right) \frac{d\left(x_{1}, x_{2}\right)}{2 R}}
\end{aligned}
$$

where form factors are

$$
F_{\alpha}\left(\omega_{1}, \ldots, \omega_{n}\right)_{\epsilon_{1}, \ldots, \epsilon_{n}}=\frac{\langle\operatorname{vac}| \sigma_{\alpha}(0,0)\left|\omega_{1}, \ldots, \omega_{n}\right\rangle_{\epsilon_{1}, \ldots, \epsilon_{n}}}{\langle\operatorname{vac}| \sigma_{\alpha}|\operatorname{vac}\rangle}
$$

The embedding $\mathcal{H} \hookrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{A}$ allows the evaluation of form factors via trace formulas

- States in \mathcal{H} are associated to operators in \mathcal{H}_{A} :

$$
\left|\omega_{1}, \ldots, \omega_{n}\right\rangle_{\epsilon_{1}, \ldots, \epsilon_{n}} \equiv a_{\epsilon_{1}}\left(\omega_{1}\right) \cdots a_{\epsilon_{n}}\left(\omega_{n}\right)
$$

- Operators acting on \mathcal{H} are identified with left-action on $\operatorname{End}\left(\mathcal{H}_{A}\right)$

$$
\mathcal{O}|u\rangle \in \mathcal{H} \equiv \pi_{A}(\mathcal{O}) U \in \operatorname{End}\left(\mathcal{H}_{A}\right) \quad \text { if }|u\rangle \equiv U
$$

- The inner product on \mathcal{H} is associated with traces in \mathcal{H}_{A} :

$$
\langle u \mid v\rangle \equiv \frac{\operatorname{Tr}\left(e^{-2 \pi H_{A}} U^{\dagger} V\right)}{\operatorname{Tr}\left(e^{-2 \pi H_{A}}\right)} \quad \text { if }|u\rangle \equiv U,|v\rangle \equiv V
$$

- Hence form factors are

$$
F_{\alpha}\left(\omega_{1}, \ldots, \omega_{n}\right)_{\epsilon_{1}, \ldots, \epsilon_{n}}=\frac{\operatorname{Tr}\left(e^{-2 \pi H_{A}+2 \pi i \alpha Q} a_{\epsilon_{1}}\left(\omega_{1}\right) \cdots a_{\epsilon_{n}}\left(\omega_{n}\right)\right)}{\operatorname{Tr}\left(e^{-2 \pi H_{A}+2 \pi i \alpha Q}\right)}
$$

- Two sets of conditions define the operators $a_{\epsilon}(\omega)$:

$$
\left\{a_{\epsilon}(\omega), \Psi(\eta \rightarrow-\infty, \theta)\right\}=\left\{a_{\epsilon}(\omega), \Psi^{\dagger}(\eta \rightarrow-\infty, \theta)\right\}=0
$$

and

$$
\langle\operatorname{vac}| \Psi\left(\xi_{\mathrm{x}}, \xi_{\mathrm{y}}\right)|\omega\rangle_{+}=\frac{\operatorname{Tr}\left(e^{-2 \pi H_{A}} \pi_{A}\left(\Psi\left(\xi_{\mathrm{x}}, \xi_{\mathrm{y}}\right)\right) a_{+}(\omega)\right)}{\operatorname{Tr}\left(e^{-2 \pi H_{A}}\right)}=e^{-i \xi_{\mathrm{x}}} P\left(\omega, \xi_{\mathrm{y}}\right)
$$

- They can be calculated explicitly:

$$
\begin{gathered}
a_{+}(\omega)=\int_{-\infty}^{\infty} d \nu g(\nu ; \omega) c_{\nu}^{\dagger}, \quad a_{-}(\omega)=\int_{-\infty}^{\infty} d \nu g(\nu ; \omega) c_{-\nu} \\
g(\nu ; \omega)=\sqrt{\pi} 2^{-\mu} e^{i \frac{\pi}{2}\left(\mu+\frac{1}{2}-i \frac{\omega}{2}\right)} \frac{e^{-\pi \nu} \Gamma\left(\frac{1}{2}+\mu+i \nu\right)}{\Gamma(1+\mu) \Gamma\left(\frac{1}{2}+i \nu\right)} \times \\
\quad \times F\left(\mu+\frac{1}{2}+i \nu, \mu+\frac{1}{2}-i \frac{\omega}{2} ; 1+2 \mu ; 2-i 0\right) \\
F(a, b ; c ; 2-i 0)=\lim _{\varepsilon \rightarrow 0^{+}} F(a, b ; c ; 2-i \varepsilon)
\end{gathered}
$$

where $F(a, b ; c ; z)$ is Gauss's hypergeometric function on its principal branch.

Integrals involved can be evaluated by contour deformation: sum of residues of poles
We had:

$$
\begin{aligned}
& \langle\operatorname{vac}| \sigma_{\alpha}\left(x_{1}\right) \sigma_{\alpha^{\prime}}\left(x_{2}\right)|\operatorname{vac}\rangle=\left\langle\sigma_{\alpha}\right\rangle\left\langle\sigma_{\alpha^{\prime}}\right\rangle \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\epsilon_{1}, \ldots, \epsilon_{n}} \int\left(\prod_{j=1}^{n} d \omega_{j} \rho\left(\omega_{j}\right)\right) \times \\
& \quad \times F_{\alpha}\left(\omega_{1}, \ldots, \omega_{n}\right)_{\epsilon_{1}, \ldots, \epsilon_{n}}\left(F_{-\alpha^{\prime}}\left(\omega_{n}, \ldots, \omega_{1}\right)_{\epsilon_{n}, \ldots, \epsilon_{1}}\right)^{*} e^{-i\left(\omega_{1}+\cdots+\omega_{n}\right) \frac{d\left(x_{1}, x_{2}\right)}{2 R}}
\end{aligned}
$$

It turns out that $F_{\alpha}\left(\omega_{1}, \ldots, \omega_{n}\right)_{\epsilon_{1}, \ldots, \epsilon_{n}}$ are entire functions of all spectral parameters \Rightarrow contour deformation, getting residues at poles of density $\rho(\omega)$:

$$
\omega=-i \lambda_{k}=-i(1+2 \mu+2 k), \quad k=0,1,2, \ldots
$$

Isometric quantization scheme: large-distance expansion
Hamiltonian $H_{\mathcal{Y}}$ generates non-compact subgroup \mathcal{Y}.
In isometric quantization, states form a discrete set, parametrized by spectral parameters k_{1}, k_{2}, \ldots with energies $\lambda_{k_{1}}+\lambda_{k_{2}}+\cdots$. The residue evaluation above is exactly a "form-factor" expansion in isometric quantization.

- All residues can be evaluated in terms of rational and Gamma functions of μ and α
- The exponential of the geodesic distance occurs in the form

$$
e^{-(p(1+2 \mu)+q) \frac{d(x, y)}{R}}, \quad p=0, \quad q=0 \quad \text { or } \quad p=1,2, \ldots, \quad q=0,1,2, \ldots
$$

In particular,

$$
\frac{\left\langle\sigma_{\alpha}(x) \sigma_{\alpha^{\prime}}(y)\right\rangle}{\left\langle\sigma_{\alpha}\right\rangle\left\langle\sigma_{\alpha^{\prime}}\right\rangle}=1-4^{2 \mu+1} \frac{(\mu+\alpha)\left(\mu+\alpha^{\prime}\right)}{(1+2 \mu)^{2}} A e^{-(1+2 \mu) \frac{d(x, y)}{R}}+\cdots
$$

which gives

$$
1-w=A(1-s)^{1+2 \mu} \sum_{p, q=0}^{\infty} D_{p, q}(1-s)^{p(1+2 \mu)+q}, \quad D_{0,0}=1
$$

Conclusions and perspectives

I have described how to solve certain connection problems of Painlevé VI, using its association with correlation functions in 2-dimensional integrable QFT:

- Asymptotic near $s=0$: conformal perturbation theory
- Asymptotic near $s=1$: form factor expansion

Questions and future research:

- What about the point $s=\infty$? Is it accessible from QFT?
- The Dirac theory on the sphere can be solved similarly; it leads to PVI with $\mu^{2} \mapsto-\mu^{2}$. Asymptotics? Connection problem?
- Special case $\alpha+\alpha^{\prime}=1$ leads to logarithmic behaviors; other operators than σ_{α}, descendent under fermion algebra, can be considered; all these should correspond to yet other Painlevé VI transcendents.
- More general free fermion theory can be considered: with, for instance, $S U(n)$ invariance, and associated twist fields. What Painlevé equation do they generate? What transcendents? Solving other connection problems?

