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Abstract: It is pointed out that scalar-tensor theories of gravity admit
solutions in which the metric is Minkowskian although the scalar and matter
fields do not vanish. Explicit pp-wave solutions of the Brans-Dicke-Maxwell
theory are presented. These include solutions with metrics that are flat or
Ricci flat even though the Maxwell and scalar fields are non-zero.
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In general relativity with vanishing cosmological constant, and with the
classical matter fields minimally coupled in the standard way so there are
no phantom fields, the total energy-momentum tensor vanishes if and only
if all the matter fields are trivial. That is the matter fields are zero or,
as in the case of zero rest mass scalar fields, constant. In addition the
energy-momentum tensor of each individual classical field, such as a per-
fect fluid, scalar or electromagnetic field, vanishes if and only if the field is
trivial. Einstein’s vacuum field equations imply the absence of non-trivial
matter fields. Furthermore the Minkowski metric and non-trivial solutions
of the Minkowski space-time matter field equations do not together satisfy
the Einstein field equations. All this is well-known and well understood.
However, when the cosmological constant is non-zero or there are phantom
fields the situation may be different - in obvious ways. More interestingly,
when the matter coupling is non-minimal, and in gravitational theories other
than general relativity, the vanishing of the Einstein tensor does not neces-
sarily imply that the (non-metrical) matter fields are trivial. Recently there
have been a number of studies of fields that are non-zero even though their
energy-momentum tensors are zero [1, 2, 3]. In particular a model, with
a scalar field non-minimally coupled to gravity, has been constructed whose
field equations admit solutions where the metric is flat even though the scalar
field is non-trivial [3]. Such fields, which together with a flat metric are solu-
tions of gravity coupled equations of motion, may be termed non metrically
gravitating, or more concisely non-gravitating. The aim of this letter is to
exhibit some further examples of gravitational wave systems that admit non-
gravitating fields, and matter fields which are non-vanishing even though the
Einstein tensor is zero. Such systems could not be distinguished from flat
space-time or Einstein vacuum space-times by curvature effects alone, even
though their energy content may be quite different.

Members of a broad class of scalar-tensor theories of gravity admit the
possibility of non-gravitating fields. Such theories are of interest in cosmolog-
ical investigations and in the analysis of observational tests and alternatives
to general relativity. They include models arising as low-energy limits of
higher dimensional theories such as string and Kaluza-Klein theories. This
class of theories includes those describable by Lagrangian densities of the
general form (for further discussions see, e.g. [4, 5])

L =
√−g[

A(Φ)

16π
R − 1

2
B(Φ)(∇Φ)2 − V (Φ)] + LM [e2α(Φ)gµν , ψm], (1)
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where R is the Ricci scalar of the metric gµν and A, B, α and the potential
V are functions of the scalar field Φ. The term LM depends on the matter
fields ψm and the metric e2α(Φ)gµν which determines observable quantities
such as the geodesic trajectories of freely falling test particles, proper time
etc. In this letter it will suffice to focus detailed attention on the type of four-
dimensional systems considered originally by Fierz, Jordan, Brans and Dicke,
[6, 7, 8], since it is easy to see that similar conclusions can be drawn about
solutions of more general scalar-tensor theories, such as those determined by
the Lagrangians given in Eq.(1), in both four and higher dimensions.

The Lagrangian density for the Brans-Dicke-matter field equations cor-
responding to the choices A = Φ, B = ω

8πΦ
, V = 0 and α = 0, is given

by

L =
√−g[

Φ

16π
R − ω

16πΦ
(∇Φ)2 + LM ] (2)

where Φ is the Brans-Dicke scalar field, ω is the Brans-Dicke parameter,√−gLM(gµν , ψm) is the Lagrangian density for matter fields ψm. The con-
ventions of [9] are followed. The Euler-Lagrange equations obtained by vary-
ing the metric and the scalar field are

Gαβ =
8π

Φ
Tαβ +

ω

Φ2
[∇αΦ∇βΦ − 1

2
gαβ∇ρΦ∇ρΦ] +

1

Φ
(∇α∇βΦ − gαβ¤Φ),

(3)

¤Φ =
8π

(2ω + 3)
T, (4)

where T = gαβTαβ. In this letter the only additional field considered will be
a source-free Maxwell field, Fαβ, so that LM = − 1

16π
FαβFγδg

αγgβδ and the
remaining Euler-Lagrange equations are the Maxwell equations

∇αFαβ = 0, ∇[γFαβ] = 0, (5)

and the (Maxwell) energy-momentum tensor is

Tαβ =
1

4π
(FαρF

ρ
β − 1

4
gαβFρσF

ρσ). (6)

Consider now the sub-class of Kerr-Schild metrics given by the ‘plane-
fronted waves with parallel rays’ form [10]

ds2 = −2dudv + (dxi)2 + 2fdu2, (7)
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where f is a function of u and xi only. Let lα = u,α , and si
α = xi,α , so that

gαβ = ηαβ +2flαlβ., and lα is null with respect to both gαβ and the flat metric
ηαβ. It is a straightforward matter to see that the covariant derivative of lα
satisfies the usual pp-wave condition

∇αlβ = 0, (8)

and the Einstein tensor is

Gαβ = (−f,ij δij)lαlβ, (9)

where the comma denotes partial differentiation.
Here the class of Maxwell fields considered will be given by

Fαβ = F,i (lαsi
β − lβsi

α). (10)

These are solutions of the source-free Maxwell equations when the function
F satisfies the equations

F,v = 0 and F,ij δij = 0, (11)

and the corresponding Maxwell energy-momentum tensor reduces to

Tαβ =
1

4π
lαlβF,i F,j δij. (12)

It will be assumed that the scalar field Φ is a function of u only so that

¤Φ = 0 (13)

and gαβΦ,α Φ,β = 0,∇α∇βΦ = (Φ,u ,u )lαlβ.

It now follows that the scalar fields Φ(u), and metrics gαβ and Maxwell fields
Fαβ determined by Eqs. (7) and (10), satisfy all the Brans-Dicke-Maxwell
field equations when Eqs.(11) and (3) are satisfied. The latter equation
reduces to

Φ
′′

+
ω(Φ′)2

Φ
+ 2F,i F,j δij + Φf,ij δij = 0. (14)

where the prime denotes differentiation with respect to u. Eqs.(11) and (14)
are an underdetermined set of equations for the functions Φ(u), F (u, xi) and
f(u, xi), and solutions are easy to find.
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In the four dimensional case it is straightforward to see that the general
solution is given, for non-zero Φ(u), by

f = f1 + f1 −
zz

4
(
Φ

′′

Φ
+

ω(Φ′)2

Φ2
) − 2F1F1

Φ
,

F = F1 + F1. (15)

Here the bar denotes complex conjugation and f1 and F1 are each arbitrary
complex functions of two variables u and z, where z = x1 + ix2.

The following general conclusions can be drawn from these solutions. If
the metric gαβ is a pp-wave solution of Einstein’s vacuum equations so that

f,ij δij = 0, (16)

then gαβ is also a solution of the Brans-Dicke-Maxwell field equations, with
Maxwell field determined by

F = zF2 + zF2. (17)

Here F2 is a complex function of u only which, together with appropriate Φ,

satisfies

|F2|2 = −1

8
(Φ

′′

+
ω(Φ′)2

Φ
). (18)

In particular if the metric gαβ is flat, with f = 0 say, then these equations
determine non-gravitating solutions of the Brans-Dicke-Maxwell equations.

In the case where F2 is zero, so that the Maxwell field vanishes, the
solution of Eq. (18) is given by

Φ0 = exp(c1u + c2), (19)

when ω = −1 and
Φ0 = (c1u + c2)

1

ω+1 , (20)

when ω 6= −1.
Hence a pp-wave metric, gαβ, is a solution of the Einstein vacuum field

equations if and only the pair (gαβ, Φ0) is a solution of the Brans-Dicke field
equations. In particular when gαβ is the Minkowski metric the pairs (ηαβ, Φ0)
are non-gravitating Brans-Dicke solutions.
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