The entanglement entropy in integrable quantum field theory

Benjamin Doyon
Department of mathematics,
King's College London, UK

Bologna, September 2011

Based on:

J. Cardy, O.A. Castro Alvaredo, B.D., J. Stat. Phys. 130, 129 (2008)
O.A. Castro Alvaredo, B.D., J. Phys. A 41275203 (2008)
B.D., Phys. Rev. Lett. 102031602 (2009)
O.A. Castro Alvaredo, B.D., J. Stat. Phys. 134, 105 (2009)

See the review:
O.A. Castro Alvaredo, B.D., J. Phys. A 42504006 (2009) in special issue "Entanglement entropy in extended quantum systems", ed. by P. Calabrese, J. Cardy and B.D.

Entanglement in quantum mechanics

- Entanglement: the measurement of a quantum observable immediately affects future measurements of independent observables. Opposite-spin particles from pair production:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle), \quad\langle A\rangle=\langle\psi| A|\psi\rangle
$$

- Entanglement is the most fundamental, non-classical phenomenon of quantum mechanics: neither pure-wave nor pure-particle. It is a useful "resource": at the basis of better performances of the (still theoretical) quantum computers.
- Mixed states may describe similar probabilities but without entanglement:

$$
\rho=\sum_{\alpha} p_{\alpha}\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|, \quad\langle A\rangle=\operatorname{Tr}(\rho A)
$$

(for pure states, $\rho=|\psi\rangle\langle\psi|$; for finite temperature, $\rho=e^{-H / k T}$). For instance,

$$
\rho=\frac{1}{2}(|\uparrow \downarrow\rangle\langle\uparrow \downarrow|+|\downarrow \uparrow\rangle\langle\downarrow \uparrow|)
$$

How to measure (or quantify) quantum entanglement?

- There are various propositions for measures of quantum entanglement. Consider the entanglement entropy:
- With the Hilbert space a tensor product $\mathcal{H}=s_{1} \otimes s_{2} \otimes \cdots \otimes s_{N}=A \otimes \bar{A}$, and a given state $|\mathrm{gs}\rangle \in \mathcal{H}$, calculate the reduced density matrix:

- The entanglement entropy is the resulting von Neumann entropy:

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \left(\rho_{A}\right)\right)=-\sum_{\substack{\text { eigenvalues of } \rho_{A} \\ \lambda \neq 0}} \lambda \log (\lambda)
$$

The entanglement entropy

- It is the entropy that is measured in a subsystem A, if its environement \bar{A} is "forgotten". It measures a "number of links" between the subsystem and its environment; the quantity of additional information in the subsystem about its environment.
- It was proposed as a way to understand black hole entropy [Bombelli, Koul, Lee, Sorkin 1986].
- Then it was proposed as a measure of entanglement [Bennet, Bernstein, Popescu, Schumacher 1996].
- Examples:
- Tensor product state:

$$
|\mathrm{gs}\rangle=|A\rangle \otimes|\bar{A}\rangle \Rightarrow \rho_{A}=|A\rangle\langle A| \Rightarrow S_{A}=-1 \log (1)=0 .
$$

- The state $|\mathrm{gs}\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)$:

$$
\rho_{1^{\text {st }} \operatorname{spin}}=\frac{1}{2}(|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|) \Rightarrow S_{1^{\text {st }} \operatorname{spin}}=-2 \times\left(\frac{1}{2} \log \left(\frac{1}{2}\right)\right)=\log (2)
$$

One basic property of entanglement entropy

Entanglement entropy is not "directional": $S_{A}=S_{\bar{A}}$. Proof:

- Anti-linear maps: $f: A \rightarrow \bar{A}$ with $f|A\rangle=\langle A \mid g s\rangle$, $\bar{f}: \bar{A} \rightarrow A$ with $\bar{f}|\bar{A}\rangle=\langle\bar{A} \mid \mathrm{gs}\rangle$.
- Then $\rho_{A}=\bar{f} f: A \rightarrow A$ and $\rho_{\bar{A}}=f \bar{f}: \bar{A} \rightarrow \bar{A}$.
- If $\rho_{A}|A\rangle=\lambda|A\rangle$ then $\bar{f} f|A\rangle=\lambda|A\rangle$, hence $(f \bar{f}) f|A\rangle=\lambda f|A\rangle$, whence $\rho_{\bar{A}} f|A\rangle=\lambda f|A\rangle$.
- Hence ρ_{A} and $\rho_{\bar{A}}$ have the same set of non-zero eigenvalues (with the same degeneracies).

Scaling limit

- Say $|\mathrm{gs}\rangle$ is a ground state of some local spin-chain Hamiltonian, and that the chain is infinitely long.
- An important property of $|\mathrm{gs}\rangle$ is the correlation length ξ :

$$
\langle\mathrm{gs}| \sigma_{i} \sigma_{j}|\mathrm{gs}\rangle-\langle\mathrm{gs}| \sigma_{i}|\mathrm{gs}\rangle\langle\mathrm{gs}| \sigma_{j}|\mathrm{gs}\rangle \sim e^{-|i-j| / \xi} \text { as }|i-j| \rightarrow \infty
$$

- Suppose there are parameters in the Hamiltonian such that for certain values, $\xi \rightarrow \infty$. This is a quantum critical point.
- We may adjust these parameters in such a way that the length L of A stays in proportion to $\xi: L / \xi=m r$. This is the scaling limit.
- The resulting entanglement entropy diverges in that limit: $S_{A} \propto \log (\xi)+f(m r)$. But the differences $f\left(m r_{1}\right)-f\left(m r_{2}\right)$ are universal, and are described by quantum field theory. r is the dimensionful length of $A ; m$ is the smallest mass of the spectrum.

First universal quantity: short- and large-distance entanglement entropy
Choosing appropriately $\varepsilon \propto 1 /(m \xi)$, a non-universal cutoff with dimenions of length:

- Short distance: $0 \ll L \ll \xi$, logarithmic behavior [Holzhey, Larsen, Wilczek 1994; Calabrese, Cardy 2004]

$$
S_{A} \sim \frac{c}{3} \log \left(\frac{r}{\varepsilon}\right)=\frac{c}{3} \log (L)+\text { const } .
$$

- Large distance: $0 \ll \xi \ll L$, saturation

$$
S_{A} \sim-\frac{c}{3} \log (m \varepsilon)+U=\frac{c}{3} \log (\xi)+U+\text { const } .
$$

where c is the central charge of the corresponding critical point. In terms of lattice quantities:

$$
U=\lim _{x \rightarrow \infty}\left(\left.S_{A}\right|_{L=\infty, \xi=x}-\left.S_{A}\right|_{\xi=\infty, L=x}\right)
$$

Partition functions on multi-sheeted Riemann surfaces

[Callan, Wilczek 1994; Holzhey, Larsen, Wilczek 1994]

- We can use the "replica trick" for evaluating the entanglement entropy:

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \left(\rho_{A}\right)\right)=-\lim _{n \rightarrow 1} \frac{d}{d n} \operatorname{Tr}_{A}\left(\rho_{A}^{n}\right)
$$

- For integer numbers n of replicas, in the scaling limit, this is a partition function on a Riemann surface:

$$
\operatorname{Tr}_{A}\left(\rho_{A}^{n}\right) \sim Z_{n}=\int[d \varphi]_{\mathcal{M}_{n}} \exp \left[-\int_{\mathcal{M}_{n}} d^{2} x \mathcal{L}[\varphi](x)\right]
$$

Branch-point twist fields
 [Cardy, Castro Alvaredo, Doyon 2007]

- Consider many copies of the QFT model on the usual \mathbb{R}^{2} :

$$
\mathcal{L}^{(n)}\left[\varphi_{1}, \ldots, \varphi_{n}\right](x)=\mathcal{L}\left[\varphi_{1}\right](x)+\ldots+\mathcal{L}\left[\varphi_{n}\right](x)
$$

- There is an obvious symmetry under cyclic exchange of the copies:

$$
\mathcal{L}^{(n)}\left[\sigma \varphi_{1}, \ldots, \sigma \varphi_{n}\right]=\mathcal{L}^{(n)}\left[\varphi_{1}, \ldots, \varphi_{n}\right], \quad \text { with } \quad \sigma \varphi_{i}=\varphi_{i+1 \bmod n}
$$

- The associated twist fields \mathcal{T}, when inside correlation functions, gives

$$
\langle\mathcal{T}(0) \cdots\rangle_{\mathcal{L}^{(n)}} \propto \int_{C_{0}}\left[d \varphi_{1} \cdots d \varphi_{n}\right]_{\mathbb{R}^{2}} \exp \left[-\int_{\mathbb{R}^{2}} d^{2} x \mathcal{L}^{(n)}\left[\varphi_{1}, \ldots, \varphi_{n}\right](x)\right] \cdots
$$

with branching conditions on the line $\mathrm{x} \in(0, \infty)$ given by

$$
C_{0}: \varphi_{i}\left(\mathrm{x}, 0^{+}\right)=\varphi_{i+1}\left(\mathrm{x}, 0^{-}\right) \quad(\mathrm{x}>0)
$$

- Graphically:

- In operator terms: equal-time exchange relations,

$$
\varphi_{i}(\mathrm{x}) \mathcal{T}(0)= \begin{cases}\mathcal{T}(0) \varphi_{i}(\mathrm{x}) & (\mathrm{x}<0) \\ \mathcal{T}(0) \varphi_{i+1}(\mathrm{x}) & (\mathrm{x}>0)\end{cases}
$$

- Locality: commutation with Hamiltonian density $h(\mathrm{x})$,

$$
[\mathcal{T}(0), h(x)]=0 \quad(x \neq 0)
$$

- Another twist field $\tilde{\mathcal{T}}$ is associated to the inverse symmetry σ^{-1}, and we have

$$
\begin{aligned}
\langle\mathcal{T}(0) \tilde{\mathcal{T}}(r)\rangle_{\mathcal{L}(n)} & \propto \int_{C_{0, r}}\left[d \varphi_{1} \cdots d \varphi_{n}\right]_{\mathbb{R}^{2}} \exp \left[-\int_{\mathbb{R}^{2}} d^{2} x \mathcal{L}^{(n)}\left[\varphi_{1}, \ldots, \varphi_{n}\right](x)\right] \\
& =Z_{n}
\end{aligned}
$$

$$
C_{0, r}:
$$

Short- and large-distance entanglement entropy revisited

Hence we have

$$
Z_{n} / Z_{1}^{n}=D_{n} \varepsilon^{2 d_{n}}\langle\mathcal{T}(0) \tilde{\mathcal{T}}(r)\rangle_{\mathcal{L}^{(n)}}, \quad S_{A}=-\lim _{n \rightarrow 1} \frac{d}{d n} Z_{n}
$$

where D_{n} is a normalisation constant, and d_{n} is the scaling dimension of \mathcal{T} [Calabrese, Cardy 2004]:

$$
d_{n}=\frac{c}{12}\left(n-\frac{1}{n}\right)
$$

- Short distance: $0 \ll L \ll \xi$, logarithmic behavior

$$
\langle\mathcal{T}(0) \tilde{\mathcal{T}}(r)\rangle_{\mathcal{L}^{(n)}} \sim r^{-2 d_{n}} \Rightarrow S_{A} \sim \frac{c}{3} \log \left(\frac{r}{\varepsilon}\right)
$$

- Large distance: $0 \ll \xi \ll L$, saturation

$$
\langle\mathcal{T}(0) \tilde{\mathcal{T}}(r)\rangle_{\mathcal{L}^{(n)}} \sim\langle\mathcal{T}\rangle_{\mathcal{L}^{(n)}}^{2} \Rightarrow U=-\lim _{n \rightarrow 1} \frac{d}{d n}\left(m^{-2 d_{n}}\langle\mathcal{T}\rangle_{\mathcal{L}^{(n)}}^{2}\right)
$$

Evaluation of U

$$
U=-\lim _{n \rightarrow 1} \frac{d}{d n}\left(m^{-2 d_{n}}\langle\mathcal{T}\rangle_{\mathcal{L}^{(n)}}^{2}\right)
$$

- Idea of AI. Zamolodchikov (unpublished), for twist fields in general. In angular quantization, $\mathrm{x}+i \mathrm{y}=e^{\eta+i \theta}, \eta$ the "space" and θ the "time":
twist fields $=$ unitary operator \mathcal{U}_{σ} associated to transformation σ

$$
\varphi_{i}(\eta) \mathcal{T}=\mathcal{T} \varphi_{i+1}(\eta) \Rightarrow \mathcal{T} \propto \mathcal{U}_{\sigma}
$$

- \mathcal{U}_{σ} can be diagonalized simultaneously with angular-quantization hamiltonian $K^{(n)}$:

$$
\langle\mathcal{T}(0) \cdots\rangle_{\mathcal{L}^{(n)}}=\operatorname{Tr}_{\mathrm{ang}, \mathcal{L}^{(n)}}\left[e^{2 \pi i K^{(n)}} \mathcal{U}_{\sigma} \cdots\right]
$$

- Regularization necessary, performed explicitly in free-fermion models; Ising model [Cardy, Castro Alvaredo, Doyon 2007], [A. Zamoloschikov, Lukyanov 1997]:

$$
U_{\text {Ising }}=\frac{1}{6} \log 2-\int_{0}^{\infty} \frac{d t}{2 t}\left(\frac{t \cosh t}{\sinh ^{3} t}-\frac{1}{\sinh ^{2} t}-\frac{e^{-2 t}}{3}\right)=-0.131984 \ldots
$$

Second universal quantity: the next correction term

We found [Cardy, Castro Alvaredo, Doyon 2007], [Castro Alvaredo, Doyon 2008], [Doyon 2008]

$$
S_{A} \sim-\frac{c}{3} \log \left(m_{1} \varepsilon\right)+U-\frac{1}{8} \sum_{\alpha=1}^{\ell} K_{0}\left(2 r m_{\alpha}\right)+O\left(e^{-3 r m_{1}}\right)
$$

where ℓ is the number of particles in the spectrum of the QFT, and m_{α} are the masses of the particles, with $m_{1} \leq m_{\alpha} \forall \alpha$.

- This next correction term depends only on the particle spectrum, but not on their interaction (i.e. not on the way they scatter off each other).
- In generic QFT, the largest mass is less than twice the smallest mass. Hence, the entanglement entropy provides "clean" information about "half" of the spectrum.

Form factors and two-point function

- In the n-replica model $\mathcal{L}^{(n)}$, there are n times as many particle types, which we will denote by $\mu=(\alpha, j)$ with $j=1, \ldots, n$ the replica label.
- The two-point function of branch-point twist fields can be decomposed into the $i n$-basis, giving a large-distance expansion:

$$
\begin{aligned}
& \langle\mathcal{T}(0) \tilde{\mathcal{T}}(r)\rangle_{\mathcal{L}^{(n)}}=\langle\operatorname{vac}| \mathcal{T}(0) \tilde{\mathcal{T}}(r)|\operatorname{vac}\rangle= \\
& \sum_{k=0}^{\infty} \sum_{\substack{c_{1}, \ldots, \alpha_{k} \\
j_{1}, \ldots, j_{k}}} \int \frac{d \theta_{1} \cdots d \theta_{k}}{(2 \pi)^{k}}\left|F_{\mu_{1}, \ldots, \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)\right|^{2} e^{-r \sum_{i=1}^{k} m_{\alpha_{i}} \cosh \theta_{i}}
\end{aligned}
$$

where the form factors are:

$$
F_{\mu_{1}, \ldots, \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)=\langle\operatorname{vac}| \mathcal{T}(0)\left|\theta_{1}, \ldots, \theta_{k}\right\rangle_{\mu_{1}, \ldots, \mu_{k}}^{i n}
$$

Analytic properties of two-particle form factors

Consider $F_{\mu_{1}, \mu_{2}}\left(\theta_{1}, \theta_{2}\right)=F_{\mu_{1}, \mu_{2}}\left(\theta_{1}-\theta_{2}\right)$ (by relativistic invariance) as an analytic function of $\theta \equiv \theta_{1}-\theta_{2}$.

- Such form factors for usual (non-twist) fields have a well-known analytic structure: using Mandelstam's s-variable $s=m_{\alpha_{1}}^{2}+m_{\alpha_{2}}^{2}+2 m_{\alpha_{1}} m_{\alpha_{2}} \cosh (\theta)$, there is a branch cut from $s=\left(m_{\alpha_{1}}+m_{\alpha_{2}}\right)^{2}$ to ∞, just above which we are describing the physical form factor with an in-state, and just below which it is the form factor with an out-state instead. Between 0 and $\left(m_{\alpha_{1}}+m_{\alpha_{2}}\right)^{2}$, there may be poles due to bound states, and there are no other singularities on the physical sheet.

- Form factors for branch-point twist-fields have modified analytic properties.

Change of sign of θ (as usual)

For $\theta_{1}<\theta_{2}$:

$$
\begin{array}{rcl}
F_{\mu_{1}, \mu_{2}}\left(\theta_{1}-\theta_{2}\right) & = & \langle\operatorname{vac}| \mathcal{T}(0)\left|\theta_{1}, \theta_{2}\right\rangle_{\mu_{1}, \mu_{2}}^{\text {out }} \\
& \stackrel{j_{1} \neq j_{2}}{=} & \langle\operatorname{vac}| \mathcal{T}(0)\left|\theta_{2}, \theta_{1}\right\rangle_{\mu_{2}, \mu_{1}}^{\text {in }}=F_{\mu_{2}, \mu_{1}}\left(\theta_{2}-\theta_{1}\right)
\end{array}
$$

Quasi-periodicity relation (different)

$$
F_{\mu_{1}, \mu_{2}}(\theta+2 \pi i)=F_{\mu_{2}, \mu_{1}}(-\theta), \quad \mu=(\alpha, j+1 \bmod n)
$$

The kinematic residue equation (new)
$-i F_{\mu_{1}, \mu_{2}}(\theta+\pi i) \sim\langle\mathcal{T}\rangle \frac{\delta_{\alpha_{1}, \bar{\alpha}_{2}}\left(\delta_{j_{1}, j_{2}}-\delta_{j_{1}+1, j_{2}}\right)}{\theta}, \quad \bar{\alpha}_{2}=$ anti-particle of α_{2}

The structure of the two-particle form factors
Putting all that together, only $F_{\left(\alpha_{1}, 1\right),\left(\alpha_{2}, 1\right)}(\theta)$ matters, thanks to the relation $F_{\left(\alpha_{1}, j_{1}\right),\left(\alpha_{2}, j_{2}\right)}(\theta)=F_{\left(\alpha_{1}, 1\right),\left(\alpha_{2}, 1\right)}\left(\theta+2 \pi i\left(j_{1}-j_{2}\right)\right)$ for $0 \leq j_{1}-j_{2} \leq n-1$. It has the following analytic structure:

Correction term to the entanglement entropy

- The two-particle contribution to the entanglement entropy is

$$
\begin{gathered}
\frac{d}{d n}\left(\langle\mathcal{T}\rangle \frac{n}{8 \pi^{2}} \sum_{\alpha, \beta=1}^{\ell} \int_{-\infty}^{\infty} d \theta_{1} d \theta_{2} f_{\alpha, \beta}\left(\theta_{1}-\theta_{2}, n\right) e^{-r\left(m_{\alpha} \cosh \theta_{1}+m_{\beta} \cosh \theta_{2}\right)}\right)_{n=1}^{n-1} \\
\langle\mathcal{T}\rangle f_{\alpha, \beta}(\theta, n)=\sum_{j=0}\left|F_{(\alpha, 1),(\beta, 1)}(\theta+2 \pi i j)\right|^{2}
\end{gathered}
$$

- The form factors themselves vanish like $n-1$ as $n \rightarrow 1$, because the branch-point twist field becomes the identity field.
- The only contribution to the entanglement entropy comes from the collision of kinematic poles at $\theta=0$, giving $\left(\frac{d}{d n} f_{\alpha, \beta}(\theta, n)\right)_{n=1}=\frac{\pi^{2}}{2} \delta(\theta) \delta_{\alpha, \bar{\beta}}$:

Heuristic: entanglement density and pair creations

- Entanglement entropy should "count" the connections between A and \bar{A}, for A of large enough extent:

- The entanglement density $s\left(x-x^{\prime}\right)$ should receive contributions whenever the quantum fluctuation at x is somehow correlated with that at x^{\prime}.
- At large distances $x-x^{\prime} \gg m^{-1}$, the main contributions should be due to particles coming from a common virtual pair created far in the past.

- The particles have to survive a time t, and the probability for this is ruled by quantum uncertainty principles, $\propto e^{-E t}, E$ the total energy, independently from the interaction.

General two-particle twist-fields form factors

Diagonal scattering without bound states, integral representation for scattering matrix:

$$
S(\theta)=\exp \left[\int_{0}^{\infty} \frac{d t}{t} g(t) \sinh \left(\frac{t \theta}{i \pi}\right)\right]
$$

The general "minimal" solution is

$$
F_{j, k}^{\min }(\theta)=\exp \left[\int_{0}^{\infty} \frac{d t}{t \sinh (n t)} g(t) \sin ^{2}\left(\frac{i t n}{2}\left(1+\frac{i \theta-2 \pi(j-k))}{\pi}\right)\right)\right]
$$

and the full solution is

$$
F_{j, k}(\theta)=\frac{\langle\mathcal{T}\rangle \sin \left(\frac{\pi}{n}\right)}{2 n \sinh \left(\frac{i \pi(2(j-k)-1)+\theta}{2 n}\right) \sinh \left(\frac{i \pi(2(k-j)-1)-\theta}{2 n}\right)} \frac{F_{j, k}^{\min }(\theta, n)}{F_{j, k}^{\min }(i \pi, n)}
$$

How to evaluate higher-particle twist-fields form factors

- In models of free fermionic particles, form factors are given by determinants / pfaffians:

$$
\mathcal{T}=: \exp \int d \theta d \theta^{\prime}\left[a^{\dagger}(\theta) a^{\dagger}\left(\theta^{\prime}\right) F\left(\theta, \theta^{\prime}\right)+a^{\dagger}(\theta) a\left(\theta^{\prime}\right) G\left(\theta, \theta^{\prime}\right)+a(\theta) a\left(\theta^{\prime}\right) H\left(\theta, \theta^{\prime}\right)\right]:
$$

- In interacting integrable models, one way is to use Lukyanov's angular-quantization method [Lukyanov, 1995],

$$
\begin{aligned}
\langle\operatorname{vac}| \mathcal{T}(0)\left|\theta_{1}, \ldots, \theta_{k}\right\rangle_{1, \ldots, 1}^{i n} & =\frac{\operatorname{Tr}_{\text {ang }, \mathcal{L}^{(n)}}\left[e^{2 \pi i K^{(n)}} \mathcal{U}_{\sigma} Z_{1}\left(\theta_{1}\right) \cdots Z_{1}\left(\theta_{n}\right)\right]}{\operatorname{Tr}_{\text {ang }, \mathcal{L}^{(n)}}\left[e^{2 \pi i n K^{(n)}}\right]} \\
& =\frac{\operatorname{Tr}_{\text {ang }, \mathcal{L}}\left[e^{2 \pi i n K} Z\left(\theta_{1}\right) \cdots Z\left(\theta_{n}\right)\right]}{\operatorname{Tr}_{\text {ang }, \mathcal{L}}\left[e^{2 \pi i n K}\right]}
\end{aligned}
$$

Lukyanov observed that:
$K=\int d \nu k(\nu) b_{\nu} b_{-\nu}$ (bilinear in free bosons), $Z(\theta)=\sum_{j}: e^{\int d \nu z_{\nu, j}(\theta) b_{\nu}}:$ (linear combination of vertex operators).
Calculations: $\left\langle Z(\theta) Z\left(\theta^{\prime}\right)\right\rangle_{\operatorname{Tr}}=\exp \left[\int d \nu d \nu^{\prime} z_{\nu}(\theta) z_{\nu^{\prime}}\left(\theta^{\prime}\right)\left\langle b_{\nu} b_{\nu^{\prime}}\right\rangle_{\operatorname{Tr}}\right]$, etc.

Large- n behaviour of form factors?

[Castro Alvaredo, Doyon 2008]
$\propto n \quad$ for renormalizable models
$\propto n \log n \quad$ for marginally renormalizable models

Third universal quantity: boundary entropy [Castro Alvaredo, Doyon 2008]
System: half-line composed of two connected regions A (finite) and B (infinite).

$S_{A}^{\text {boundary }} \sim \begin{cases}\frac{c}{6} \log (2 r / \varepsilon)+V & \varepsilon \ll r \ll m^{-1}, \text { boundary length scale if any } \\ -\frac{c}{6} \log (m \varepsilon)+\frac{U}{2} & r \gg m^{-1}\end{cases}$

- We found

$$
V=s-\log \sqrt{f}
$$

where s is the boundary entropy of Affleck and Ludwig (1991) and f is the fraction of the massive ground state degeneracy that is broken by the boundary condition.

1. $V=S^{\text {boundary }}(r)_{\text {critical }}-\frac{1}{2} S^{\text {bulk }}(2 r)_{\text {critical }}-\log \sqrt{f}$ from looking at $S^{\text {boundary }}\left(r_{1}, r_{2}\right)$
2. $S^{\text {boundary }}(r)_{\text {critical }}-\frac{1}{2} S^{\text {bulk }}(2 r)_{\text {critical }}=s \quad$ [Calabrese, Cardy 2004].

- Consequence:

$$
\lim _{x \rightarrow \infty}\left(\left.S_{A}\right|_{L=\infty, \xi=x}-\left.S_{A}\right|_{\xi=\infty, L=x / 2}\right)=U / 2+\log \sqrt{f}-s
$$

Ising model checks

- Consider Ising quantum chain in transverse magnetic field near to its critical point in the longitudinally-ordered phase, with boundary magnetic field h coupled longitudinally. Use $\kappa=1-h^{2} /(2 m)$. Integrable boundary state [Goshal, Zamolodchikov 1994].
- Exact form-factor expression for $V(\kappa) ; 500$ terms re-summation of form factors agrees with $1 / 6 \log (r m)+V(\kappa)$ where

$$
V(\kappa)=\left\{\begin{array}{ccc}
\sqrt{2} & \kappa>-\infty & \text { (free) } \\
0 & \kappa=-\infty & \text { (fixed) }
\end{array}\right.
$$

This is $V(\kappa)=s-\log \sqrt{f}$ with $f=1 / 2$.

- As $n \rightarrow 1$, only fully connected terms remain. Analytic continuation from region $n \gg 1$.
- $m r \rightarrow 0$ and $\kappa \rightarrow-\infty$ simultan.: critical bulk and non-critical boundary condition.
- For $\kappa>-1$ ("critical" value [Goshal, Zamolodchikov 1994]), entropy not monotonic in $r m$: approaches asymptotic value from above. Breaks "subadditivity".

Conclusions

- We have shown how three universal quantities associated to the entanglement entropy of one-dimensional quantum chains can be accessed using the methods of massive integrable QFT:
- the difference between $L \gg \xi \gg 0$ and $\xi \gg L \gg 0$ (the universal constant U),
- the first correction to saturation at $L \gg \xi \gg 0$ (in terms of the mass spectrum),
- the difference between $L \gg \xi \gg 0$ and $\xi \gg L \gg 0$ in boundary case (in terms of Affleck and Ludwig's boundary entropy).

All these relations are valid beyond integrability, in any near-critical quantum chain (i.e. two-dimensional QFT).

- Open problems in massive integrable QFT: other universal corrections to saturation from higher-particle form factors; the entanglement entropy for A a disconnected region from multi-point correlation functions; the entanglement entropy for excited states; etc...

