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Abstract

Using recent results concerning form factors of certain scaling fields in the massive Dirac theory on
the Poincaré disk, we find expressions for the form factors of Ising spin and disorder fields in the massive
Majorana theory on the Poincaré disk. In particular, we verify that these recent results agree with
the factorization properties of the fields in the Dirac theory representing tensor products of spin and of
disorder fields in the Majorana theory.
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1 Introduction

Quantum Field Theory (QFT) in curved space-time is a subject of great importance which has been
studied from many viewpoints (see for instance [1]). One of the main applications of QFT in Euclidean
space is the study of classical statistical systems near their critical point, where the correlation length is
of the order of the size of the system. It is important to extend such application to the use of QFT on
FEuclidean-signature curved space-time for the study of statistical systems on curved space, as the effects
of curvature on the properties of critical points are not well understood. A simple but non-trivial curved
space is the Poincaré disk. It is maximally symmetric, which allows for the extension of some techniques
on two-dimensional flat space to this space, and has a negative Gaussian curvature. As was argued in [2],
a negative curvature can be used as an infrared regulator for Euclidean QFT; it is interesting to analyze
further the effects of such a curvature on the critical point of a statistical system.

Recently, correlation functions of certain scaling fields in the Dirac theory on the Poincaré disk were
studied [3, 4]. The scaling fields in question, O, = (’)ia, —1 < a < 1, are spinless, U(1)-neutral
and have scaling dimension o?. They are not mutually local with respect to the Dirac field. Their
mutual locality index with the Dirac field is a, that is, the Dirac field ¥ takes a factor, ¥ — 2™ W,
when continued counterclockwise around the field O,. In [3], using a generalization of the method of
isomonodromic deformations to the study of determinants of Dirac operators on the Poincaré disk, the
authors obtained differential equations of Painlevé type for correlation functions of such fields. In [4], we
solved the associated connection problem for the two-point function, obtained its long distance expansion
by developing a form factor decomposition, and evaluated the one-point function.

A physical application of these fields, with which the present paper is concerned, comes from the fact
that correlators of some of them are simply related to the scaling limit of correlators of local variables in
the lattice Ising model [5, 6, 7]. Let us explain in more details what this relation is on flat space, where
the results are well known. The lattice Ising model at zero magnetic field and at a temperature very near
to its critical temperature (more precisely, in the scaling limit) is described by the quantum field theory
of a free massive Majorana fermion [8, 9] (cf. [10]). Recall that in the Ising model, one can consider the
spin variable and its dual, the disorder variable [11], related by the duality transformation that takes the
system from its low temperature regime to its high temperature regime and vice versa. Correspondingly
in the Majorana theory, one can define the spin field o and the disorder field p. These fields are local, but
not mutually local with respect to the fermion fields or with respect to each other. Correlation functions
involving these fields give the scaling limit of correlation functions involving spin and disorder variables
in the Ising model. Now, the tensor product of two independent copies of the Majorana theory can be
equivalently described by a single copy of the Dirac theory. One can then represent the tensor product
of two spin fields acting non trivially on independent copies of the Majorana theory as a single field in
the Dirac theory, and similarly for the tensor product of two disorder fields. Taking the Majorana theory
(with positive mass) to represent the scaling limit of the Ising model in its low-temperature regime (that
is, for temperatures near to but smaller than the critical temperature), one has the following equivalences
[5, 6]:

c0o=0% peou=0") (1.1)

where the fields O+) and ©(-) belong to the Dirac theory. They can be expressed in terms of the fields
O, described above:
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In fact, once the field O is given to represent o @ o, the field @) for representing y ® p can be
deduced using the OPE’s in the Dirac theory and in the Majorana theory®.
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LSuch considerations also lead to the relations:
O (@) 0P (zn) = (o(z1)-- 0(wn)) ® (o(x1) -+ 0(Tn))
O (@1)- -0 (@n) = (=)™ (ul(z1) - p(zn)) @ (1) - - () (1.3)



Having recalled some results on flat space, let us now turn to the Dirac theory on the Poincaré disk.
Again it is equivalent to a tensor product of two copies of the Majorana theory, but on the Poincaré
disk. Then we expect that the fields O+) and O(~) given by (1.2) factorize as a tensor product of fields
belonging to the Majorana theory, the way they do in (1.1). Although such a factorization is not a priori
obvious from the definitions of O*+) and O(-), it is a local property and should not be affected by the
curvature. The two fields o and p thus defined in the Majorana theory on the Poincaré disk will still
be called spin and disorder fields. We expect that these fields be further related to spin and disorder
variables in a lattice Ising model on the Poincaré disk, although the precise relation is not yet clarified. In
any case, the study of the fields O, in [3, 4] should give information about spin and disorder fields in the
Majorana theory on the Poincaré disk. It is not straightforward to obtain most of this information, and
a full analysis, based on more efficient methods, will be exposed in another publication [12]. However, it
is a simple matter to specialize some of the results of [4] to obtain expressions for form factors, and in
particular vacuum expectation values, of spin and disorder fields. This is what we do in this paper. This
involves, in particular, a verification that results of [4] indeed respect the factorization properties of the
fields Ot) and O(-). More precisely, since the Hilbert space of the Dirac theory on the Poincaré disk
is a tensor product of two copies of the Hilbert space of the Majorana theory on the Poincaré disk, we
verify that in the tensor product basis of the Dirac Hilbert space, matrix elements between vacuum and
excited states, or form factors, of the fields @) and O(-) factorize.

Form factors are useful quantities to study, in particular because of their relation with long distance
expansions of correlations functions. We will not discuss such expansions in this paper; in a future
publication [12], form factors and correlation functions of spin and disorder fields on the Poincaré disk
will be studied by a different, much simpler method. Some of the results of [12] concerning form factors
are already available to us, and will be compared with the expressions obtained in the present paper; this
will give a further verification of the more general form factor results of [4]. However, the method of [12]
does not give an explicit expression for the vacuum expectation value of the spin field, which in fact is
simple to read off from a result of [4]. In the Majorana theory with fermion mass m on the Poincaré disk
with Gaussian curvature —1/R?, it is given by

(0)2 = (R/2)" % H (M) . (1.4)
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Here we use the following normalization of the fields Ot) and @) in the Dirac theory on the Poincaré
disk:

(OP @0 () ~d(x,y) "2, (0 (@) 0 (y) ~ —d(a,y) "2 asz—y, (15)
where d(z,y) is the geodesic distance between the points z and y. This corresponds to the following
normalization for the spin and disorder fields:

1

(o(@)o() ~d@,y) %, (@) ~dz,y) 7 asz—y.

Note that in the theory on flat space, form factors were first calculated in [13], and the vacuum expectation
value of the spin field was first calculated in [7].

The plan of the paper is as follows. In section 2, we recall the structure of the Hilbert space of the
Dirac theory on the Poincaré disk, and explicitly factorize it in a tensor product of two copies of the
Hilbert space of the Majorana theory. In section 3, we briefly recall and analyze some results of [4]
concerning form factors in the Dirac theory of the fields O, 1 used in the definition of O and O(-)
(1.2). In section 4, we verify the factorization properties for the field O+) and calculate multi-particle
form factors of the spin field. Finally, in section 5, we verify the factorization properties for the field O(-)
and calculate multi-particle form factors of the disorder field.
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Figure 1: The mapping from the Poincaré disk to the strip is described by x+iy = tan(§, +1i&y), x—iy =
tan(§; — i&y,). Lines with an arrow represent orbits of a non-compact subgroup of the isometry group of
the Poincaré disk.

2 Hilbert space

In [4], the Hilbert space of the free Dirac theory on the Poincaré disk was constructed in various quan-
tization schemes, and form factors of the scaling fields O, were calculated in two (related) schemes. It
was pointed out that in a quantization scheme where the Hamiltonian is taken as the generator of a non-
compact subgroup of the SU(1,1) isometry group of the Poincaré disk, the spectrum is discrete. This
quantization scheme is the most convenient one for obtaining the long distance expansion of correlation
functions by using a resolution the identity on the Hilbert space. Also, in this scheme, form factors of
the fields O, seem to have the simplest expressions. Here we will recall the structure of the Hilbert space
of the Dirac theory on the Poincaré disk, and its relation to the Hilbert space of the Majorana theory on
the Poincaré disk, within this quantization scheme only.

In order to describe the quantization scheme, it is convenient to consider a system of coordinates
—m/4 < & < m/4, & € R covering a “Poincaré strip” instead of the Poincaré disk, with the mapping
shown in Figure 1. For the “Poincaré strip” of Gaussian curvature —1/R?, the metric is given by

o _CR?

2 2
= o228 (d&s +d&y).

In this system of coordinates, the action for a free Dirac fermion field ¥ = ( \IlR ) of mass m is
L

0 2u
A= / dgy/ dfx ( 85}( + Y 3§y + 7‘303(2&)) v (2.1)

where v = mR and ¥ = UfyY. Here the Dirac matrices are taken to be

« [0 i s (01
=00 )T =01 0 )

For simplicity, we will assume that v > 1/2, as was assumed in [4] 2 (we expect the Hilbert space to have
more structure than what is described below in the case v < 1/2; this case will be studied in more details

n [12]).

The translation &, — &, + ¢ is a translation along an orbit of a non-compact subgroup of the isometry
group. The quantization scheme in which we are interested is then obtained by taking &, as the “time”.
The corresponding Hilbert space H is a module for the canonical equal-“time” anti-commutation relations

{U(&, &), ON(EL &) =10(& — &)

2Note that in [4], the combination mR was denoted u instead of v.




A basis for ‘H can be taken as the discrete set of states diagonalizing the Hamiltonian corresponding to
the action (2.1):

|]€1, .. '7kn>51,...,ena /fj S N, € = :|:j, n = 0, ]., 2, RN kl << kn (22)
They correspond to eigenvalues A\; + ...+ A, of the Hamiltonian, where
)\j :1+2I/+2]€j.

The vacuum state, with n = 0, will be denoted |vac). In particular, correlation functions, denoted (- - -),
are vacuum expectation values of “time”-ordered operators, where the “time”-ordering brings operators
at lower values of &, to the right of those at higher values of &,. The number of arguments, n, in the
state (2.2) should be interpreted as the number of free fermionic particles forming the state, the integer
k; as the discrete energy level of the j'' particle and the sign €; as its U(1) charge. These states are
normalized by

[ <kn7 ceey kl|k117 ey k;;,>e/1,...,efn = 5k1,k’1 e 6k k! 661—',-6’1 e 5671-1—6;1

n vy

and states with different number of particles are orthogonal. States with different orderings of the energy
levels k; are defined by the fact that exchanging simultaneously the positions of two values of energy
levels k;, k; and of U(1) charges €, €; in |k1,...,ky)e,, .., brings a factor of (—1).

In parallel to the case of the theory on flat space, the free massive Dirac theory on the Poincaré disk
is equivalent to two independent copies of a free massive Majorana theory on the Poincaré disk. Consider
four fermion fields g, ¥y, Vq, ¥y, defined via

Wy = %(% Vi), Up = (@ — ida).

V2 V2

It is easy to verify that correlators of these fields factorize; for instance:

(Qal@1) - ta(@n) (@) - o(2)) = (Wal@1) -+ Palzn) (Wo(21) - - o(a,))-

This factorization can be expressed by writing the fields 1, ¥y, ¥a, ¥s as tensor products of fields in two
independent copies of the Majorana theory:

V=0 @1, Yp=107%, Y.=9v01, =101
Here 1,1 are (real) Majorana fields that satisfy the equations of motion

, Lp=—— g

9 _
ae? =  cos(2&) o0& _cos(2§x)w
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with € = & +i&y and € = &, — i€, and have short distance normalization given by

Lt L1
27‘(’i£1—€27 271'7;5_1—52.

A precise correspondence between a product of fermion fields in the Dirac theory and a tensor product
of products of fermion fields in the Majorana theory must take into account the signs coming from the
fact that two Dirac fields anti-commute. We will define, for instance,

ba(@1) - talmn) Yo (2h) - u(ar,) = (1) - Y(@n)) @ (1) - p(a7,)),

and appropriately include extra minus signs for other orderings of ¥,’s with respect to ¥’s.

<¢(§1,51)¢(§275_2)> ~ <'J}(£1a€1)1;(52a52)> ~

Consequent to this decomposition of the Dirac fermion field, the Hilbert space of the Dirac theory can
be written as a tensor product of two copies of the Hilbert space of the Majorana theory: H = Hy @ Hyy.
It can be verified that the Hilbert space H s, within the quantization scheme we are considering, has a



structure similar to that of H. An explicit construction of Hjy; will be done in [12]. For now, we simply
need to know that a basis for Hj; can be taken as the discrete set of states diagonalizing the Hamiltonian
of the Majorana theory in this quantization scheme:

|/€1,...,kn>M, ijN, n=0,1,2,..., k1 < -+ < kn,

with vacuum denoted by |vac)as. These states correspond to eigenvalues A1 + ...+ A,. States with
different orderings of energy levels are defined by the fact that exchanging the positions of two arguments
ki, k; brings a factor of (—1). In order to obtain a precise correspondence between the Dirac Hilbert
space and a tensor product of two copies of the Majorana Hilbert space, define one-particle states |k),
and |k)p in the Dirac theory by

K)o = %( )+ + k)= ), |k)y = %( k)4 = 1k)-), (2.3)

and multi-particle states involving states of type a and b by forming exterior products of these one-particle
states. Then,
|vac) = |vac)pr ® |vac) p

and

Btk KL k) bib . = R ka)ar @ (R k)
S——

n m

Here we have fixed some of the phases by requiring the charge conjugation symmetry in the Dirac theory
to be implemented by
k)y o k), Ol o Up Ul o W,

In what follows, we will omit the subscript M on Majorana states unless required for clarity.

The expected correspondence (1.1) between fields O+) and O(-) in the Dirac theory and fields o and
w1 in the Majorana theory, and the correspondence described above between the Hilbert spaces H and
Has of both theories, allow us to write matrix elements in H of the fields @) and O(-) in terms of
matrix elements in My of the fields o and p. Having expressions for form factors of the fields O+) and
O(=) [4], this in turn gives us expressions for form factors of the fields ¢ and p. We will verify in the next
sections that one can indeed define form factors of a spin field o acting on the Majorana Hilbert space
‘Has by the identification

waclOPNky, ... kn K. ., k;n>a,a, b,b, ... = (vaclolky, ..., kn){vaclol|ky, ... k) (2.4)
——

n m

where Ot is defined in (1.2). In particular, from the vacuum expectation value of O), the vacuum
expectation value (o) = (vac|o|vac) of the field o is given by (1.4). Here and below, the fields of which
we take matrix elements are assumed to be at the center of the Poincaré disk. Using their transformation
properties under the SU(1, 1) isometry group, they can always be translated to any other points in the
Poincaré disk. In a similar way, we will verify that one can define form factors of a disorder field u acting
on Hy by3

(0aclOC b, kK K o b= (1) wacllhy, . avaclulkl, . K,) (25)
S——

where the field O(7) is defined in (1.2). In particular, the vacuum expectation value of the disorder field
is zero: {u) = 0.

3The sign (—1)" comes from the identification

O @)a(@1) -+~ Yaln) Yo (@) - p(ar,) = (1) (u(@)b(@1) - Plan)) © (ul@)y(a)) - p(a),)),

which can be obtained, for instance, by analyzing the OPE’s in the Dirac and in the Majorana theories.



3 Two-particle form factors of the scaling fields O, 1 in the Dirac
theory

In this section we will specialize some of the results of [4] to the two-particle form factors of the scaling
fields Oi 1 evaluated in the discrete basis discussed in the previous section. These form factors will then
be used to construct form factors of spin and disorder fields in the subsequent sections.

Define the functions fi (k1, k2) by
(vaclOy1lk1, k2)+,—
(O11)

where the field O 1 areat the center of the Poincaré disk. Formulas in Appendix B.2 of [4] give expressions

fr(ki, ko) =

for these form factors (they were obtained using methods of angular quantization). Multiplying these
expressions by a phase factor i*1#2%2 for convenience (this corresponds to redefining the eigenstates by
multiplying them by a phase), we have

fe(k k2) = 22V+1ik2k1+1\/r(1 = 121121];2('1 e (1 +C;2iy;)]€5§;s(wy) (3.1)
where A
L gmatms
Geibaks = m;() m;o 2v + 1 252 1;77~L2m1'mg'Hi;ml’m2
with
Haopoms = Fl+vE1/24+m)I1+vE£1/2+ms2)

F(1—v+1/2)I(1+v+1/2)
X sF(L,14v+1/2+m,14v+1/24my;l4+v+£1/2,1—v+1/2;1).

The 3F5 hypergeometric function above can be evaluated in closed form, for any given integer m; and
ma, in terms of Gamma functions and rational functions of v. It can be checked that

frlki, ko) = —f_(ko, k1).

As this identity relates f_(ko, k1) to fi(k1,k2), we need only use fi(ki,ks) in the following sections,
which we will denote by f(k1, k2). Tt can be verified that this function satisfies the following identities:

flerks) = (=152 \/F k1, k0)/f(ka, k) (k1 + k2 even)
f(k1,ke) = —f(ke,k1) (k1 or ke odd)
f(ki,k2) = 0 (ki and ko odd). (3.2)

Of course, the last identity is just a consequence of the first and the second. In the first identity, as well
as in equation (3.1) and in other equations below, square roots 1/z assume their branch delimited by the
region —7 < arg(z) < m with v/z > 0 for arg(z) = 0.

4 Form factors of spin field

We now verify the factorization properties of the field Ot) as defined by (1.2) and calculate the multi-
particle form factors of the spin field o in the Majorana theory. Using formulas of Appendix B.3 of [4],
which essentially state that multi-particle form factors of the fields O, can be evaluated in terms of their



two-particle form factors through Wick’s theorem, the multi-particle form factors of O) in the Dirac
theory can be written in the form

1 nin_1)/2det(Ay) + det(A_
<O(+)><’UGC|O(+)|]€17"'7kn)klla'"7k’;7,>+,+,...,_,_,... = (_1) ( 1)/2 ( +) 2 ( ) (41)
where the n X n matrices A; and A_ have matrix elements
[Aliy = f(ki k5), [A_]iy = —f(K}, k).
In Appendix A, it is shown that
det(A4) —;—det(A_) et (A+ —;—A_> . (4.2)

This equation simply means that we can calculate the form factor in (4.1) by using Wick’s theorem to
pair energy levels in the asymptotic state, the contractions being given by

—
k1)1 |k2)— = %(f(/fl, ko) — f(k2, k1)) = { (J)t(kflj;llfg—’)_ kQ(]::TLQ odd) (4.3)

where we used properties (3.2) (other contractions being zero). Changing basis to |k), and |k), through
(2.3), we can calculate the multi-particle form factors by using Wick’s theorem with the contractions

r—1+

|k1>(l |k2>a = |k1>b |k2>b = |k1>+ |]€2>_

and
—

|k1)a |k2)s = 0.
We then obtain

(vac|(’)(+)|k1,...,kn,ki,...,k;ﬁa’a“”
S——

n m

1
(0

~

for n and m even, the form factor being zero otherwise. Here Pf means the Pfaffian of a matrix. The
n X n matrix ¥ and the m x m matrix ¥’ have matrix elements

| — | —
Elje = k)4 [k)— s [Ea = 1K)+ k-

The factorized form of the right-hand side of (4.4) strongly suggests that we can identify the field O(*) in
the Dirac theory on the Poincaré disk with a tensor product of spin fields ¢ in two independent copies of
the Majorana theory on the Poincaré disk, as in (1.1). Comparing with (2.4), equation (4.4) then leads
to the form factors of the spin field:

(vaclolky, ..., kn)
(o)

for n even, zero otherwise. In particular, this gives the two-particle form factor as

= P{(D) (4.5)

(vac|olky, k) { 0 (k1 + k2 even) (4.6)

(o) | f(k1,k2) (k1 + k2 odd)

(where we recall that f(ki,k2) = fy(k1,k2) is given by (3.1)), and says that we can calculate multi-
particle form factors of the spin field by using Wick’s theorem to pair energy levels in the asymptotic
states, the contractions being given by the two-particle form factors.



Although it is not straightforward, it is possible to verify that the two-particle form factor (4.6) is in
agreement with results of [12], which directly give the expression:

acolia k) _ e VRGEE) [T T BTG5 ()
(o) T(L+20+ ki +k) T +1+5) T v+ 3 +82) D (1+5)T (L + &)

for k1 even and ks odd. For ki odd and ke even, one can use (vac|olki, ko) = —(vac|o|ks, k1), and in
other cases the two-particle form factor is zero. Properties and significance of this expression will be
discussed in [12].

5 Form factors of disorder field

Now we proceed to verify the factorization properties of the field O(~) and to calculate the multi-particle
form factors of the disorder field i in the Majorana theory. As in the previous section, using definitions
(1.2) and formulas of Appendix B.3 of [4], the multi-particle form factor of the field O(~) in the Dirac
theory can be written in the form

nin—1)/2det(AL) — det(A_
Bty a0 bk Ky o = = (e SRS
——

n n

where, again as in the previous section, the n x n matrices A} and A_ have matrix elements
[Ai]ij = f(ki k), [A_]iy = —f(k], k).
In Appendix A, it is shown that

det(Ay) — det(A-)

5 = Res,, det(Ay (w)) (5.2)

where A, (w) is a matrix with matrix elements depending on an auxiliary (formal) variable w:

[Ay(w)]ij = f(ki, k]) - { w~' (ki and k} even)

L (ki or kj odd).

In equation (5.2), the symbol Res,, is just a convenient way of saying that one must keep only the
coefficient of the monomial w~? in the determinant det(A, (w)), that is, one must take the formal residue
in the variable w. Equation (5.2) means that we can calculate the form factor (5.1) by using Wick’s
theorem with contractions given by

w™t (k1 and ko even)

k)4 |k2)— = f(k1, ko) - { 1 (k1 or k2 odd)

(other contractions being zero) and by taking the formal residue in w of the resulting sum of products of
contractions. Changing basis to |k), and |k),, we can calculate the multi-particle form factors by using
Wick’s theorem with the contractions

1 —
Fada Thaba = Eado Vo = 5 (F (ko) = f(ka ) = W

and

x~
|z

ko
2

|k1)a |k2)p = —%w_l(f(klvk‘z) + flha k1)) = —iw™ (1) T /F k1, k1) (1) F /f(ka, k2)



and by taking the residue in w (here we used the first and second equations of (3.2)). Then we find

1 -
<O(+)><vac|(9( Nhtyeoo koKl kda an . bob, ... =

x i(—l)j*(—l)%; if (K}, k) <mc|a|ki"@’>k;"”’k%> (5.3)
1

for n and m odd, the form factor being zero otherwise (where the hat means omission of the argument).
Again, as in the case of the field O()| the factorized form of the right-hand side of (5.3) strongly suggests
that we can identify the field O(~) in the Dirac theory on the Poincaré disk with a tensor product of
disorder fields p in two independent copies of the Majorana theory on the Poincaré disk, as in (1.1).
Comparing with (2.5), equation (5.3) then leads to the form factors of the disorder field:

n

(vaclulkr, ... k) = S (~1)~ (vacllk;)
j=1

(waclolky, ... kj,. .. kn)
(o)

(5.4)

for n odd, zero otherwise. Here the one-particle form factor (vac|u|k), up to a sign factor independent of
k, is given by
Er

(vaclplk) = (o) (=1)2/if (k, k) (5.5)
(where we recall that f(k, k) = f1(k, k) is given by (3.1)). From the last property of (3.2), the one-particle
form factor (vac|p|k) is non-zero only for k even, and it is real since if(k, k) is real and positive. The
ambiguous sign factor was chosen to make (vac|u|0) positive. This ambiguity is related to the ambiguity
in the choice of branch on which to evaluate the correlation function (¢(x)u(y)) in the Majorana theory.
The precise relation between these two ambiguities will be clarify in [12].

It is possible to show that the one-particle form factor (5.5) is in agreement with results of [12], which
directly give the expression:

(vaclulk) _ 5 [T043+3)T(5+5)
(o) (v +1+5)T (1+5)

Properties and significance of this expression will be discussed in [12].

vl

for k even, 0 otherwise.

6 Conclusion

In [4], we had found expressions for form factors of particular scaling fields in the Dirac theory on
the Poincaré disk. One can relate the Hilbert space of the Dirac theory on the Poincaré disk to two
independent copies of the Hilbert space of the Majorana theory on the Poincaré disk in a way similar to
what can be done on flat space. If one can then factorize the fields O+) and O(~) (1.2) in the Dirac
theory in terms of spin and disorder fields in the Majorana theory in the way it is done on flat space, as
in (1.1), then one can obtain, from the expressions of [4], expressions for form factors of spin and disorder
fields in the Majorana theory on the Poincaré disk. In the present paper, we verified that the expressions
for form factors of @) and O(~) in the Dirac theory on the Poincaré disk that we found previously
agree with this factorization property. As a result, we obtained expressions for form factors and vacuum
expectation values of spin and disorder fields in the Majorana theory on the Poincaré disk.

Spin and disorder fields in the Majorana theory on the Poincaré disk should be related to spin and
disorder variables in the lattice Ising model on the Poincaré disk. The analysis of their correlation



functions and of their form factors should then give information concerning the statistical properties of
such an Ising model near “criticality”. This clearly is a very interesting prospect, given that the effect
of a curvature on the critical point of a statistical model is not well understood. Such an analysis is
currently being developed in some depth [12]; the present paper in particular provides a link between the
work [4] and this future publication.
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A Proof of formulas (4.2) and (5.2)

We see that [A4];; = [A_]i; when k; or & is odd, and that [A,];; = —[A_];; when k; and K are even.
Also, when k; and k; are even, the matrix elements factorize. Arrange the order of the k;’s and k‘;’s SO
that all even ones are at the beginning: k; is even if and only if i < I and & is even if and only if j < J.
Then the matrices Ay and A_ have the following form:

A, =M+S, A.=M-8 (A1)

where

[S]ijZSiS SiZOifiZI, S;ZOIf]Z.], [M]”201fz<landj<,]

/,
J )
Using the technique of minors to calculate determinants, the determinant of A, for instance, can always
be written as a sum ), a;. In this sum, each term a; can be factorized as a; = b; det(B;), where det(B;) is
the determinant of a sub-matrix B; of A that has the same horizontal dimension as that of S, and that
contains a certain number (if any) of full lines of S. When written in such a way, in each term b; det(B;),
the only factor where matrix elements [S];x of S enter is in the determinant det(B;). A similar expression
can be written for det(A_), with the sub-matrix S replaced by the sub-matrix —S. If more than one
line of S is contained in Bj;, then det(B;) = 0 because the elements of .S factorize. If only one line of S
is contained in B;, then the same term will appear in both the expressions for det(A4) and for det(A_)
but with opposite signs. If no line of S is contained in B;, then the same term will appear in both the
expressions for det(A4) and for det(A_) (with the same sign).

From these properties, in the sum of the expressions for the determinants of A, and A_, the only
terms remaining are those containing no elements of S as factors. Hence, det(A4)+det(A_) = 2det(M).
This proves Equation (4.2). On the other hand, in the difference of the expressions for the determinants of
A4 and A_, the only terms remaining are the terms which are linear in elements of S. This prescription
can be implemented by multiplying the elements of the sub-matrix S of A4 by the inverse of a formal
variable, w1, thus forming a matrix which we denote A, (w), and by taking the formal residue of the
determinant of A4 (w). This proves Equation (5.2).
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