Integrability - solutions to some problems

Benjamin Doyon
King's College London
Fall 2012
London Taught Centre

Exercise 2.1

Let $f \in \mathcal{F}$. Then $\left[X_{F}, X_{G}\right](f)=X_{F}\left(X_{G}(f)\right)-X_{G}\left(X_{F}(f)\right)=\{F,\{G, f\}\}-\{G,\{F, f\}\}=\{\{F, G\}, f\}=$ $X_{\{F, G\}}(f)$. Since this is true for every f, this completes the proof.

Exercise 2.2

Consider

$$
d F_{i}=\sum_{j} c_{i, j} d p_{j}+d_{i, j} d q_{j}=\sum_{J} C_{i J} d x_{J}
$$

where we use x_{J} to represent both p_{j} and q_{j}, and $j=1, \ldots, n$ and $J=1, \ldots, 2 n$. Suppose all $d F_{i}$ are independent for $i=1, \ldots, m$ with $m>n$. This means that there is no coefficients a_{i} such that $\sum_{i} a_{i} d F_{i}=0$, i.e. such that $\sum_{i} a_{i} C_{i J}=0$ for all J. We may think of $C_{i J}$ as m vectors \vec{C}_{i} with each $2 n$ components, and the condition is that these vectors are linearly independent.

Let us denote by $\omega^{I J}$ what gives rise to the Poisson bracket:

$$
\{f, g\}=\sum_{I J} \omega^{I J} \partial_{I} f \partial_{J} g
$$

Then by the involution property $\left\{F_{i}, F_{j}\right\}=0$ we have

$$
\sum_{I J} \omega^{I J} C_{i I} C_{j J}=0
$$

whence

$$
\sum_{J} C_{j J} A_{i}^{J}=0, \quad A_{i}^{J}=\sum_{I} \omega^{I J} C_{i I}
$$

This means that there are $m 2 n$-dimensional vectors \vec{A}_{i} such that $\vec{C}_{j} \cdot \vec{A}_{i}=0$ for all j. If all vectors \vec{A}_{i} are linearly independent, this means that every $2 n$-dimensional vector \vec{C}_{j} must lie in the same $2 n-m$ dimensional space. For $m>n$, then the m vectors \vec{C}_{j} cannot be all independent, which is a contradiction.

Hence the vectors \vec{A}_{i} cannot be linearly independent. That is, there exist q_{i} such that $\sum_{i} q_{i} \vec{A}_{i}=0$. This means

$$
\sum_{i I} q_{i} \omega^{I J} C_{i I}=0
$$

for all J. That is, $\Omega \vec{v}=0$ where Ω is the matrix with elements $\Omega_{J I}=\omega^{I J}$ and $\vec{v}=\sum_{i} q_{i} \vec{C}_{i}$. Since the \vec{C}_{i} are linearly independent, then $\vec{v} \neq 0$, whence we have found a nonzero eigenvector of Ω with zero eigenvalue. But by explicit calculation, Ω has nonzero determinant, hence all its eigenvalues are nonzero (the Poisson bracket is nondegenerate). Hence this is a contradiction, so that we cannot have $m>n$.

Exercise 2.3

We first inverse in order to find $p_{i}(F, q)$:

$$
\begin{equation*}
p_{i}(F, q)=\sqrt{F_{i}-\omega^{2} q_{i}^{2}} \tag{0.1}
\end{equation*}
$$

The we integrate to find $S(F, q)$:

$$
\begin{equation*}
S(F, q)=\int_{0}^{q} \sum_{i} \sqrt{F_{i}-\omega^{2} q_{i}^{2}} d q_{i} \tag{0.2}
\end{equation*}
$$

This is done by the change of variable $q_{i}=\frac{\sqrt{F_{i}}}{\omega} \sin \beta_{i}$ and we obtain

$$
\begin{equation*}
S(F, q)=\sum_{i} \frac{F_{i}}{\omega} \int d \beta_{i} \cos ^{2} \beta_{i}=\sum_{i} \frac{F_{i}}{\omega}\left(\frac{\beta_{i}}{2}+\frac{\sin 2 \beta_{i}}{4}\right) \tag{0.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Psi_{i}=\frac{1}{\omega}\left(\frac{\beta_{i}}{2}+\frac{\sin 2 \beta_{i}}{4}\right) \tag{0.4}
\end{equation*}
$$

In order to calculate the action variables I_{j}, we integrate over a cycle. We see that we have $q_{i}=\frac{\sqrt{F_{i}}}{\omega} \sin \beta_{i}$ and $p_{i}=\sqrt{F_{i}} \cos \beta_{i}$ so that the β_{j} describe angles round cycles. Hence an integration over a cycle C_{j} is an integration on β_{j} from 0 to 2π. Integrating:

$$
\begin{equation*}
I_{j}=\frac{1}{2 \pi} \frac{F_{j}}{\omega} \int_{0}^{2 \pi} d \beta_{j} \cos ^{2} \beta_{j}=\frac{F_{j}}{2 \omega} \tag{0.5}
\end{equation*}
$$

Then, we have the angle variables

$$
\theta_{j}=2 \omega \Psi_{j}=\beta_{j}+\frac{\sin 2 \beta_{j}}{2}
$$

We see that the angles β_{j} describing the elliptic trajectories are related in a monotonic fashion to the angle variables θ_{j}.

Exercise 2.4

We calculate

$$
\begin{equation*}
\dot{L}=\dot{U} \Lambda U^{-1}+U \dot{\Lambda} U^{-1}-U \Lambda U^{-1} \dot{U} U^{-1} \tag{0.6}
\end{equation*}
$$

and

$$
\begin{equation*}
[M, L]=M L-L M=U B \Lambda U^{-1}+\dot{U} \Lambda U^{-1}-U \Lambda B U^{-1}-U \Lambda U^{-1} \dot{U} U^{-1} \tag{0.7}
\end{equation*}
$$

and equating we find what we had to prove.

Exercise 2.5

We have

$$
[M, L]=\left(\begin{array}{cc}
-\omega^{2} q & \omega p \tag{0.8}\\
\omega p & \omega^{2} q
\end{array}\right)
$$

Equating with \dot{L} we find the correct equations of motion. On the other hand, we see that

$$
\begin{equation*}
\frac{1}{4} \operatorname{Tr} L^{2}=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right) \tag{0.9}
\end{equation*}
$$

which is the correct Hamiltonian.

Exercise 2.6

This is done in [1, p 15]

Exercise 2.7

Here, L of $[1, \mathrm{p} \mathrm{13}]$ can be used to get coordinates on the invariant submanifold, because in its expansion in the independent algebra elements H_{j} and E_{j} we see that the coefficients are I_{j} and $2 I_{j} \theta_{j}$, which form a generically nonsingular system of coordinates (and in fact, keeping I_{j} as constants, this is essentially the system of coordinates given by the angles of the action-angle variables). So the argument presented suggest that the covariant derivatives

$$
\begin{equation*}
D_{j}=\frac{d}{d t_{j}}-\operatorname{ad}\left(M_{j}\right) \tag{0.10}
\end{equation*}
$$

are commuting. Indeed we see that $\operatorname{ad}\left(M_{j}\right)$ is simply

$$
\begin{equation*}
\operatorname{ad}\left(M_{j}\right)=-\sum_{j=1}^{n} \frac{\partial H}{\partial I_{j}} \operatorname{ad}\left(E_{j}\right) \tag{0.11}
\end{equation*}
$$

which are commuting thanks to $\left[E_{j}, E_{k}\right]=0$. Hence, we indeed have a principal bundle over the invariant submanifold characterized by constant I_{j}, with commuting covariant derivatives $D_{j}=\frac{d}{d t_{j}}+$ $\sum_{j=1}^{n} \frac{\partial H}{\partial I_{j}} \operatorname{ad}\left(E_{j}\right)$, such that the consistent system of equations $D_{j} L=0$, where $L=\sum_{j=1}^{n}\left(I_{j} H_{j}+2 I_{j} \theta_{j} E_{j}\right)$, gives rise to the equations of motion associated to the flows $X_{I_{j}}$ of the various action variables I_{j}.

Exercise 3.1

This is just a matter of doing the calculations explicitly. For convenience we write

$$
\begin{align*}
U & =\frac{i}{4}\left(\partial_{t} \phi \sigma_{z}+2 m \sinh u \cos \frac{\phi}{2} \sigma_{x}-2 m \cosh u \sin \frac{\phi}{2} \sigma_{y}\right) \\
V & =\frac{i}{4}\left(\partial_{x} \phi \sigma_{z}-2 m \cosh u \cos \frac{\phi}{2} \sigma_{x}+2 m \sinh u \sin \frac{\phi}{2} \sigma_{y}\right) \tag{0.12}
\end{align*}
$$

Then

$$
\begin{align*}
8 i[U, V]= & \left(-\partial_{t} \phi 2 m \cosh u \cos \frac{\phi}{2}-\partial_{x} \phi 2 m \sinh u \cos \frac{\phi}{2}\right) \sigma_{y} \\
& +\left(-\partial_{t} \phi 2 m \sinh u \sin \frac{\phi}{2}-\partial_{x} \phi 2 m \cosh u \sin \frac{\phi}{2}\right) \sigma_{x} \\
& +\left(-2 m^{2} \sin \phi\right) \sigma_{z} \\
-4 i\left(\partial_{t} U-\partial_{x} V\right)= & \left(\partial_{t}^{2}-\partial_{x}^{2}\right) \phi \sigma_{z} \\
& +\left(-\partial_{t} \phi m \sinh u \sin \frac{\phi}{2}-\partial_{x} \phi m \cosh u \sin \frac{\phi}{2}\right) \sigma_{x} \\
& +\left(-\partial_{t} \phi m \cosh u \cos \frac{\phi}{2}-\partial_{x} \phi m \sinh u \cos \frac{\phi}{2}\right) \sigma_{y} \tag{0.13}
\end{align*}
$$

so that $\partial_{t} U-\partial_{x} V+[U, V]=0$ is exactly equivalent to the equations of motion.

Exercise 3.2

Exercise 3.3

(assessment question)

Exercise 3.4

Exercise 3.5

Exercise 4.1

Exercise 4.2

We write

$$
\begin{align*}
& R_{a_{1}, a_{2}}(\lambda-\mu) T_{a_{1}}(\lambda) T_{a_{2}}(\mu) \\
& \quad=R_{a_{1}, a_{2}}(\lambda-\mu) L_{N, a_{1}}(\lambda) \cdots L_{1, a_{1}}(\lambda) L_{N, a_{2}}(\mu) \cdots L_{1, a_{2}}(\mu) \\
& =R_{a_{1}, a_{2}}(\lambda-\mu) L_{N, a_{1}}(\lambda) L_{N, a_{2}}(\mu) L_{N-1, a_{1}}(\lambda) \cdots L_{1, a_{1}}(\lambda) L_{N-1, a_{2}}(\mu) \cdots L_{1, a_{2}}(\mu) \\
& =\cdots \\
& =R_{a_{1}, a_{2}}(\lambda-\mu) L_{N, a_{1}}(\lambda) L_{N, a_{2}}(\mu) \cdots L_{1, a_{1}}(\lambda) L_{1, a_{2}}(\mu) \\
& =L_{N, a_{2}}(\mu) L_{N, a_{1}}(\lambda) R_{a_{1}, a_{2}}(\lambda-\mu) \cdots L_{1, a_{1}}(\lambda) L_{1, a_{2}}(\mu) \\
& =\cdots \\
& =L_{N, a_{2}}(\mu) L_{N, a_{1}}(\lambda) \cdots L_{1, a_{2}}(\mu) L_{1, a_{1}}(\lambda) R_{a_{1}, a_{2}}(\lambda-\mu) \\
& =T_{a_{2}}(\mu) T_{a_{1}}(\lambda) R_{a_{1}, a_{2}}(\lambda-\mu) \tag{0.14}
\end{align*}
$$

Exercise 4.3

We use the fact that $L_{n, a}(i / 2)=i P_{n, a}$. Hence,

$$
\begin{align*}
F(i / 2) & =\operatorname{Tr}_{a}\left(T_{a}(i / 2)\right. \\
& =\operatorname{Tr}_{a}\left(L_{N, a}(i / 2) \cdots L_{1, a}(i / 2)\right) \\
& =i^{N} \operatorname{Tr}_{a}\left(P_{N, a} \cdots P_{1, a}\right) \\
& =i^{N} U . \tag{0.15}
\end{align*}
$$

Then,

$$
\begin{align*}
\left.\frac{d}{d \lambda} F(\lambda)\right|_{\lambda=i / 2} & =\operatorname{Tr}_{a}\left(\left.\frac{d}{d \lambda} L_{N, a}(\lambda) \cdots L_{1, a}(\lambda)\right|_{\lambda=i / 2}\right) \\
& =i^{N-1} \sum_{j=1}^{N} \operatorname{Tr}_{a}\left(P_{N, a} \cdots\left(\left.\frac{d}{d \lambda} L_{j, a}(\lambda)\right|_{\lambda=i / 2}\right) \cdots P_{1, a}\right) \\
& =i^{N-1} \sum_{j=1}^{N} \operatorname{Tr}_{a}\left(P_{N, a} \cdots \mathbf{1}_{j, a} \cdots P_{1, a}\right) \\
& =i^{N-1} \sum_{j=1}^{N} \operatorname{Tr}_{a}\left(P_{N, a} \cdots \widehat{P_{j, a}} \cdots P_{1, a}\right) \\
& =: i^{N-1} \sum_{j=1}^{N} U_{j} \tag{0.16}
\end{align*}
$$

where (as usual) the wide hat means that the factor is missing. Then, we observe that

$$
\begin{align*}
U_{j} & =\operatorname{Tr}_{a}\left(P_{N, a} \cdots \widehat{P_{j, a}} \cdots P_{1, a}\right) \\
& =\operatorname{Tr}_{a}\left(P_{j, j+1} P_{j, j+1} P_{N, a} \cdots P_{j+1, a} P_{j-1, a} \cdots P_{1, a}\right) \\
& =\operatorname{Tr}_{a}\left(P_{j, j+1} P_{N, a} \cdots P_{j, j+1} P_{j+1, a} P_{j-1, a} \cdots P_{1, a}\right) \\
& =\operatorname{Tr}_{a}\left(P_{j, j+1} P_{N, a} \cdots P_{j+1, a} P_{j, a} P_{j-1, a} \cdots P_{1, a}\right) \\
& =P_{j, j+1} U . \tag{0.17}
\end{align*}
$$

Hence,

$$
\begin{align*}
\left.\frac{d F(\lambda)}{d \lambda} F(\lambda)^{-1}\right|_{\lambda=i / 2} & =i^{-1} \sum_{j=1}^{N} U_{j} U^{-1} \\
& =i^{-1} \sum_{j=1}^{N} P_{j, j+1} U U^{-1} \\
& =i^{-1} \sum_{j=1}^{N} P_{j, j+1} \tag{0.18}
\end{align*}
$$

This is indeed a local quantity (i.e. a sum over a local density). Then, we simply have to use the expression

$$
\begin{equation*}
P_{j, j+1}=\frac{1}{2}\left(1+\vec{\sigma}_{j} \cdot \vec{\sigma}_{j+1}\right) \tag{0.19}
\end{equation*}
$$

to obtain $Q_{1}=i^{-1}(N+2 H)$.

References

[1] "Introduction to classical integrable systems", O. Babelon, D. Bernard and M. Talon, Cambridge University Press, 2003
[2] "How algebraic Bethe ansatz works for integrable models", L.D. Faddeev, published in Les Houches 1995, Relativistic gravitation and gravitational radiation pp. 149-219, hep-th/9605187, 1996
[3] "Algebraic analysis of solvable lattice models", M. Jimbo and T. Miwa, Conference Board of the Mathematical Sciences 85, American Mathematical Society ,1993
[4] "On the quantum inverse scattering problem", J. M. Maillet and V. Terras, Nucl. Phys. B575, 627-644, hep-th/9911030, 2000
[5] "Quantum inverse scattering method and correlation functions", V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Cambridge University Press, 1993
[6] "Form factors in completely integrable models of quantum field theory", F. A. Smirnov, World Scientific, 1992

