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Exercise 2.1

Let f ∈ F . Then [XF , XG](f) = XF (XG(f))−XG(XF (f)) = {F, {G, f}}−{G, {F, f}} = {{F,G}, f} =

X{F,G}(f). Since this is true for every f , this completes the proof.

Exercise 2.2

Consider

dFi =
∑
j

ci,jdpj + di,jdqj =
∑
J

CiJdxJ

where we use xJ to represent both pj and qj , and j = 1, . . . , n and J = 1, . . . , 2n. Suppose all dFi

are independent for i = 1, . . . ,m with m > n. This means that there is no coefficients ai such that∑
i aidFi = 0, i.e. such that

∑
i aiCiJ = 0 for all J . We may think of CiJ as m vectors ~Ci with each 2n

components, and the condition is that these vectors are linearly independent.

Let us denote by ωIJ what gives rise to the Poisson bracket:

{f, g} =
∑
IJ

ωIJ∂If∂Jg.

Then by the involution property {Fi, Fj} = 0 we have∑
IJ

ωIJCiICjJ = 0

whence ∑
J

CjJA
J
i = 0, AJi =

∑
I

ωIJCiI .

This means that there are m 2n-dimensional vectors ~Ai such that ~Cj · ~Ai = 0 for all j. If all vectors ~Ai

are linearly independent, this means that every 2n-dimensional vector ~Cj must lie in the same 2n −m-

dimensional space. For m > n, then the m vectors ~Cj cannot be all independent, which is a contradiction.

Hence the vectors ~Ai cannot be linearly independent. That is, there exist qi such that
∑
i qi

~Ai = 0.

This means ∑
iI

qiω
IJCiI = 0

for all J . That is, Ω~v = 0 where Ω is the matrix with elements ΩJI = ωIJ and ~v =
∑
i qi

~Ci. Since the
~Ci are linearly independent, then ~v 6= 0, whence we have found a nonzero eigenvector of Ω with zero

eigenvalue. But by explicit calculation, Ω has nonzero determinant, hence all its eigenvalues are nonzero

(the Poisson bracket is nondegenerate). Hence this is a contradiction, so that we cannot have m > n.
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Exercise 2.3

We first inverse in order to find pi(F, q):

pi(F, q) =
√
Fi − ω2q2i . (0.1)

The we integrate to find S(F, q):

S(F, q) =

∫ q

0

∑
i

√
Fi − ω2q2i dqi (0.2)

This is done by the change of variable qi =
√
Fi

ω sinβi and we obtain

S(F, q) =
∑
i

Fi
ω

∫
dβi cos2 βi =

∑
i

Fi
ω

(
βi
2

+
sin 2βi

4

)
(0.3)

so that

Ψi =
1

ω

(
βi
2

+
sin 2βi

4

)
(0.4)

In order to calculate the action variables Ij , we integrate over a cycle. We see that we have qi =
√
Fi

ω sinβi

and pi =
√
Fi cosβi so that the βj describe angles round cycles. Hence an integration over a cycle Cj is

an integration on βj from 0 to 2π. Integrating:

Ij =
1

2π

Fj
ω

∫ 2π

0

dβj cos2 βj =
Fj
2ω
. (0.5)

Then, we have the angle variables

θj = 2ωΨj = βj +
sin 2βj

2
.

We see that the angles βj describing the elliptic trajectories are related in a monotonic fashion to the

angle variables θj .

Exercise 2.4

We calculate

L̇ = U̇ΛU−1 + U Λ̇U−1 − UΛU−1U̇U−1 (0.6)

and

[M,L] = ML− LM = UBΛU−1 + U̇ΛU−1 − UΛBU−1 − UΛU−1U̇U−1 (0.7)

and equating we find what we had to prove.

Exercise 2.5

We have

[M,L] =

(
−ω2q ωp

ωp ω2q

)
(0.8)

Equating with L̇ we find the correct equations of motion. On the other hand, we see that

1

4
TrL2 =

1

2
(p2 + ω2q2) (0.9)

which is the correct Hamiltonian.

Exercise 2.6
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This is done in [1, p 15]

Exercise 2.7

Here, L of [1, p 13] can be used to get coordinates on the invariant submanifold, because in its

expansion in the independent algebra elements Hj and Ej we see that the coefficients are Ij and 2Ijθj ,

which form a generically nonsingular system of coordinates (and in fact, keeping Ij as constants, this is

essentially the system of coordinates given by the angles of the action-angle variables). So the argument

presented suggest that the covariant derivatives

Dj =
d

dtj
− ad(Mj) (0.10)

are commuting. Indeed we see that ad(Mj) is simply

ad(Mj) = −
n∑
j=1

∂H

∂Ij
ad(Ej) (0.11)

which are commuting thanks to [Ej , Ek] = 0. Hence, we indeed have a principal bundle over the in-

variant submanifold characterized by constant Ij , with commuting covariant derivatives Dj = d
dtj

+∑n
j=1

∂H
∂Ij

ad(Ej), such that the consistent system of equationsDjL = 0, where L =
∑n
j=1(IjHj+2IjθjEj),

gives rise to the equations of motion associated to the flows XIj of the various action variables Ij .

Exercise 3.1

This is just a matter of doing the calculations explicitly. For convenience we write

U =
i

4

(
∂tφσz + 2m sinhu cos

φ

2
σx − 2m coshu sin

φ

2
σy

)
V =

i

4

(
∂xφσz − 2m coshu cos

φ

2
σx + 2m sinhu sin

φ

2
σy

)
. (0.12)

Then

8i[U, V ] =

(
−∂tφ 2m coshu cos

φ

2
− ∂xφ 2m sinhu cos

φ

2

)
σy

+

(
−∂tφ 2m sinhu sin

φ

2
− ∂xφ 2m coshu sin

φ

2

)
σx

+
(
−2m2 sinφ

)
σz

−4i(∂tU − ∂xV ) = (∂2t − ∂2x)φσz

+

(
−∂tφm sinhu sin

φ

2
− ∂xφm coshu sin

φ

2

)
σx

+

(
−∂tφm coshu cos

φ

2
− ∂xφm sinhu cos

φ

2

)
σy (0.13)

so that ∂tU − ∂xV + [U, V ] = 0 is exactly equivalent to the equations of motion.

Exercise 3.2

Exercise 3.3

(assessment question)

Exercise 3.4
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Exercise 3.5

Exercise 4.1

Exercise 4.2

We write

Ra1,a2(λ− µ)Ta1(λ)Ta2(µ)

= Ra1,a2(λ− µ)LN,a1(λ) · · ·L1,a1(λ) LN,a2(µ) · · ·L1,a2(µ)

= Ra1,a2(λ− µ)LN,a1(λ)LN,a2(µ)LN−1,a1(λ) · · ·L1,a1(λ) LN−1,a2(µ) · · ·L1,a2(µ)

= · · ·

= Ra1,a2(λ− µ)LN,a1(λ)LN,a2(µ) · · ·L1,a1(λ)L1,a2(µ)

= LN,a2(µ)LN,a1(λ)Ra1,a2(λ− µ) · · ·L1,a1(λ)L1,a2(µ)

= · · ·

= LN,a2(µ)LN,a1(λ) · · ·L1,a2(µ)L1,a1(λ)Ra1,a2(λ− µ)

= Ta2(µ)Ta1(λ)Ra1,a2(λ− µ) (0.14)

Exercise 4.3

We use the fact that Ln,a(i/2) = iPn,a. Hence,

F (i/2) = Tra(Ta(i/2)

= Tra(LN,a(i/2) · · ·L1,a(i/2))

= iNTra(PN,a · · ·P1,a)

= iNU. (0.15)

Then,

d

dλ
F (λ)

∣∣∣∣
λ=i/2

= Tra

(
d

dλ
LN,a(λ) · · ·L1,a(λ)

∣∣∣∣
λ=i/2

)

= iN−1
N∑
j=1

Tra

(
PN,a · · ·

(
d

dλ
Lj,a(λ)

∣∣∣∣
λ=i/2

)
· · ·P1,a

)

= iN−1
N∑
j=1

Tra (PN,a · · ·1j,a · · ·P1,a)

= iN−1
N∑
j=1

Tra

(
PN,a · · · P̂j,a · · ·P1,a

)

=: iN−1
N∑
j=1

Uj (0.16)
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where (as usual) the wide hat means that the factor is missing. Then, we observe that

Uj = Tra

(
PN,a · · · P̂j,a · · ·P1,a

)
= Tra (Pj,j+1Pj,j+1PN,a · · ·Pj+1,aPj−1,a · · ·P1,a)

= Tra (Pj,j+1PN,a · · ·Pj,j+1Pj+1,aPj−1,a · · ·P1,a)

= Tra (Pj,j+1PN,a · · ·Pj+1,aPj,aPj−1,a · · ·P1,a)

= Pj,j+1U. (0.17)

Hence,

dF (λ)

dλ
F (λ)−1

∣∣∣∣
λ=i/2

= i−1
N∑
j=1

UjU
−1

= i−1
N∑
j=1

Pj,j+1UU
−1

= i−1
N∑
j=1

Pj,j+1. (0.18)

This is indeed a local quantity (i.e. a sum over a local density). Then, we simply have to use the

expression

Pj,j+1 =
1

2
(1 + ~σj · ~σj+1) (0.19)

to obtain Q1 = i−1(N + 2H).
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