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Entanglement in quantum mechanics

Entanglement: the measurement of a quantum observable immediately affects future

measurements of independent observables. Opposite-spin particles from pair production:

(1LY +141)), (4) = (wlAl)
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Entanglement is the most fundamental, non-classical phenomenon of quantum

)

mechanics: neither pure-wave nor pure-particle. It is a useful “resource ”: at the basis of

better performances of the (still theoretical) quantum computers.

Mixed states may describe similar probabilities but without entanglement:
P = Zpa\%><%| , (A) =Tr(pA)
(8
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(for pure states, p = |1) (1)|; for finite temperature, p = e ). For instance,

p= (1T LN LI+ L)1)




How to measure (or quantify) quantum entanglement?

e There are various propositions for measures of quantum entanglement. Consider the

entanglement entropy :

— With the Hilbert space atensorproduct { = s1 0 $9 X --- sy = A ® 14_1, and a

given state |gs) € H, calculate the reduced density matrix
pa = Tr(|gs)(gs|)
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— The entanglement entropy is the resulting von Neumann entropy

Sa=—Tra(palog(pa)) =— > Alog(})

eigenvalues of p »

A0




The entanglement entropy

e |t is the entropy that is measured in a subsystem A, if its environement Ais “forgotten”. It

measures a “number of links” between the subsystem and its environment; the quantity

of additional information in the subsystem about its environment.

e |t was proposed as a way to understand black hole entropy
[Bombelli, Koul, Lee, Sorkin 1986].

e Then it was proposed as a measure of entanglement
[Bennet, Bernstein, Popescu, Schumacher 1996].

e Examples:
— Tensor product state:
gs) = |4) ® |A) = pa = [A)(A] = Sa = —1log(1) = 0.
- The state |gs) = (| 14) +[ 1 1))
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One basic property of entanglement entropy

Entanglement entropy is not “directional”: S 4 = S 5. Proof:

e Anti-linear maps:
f:A— Awith fl|A) = (Algs),
f:A— Awith f|A) = (Algs).

o Thenpy = ff:A— Aandps = ff: A— A

o If pa|A) = N A) then ff|A) = \|A), hence (ff)f|A) = Af|A), whence
paflA) = AflA).

e Hence p4 and p 5 have the same set of non-zero eigenvalues (with the same
degeneracies).




Scaling limit

Say \gs) IS a ground state of some local spin-chain Hamiltonian, and that the chain is

infinitely long.

An important property of |gs> is the correlation length  &:

(gsloioles) — (gsloiles)(gslojlgs) ~ eV as fi — j| — o

Suppose there are parameters in the Hamiltonian such that for certain values, & — 0.

This is a quantum critical point

We may adjust these parameters in such a way that the length L of A stays in proportion
to & L/€ = mr. This is the scaling limit .

The resulting entanglement entropy diverges in that limit: S'4 o< log(&) + f(mr). But
the differences f(mmry) — f(mr2) are universal , and are described by quantum field

theory . 7 is the dimensionful length of A; m is the smallest mass of the spectrum.




First universal quantity: short- and large-distance entan glement entropy
Choosing appropriately € < 1/(m£) a non-universal cutoff with dimenions of length:

e Short distance: 0 < L < &, logarithmic behavior [Holzhey, Larsen, Wilczek 1994;
Calabrese, Cardy 2004]

Sp ~ glog (g) = glog(L) + const.
e Large distance: 0 < ¢ < L, saturation
°1

3 og(&) + U + const.

Sp ~ —glog(me) + U =

where c is the central charge of the corresponding critical point. In terms of lattice quantities:

U = lim (SA|L:oo, ¢=z — SAle=co, sz)

T—r 00




Partition functions on multi-sheeted Riemann surfaces
[Callan, Wilczek 1994; Holzhey, Larsen, Wilczek 1994]

e \We can use the “replica trick” for evaluating the entanglement entropy:

d

m ——Tra(p}s)

Sa = —Tra(palog(pa)) = — lim —

e For integer numbers 1 of replicas, in the scaling limit, this is a partition function on a

Riemann surface:
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Branch-point twist fields
[Cardy, Castro Alvaredo, Doyon 2007]

e Consider many copies of the QFT model on the usual R?:

LOp1, - eal(@) = Lloa) (@) + .+ Llpg) ()

e There is an obvious symmetry under cyclic exchange of the copies:

£ 0Qp1,...,00,] = £ (01, .-y ©n], With 0wV, = ©i11 mod n

e The associated twist fields ‘7, when inside correlation functions, gives

[dp1 - - - dipp|r2 exp [— / x L™ o1, ..., onl(w)
RQ

(TO) e [

Co

with branching conditions on the line X & (O, oo) given by

Co : ¢i(x,07) = iy1(x,07) (x> 0)




e Graphically:

0,00 TO N

@) o

e Locality: commutation with Hamiltonian density h(x),

[700), h(x)] =0 (x#0)
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e Another twist field ’7~~ IS associated to the inverse symmetry o -, and we have

(TOT (M) oo o /

CO,T‘
= Z,

[dp1 -+ - dipp|r2 exp [—/ ’z L™ o1, ..., onl(w)
RQ

0,00 TO N

@) o
b 9%




Short- and large-distance entanglement entropy revisited

Hence we have

- d
Zn|Z = Dpe®® (TO)T(r)) pny , Sa=—lim —Z

no1dn "

where D,, is a normalisation constant, and d,, is the scaling dimension of J [Calabrese,

C 1

Cardy 2004].

e Short distance: 0 < L < &, logarithmic behavior

~

—2d, ¢ r
(TOYT (1) g ~ 172 = S~ 5 log (£

e Large distance: 0 < ¢ < L, saturation

(TO) T 2o ~ (T2 = U = — lim = (m~24(7)2,.,)

n—1 dn




Evaluation of U

.od o,
U=—1lim — (m 2dn <T>%(n))

n—1 dn

e |dea of Al. Zamolodchikov (unpublished), for twist fields in general.

In angular quantization ,x 4 1y = entif, 7 the “space” and 6 the “time”:

twist fields = unitary operator {{,, associated to transformation o

pimT =Teir1(n) = T ol

e /[, can be diagonalized simultaneously with angular-quantization hamiltonian K™
7 ()

(T(0) ) gomy = Trgng £ [BQMK Uy - }

e Regularization necessary, performed explicitly in free-fermion models; Ising model
[Cardy, Castro Alvaredo, Doyon 2007], [A. Zamoloschikov, Lukyanov 1997].

1 © dt (tcosht 1 e~ 2t
U Sin == — 10 2 - - - = _0.131984...
Ising = 5 795 /0 2t ( sinh®¢  sinh?t 3 )




Second universal quantity: the next correction term

We found [Cardy, Castro Alvaredo, Doyon 2007], [Castro Alvaredo, Doyon 2008], [Doyon
2008]

¢
c 1
Sa r~ 3 log(mie) + U — 3 O; Ko(2rmg) 4+ O (e7%™)

where /¢ is the number of particles in the spectrum of the QFT, and m,, are the masses of the
particles, with m; < m, Vou.

e This next correction term depends only on the particle spectrum, but not on their

interaction (i.e. not on the way they scatter off each other).

® In generic QFT, the largest mass is less than twice the smallest mass. Hence, the

entanglement entropy provides “clean” information about “half” of the spectrum.




Form factors and two-point function

® In the n-replica model £<“), there are n times as many particle types, which we will

denote by 1t = («, ) with j = 1, ..., n the replica label.

e The two-point function of branch-point twist fields can be decomposed into the in-basis,

giving a large-distance expansion

<7’(0)7~’( )) pmy = (vac|T(0)T (r)|vac) =
" de —r 3% m,, cosh#,
S‘ S‘ / 1271‘ : ‘Fﬂla Sk (917 ceey 9k)|2€ 2 _i—1 Ma; coshb;

kOo‘l

where the form factors are:

Fooun (01,00, 0;) = (vac|T(0)]64,. .., Hkmnluk




Analytic properties of two-particle form factors

Consider F},, ,,,(01,02) = F},, ., (01 — 02) (by relativistic invariance) as an analytic
function of 0 = 61 — 0-.

e Such form factors for usual (non-twist) fields have a well-known analytic structure:

using Mandelstam’s s-variable s = mal + ’mgé2 + 2mg, Mg, cosh(f), there is a

branch cut from s = (ma1 + My, )2 to 00, just above which we are describing the
physical form factor with an ¢n-state, and just below which it is the form factor with an
out-state instead. Between 0 and (m,, + Ma, )2, there may be poles due to bound

states, and there are no other singularities on the physical sheet.

S [0
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e Form factors for branch-point twist-fields  have modified analytic properties




For 61 < 0:

FMLMQ

(61

— 92)

Change of sign of 6 (as usual)

= <V&C|T(O)|91, 92>OUt

H1,12

PEP (vac|T(0)[0, 01)1

o1 FN?vﬂl

fA=)

Oy Oouo Oup  Oouo

(02
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Quasi-periodicity relation (different)

By s (0 + 2m8) = Fluy 0y (=0), p=(a,j +1modn)




The kinematic residue equation (new)

PG S S
—1F,, 1, (0 + 1) ~ (T) . ‘71’]29 ji+1ga) , Qi = anti-particle of aug




The structure of the two-particle form factors

Putting all that together, only F<a171)7(a2,1) (9) matters, thanks to the relation

Flog i) (i) (8) = Flay 1).(as,1) (0 +2mi(j1 — j2)) for 0 < j1 — jo < n — 1. Ithas
the following analytic structure:

271N
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Correction term to the entanglement entropy

e The two-particle contribution to the entanglement entropy is

a
dn

o —7r(me cosh 61+mg cosh 62)
T) s ;1/ 5rd8a (01 = B2,
(T) fa,p(0,n) = Z | Fla1,(8.1)(0 + 2mig)|*
=0
e The form factors themselves vanish like n — 1 as n — 1, because the branch-point twist

n=1

field becomes the identity field .

e The only contribution to the entanglement entropy comes from the collision of kinematic
2

poles at 0 = 0, giving (-~ f, (0, n))nzl = 5-0(0)0, 5
8 . 8

A 27N
2T N—TI




Heuristic: entanglement density and pair creations

Entanglement entropy should “count” the connections between A and A, for A of large

enough extent:

® 6 6 6 ¢ ¢ o o o o
1dS[Ox]

SAN/da:/d:st—a:)és( )~—§ T
T

The entanglement density s(z — x”) should receive contributions whenever the

quantum fluctuation at  is somehow correlated with that at .

At large distances & — &’ > m 1, the main contribu-
tions should be due to particles coming from a common

virtual pair created far in the past.

The particles have to survive a time ¢, and the probability for this is ruled by quantum

uncertainty principles, < e~ Pt F the total energy, independently from the interaction.




General two-particle twist-fields form factors

Diagonal scattering without bound states, integral representation for scattering matrix:

S(0) = exp UOOO %g(t) sinh (g)]

The general “minimal” solution is

™ (9) = exp [/OOO tsincff(nt)g(t) sin’ (%” (1 L0 27:5‘7 — k))»]

and the full solution is

<T> sin (%) F;‘j‘,g(@, n)
2, sinh (iW(Q(j—k)—1)+9> sinh (’”T(Q(k—j)—l)—9> F;?ilg(iﬂ', n)

Fyr(0) =

2n 2n




How to evaluate higher-particle twist-fields form factors

e In models of free fermionic particles , form factors are given by determinants / pfaffians:

T =: exp / dgd’ [a' (0)a™(0")F(0,0) + a’(0)a(0")G(0,0") + a(0)a(0')H (0,6")]

e In interacting integrable models , one way is to use Lukyanov’'s angular-quantization
method [Lukyanov, 1995],

Tty 2o 275Uy Z0(01) -+ Z1(0,)]

vac|T(0)]6, ..., 0)"" ——
(vac|T(0) T TR

Trong. 2 [eQWi”KZ(Hl) ce Z(@n)}

Trang,ﬁ [eZWinK]

Lukyanov observed that:
K = [ dvk(v)b,b_, (bilinear in free bosons),
= Zj : e vz i (0)b . (linear combination of vertex operators).

Calculations: (Z(0)Z(0')) 1. = exp | [ dvdv'z,(0)z, (0") (b, by )1: |, etc.




Large-n behaviour of form factors?

[Castro Alvaredo, Doyon 2008]

XN

for renormalizable models

x nlogn for marginally renormalizable models




Third universal quantity: boundary entropy [Castro Alvaredo, Doyon 2008]

System: half-line composed of two connected regions A (finite) and B (infinite).

—A A

C
6 log(2r/e) +V e<r m 1, boundary length scale if any

Sboundary ~
A

U
—g log(me) + 5 > m~!

e \We found

V =5—log \/?
where s is the boundary entropy of Affleck and Ludwig (1991) and f is the fraction of
the massive ground state degeneracy that is broken by the boundary condition.
1.V = S (1) giiear — 25°™(27)criseas — log v/f  from looking at S""*Y (11, r2)
2. 5" (1) i — = SPM (27 grifeas = [Calabrese, Cardy 2004].

e Consequence:

lim (SA|L:oo,§::c — SA|§:oo,L:a;/2> = U/2 + log \/} — S.

T— 00




Ising model checks

e Consider Ising guantum chain in transverse magnetic field near to its critical point in the
longitudinally-ordered phase, with boundary magnetic field & coupled longitudinally. Use
k =1 — h?/(2m). Integrable boundary state [Goshal, Zamolodchikov 1994].

e Exact form-factor expression for V' (); 500 terms re-summation of form factors agrees
with 1/6 log(rm) + V (k) where

V2 K> —o0 (free)

V(r)

0 k= —00 (fixed)

Thisis V (k) = s — log+/f with f = 1/2.
e Asnn — 1, only fully connected terms remain. Analytic continuation from region n > 1.

e mr — 0 and Kk — —oo simultan.: critical bulk and non-critical boundary condition.

e For k > —1 (“critical” value [Goshal, Zamolodchikov 1994]), entropy not monotonic in

rm: approaches asymptotic value from above. Breaks “subadditivity”.




k=1

k=-1
x=-10
k=-infinity




Conclusions

e \We have shown how three universal quantities associated to the entanglement entropy of

one-dimensional quantum chains can be accessed using the methods of massive
integrable QFT:

— the difference between L > £ > 0 and £ > L > 0 (the universal constant U),

— the first correction to saturation at L > & > 0 (in terms of the mass spectrum),

— the difference between L > & > 0 and £ > L > 0 in boundary case (in terms of
Affleck and Ludwig’s boundary entropy).

All these relations are valid beyond integrability, in any near-critical guantum chain (i.e.
two-dimensional QFT).

e Open problems in massive integrable QFT: other universal corrections to saturation from
higher-particle form factors; the entanglement entropy for A a disconnected region from

multi-point correlation functions; the entanglement entropy for excited states; etc...




