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Entanglement in quantum mechanics

• Entanglement: the measurement of a quantum observable immediately affects future

measurements of independent observables. Opposite-spin particles from pair production:

|ψ〉 = 1√
2

(

| ↑ ↓ 〉+ | ↓ ↑ 〉
)

, 〈A〉 = 〈ψ|A|ψ〉

• Entanglement is the most fundamental, non-classical phenomenon of quantum

mechanics: neither pure-wave nor pure-particle. It is a useful “resource ”: at the basis of

better performances of the (still theoretical) quantum computers.

• Mixed states may describe similar probabilities but without entanglement:

ρ =
∑

α

pα|ψα〉〈ψα| , 〈A〉 = Tr(ρA)

(for pure states, ρ = |ψ〉〈ψ|; for finite temperature, ρ = e−H/kT ). For instance,

ρ =
1

2

(

| ↑ ↓ 〉〈 ↑ ↓ |+ | ↓ ↑ 〉〈 ↓ ↑ |
)



How to measure (or quantify) quantum entanglement?

• There are various propositions for measures of quantum entanglement. Consider the

entanglement entropy :

– With the Hilbert space a tensor product H = s1 ⊗ s2 ⊗ · · · ⊗ sN = A⊗ Ā, and a

given state |gs〉 ∈ H, calculate the reduced density matrix :

ρA = TrĀ(|gs〉〈gs|)

A

s x i+1s xxi−1s x i+L−1s x i+Ls
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– The entanglement entropy is the resulting von Neumann entropy :

SA = −TrA(ρA log(ρA)) = −
∑

eigenvalues of ρA
λ6=0

λ log(λ)



The entanglement entropy

• It is the entropy that is measured in a subsystemA, if its environement Ā is “forgotten”. It

measures a “number of links” between the subsystem and its environment; the quantity

of additional information in the subsystem about its environment.

• It was proposed as a way to understand black hole entropy
[Bombelli, Koul, Lee, Sorkin 1986].

• Then it was proposed as a measure of entanglement
[Bennet, Bernstein, Popescu, Schumacher 1996].

• Examples:

– Tensor product state:

|gs〉 = |A〉 ⊗ |Ā〉 ⇒ ρA = |A〉〈A| ⇒ SA = −1 log(1) = 0.

– The state |gs〉 = 1√
2
(| ↑ ↓ 〉+ | ↓ ↑ 〉):

ρ1st spin =
1

2
(| ↑ 〉〈 ↑ |+| ↓ 〉〈 ↓ |) ⇒ S1st spin = −2×

(

1

2
log

(

1

2

))

= log(2)



One basic property of entanglement entropy

Entanglement entropy is not “directional”: SA = SĀ. Proof:

• Anti-linear maps:

f : A→ Ā with f |A〉 = 〈A|gs〉,
f̄ : Ā→ A with f̄ |Ā〉 = 〈Ā|gs〉.

• Then ρA = f̄f : A→ A and ρĀ = ff̄ : Ā→ Ā.

• If ρA|A〉 = λ|A〉 then f̄f |A〉 = λ|A〉, hence (ff̄)f |A〉 = λf |A〉, whence

ρĀf |A〉 = λf |A〉.

• Hence ρA and ρĀ have the same set of non-zero eigenvalues (with the same

degeneracies).



Scaling limit

• Say |gs〉 is a ground state of some local spin-chain Hamiltonian, and that the chain is

infinitely long.

• An important property of |gs〉 is the correlation length ξ:

〈gs|σiσj |gs〉 − 〈gs|σi|gs〉〈gs|σj |gs〉 ∼ e−|i−j|/ξ as |i− j| → ∞

• Suppose there are parameters in the Hamiltonian such that for certain values, ξ → ∞.

This is a quantum critical point .

• We may adjust these parameters in such a way that the length L of A stays in proportion

to ξ: L/ξ = mr. This is the scaling limit .

• The resulting entanglement entropy diverges in that limit: SA ∝ log(ξ) + f(mr). But

the differences f(mr1)− f(mr2) are universal , and are described by quantum field

theory . r is the dimensionful length of A; m is the smallest mass of the spectrum.



First universal quantity: short- and large-distance entan glement entropy

Choosing appropriately ε ∝ 1/(mξ), a non-universal cutoff with dimenions of length:

• Short distance: 0 ≪ L≪ ξ, logarithmic behavior [Holzhey, Larsen, Wilczek 1994;

Calabrese, Cardy 2004]

SA ∼ c

3
log

(r

ε

)

=
c

3
log(L) + const.

• Large distance: 0 ≪ ξ ≪ L, saturation

SA ∼ − c
3
log(mε) + U =

c

3
log(ξ) + U + const.

where c is the central charge of the corresponding critical point. In terms of lattice quantities:

U = lim
x→∞

(

SA|L=∞, ξ=x − SA|ξ=∞, L=x

)



Partition functions on multi-sheeted Riemann surfaces

[Callan, Wilczek 1994; Holzhey, Larsen, Wilczek 1994]

• We can use the “replica trick” for evaluating the entanglement entropy:

SA = −TrA(ρA log(ρA)) = − lim
n→1

d

dn
TrA(ρ

n
A)

• For integer numbers n of replicas, in the scaling limit, this is a partition function on a

Riemann surface:

A〈φ|ρA|ψ〉A ∼
r

ψ>
φ|< A

|

TrA(ρ
n
A) ∼ Zn =

∫

[dϕ]Mn
exp

[

−
∫

Mn

d2x L[ϕ](x)
]

Mn :



Branch-point twist fields

[Cardy, Castro Alvaredo, Doyon 2007]

• Consider many copies of the QFT model on the usual R2:

L(n)[ϕ1, . . . , ϕn](x) = L[ϕ1](x) + . . .+ L[ϕn](x)

• There is an obvious symmetry under cyclic exchange of the copies:

L(n)[σϕ1, . . . , σϕn] = L(n)[ϕ1, . . . , ϕn] , with σϕi = ϕi+1 mod n

• The associated twist fields T , when inside correlation functions, gives

〈T (0) · · ·〉L(n) ∝
∫

C0

[dϕ1 · · · dϕn]R2 exp

[

−
∫

R2

d2x L(n)[ϕ1, . . . , ϕn](x)

]

· · ·

with branching conditions on the line x ∈ (0,∞) given by

C0 : ϕi(x, 0
+) = ϕi+1(x, 0

−) (x > 0)



• Graphically:

x T

(  )

(  ) (0)

ϕ
i

ϕ +1i

x

• In operator terms: equal-time exchange relations,

ϕi(x)T (0) =







T (0)ϕi(x) (x < 0)

T (0)ϕi+1(x) (x > 0)

• Locality: commutation with Hamiltonian density h(x),

[T (0), h(x)] = 0 (x 6= 0)



• Another twist field T̃ is associated to the inverse symmetry σ−1, and we have

〈T (0)T̃ (r)〉L(n) ∝
∫

C0,r

[dϕ1 · · · dϕn]R2 exp

[

−
∫

R2

d2x L(n)[ϕ1, . . . , ϕn](x)

]

= Zn

C0,r:

rT

(  )

(  ) (0) T
~ϕ

ϕ
i

+1i

x

x (  )



Short- and large-distance entanglement entropy revisited

Hence we have

Zn/Z
n
1 = Dnε

2dn〈T (0)T̃ (r)〉L(n) , SA = − lim
n→1

d

dn
Zn

where Dn is a normalisation constant, and dn is the scaling dimension of T [Calabrese,

Cardy 2004]:

dn =
c

12

(

n− 1

n

)

• Short distance: 0 ≪ L≪ ξ, logarithmic behavior

〈T (0)T̃ (r)〉L(n) ∼ r−2dn ⇒ SA ∼ c

3
log

(r

ε

)

• Large distance: 0 ≪ ξ ≪ L, saturation

〈T (0)T̃ (r)〉L(n) ∼ 〈T 〉2L(n) ⇒ U = − lim
n→1

d

dn

(

m−2dn〈T 〉2L(n)

)



Evaluation of U

U = − lim
n→1

d

dn

(

m−2dn〈T 〉2L(n)

)

• Idea of Al. Zamolodchikov (unpublished), for twist fields in general.

In angular quantization , x + iy = eη+iθ , η the “space” and θ the “time”:

twist fields = unitary operator Uσ associated to transformation σ

ϕi(η)T = T ϕi+1(η) ⇒ T ∝ Uσ

• Uσ can be diagonalized simultaneously with angular-quantization hamiltonian K(n):

〈T (0) · · ·〉L(n) = Trang,L(n)

[

e2πiK
(n)Uσ · · ·

]

• Regularization necessary, performed explicitly in free-fermion models; Ising model

[Cardy, Castro Alvaredo, Doyon 2007], [A. Zamoloschikov, Lukyanov 1997]:

UIsing =
1

6
log 2−

∫ ∞

0

dt

2t

(

t cosh t

sinh3 t
− 1

sinh2 t
− e−2t

3

)

= −0.131984...



Second universal quantity: the next correction term

We found [Cardy, Castro Alvaredo, Doyon 2007], [Castro Alvaredo, Doyon 2008], [Doyon

2008]

SA ∼ − c
3
log(m1ε) + U − 1

8

ℓ
∑

α=1

K0(2rmα) +O
(

e−3rm1
)

where ℓ is the number of particles in the spectrum of the QFT, andmα are the masses of the

particles, with m1 ≤ mα ∀α.

• This next correction term depends only on the particle spectrum, but not on their

interaction (i.e. not on the way they scatter off each other).

• In generic QFT, the largest mass is less than twice the smallest mass. Hence, the

entanglement entropy provides “clean” information about “half” of the spectrum.



Form factors and two-point function

• In the n-replica model L(n), there are n times as many particle types, which we will

denote by µ = (α, j) with j = 1, . . . , n the replica label.

• The two-point function of branch-point twist fields can be decomposed into the in-basis,

giving a large-distance expansion :

〈T (0)T̃ (r)〉L(n) = 〈vac|T (0)T̃ (r)|vac〉 =
∞
∑

k=0

∑

α1,...,αk
j1,...,jk

∫

dθ1 · · · dθk
(2π)k

|Fµ1,...,µk
(θ1, . . . , θk)|2e−r

∑k
i=1 mαi

cosh θi

where the form factors are:

Fµ1,...,µk
(θ1, . . . , θk) = 〈vac|T (0)|θ1, . . . , θk〉inµ1,...,µk



Analytic properties of two-particle form factors

Consider Fµ1,µ2(θ1, θ2) = Fµ1,µ2(θ1 − θ2) (by relativistic invariance) as an analytic

function of θ ≡ θ1 − θ2.

• Such form factors for usual (non-twist) fields have a well-known analytic structure:

using Mandelstam’s s-variable s = m2
α1

+m2
α2

+ 2mα1
mα2

cosh(θ), there is a

branch cut from s = (mα1 +mα2)
2 to ∞, just above which we are describing the

physical form factor with an in-state, and just below which it is the form factor with an

out-state instead. Between 0 and (mα1 +mα2)
2, there may be poles due to bound

states, and there are no other singularities on the physical sheet.

s

��
��
��

��
��
�� in

out

πi2

θ

��
��
��

��
��
��

��
��
��
��

in

in

out

out

• Form factors for branch-point twist-fields have modified analytic properties .



Change of sign of θ (as usual)

For θ1 < θ2:

Fµ1,µ2(θ1 − θ2) = 〈vac|T (0)|θ1, θ2〉outµ1,µ2

j1 6=j2
= 〈vac|T (0)|θ2, θ1〉inµ2,µ1

= Fµ2,µ1(θ2 − θ1)

2θ21θ µ1 µ2θ21θ µ1µ



Quasi-periodicity relation (different)

Fµ1,µ2(θ + 2πi) = Fµ2,µ1(−θ) , µ = (α, j + 1 mod n)

(0)

θ1θ µ1

+2πi

θ2µ2 µ1

T

1



The kinematic residue equation (new)

−iFµ1,µ2
(θ + πi) ∼ 〈T 〉δα1,ᾱ2(δj1,j2 − δj1+1,j2)

θ
, ᾱ2 = anti-particle of α2

θ

T(0)

πi+πi+

T(0)

µ2θµµθ1 2θ µ1



The structure of the two-particle form factors

Putting all that together, only F(α1,1),(α2,1)(θ) matters, thanks to the relation

F(α1,j1),(α2,j2)(θ) = F(α1,1),(α2,1)(θ + 2πi(j1 − j2)) for 0 ≤ j1 − j2 ≤ n− 1. It has

the following analytic structure:

i n2

πi2 πi

α1 α2,1 (       ),1(       )

α1 α2,2(       ) ,1(       )

α1 α2,3 ,1(       ) (       )

θ

−n

F

F

F

in

in

out π

out

i

π



Correction term to the entanglement entropy

• The two-particle contribution to the entanglement entropy is

d

dn



〈T 〉 n

8π2

ℓ
∑

α,β=1

∫ ∞

−∞
dθ1dθ2fα,β(θ1 − θ2, n)e

−r(mα cosh θ1+mβ cosh θ2)





n=1

〈T 〉fα,β(θ, n) =
n−1
∑

j=0

|F(α,1),(β,1)(θ + 2πij)|2

• The form factors themselves vanish like n− 1 as n→ 1, because the branch-point twist

field becomes the identity field .

• The only contribution to the entanglement entropy comes from the collision of kinematic

poles at θ = 0, giving
(

d
dnfα,β(θ, n)

)

n=1
= π2

2 δ(θ)δα,β̄ :

πi n2

πi

πi n2

πi2 πi

θ

n 1

θ

−

π

n

i



Heuristic: entanglement density and pair creations

• Entanglement entropy should “count” the connections betweenA and Ā, for A of large

enough extent:
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SA ∼
∫

A

dx

∫

Ā

dx′s(x− x′) ⇒ s(x) ∼ −1

2

d2S[0,x]

dx2
(1)

• The entanglement density s(x− x′) should receive contributions whenever the

quantum fluctuation at x is somehow correlated with that at x′.

• At large distances x− x′ ≫ m−1, the main contribu-

tions should be due to particles coming from a common

virtual pair created far in the past.

x’ x

• The particles have to survive a time t, and the probability for this is ruled by quantum

uncertainty principles, ∝ e−Et, E the total energy, independently from the interaction.



General two-particle twist-fields form factors

Diagonal scattering without bound states, integral representation for scattering matrix:

S(θ) = exp

[
∫ ∞

0

dt

t
g(t) sinh

(

tθ

iπ

)]

The general “minimal” solution is

Fmin
j,k(θ) = exp

[
∫ ∞

0

dt

t sinh(nt)
g(t) sin2

(

itn

2

(

1 +
iθ − 2π(j − k))

π

))]

and the full solution is

Fj,k(θ) =
〈T 〉 sin

(

π
n

)

2n sinh
(

iπ(2(j−k)−1)+θ
2n

)

sinh
(

iπ(2(k−j)−1)−θ
2n

)

Fmin
j,k(θ, n)

Fmin
j,k(iπ, n)



How to evaluate higher-particle twist-fields form factors

• In models of free fermionic particles , form factors are given by determinants / pfaffians:

T = : exp

∫

dθdθ′
[

a†(θ)a†(θ′)F (θ, θ′) + a†(θ)a(θ′)G(θ, θ′) + a(θ)a(θ′)H(θ, θ′)
]

:

• In interacting integrable models , one way is to use Lukyanov’s angular-quantization

method [Lukyanov, 1995],

〈vac|T (0)|θ1, . . . , θk〉in1,...,1 =
Trang,L(n)

[

e2πiK
(n)Uσ Z1(θ1) · · ·Z1(θn)

]

Trang,L(n)

[

e2πinK(n)
]

=
Trang,L

[

e2πinKZ(θ1) · · ·Z(θn)
]

Trang,L [e2πinK ]

Lukyanov observed that:

K =
∫

dνk(ν)bνb−ν (bilinear in free bosons),

Z(θ) =
∑

j : e
∫
dνzν,j(θ)bν : (linear combination of vertex operators).

Calculations: 〈Z(θ)Z(θ′)〉Tr = exp
[∫

dνdν′zν(θ)zν′(θ′)〈bνbν′〉Tr
]

, etc.



Large-n behaviour of form factors?

[Castro Alvaredo, Doyon 2008]

∝ n for renormalizable models

∝ n logn for marginally renormalizable models



Third universal quantity: boundary entropy [Castro Alvaredo, Doyon 2008]

System: half-line composed of two connected regions A (finite) and B (infinite).

|——A—————Ā———- - - -

Sboundary
A ∼







c

6
log(2r/ε) + V ε≪ r ≪ m−1, boundary length scale if any

− c
6
log(mε) +

U

2
r ≫ m−1

• We found
V = s− log

√

f

where s is the boundary entropy of Affleck and Ludwig (1991) and f is the fraction of

the massive ground state degeneracy that is broken by the boundary condition.

1. V = Sboundary(r)critical −
1

2
Sbulk(2r)critical − log

√

f from looking at Sboundary(r1, r2)

2. Sboundary(r)critical −
1

2
Sbulk(2r)critical = s [Calabrese, Cardy 2004].

• Consequence:

lim
x→∞

(

SA|L=∞,ξ=x − SA|ξ=∞,L=x/2

)

= U/2 + log
√

f − s.



Ising model checks

• Consider Ising quantum chain in transverse magnetic field near to its critical point in the

longitudinally-ordered phase, with boundary magnetic field h coupled longitudinally. Use

κ = 1− h2/(2m). Integrable boundary state [Goshal, Zamolodchikov 1994].

• Exact form-factor expression for V (κ); 500 terms re-summation of form factors agrees

with 1/6 log(rm) + V (κ) where

V (κ) =







√
2 κ > −∞ (free)

0 κ = −∞ (fixed)

This is V (κ) = s− log
√
f with f = 1/2.

• As n→ 1, only fully connected terms remain. Analytic continuation from region n≫ 1.

• mr → 0 and κ→ −∞ simultan.: critical bulk and non-critical boundary condition.

• For κ > −1 (“critical” value [Goshal, Zamolodchikov 1994]), entropy not monotonic in

rm: approaches asymptotic value from above. Breaks “subadditivity”.





Conclusions

• We have shown how three universal quantities associated to the entanglement entropy of

one-dimensional quantum chains can be accessed using the methods of massive

integrable QFT:

– the difference between L≫ ξ ≫ 0 and ξ ≫ L≫ 0 (the universal constant U ),

– the first correction to saturation at L≫ ξ ≫ 0 (in terms of the mass spectrum),

– the difference between L≫ ξ ≫ 0 and ξ ≫ L≫ 0 in boundary case (in terms of

Affleck and Ludwig’s boundary entropy).

All these relations are valid beyond integrability, in any near-critical quantum chain (i.e.

two-dimensional QFT).

• Open problems in massive integrable QFT: other universal corrections to saturation from

higher-particle form factors; the entanglement entropy for A a disconnected region from

multi-point correlation functions; the entanglement entropy for excited states; etc...


